

REWARD MODEL ROUTING IN ALIGNMENT

000
001
002
003 **Anonymous authors**
004 Paper under double-blind review
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

Reinforcement learning from human or AI feedback (RLHF/RLAIF) has become the standard paradigm for aligning large language models (LLMs). However, most pipelines rely on a single reward model (RM), limiting alignment quality and risking overfitting. Recent work explores RM routing—dynamically selecting an RM from a candidate pool to exploit complementary strengths while maintaining $O(1)$ RM calls—but existing methods suffer from cold-start and insufficient exploration. We propose **BayesianRouter**, a hybrid routing framework that combines offline RM strengths learning with online Bayesian selection. In the offline stage, a multi-task router is trained on preference data to estimate per-RM reliability. In the online stage, a Bayesian Thompson sampling router performs per-query RM selection, initializing RM-specific weight vectors with offline embeddings as Gaussian priors and adaptively updating their posteriors with online rewards to adapt to the evolving policy distribution. Extensive experiments on instruction-following (AlpacaEval-2, Arena-Hard, MT-Bench) and reasoning (GSM8K, MMLU) benchmarks show that **BayesianRouter** consistently outperforms individual RMs, RM ensembling, and existing routing methods.

1 INTRODUCTION

Large language models (LLMs) have revolutionized artificial intelligence, demonstrating substantial capabilities in language understanding, reasoning, and open-ended text generation across diverse domains (Guo et al., 2025; Achiam et al., 2023). To safely and effectively deploy LLMs, recent post-training techniques, particularly reinforcement learning from human feedback (RLHF) and its AI-augmented variant (RLAIF) (Wang et al., 2024b), aimed at aligning LLMs with human values and preferences. These methods fine-tune LLMs to internalize nuanced human preferences, bridging the gap between raw pretrained performance and user-aligned behavior. In standard RLHF, a reward model (RM) provides the feedback signal for optimizing the policy LLM; for example, in PPO, the RM provides a scalar reward to directly increase the probability of preferred responses (Ziegler et al., 2019), while in direct preference optimization (DPO), the RM compares two candidate responses to determine which is better (Dong et al., 2024).

Recent RLHF/RLAIF pipelines often rely on a single RM throughout training (Kaufmann et al., 2024). This design choice, however, can be suboptimal due to (1) limited generalizability: no single RM consistently excels across all tasks, as evidenced by benchmarks like RewardBench 2 (Malik et al., 2025). An RM tuned for one type of content (e.g. conversational helpfulness) may perform poorly on a different genre (e.g. mathematical reasoning), leading to suboptimal alignment when one fixed RM is used universally; (2) high costs: using a powerful general-purpose LLM (e.g. GPT-5) as the RM can provide high-quality feedback, but the cost of querying such a model at scale is prohibitive (Zheng et al., 2023). In practice, this makes large RMs impractical for extensive RLHF training, and (3) risk of overoptimization: relying on a single RM amplifies the risk of overfitting to that RM’s idiosyncratic biases or noise, which can lead the policy to exploit the RM’s flaws (i.e., reward hacking) rather than truly align with human intent (Coste et al., 2023; Zhang et al., 2024). Collectively, these issues undermine the robustness and scalability of single-RM alignment.

To overcome these challenges, recent studies have started to leverage an ensemble of reward models, combining the strengths of multiple RMs. Prior work in (Coste et al., 2023; Zhang et al., 2024) explored multi-RM approaches, but naively using multiple RMs in parallel for every query is extremely costly and can introduce conflicting or noisy signals when the models disagree. Among ensemble strategies, routing methods are particularly interesting: instead of aggregating all models’ outputs, a router dynamically selects the most suitable RM for each input, preserving the benefits of model diversity while minimizing overhead. In this spirit, LASER (Nguyen et al., 2024) is, to our knowledge, the first method to apply instance-level RM routing in RLHF. LASER frames reward model selection as a contextual multi-armed bandit problem. During DPO-based RLHF training, for each batch of prompts, a bandit (LinUCB) chooses a single RM from a candidate pool to label the policy’s responses; the policy is then updated on this preference-labeled data, and the router is updated based on the policy’s resulting reward signal. By selecting one RM at a time, LASER avoids the overhead of running all RMs and adapts the choice of RM as training progresses.

054 While LASER showed the promise of adaptive RM selection, important limitations remain: (1) coarse-grained routing:
 055 LASER selects one RM per batch of prompts, whereas prompts within the same batch may favor different RMs.
 056 This batch-level routing often makes suboptimal choices for many individual queries; (2) limited exploration: using
 057 LinUCB (which relies on point estimates and optimism), the router can prematurely lock onto a suboptimal RM and
 058 insufficiently explore others. In other words, LASER’s bandit may over-exploit one arm without adequately probing
 059 alternatives that could be better for certain query types, and (3) inefficient cold-start: at the start of training, LASER
 060 assumes all RMs are equally good and must gather many interactions to identify each RM’s unique strengths. This
 061 slow start results in suboptimal RMs being used in early training, which reduces sample efficiency and makes the
 062 outcome sensitive to initial conditions.

063 To address these issues, we propose **BayesianRouter**, a hybrid RM routing framework that integrates a learned model
 064 of RM strengths, paired with an online Bayesian selection strategy to accelerate routing at a small compute overhead.
 065 Specifically, **BayesianRouter** consists of (1) an offline router with a language model-based encoder that is trained on
 066 existing preference datasets to predict which RMs will perform better for a given query. We use a multi-task objective:
 067 a Bradley–Terry ranking head scores each candidate RM, and a classification head predicts whether each RM would
 068 choose the better answer in a given pair. This offline router captures each RM’s specialization in a shared embedding
 069 space, providing a rich prior for selection; (2) online Bayesian router: during RLHF fine-tuning, **BayesianRouter**
 070 employs a Bayesian Thompson sampling for instance-level RM selection. The router treats the query embedding
 071 as context and maintains a Gaussian posterior for each RM’s reward model. For each query, it samples a reward
 072 estimate for each RM from its posterior and selects the RM with the highest sample, then uses that RM’s feedback
 073 to train the policy and update the posterior. By sampling from an uncertainty-aware model, instead of relying on a
 074 single deterministic estimate, the router naturally balances exploration and exploitation and can more robustly discover
 075 which RM is optimal for each query type. We initialize the online router using the prior knowledge from the offline
 076 router to inherit the knowledge on each RM’s strengths, as well as to bootstrap the cold-start. As training proceeds,
 077 the router updates this knowledge and adapts to the evolving policy distribution while retaining the offline insights.

078 We evaluate **BayesianRouter** on both instruction-following benchmarks (including AlpacaEval-2 and MT-Bench) and
 079 academic benchmarks (including GSM8K and MMLU). The results demonstrate that **BayesianRouter** significantly
 080 outperforms strong baselines, such as the single best RM, RM ensemble methods, and LASER.

081 2 RELATED WORK

082 **LM-based Reward Model.** Language model-based reward models (RMs) act as proxies for human preferences and
 083 play a central role in RLHF and RLAIF (Kaufmann et al., 2024; Wang et al., 2024b). They are commonly categorized
 084 into three families: classifier RMs (Liu et al., 2025), generative RMs (Yu et al., 2025a), and LLM-as-a-judge (LAJ)
 085 (Hurst et al., 2024). In early RLHF pipelines, RMs typically provided a scalar reward for each (prompt, response),
 086 which was then optimized with policy-gradient methods such as PPO (Kaufmann et al., 2024). More recent RLAIF
 087 approaches often use RMs to conduct pairwise comparisons between responses and apply objectives such as DPO to
 088 encourage the policy to prefer the better response (Guo et al., 2024). Research on RMs primarily focuses on improving
 089 the reliability of reward signals. For example, Wang et al. (2024a) filter unreliable preference data by comparing
 090 rankings across training iterations; Yu et al. (2024) adopt a divide-and-conquer strategy that decomposes response
 091 evaluation into simpler claim-level judgments; and Liu et al. (2025) build a large-scale dataset of 40M preference pairs
 092 via human–AI collaboration, enabling smaller RMs to outperform much larger models. Orthogonally, RM ensembling
 093 (e.g., averaging, lower-confidence bound, or uncertainty-weighted schemes) has been shown to improve robustness and
 094 mitigate overoptimization risks (Coste et al., 2023; Zhang et al., 2024). In addition, benchmarks such as RewardBench,
 095 RM-Bench, and RewardBench 2 provide systematic evaluations of different RMs across domains, offering practical
 096 guidance for model selection (Lambert et al., 2024; Malik et al., 2025; Liu et al., 2024).

