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ABSTRACT

Deep learning techniques are used to tackle a variety of tasks
related to seismic data processing and interpretation. Although
many works have shown the benefits of deep learning, assessing
the generalization capabilities of proposed methods for data ac-
quired in different conditions and geologic environments remains
challenging. This is especially true for applications in hardrock
environments. The primary factors that impede the adoption of
machine learning in geosciences include the lack of publicly
available and labeled data sets and the use of inadequate evalu-
ation methodologies. Because machine learning models are prone
to overfit and underperform when the data used to train

them are site specific, the applicability of these models on new
survey data that could be considered “out-of-distribution” is
rarely addressed. This is unfortunate, as evaluating predictive
models in out-of-distribution settings can provide a good insight
into their usefulness in real-world use cases. To tackle these is-
sues, we develop a simple benchmarking methodology for first
break picking to evaluate the transferability of deep learning mod-
els that are trained across different environments and acquisition
conditions. For this, we consider a reflection seismic survey data
set acquired at five distinct hardrock mining sites combined with
annotations for first break picking. We train and evaluate a base-
line deep learning solution based on a U-Net for future compar-
isons and discuss potential improvements to this approach.

INTRODUCTION

The application of machine learning techniques and methodolo-
gies in geoscience and geophysics is an active and popular research
area (Yu and Ma, 2021). Exploration seismology in particular has
great potential for impactful machine learning contributions, as seis-
mic data are often voluminous and difficult to comprehensively an-
alyze. Concretely, the analysis of seismic data relies on many
preprocessing steps (see, e.g., Yilmaz, 2001) that could greatly ben-
efit from automation using machine learning. The primary goal of
seismic preprocessing is to eliminate or reduce the impact of noise
and artifacts related to surface or acquisition conditions and thus
improve the quality of the subsurface reflectivity data. For active
source surveys, one of the early and fundamental preprocessing

steps is to identify the onset of the signal attributed to the seismic
waves originating from the sources. This task is commonly referred
to as first break picking. Properly identified first breaks can lead, for
example, to static corrections mitigating the effects of the near-sur-
face weathered layer in land surveys.
Although automated first break picking solutions were first in-

troduced decades ago (e.g., Allen, 1982; Coppens, 1985), classic
approaches are often fragile when faced with the environment and
acquisition conditions seen in practice, especially with land seis-
mic data. In particular, land seismic data with low signal-to-noise
ratio are challenging to most classic trace-by-trace algorithms.
Various machine learning approaches have been proposed in re-
cent years to learn useful seismic data representations to be lever-
aged for first break picking. Most approaches presented in the
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literature rely on convolutional neural networks (CNNs) and
especially on the U-Net architecture of Ronneberger et al.
(2015), which is often modified with modern neural network
layers and blocks (Cova et al., 2020; Fernhout et al., 2020; Ma
et al., 2020; Yuan et al., 2020; Zheng et al., 2020; Zwartjes
et al., 2020; Nikita et al., 2021; Han et al., 2022; Zwartjes and
Yoo, 2022). Unfortunately, it is difficult to compare these different
approaches to each other because they are applied to different (and
often private) data sets. These works also report different metrics
or mostly show qualitative results. Finally, it can be unclear how
well a trained model would generalize to a new survey data set
unseen during training. This is because models are either trained
and validated on a single survey data set, or, when multiple sur-
veys are available, they are mixed randomly across different sets
for training, validation, and testing.
Recent efforts have been made to gather and study seismic data

sets using machine learning (Alaudah