097 **Routing LLM Queries.** Research on routing LLM queries has so far mainly focused on *LLM inference*, where the
 098 aim is to assign each query to the most suitable model before decoding in order to balance accuracy and efficiency.
 099 For instance, Lu et al. (2023) train a router using reward-model-based scores of candidate responses as supervision;
 100 Ding et al. (2024) adaptively switch between cloud and edge models depending on query difficulty; Ong et al. (2024)
 101 propose ROUTELLM, which employs classifiers (e.g., matrix factorization, causal LLM classifier) to decide whether
 102 a query should be routed to a strong or weak model; Shadid et al. (2025) analyzes LLM performance on benchmark
 103 tasks, clusters user queries by similarity, and dynamically routes each query to the best-performing LLM for its cluster,
 104 achieving higher accuracy at lower cost compared to trained routers; and Frick et al. (2025) introduce P2L, which uses
 105 Bradley–Terry modeling and sparse pairwise preference data to train routers that scale to hundreds of candidate LLMs.
 106 While these methods are designed for inference scenarios, to the best of our knowledge, there has not been work
 107 on leveraging *offline preference data* to pretrain a router specifically for reward models, which differ from inference

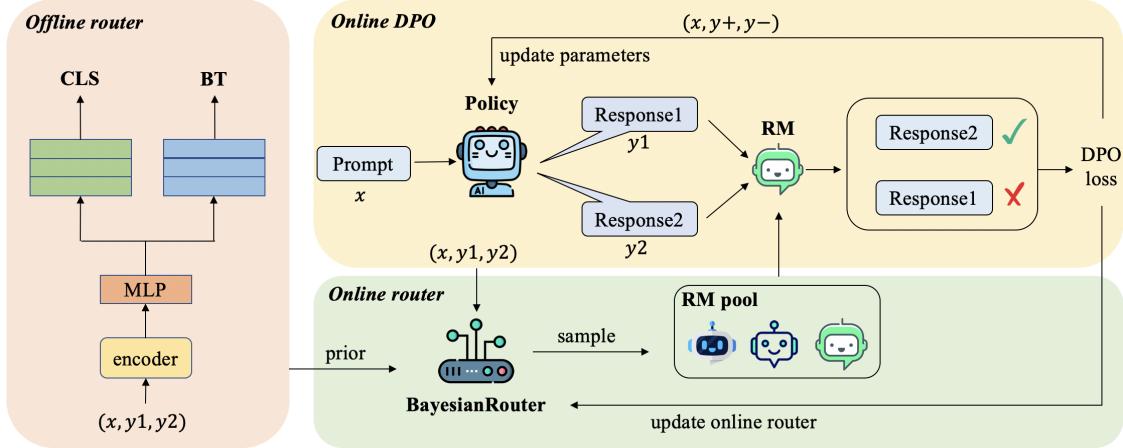


Figure 1: Overview of BayesianRouter.

routers in terms of input features and label construction. Moreover, a purely offline router is prone to out-of-distribution (OOD) issues, and may generalize poorly when deployed on unseen data distributions.

Multi-Armed Bandits (MABs). MABs offer a classical framework for sequential decision-making under uncertainty, balancing exploration and exploitation by pulling one arm per round and observing stochastic feedback (Zhou, 2015; Bouneffouf & Rish, 2019). This formulation naturally fits routing, where each query is assigned to one model with only partial feedback available. Among contextual bandit algorithms, LinUCB (Li et al., 2010) and Bayesian linear Thompson sampling (Agrawal & Goyal, 2013) are two widely used approaches: the former uses optimism via confidence bounds, while the latter samples from a posterior to enable uncertainty-aware exploration. Beyond these, variants like KL-UCB (Garivier & Cappé, 2011), OFUL (Abbasi-Yadkori et al., 2011), or logistic/GLM bandits (Filippi et al., 2010) can also be applied depending on feedback type and distributional assumptions.

MAB algorithms have recently been applied to *LLM inference routing*. For example, (Li, 2025) formulates model selection as a contextual bandit problem, training preference-conditioned dynamic routing policies on offline data and leveraging model identity embeddings to generalize across architectures, thereby enabling adaptive selection of high-performance, low-cost LLMs at inference time. In the *reward modeling* setting, the only existing MAB-based router is LASER (Nguyen et al., 2024), which leverages LinUCB to select one reward model per input batch during RLAIF training. In contrast, our BayesianRouter replaces point-estimate exploration with Bayesian posterior sampling, and further integrates offline-learned priors to address both exploration inefficiency and cold-start limitations.

3 METHODS

In this section, we introduce BayesianRouter, a reward model (RM) routing framework designed for adaptive RM selection within preference-based alignment pipelines. BayesianRouter is designed for the DPO family, while it could in principle also benefit reinforcement learning-based methods such as PPO that rely on scalar reward signals, although evaluating its performance in that setting is beyond the scope of this work. Concretely, for each input *preference pair*—consisting of a prompt and two candidate responses from the policy model—BayesianRouter selects the most appropriate RM from a candidate pool to evaluate the pair. The resulting preference signal is then used to train the policy model via online DPO. An overview of BayesianRouter is shown in Figure 1.

We structure this section as follows. Section 3.1 briefly reviews the standard online DPO algorithm, formally defines the RM selection problem, and provides an overview of BayesianRouter. Section 3.2 introduces the offline RM router, which leverages preference datasets and a multi-task objective to model RM strengths, i.e., identifying which candidate RM is most reliable for a given preference pair. Section 3.3 presents the Bayesian Thompson sampling-based online router, which adaptively selects RMs during online DPO training and updates its posterior distribution with policy feedback. Finally, Section 3.4 describes how we integrate the offline-learned RM strengths with the online router to alleviate the cold-start problem.

162 3.1 PROBLEM FORMULATION AND METHOD OVERVIEW
163

164 **Online DPO Training Pipeline.** We follow the standard online Direct Preference Optimization (DPO) (Guo et al.,
165 2024; Dong et al., 2024) setup to iteratively align the policy model π . Let π_t denote the model at training step t ,
166 initialized from a pretrained policy π_0 . At each step, the model receives a mini-batch of prompts $\{x_i\}_{i=1}^B$, and for each
167 x_i we sample k candidate responses $y_i = \{y_i^1, \dots, y_i^k\} \sim \pi_m(\cdot | x_i)$. A reward model R evaluates these candidates
168 to construct preference pairs: for classifier RMs, $R(x_i, y_i^j)$ outputs a scalar score and we form a pair (x_i, y_i^w, y_i^l)
169 if $R(x_i, y_i^w) > R(x_i, y_i^l)$; for generative RMs, the model directly compares two responses $(y_i^j, y_i^{j'})$ and indicates
170 which is preferred, yielding a preference pair of the same form. Collecting over the batch gives a preference dataset
171 $\mathcal{D}_{\text{pref}} = \{(x_i, y_i^w, y_i^l)\}_{i=1}^B$.

172 The policy π_t is then updated on $\mathcal{D}_{\text{pref}}$ using the DPO loss (Rafailov et al., 2023), which encourages the policy to
173 increase the likelihood ratio between the preferred and dispreferred responses relative to a frozen reference model π_{ref} :
174

$$175 \mathcal{L}_{\text{DPO}} = -\frac{1}{|\mathcal{D}_{\text{pref}}|} \sum_{(x, y^w, y^l) \in \mathcal{D}_{\text{pref}}} \log \sigma \left(\beta \log \frac{\pi_t(y^w | x)}{\pi_{\text{ref}}(y^w | x)} - \beta \log \frac{\pi_t(y^l | x)}{\pi_{\text{ref}}(y^l | x)} \right), \quad (1)$$

179 where π_{ref} is typically set to π_0 , $\sigma(\cdot)$ is the logistic function and β is a scalar hyperparameter. Without loss of
180 generality, we use the standard DPO objective, though other variants such as IPO (Azar et al., 2024) and SLiC (Zhao
181 et al., 2023) are also compatible with our framework.

183 **Problem Formulation.** In the online DPO pipeline, the choice of the reward model (RM) directly shapes the mini-
184 batch preference dataset $\mathcal{D}_{\text{pref}}$ constructed at each step, thereby determining the quality of the alignment signal. Empirically,
185 no single RM uniformly dominates across preference types or domains. For example, RewardBench 2 (Malik
186 et al., 2025) reports that Skywork-Reward-V2-Llama-3.1-8B ranks first overall but, while outperforming the
187 second-place LMUnit-qwen2.5-72b on Math and Safety preferences, it underperforms LMUnit-qwen2.5-72b
188 on Factuality. To exploit complementary strengths across N RMs, one option is to ensemble them (e.g., majority voting
189 over multiple RMs). However, this increases the per-step inference cost from $O(1)$ to $O(N)$ RM calls, resulting
190 in a significant increase in training cost. In contrast, we adopt *per-query routing*: for each unlabeled preference pair
191 $(x_i, y_i^j, y_i^{j'})$, we select a *single* most suitable RM to annotate it. This preserves $O(1)$ RM calls per step while still
192 leveraging complementary strengths of N RMs.

193 Formally, let $\mathcal{M} = \{R_n\}_{n=1}^N$ be the candidate RM pool. We aim to learn a router $\text{Router}(\cdot; W)$ (parameterized by
194 W) that maps an unlabeled preference pair $(x_i, y_i^j, y_i^{j'})$ to an RM:
195

$$196 R_n = \text{Router}(x_i, y_i^j, y_i^{j'}; W).$$

198 The selected RM yields more reliable preference annotations for the current batch, thereby providing higher-quality
199 supervision for policy updates.

200 Routers can be *offline* (trained on a static preference corpus and kept fixed during online DPO) or *online* (updated
201 during training using feedback from the current policy). Offline routers can leverage existing labeled offline preference
202 datasets but may fail under distribution shift between the offline training data and the online data; online routers can
203 adapt to the target distribution but suffer from cold-start and exploration challenges early in training.

205 **Our Approach: BayesianRouter (Overview).** We propose BayesianRouter, a hybrid RM routing framework
206 that couples an *offline, RM strengths learning* stage with an *online, distribution adaptation* stage (see Fig. 1). The
207 offline-learned RM strengths provide a high-quality initialization that mitigates the cold-start issue and improves early
208 batch-level routing accuracy; the Bayesian online updates adapt the router to the evolving data distribution and policy.
209 The following subsections detail the offline router, the online RM router, and the integration strategy.

211 3.2 OFFLINE RM ROUTER
212

213 Given a candidate set of reward models $\mathcal{M} = \{R_n\}_{n=1}^N$ and an offline preference dataset $\hat{\mathcal{D}}_{\text{pref}} = \{(x_i, y_i, y'_i, \ell_i)\}_{i=1}^m$
214 where $\ell_i \in \{0, 1\}$ indicates which of y_i and y'_i is the preferred response to the prompt x_i , the goal of the *offline router*
215 is to predict, for a new unlabeled preference pair (x, y, y') , which RM is most likely to correctly identify the preferred
response. Figure 1 (left) illustrates the architecture of our offline RM router.

216 **Collecting RM Behavior Data.** To construct the training signals for the offline router, we first collect the behavior
 217 of each candidate RM on $\hat{\mathcal{D}}_{\text{pref}}$. Concretely, we run each RM R_n on each preference pair $q_i = (x_i, y_i, y'_i) \in \hat{\mathcal{D}}_{\text{pref}}$ and
 218 record a binary indicator $\delta_i^{(n)} \in \{0, 1\}$ that equals 1 if R_n agrees with the ground truth ℓ_i and 0 otherwise, yielding
 219 $\mathcal{D}_{\text{beh}} = \{(q_i, \delta_i^{(n)}) \mid i = 1, \dots, m; n = 1, \dots, N\}$.
 220

221 **Preference-pair feature construction.** Unlike LASER in (Nguyen et al., 2024) that uses only the prompt as router
 222 input, we encode the whole preference pair (x_i, y_i, y'_i) because an RM’s decision depends not only on the prompt but
 223 also on the semantic content of the two responses and their contrast. Concretely, we first concatenate the prompt with
 224 each response and encode them with a shared pretrained encoder $\text{Enc}(\cdot; W_e)$:
 225

$$\mathbf{e}_i = \text{Enc}(x_i \parallel y_i; W_e), \quad \mathbf{e}'_i = \text{Enc}(x_i \parallel y'_i; W_e).$$

226 We then aggregate these encodings into a single preference-pair representation by
 227

$$\mathbf{h}_i = \text{MLP}([\mathbf{e}_i + \mathbf{e}'_i; |\mathbf{e}_i - \mathbf{e}'_i|]; W_l) \in \mathbb{R}^d,$$

228 where $[\cdot; \cdot]$ denotes vector concatenation, $|\cdot|$ is the element-wise absolute difference, and $\text{MLP}(\cdot; W_l)$ is a single-layer
 229 MLP used to fuse features.
 230

231 Based on the preference feature \mathbf{h}_i , we adopt a multi-task objective with two prediction heads. The primary head is
 232 a Bradley–Terry (BT) head, which assigns an *ability score* to each RM such that, given a preference pair, the RM
 233 with the highest score is selected as the most reliable one. The auxiliary head is a classification (CLS) head, which
 234 independently predicts for each RM whether it can correctly identify the preferred response in the given pair.
 235

236 **BT head (primary).** We define a *disagreement sample* as a preference pair on which two RMs produce different
 237 behavior labels. Such samples capture the relative competence of the two RMs and are therefore suitable for training
 238 a Bradley–Terry (BT) head to predict per-RM ability scores. Formally, from \mathcal{D}_{beh} we extract the disagreement set
 239 $\mathcal{D}_{\text{bt}} = \{(q_i, n, n') \mid \delta_i^{(n)} = 1, \delta_i^{(n')} = 0\}$. We learn an embedding matrix $E_{\text{bt}} \in \mathbb{R}^{N \times d}$ whose n -th row represents
 240 RM R_n . We compute BT scores as inner products, i.e., $s_i^n = \langle \mathbf{h}_i, E_{\text{bt}}[n] \rangle$ and $s_i^{n'} = \langle \mathbf{h}_i, E_{\text{bt}}[n'] \rangle$, and optimize the
 241 pairwise logistic (Bradley–Terry) loss
 242

$$\mathcal{L}_{\text{bt}} = -\frac{1}{|\mathcal{D}_{\text{bt}}|} \sum_{(q_i, n, n') \in \mathcal{D}_{\text{bt}}} \log \sigma(s_i^n - s_i^{n'}). \quad (2)$$

243 This objective encourages the BT head to assign higher ability scores to RMs that win paired comparisons.
 244

245 **CLS head (auxiliary).** Since the BT head relies only on disagreement samples, it ignores the information contained in
 246 the remaining portion of \mathcal{D}_{beh} . To better exploit the full dataset, we introduce an auxiliary per-RM binary classification
 247 head. Given a preference pair q_i , the CLS head predicts each candidate RM’s behavior label $\delta_i^{(n)}$ from the preference
 248 embedding \mathbf{h}_i . Concretely, we learn an embedding matrix $E_{\text{cls}} \in \mathbb{R}^{N \times d}$ whose n -th row corresponds to RM R_n ,
 249 compute logits $z_i^n = \langle \mathbf{h}_i, E_{\text{cls}}[n] \rangle$ for every RM, and optimize the binary cross-entropy over \mathcal{D}_{beh} :
 250

$$\mathcal{L}_{\text{cls}} = -\frac{1}{|\mathcal{D}_{\text{beh}}|} \sum_{(q_i, n) \in \mathcal{D}_{\text{beh}}} \left[\delta_i^{(n)} \log \sigma(z_i^n) + (1 - \delta_i^{(n)}) \log (1 - \sigma(z_i^n)) \right]. \quad (3)$$

251 By independently predicting each RM’s behavior, the CLS head provides complementary supervision to the pairwise
 252 BT objective, benefiting the BT ranking through shared representation learning.
 253

254 **Training objective and offline output.** The router is trained by minimizing the combined loss $\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{bt}} + \lambda \mathcal{L}_{\text{cls}}$,
 255 where λ controls the contribution of the auxiliary classification loss. We optimize the encoder parameters W_e , the MLP
 256 parameters W_l , and the head parameters E_{bt} and E_{cls} . After training, we retain the BT embedding matrix E_{bt} as the
 257 prior for online routing, since it captures relative RM strengths conditioned on preference pairs.
 258

259 3.3 BAYESIAN ONLINE RM ROUTER

260 Unlike the offline router, which is trained on static preference data and remains fixed during online training, the online
 261 router is continuously updated after each routing decision using observed rewards. By adapting to the evolving policy-
 262 induced distribution of preference pairs $\mathcal{D}_{\text{pref}}$, the online router mitigates distributional mismatch that would otherwise
 263 limit the effectiveness of the offline router.
 264

265 In online routing, only the supervision from the selected RM is observed for each preference pair, making the problem
 266 a natural instance of contextual partial-feedback learning (i.e., a contextual bandit). Here, candidate RMs correspond
 267 to the set of RMs in the current distribution $\mathcal{D}_{\text{pref}}$.
 268

270 to arms, the preference pair serves as the context, and the problem can be addressed with contextual multi-armed bandit
 271 (MAB) algorithms. (Nguyen et al., 2024) used LinUCB for online routing. However, we empirically find LinUCB
 272 often collapses to a single fixed arm after a few batches, likely because per-arm observations are scarce and contexts
 273 are similar, which leads to premature exploitation. To encourage continued exploration and to more reliably discover
 274 which contexts each RM specializes in, we adopt Bayesian Thompson sampling.

275
 276 **Bayesian Thompson Sampling** We model the expected utility of selecting RM R_n on a preference-pair embedding
 277 \mathbf{h}_i with Bayesian linear regression:

$$278 \quad r = \mathbf{w}_n^\top \mathbf{h}_i + \varepsilon, \quad \varepsilon \sim \mathcal{N}(0, \sigma^2), \quad (4)$$

280 where $\mathbf{w}_n \in \mathbb{R}^d$ is a latent weight vector for R_n and σ^2 denotes observation noise. Each RM maintains a Gaussian
 281 posterior $\mathbf{w}_n \sim \mathcal{N}(\boldsymbol{\mu}_n, \boldsymbol{\Sigma}_n)$ that is updated only when R_n is selected. At training step t , given a batch of preference-
 282 pair embeddings $\{\mathbf{h}_i\}_{i \in \mathcal{B}_t}$, we perform Thompson sampling by drawing a sample from each RM’s posterior for each
 283 preference pair:

$$284 \quad \mathbf{w}_n^{(t)} \sim \mathcal{N}(\boldsymbol{\mu}_n^{(t)}, \boldsymbol{\Sigma}_n^{(t)}), \quad n_i^* = \arg \max_n \mathbf{h}_i^\top \mathbf{w}_n^{(t)},$$

285 and the router selects $R_{n_i^*}$ for that pair. Let $\mathcal{I}_n^{(t)} = \{i \in \mathcal{B}_t \mid n_i^* = n\}$ denote the indices in the batch assigned to
 286 RM R_n ; after observing scalar rewards $\{\hat{r}_n^i\}_{i \in \mathcal{I}_n^{(t)}}$ for these pairs, we update R_n ’s posterior using the accumulated
 287 sufficient statistics of its assigned pairs:

$$288 \quad \boldsymbol{\Sigma}_n^{(t+1)} = \left(\boldsymbol{\Sigma}_n^{(t)}^{-1} + \frac{1}{\sigma^2} \sum_{i \in \mathcal{I}_n^{(t)}} \mathbf{h}_i \mathbf{h}_i^\top \right)^{-1}, \quad (5)$$

$$292 \quad \boldsymbol{\mu}_n^{(t+1)} = \boldsymbol{\Sigma}_n^{(t+1)} \left(\boldsymbol{\Sigma}_n^{(t)}^{-1} \boldsymbol{\mu}_n^{(t)} + \frac{1}{\sigma^2} \sum_{i \in \mathcal{I}_n^{(t)}} \hat{r}_n^i \mathbf{h}_i \right). \quad (6)$$

295 When no offline prior is injected we initialize $\boldsymbol{\mu}_n^{(0)} = \mathbf{0}$ and $\boldsymbol{\Sigma}_n^{(0)} = \sigma_w^2 I_d$, where σ_w^2 is the prior variance. Let $\mathcal{L}_{\text{DPO}}^i$
 296 be the DPO loss on preference pair i labeled by R_n . We take the raw reward to be $\tilde{r}_n^i = -\mathcal{L}_{\text{DPO}}^i$. We use quantile
 297 normalization to normalize the raw reward and obtain the final variance-reduced and numerically stable reward \hat{r}_n^i
 298 (details in Appendix B).

300 3.4 OFFLINE–ONLINE INTEGRATION

301 While the offline and online routers can each perform RM routing as defined in Section 3.1, both have intrinsic
 302 limitations. The offline router leverages abundant supervised preference data but may degrade under distribution
 303 shift, whereas the online router adapts to the policy-induced distribution but suffers from cold start and exploration
 304 challenges. Thus, neither component alone is sufficient in practice.

305 To address this, our key idea is to combine their complementary advantages. A naïve approach is to directly combine
 306 their outputs (e.g., by weighted averaging of their predicted scores), but such schemes require a manually tuned global
 307 weight whose optimal value is unclear and may vary across training stages. Instead, we propose a more principled
 308 strategy based on prior injection. The insight is that both the offline BT head and the online Bayesian router can be
 309 viewed as linear models over the preference-pair embedding: the offline BT head computes $\langle \mathbf{h}, E_{\text{bt}}[n] \rangle$ where $E_{\text{bt}}[n]$
 310 is the learned RM embedding, while the online router computes $\langle \mathbf{h}, \mathbf{w}_n \rangle$ where \mathbf{w}_n is the latent RM weight vector.
 311 The semantic roles of $E_{\text{bt}}[n]$ and \mathbf{w}_n are thus closely aligned, differing mainly in the source of supervision (offline
 312 labels versus online rewards). This motivates initializing the online Bayesian router with the offline BT embeddings.

313
 314 Concretely, we set the prior mean of each RM’s weight vector in Eq. 4 to the corresponding offline embedding, i.e.,
 315 $\boldsymbol{\mu}_n^{(0)} = E_{\text{bt}}[n]$. This initialization provides the online router with prior knowledge about which types of preference
 316 pairs each RM is likely to handle well. As a result, it mitigates the cold-start problem and improves early routing
 317 accuracy. During training, the posterior distributions are iteratively refined using online rewards, allowing the router
 318 to adapt to the evolving policy-induced distribution while retaining the offline prior as a regularizer. In this way,
 319 BayesianRouter combines the robustness of offline training with the adaptivity of online learning.

320 321 4 EXPERIMENTS AND RESULTS

322 We evaluate BayesianRouter on instruction-following and reasoning benchmarks with the goal of demonstrating that
 323 it enables more effective reward model selection and consequently leads to superior alignment performance.

324 4.1 EXPERIMENTAL SETUP
 325
 326 **Models.** We initialize the policy model with LLaMA3-SFT-v2 released by (Dong et al., 2024). The reward
 327 model (RM) pool consists of $N = 4$ small yet high-performing models from the RewardBench 2 leaderboard (Malik
 328 et al., 2025): Mistral-RM-for-RAFT-GSHF-v0 (RM_0), GRM-Llama3.2-3B-rewardmodel-ft (RM_1),
 329 GRM-gemma2-2B-rewardmodel-ft (RM_2), and Skywork-Reward-V2-Qwen3-0.6B (RM_3). For the
 330 offline router encoder, we use SmolLM2-135M-Instruct (see Appendix A.1).

331
 332 **Datasets and Metrics.**
 333 • **Offline preference datasets.** To train the offline router, we combine two human-annotated preference datasets:
 334 HelpSteer3 (Wang et al., 2025) and RM-Bench (Liu et al., 2024), resulting in 50,402 preference pairs.
 335 • **Instruction-following benchmarks.** Following (Dong et al., 2024), we evaluate the instruction-following ability
 336 on AlpacaEval-2 (Dubois et al., 2023), MT-Bench (Zheng et al., 2023), and Chat-Arena-Hard (Li et al., 2024).
 337 Policy models are trained on the iterative-prompt-v1-iter3-20K prompt set released by (Dong et al.,
 338 2024), and evaluated with length controlled AlpacaEval (Dubois et al., 2024), where model responses are compared
 339 against the SFT baseline using GPT-4 as the judge.
 340 • **Reasoning benchmarks.** Following (Nguyen et al., 2024), we evaluate performance under different training distri-
 341 butions by training and testing on two reasoning benchmarks: GSM8K (Cobbe et al., 2021) and MMLU (Hendrycks
 342 et al., 2020). We report accuracy for both datasets, with detailed statistics provided in Appendix A.1.

343
 344 **Baselines.** We compare BayesianRouter against the following methods:
 345 • **Single RM:** Use a fixed RM from the pool for preference annotations.
 346 • **Majority vote:** Annotate each preference pair with all RMs and select the final label via majority voting.
 347 • **Random router:** Randomly select an RM to annotate a preference pair.
 348 • **Uncertainty-Weighted Optimization (UWO):** This ensemble method (Coste et al., 2023) down-weights prefer-
 349 ence pairs that exhibit high disagreement among the RMs. We implement this by setting the weight for each pair to
 350 its consensus rate (i.e., the fraction of RMs that agree with the majority preference).
 351 • **LASER:** The first RM routing method that employs LinUCB to select a single RM per batch (Nguyen et al., 2024).
 352 • **w/o offline:** Variant of BayesianRouter without offline priors.
 353 • **w/o online:** Variant of BayesianRouter that uses only the offline router for RM selection.

354 4.2 MAIN RESULTS
 355
 356 Table 1 summarizes the performance of BayesianRouter against baseline methods. We have the following key ob-
 357 servations: **(1)** BayesianRouter consistently outperforms all baselines on both instruction-following and reasoning
 358 benchmarks. Given that these results are achieved after training on datasets with distinct distributions, it demonstrates
 359 the adaptability of BayesianRouter to diverse types of training data. **(2)** BayesianRouter surpasses the performance
 360 of single RM baselines, showing that dynamically routing among multiple candidate RMs effectively aggregates their
 361 complementary strengths. In practice, users often choose a single RM based on leaderboard performance, which
 362 may not accurately reflect true RM performance across tasks or domains. Our results show that BayesianRouter
 363 eliminates this reliance and even surpasses the best-performing RM identified in hindsight. **(3)** BayesianRouter
 364 significantly outperforms the Majority Voting and UWO ensemble methods. While ensemble methods can also lever-
 365 age complementary RMs, they require $O(N)$ RM calls per query, making them impractical for scaling to large RM
 366 pools. In contrast, BayesianRouter achieves higher performance with only $O(1)$ RM calls. BayesianRouter also
 367 substantially outperforms the routing baselines Random Routing and LASER, further validating the effectiveness of
 368 our routing strategy. **(4)** BayesianRouter outperforms its two ablations, *w/o offline* and *w/o online*, highlighting
 369 the complementary contributions of the offline-learned prior and the online Bayesian feedback loop. Removing ei-
 370 ther component leads to a notable degradation. Notably, the *w/o offline* variant exceeds LASER, showing that our
 371 per-query Bayesian Thompson sampling router is superior to LASER’s per-batch LinUCB approach.

372 4.3 ADDITIONAL ANALYSIS OF BayesianRouter
 373
 374 **Effectiveness of Offline Router** We evaluate the offline router’s ability to route preference pairs to the most suitable
 375 RM and analyze the factors affecting its performance. For in-distribution (ID) evaluation, we use the official test split
 376 of the HelpSteer3 dataset; for out-of-distribution (OOD) evaluation, we adopt RewardBench 2. Each prompt in Re-
 377 wardBench 2 is paired with one preferred response and three rejected responses, which we flatten into chosen–rejected
 pairs, discarding all ties. We further filter both test sets to retain only those samples where at least one candidate RM

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408

Table 1: Main results on instruction-following and reasoning benchmarks.

Method	Instruction-Following			Reasoning	
	AlpacaEval-2	MT-Bench	Chat-Arena-Hard	GSM8K	MMLU
SFT	50.00	50.00	50.00	67.63	54.29
RM0	56.02	52.50	59.60	72.78	56.00
RM1	<u>61.86</u>	56.25	<u>64.80</u>	74.22	<u>57.03</u>
RM2	59.50	53.75	63.20	73.92	56.57
RM3	60.37	52.50	62.00	74.53	56.28
Majority vote	60.75	53.75	63.40	74.22	56.71
Random router	58.39	52.50	61.20	73.46	56.07
UWO (Coste et al., 2023)	61.74	56.25	63.60	74.30	56.43
LASER (Nguyen et al., 2024)	60.50	51.25	62.40	74.00	56.35
w/o offline	60.99	53.75	63.20	74.37	56.64
w/o online	61.61	<u>57.50</u>	64.40	<u>74.68</u>	56.85
BayesianRouter	63.23	58.75	66.20	75.66	57.39

correctly identifies the preferred response, yielding 1,723 ID and 2,939 OOD preference pairs. Under this setup, an oracle router achieves 100% accuracy. To better understand the router’s behavior, we introduce two additional baselines: *w/o CLS*, which removes the classification head from the offline router, and *0.5B encoder*, which replaces the SmolLM2-135M-Instruct encoder with Qwen2.5-0.5B-Instruct. Table 2 reports the results. Overall, our offline router substantially outperforms single-RM, majority voting, and random routing baselines in the ID setting, and also delivers consistent gains in the OOD setting, though with smaller margins. Nevertheless, there remains a considerable gap from the oracle, highlighting both the effectiveness and the generalization challenges of offline routing—likely due to limitations in the scale, diversity, or domain coverage of available preference data. This underscores the importance of BayesianRouter’s online adaptation. In addition, removing the classification head leads to performance degradation, validating the benefit of multi-objective training. Finally, while larger encoders yield modest improvements in routing accuracy, we adopt the 135M encoder as a practical balance between performance and efficiency.

Table 2: In-distribution and Out-of-distribution performance comparison.

Method	In-distribution Score	Out-of-distribution					
		Factuality	Precise IF	Math	Safety	Focus	All
RM_0	77.54	75.44	59.22	78.76	85.10	75.61	77.61
RM_1	81.43	84.33	<u>68.44</u>	81.18	96.00	95.73	87.65
RM_2	79.51	80.04	67.38	79.03	97.60	90.85	85.88
RM_3	81.14	77.64	70.92	90.05	92.70	92.38	85.34
Majority	83.17	77.74	67.73	85.75	<u>96.50</u>	90.85	85.64
Random	79.80	79.94	65.96	82.80	92.80	87.80	84.48
Ours (w/o CLS)	89.73	84.12	66.67	85.22	96.20	<u>92.99</u>	87.34
Ours (135M)	<u>90.31</u>	<u>84.85</u>	65.60	86.83	96.20	92.07	<u>87.92</u>
Ours (0.5B)	90.77	85.16	66.31	<u>87.90</u>	95.90	91.46	88.06

Controlled simulation of online DPO. In practical online DPO training, it is infeasible to obtain real-time human annotations for policy-generated responses, making it impossible to directly verify whether the RM selected by a router produces correct preference labels. To address this, we design a controlled simulation using the 2,939 human-labeled preference pairs from RewardBench 2. Instead of sampling responses from a live policy, we replay existing pairs and let the router select an RM to label them. Since ground-truth labels are available, we can measure how often the chosen RM provides the correct annotation, thereby directly assessing the quality of routing. Table 3 compares BayesianRouter with its ablations. The results show that BayesianRouter achieves the highest annotation accuracy during training and attains the best downstream alignment performance. This confirms that BayesianRouter’s gains originate from more accurate RM routing rather than other confounding factors. The overall decrease in performance compared to the main results is attributed to the limited number of training samples. See more results in Appendix C.

432
433
434
435
436
437
438
439

Table 3: Controlled online DPO results.

Method	AlpacaEval-2	MT-Bench	Chat-Arena-Hard	GSM8K	MMLU	Acc.
w/o offline	55.78	54.84	55.87	67.78	54.61	85.68
w/o online	56.72	56.41	57.71	68.39	54.82	87.92
BayesianRouter	57.63	56.76	58.15	68.76	54.93	88.23

Ablation on integration strategy. To validate the effectiveness of combining the offline and online routers, we compare BayesianRouter with a simple variant, *Weighted-score*. For each preference pair, *Weighted-score* computes two separate score vectors: s_1 from the offline router’s Bradley–Terry head, representing each RM’s estimated competence, and s_2 from the online router initialized with zero-mean priors, representing the RM’s current reward estimates. To address scale differences, each score vector is converted into a probability distribution via softmax. The two distributions are then combined using a fixed weight α as $s = \alpha s_1 + (1 - \alpha) s_2$, and the RM with the highest combined score is selected. We sweep $\alpha \in \{0.25, 0.5, 0.75\}$ and report the best-performing setting. Table 4 presents the results. BayesianRouter consistently outperforms the *weighted-score* variant across all datasets. This demonstrates that initializing the online router with offline BT embeddings provides a principled and more effective mechanism to integrate offline knowledge with online adaptation, rather than relying on a simple linear weighting scheme.

450
451
452
453
454
455

Table 4: Ablation studies on integration strategy.

Method	AlpacaEval-2	MT-Bench	Chat-Arena-Hard	GSM8K	MMLU
Weighted-score	61.12	56.25	63.80	74.37	56.75
Ours (BayesianRouter)	63.23	58.75	66.20	75.66	57.39

456

Training Efficiency. We evaluate the training efficiency of BayesianRouter. Unlike majority-voting ensembles that require $O(N)$ RM calls per preference pair, BayesianRouter selects a single RM at $O(1)$ cost. The extra overhead relative to a single-RM baseline comes from (i) encoding preference pairs with the offline router and (ii) lightweight Bayesian posterior updates. Both are independent of the number and size of candidate RMs and amortize as the pool grows. Moreover, if the router often selects smaller, cheaper RMs, the overall cost may even fall below using a single large RM. To demonstrate the scalability of BayesianRouter, we increase both the size and number of candidate RMs and compare wall-clock training time on the GSM8K dataset against four baselines: the fastest single RM, the slowest single RM, Majority Voting, and LASER. Figure 2 shows that while BayesianRouter is slower than the fastest single RM, it substantially outperforms Majority Voting and the slowest single RM, demonstrating its efficiency. LASER runs marginally faster than BayesianRouter because it reuses policy embeddings rather than encoding preference pairs independently. Detailed experimental settings are provided in Appendix A.1.

476
477

5 CONCLUSION

478
479
480
481
482
483
484
485

In this work, we addressed the problem of adaptive reward model (RM) selection in iterative DPO training pipelines. We proposed BayesianRouter, a hybrid framework that first learns a multi-task offline router to capture RM strengths from preference data, and then injects this prior knowledge into a Bayesian Thompson sampling–based online router. The resulting framework adaptively selects a single RM for each preference pair while continually refining its routing policy through online rewards. Extensive experiments show that BayesianRouter consistently surpasses single-RM methods, RM ensembles, and strong routing baselines, demonstrating its effectiveness. For future work, we plan to design routers that jointly optimize the trade-off between annotation accuracy and RM inference cost to further improve RLHF alignment under constrained computational budgets.

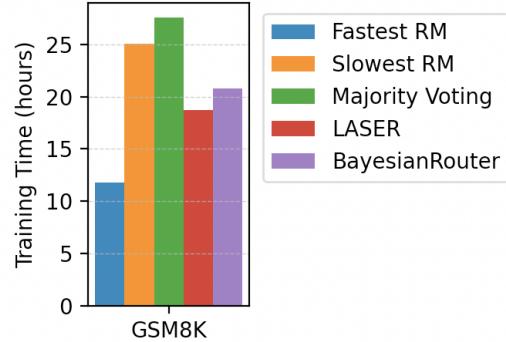


Figure 2: Training efficiency.

486 6 REPRODUCIBILITY STATEMENT
487488 To ensure the reproducibility of our work, we provide the source code in an anonymous GitHub repository available
489 at: <https://anonymous.4open.science/r/BayesianRouter-F0D5>. All experiments presented in this
490 paper utilize publicly available datasets, which are either directly accessible through standard libraries.
491492 REFERENCES
493

494 Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. *Advances*
495 *in neural information processing systems*, 24, 2011.

496 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo
497 Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint*
498 *arXiv:2303.08774*, 2023.

499 Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In *International*
500 *conference on machine learning*, pp. 127–135. PMLR, 2013.

502 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal Valko, and
503 Daniele Calandriello. A general theoretical paradigm to understand learning from human preferences. In *International*
504 *Conference on Artificial Intelligence and Statistics*, pp. 4447–4455. PMLR, 2024.

505 Djallel Bouneffouf and Irina Rish. A survey on practical applications of multi-armed and contextual bandits. *arXiv*
506 *preprint arXiv:1904.10040*, 2019.

508 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert,
509 Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint*
510 *arXiv:2110.14168*, 2021.

511 Thomas Coste, Usman Anwar, Robert Kirk, and David Krueger. Reward model ensembles help mitigate overoptimization. *arXiv preprint arXiv:2310.02743*, 2023.

514 Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Ruhle, Laks VS Lakshmanan,
515 and Ahmed Hassan Awadallah. Hybrid llm: Cost-efficient and quality-aware query routing. *arXiv preprint*
516 *arXiv:2404.14618*, 2024.

517 Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo, Caiming
518 Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf. *arXiv preprint arXiv:2405.07863*,
519 2024.

520 Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy S
521 Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for methods that learn from human
522 feedback. *Advances in Neural Information Processing Systems*, 36:30039–30069, 2023.

524 Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled alpacaeval: A simple
525 way to debias automatic evaluators. *arXiv preprint arXiv:2404.04475*, 2024.

526 Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The generalized linear
527 case. *Advances in neural information processing systems*, 23, 2010.

529 Evan Frick, Connor Chen, Joseph Tennyson, Tianle Li, Wei-Lin Chiang, Anastasios N Angelopoulos, and Ion Stoica.
530 Prompt-to-leaderboard. *arXiv preprint arXiv:2502.14855*, 2025.

531 Aurélien Garivier and Olivier Cappé. The kl-ucb algorithm for bounded stochastic bandits and beyond. In *Proceedings*
532 *of the 24th annual conference on learning theory*, pp. 359–376. JMLR Workshop and Conference Proceedings,
533 2011.

535 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi
536 Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv*
537 *preprint arXiv:2501.12948*, 2025.

538 Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre Rame, Thomas
539 Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from online ai feedback. *arXiv preprint*
540 *arXiv:2402.04792*, 2024.

540 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint arXiv:2009.03300*, 2020.

541

542

543 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.

544

545 Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement learning from human feedback. 2024.

546

547

548 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu, Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward models for language modeling. *arXiv preprint arXiv:2403.13787*, 2024.

549

550

551 Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to personalized news article recommendation. In *Proceedings of the 19th international conference on World wide web*, pp. 661–670, 2010.

552

553 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E Gonzalez, and Ion Stoica. From live data to high-quality benchmarks: The arena-hard pipeline. *Blog post.[Accessed 07-02-2025]*, 2024.

554

555

556 Yang Li. Llm bandit: Cost-efficient llm generation via preference-conditioned dynamic routing. *arXiv preprint arXiv:2502.02743*, 2025.

557

558

559 Chris Yuhao Liu, Liang Zeng, Yuzhen Xiao, Jujie He, Jiacai Liu, Chaojie Wang, Rui Yan, Wei Shen, Fuxiang Zhang, Jiacheng Xu, et al. Skywork-reward-v2: Scaling preference data curation via human-ai synergy. *arXiv preprint arXiv:2507.01352*, 2025.

560

561

562 Yantao Liu, Zijun Yao, Rui Min, Yixin Cao, Lei Hou, and Juanzi Li. Rm-bench: Benchmarking reward models of language models with subtlety and style. *arXiv preprint arXiv:2410.16184*, 2024.

563

564 Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou. Routing to the expert: Efficient reward-guided ensemble of large language models. *arXiv preprint arXiv:2311.08692*, 2023.

565

566

567 Saumya Malik, Valentina Pyatkin, Sander Land, Jacob Morrison, Noah A Smith, Hannaneh Hajishirzi, and Nathan Lambert. Rewardbench 2: Advancing reward model evaluation. *arXiv preprint arXiv:2506.01937*, 2025.

568

569 Duy Nguyen, Archiki Prasad, Elias Stengel-Eskin, and Mohit Bansal. Laser: Learning to adaptively select reward models with multi-armed bandits. *arXiv preprint arXiv:2410.01735*, 2024.

570

571

572 Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E Gonzalez, M Waleed Kadous, and Ion Stoica. Routellm: Learning to route llms with preference data. *arXiv preprint arXiv:2406.18665*, 2024.

573

574 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023. URL <https://arxiv.org/abs/2305.18290>.

575

576

577 Ahmad Shadid, Rahul Kumar, and Mohit Mayank. Ori: O routing intelligence. *arXiv preprint arXiv:2502.10051*, 2025.

578

579

580 Zhaoyang Wang, Weilei He, Zhiyuan Liang, Xuchao Zhang, Chetan Bansal, Ying Wei, Weitong Zhang, and Huaxiu Yao. Cream: Consistency regularized self-rewarding language models. *arXiv preprint arXiv:2410.12735*, 2024a.

581

582

583 Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran Ramnath, Sougata Chaudhuri, Shubham Mehrotra, Xiang-Bo Mao, Sitaram Asur, et al. A comprehensive survey of llm alignment techniques: Rlfh, rlaif, ppo, dpo and more. *arXiv preprint arXiv:2407.16216*, 2024b.

584

585

586 Zhilin Wang, Jiaqi Zeng, Olivier Delalleau, Hoo-Chang Shin, Felipe Soares, Alexander Bukharin, Ellie Evans, Yi Dong, and Oleksii Kuchaiev. Helpsteer3-preference: Open human-annotated preference data across diverse tasks and languages. *arXiv preprint arXiv:2505.11475*, 2025.

587

588

589 Jiachen Yu, Shaoning Sun, Xiaohui Hu, Jiaxu Yan, Kaidong Yu, and Xuelong Li. Improve llm-as-a-judge ability as a general ability. *arXiv preprint arXiv:2502.11689*, 2025a.

590

591

592 Qingchen Yu, Zifan Zheng, Shichao Song, Zhiyu li, Feiyu Xiong, Bo Tang, and Ding Chen. xfinder: Large language models as automated evaluators for reliable evaluation. In *The Thirteenth International Conference on Learning Representations*, 2025b. URL <https://openreview.net/forum?id=7UqQJUKaLM>.

593

594 Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang, Da Chen, Xiaoman Lu, Ganqu Cui, Taiwen He, Zhiyuan Liu,
 595 Tat-Seng Chua, et al. Rlaif-v: Aligning mllms through open-source ai feedback for super gpt-4v trustworthiness.
 596 *arXiv e-prints*, pp. arXiv–2405, 2024.

598 Shun Zhang, Zhenfang Chen, Sunli Chen, Yikang Shen, Zhiqing Sun, and Chuang Gan. Improving reinforcement
 599 learning from human feedback with efficient reward model ensemble. *arXiv preprint arXiv:2401.16635*, 2024.

601 Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman, Mohammad Saleh, and Peter J Liu. Slic-hf: Sequence likeli-
 602 hood calibration with human feedback. *arXiv preprint arXiv:2305.10425*, 2023.

604 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan
 605 Li, Dacheng Li, Eric Xing, et al. Judging Ilm-as-a-judge with mt-bench and chatbot arena. *Advances in neural*
 606 *information processing systems*, 36:46595–46623, 2023.

607 Li Zhou. A survey on contextual multi-armed bandits. *arXiv preprint arXiv:1508.03326*, 2015.

610 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano, and
 611 Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv preprint arXiv:1909.08593*, 2019.

613 A EXPERIMENTS

616 A.1 EXPERIMENTAL SETTINGS

618 Training setup.

- 619 • **Offline router training.** We adopt SmoLLM2-135M-Instruct as the encoder of the offline router and perform
 620 full-parameter fine-tuning using AdamW with a learning rate of 2×10^{-5} , batch size 8, and $\lambda = 0.2$. We train for
 621 2 epochs with weight decay 0.01.
- 622 • **Online policy training.** The policy model is initialized from LLaMA3-SFT-v2. We fine-tune it for 1 epoch
 623 using LoRA (rank 16, $\alpha = 32$) applied to the `q_proj` and `v_proj` projection matrices. We use a learning rate of
 624 5×10^{-6} with Adam. Each prompt batch contains 16 prompts; for each prompt we sample 6 candidate responses
 625 at temperature 0.8 and construct 4 preference pairs, yielding 64 preference pairs per batch. We set the parameter
 626 β in Equation 1 to 1. We do not use prompt templates during training or inference. The maximum input length
 627 is 128 tokens and the maximum output length is 256 tokens, except for the second turn of MT-Bench, where the
 628 input length is increased to 512 to accommodate multi-turn context. When initializing the online router with offline-
 629 learned embeddings, we set the prior variance for the RM weights $\sigma_w^2 = 0.02$ (with noise variance $\sigma^2 = 1$),
 630 reflecting stronger trust in the prior; when using the online router alone, we set $\sigma_w^2 = 1$ with prior mean 0 and
 631 $\sigma^2 = 1$.

632 All experiments are conducted on a server equipped with 8× RTX A6000 GPUs, each with 48GB memory.

634 **Benchmark Details.** For AlpacaEval-2, MT-Bench, and Chat-Arena-Hard, we use them exclusively as test sets. The
 635 details are as follows:

- 636 • AlpacaEval-2 (Dubois et al., 2023): This is a single-turn dialogue benchmark consisting of 805 prompts covering a
 637 wide range of topics.
- 638 • MT-Bench (Zheng et al., 2023): This is a multi-turn dialogue benchmark comprising 80 prompts across various
 639 domains. Each prompt contains two questions: the model first answers the initial question, then receives the initial
 640 question, its response, and the second question as input to produce a second response. The evaluation is conducted
 641 based on the quality of both responses jointly.
- 642 • Chat-Arena-Hard (Li et al., 2024): This benchmark contains 500 high-quality prompts selected from user queries
 643 in Chatbot Arena. It is designed to evaluate models on creativity, data analysis, deep comprehension, and problem-
 644 solving abilities.

645 For GSM8K and MMLU, we split each dataset into training and test sets. Policy models are fine-tuned on the training
 646 split and evaluated on the held-out test set. For GSM8K, we use `math_verify` to parse model responses and compute
 647 accuracy against the ground-truth labels. For MMLU, we use `xFinder` (Yu et al., 2025b) to extract the predicted
 choices before comparing them with the labels. Table 5 summarizes the number of instances in each split.

648	Table 5: Dataset statistics.		
649	Dataset	Train	Test
650	GSM8K	7465	1319
651	MMLU	11233	2809
652			
653			
654			

655 **Settings for Efficiency Analysis.** To evaluate the scalability of BayesianRouter, we extend the RM pool to 8
 656 candidates. In addition to the 4 RMs used in the main experiments, we select 4 larger models from the RewardBench 2
 657 leaderboard (Malik et al., 2025): RISE-Judge-Qwen2.5-32B (RM_4), Skywork-Critic-Llama-3.1-8B
 658 (RM_5), Selene-1-Mini-Llama-3.1-8B (RM_6), and RISE-Judge-Qwen2.5-7B (RM_7).

659 We measure training time on 8 GPUs. For BayesianRouter, Majority Voting, and LASER, we allocate resources
 660 as follows: RM_4 occupies 2 GPUs; RM_0, RM_5, RM_6, and RM_7 each occupy 1 GPU; RM_1, RM_2, and RM_3
 661 share 1 GPU; and policy training uses the remaining GPU. For the single-RM baselines, we consider the slowest RM
 662 (RM_4) and the fastest RM (RM_3). In the slowest-RM setting, RM_4 is assigned 2 GPUs with data parallelism for
 663 policy training. In the fastest-RM setting, RM_3 occupies 1 GPU with data-parallel policy training.

665 B METHOD DETAILS

666 **MAB reward normalization.** To provide stable learning signals to the bandit router, we do not directly use raw
 667 per-pair losses as rewards. Instead, for each training step t we first compute a batch-level baseline over all preference
 668 pairs in the batch:

$$669 \bar{\ell}_t = \frac{1}{|\mathcal{B}_t|} \sum_{i \in \mathcal{B}_t} \mathcal{L}^{(i)}(t),$$

670 where \mathcal{B}_t denotes the set of preference pairs at step t and $\mathcal{L}^{(i)}(t)$ is the training loss of pair i under its selected RM.
 671 The instantaneous advantage-style reward for pair i is then

$$672 r_i(t) = \bar{\ell}_t - \mathcal{L}^{(i)}(t),$$

673 which normalizes for batch difficulty and highlights the relative quality of each pair within the batch.

674 Because the scale of $r_i(t)$ may drift over time, following LASER (Nguyen et al., 2024), we further apply quantile-
 675 based rescaling. Let $\mathcal{R}_{1:t-1} = \{r_j(\tau) \mid \tau < t, j \in \mathcal{B}_\tau\}$ denote the set of past rewards up to step $t-1$. We compute
 676 the empirical 20th and 80th percentiles of this set, denoted q_t^{lo} and q_t^{hi} . The normalized reward is then

$$677 \hat{r}_i(t) = \begin{cases} 0 & \text{if } r_i(t) < q_t^{lo}, \\ 1 & \text{if } r_i(t) > q_t^{hi}, \\ \frac{r_i(t) - q_t^{lo}}{q_t^{hi} - q_t^{lo}} & \text{otherwise.} \end{cases}$$

678 This two-stage procedure—batch-baseline centering followed by quantile scaling—yields rewards that are both
 679 variance-reduced and numerically stable across the training process.

680 C ADDITIONAL EMPIRICAL RESULTS

681 **Controlled online DPO results.** Table 6 presents the complete controlled online DPO results, using the same training
 682 setup as described in Appendix A.1.

683 **Analysis of reward design.** We further analyze the effect of different reward formulations for online routing. In
 684 particular, we design two alternative variants that compute rewards based on RM-to-RM comparisons rather than
 685 batch-level normalization.

686 **Full Advantage.** For each preference pair, all candidate RMs are queried to obtain their induced training losses. The
 687 router still selects a single RM via Thompson sampling, but the reward is defined as a binary advantage: if the selected
 688 RM's loss is no greater than the average loss across all RMs, the reward is set to 1, otherwise to 0. This design removes
 689 the confounding effect of sample difficulty and purely reflects the relative quality of RMs.

702
703
704 Table 6: Controlled online DPO results.
705
706

707 708 709 710 711 712 713 714 715 716 717 Method	707 708 709 710 711 712 713 714 715 716 717 Instruction-Following			707 708 709 710 711 712 713 714 715 716 717 Reasoning		
	707 708 709 710 711 712 713 714 715 716 717 AlpacaEval-2	707 708 709 710 711 712 713 714 715 716 717 MT-Bench	707 708 709 710 711 712 713 714 715 716 717 Chat-Arena-Hard	707 708 709 710 711 712 713 714 715 716 717 GSM8K	707 708 709 710 711 712 713 714 715 716 717 MMLU	707 708 709 710 711 712 713 714 715 716 717 Acc.
SFT	50.00	50.00	50.00	67.63	54.29	-
RM0	53.05	53.33	53.39	67.17	54.18	77.61
RM1	56.14	55.88	57.93	68.16	54.79	87.65
RM2	55.83	54.55	56.32	67.70	54.54	85.88
RM3	55.28	54.05	55.60	67.55	54.33	85.34
Majority	55.66	54.29	56.92	67.40	54.47	85.64
Random	53.55	53.13	54.51	67.25	54.18	84.48
UWO (Coste et al., 2023)	56.19	55.56	56.65	67.78	54.61	85.64
LASER (Nguyen et al., 2024)	55.20	55.17	54.96	67.40	54.40	85.54
w/o off.	55.78	54.84	55.87	67.78	54.61	85.68
w/o on.	56.72	56.41	57.71	68.39	54.82	87.92
BayesianRouter	57.63	56.76	58.15	68.76	54.93	88.23

718
719
720 Table 7: Ablation studies on reward design.
721
722

723 724 Method	723 724 AlpacaEval-2	723 724 MT-Bench	723 724 Chat-Arena-Hard	723 724 GSM8K	723 724 MMLU	723 724 Acc.
Full_advantage	56.50	56.52	57.51	68.46	54.79	87.72
Light_advantage	56.12	55.81	56.13	67.85	54.72	87.38
Ours (w/o offline)	55.78	54.84	55.87	67.78	54.61	85.68

725
726
727 *Light_advantage*. As a more scalable compromise, we randomly sample $C = 3$ RMs to compute the baseline average,
728 instead of evaluating the full pool. This reduces computational overhead while still approximating the comparative
729 signal.

730 We compare these two variants against our proposed batch-normalized reward (with quantile rescaling) under the
731 controlled online DPO setup on RewardBench 2. Table 7 reports the results. As expected, the *Full_advantage*
732 variant achieves the strongest performance, since it leverages the most informative RM comparisons, but at the
733 cost of prohibitive computation and poor scalability. The *Light_advantage* variant attains performance close to the
734 *Full_advantage* while being more efficient, showing that subsampling can preserve much of the benefit. Our proposed
735 batch-normalized reward is less competitive in isolation, but it is by far the most efficient and, when combined with
736 the offline prior, yields the best overall alignment performance.

737
738

D LLM USAGE

739
740 We acknowledge the limited use of large language models (LLMs) as an editorial assistant to enhance the clarity,
741 grammar, and overall linguistic quality of our manuscript. Specifically, an LLM was employed for minor stylistic
742 improvements and grammatical corrections, as well as to refine sentence structures for better readability. No LLM was
743 used for content generation, ideation, methodological design, experimental execution, or data analysis. All scientific
744 content, intellectual contributions, and experimental results presented in this paper are solely the work of the human
745 authors. The authors take full responsibility for the entirety of the paper’s content, including any text that may have
746 been subjected to LLM-assisted polishing.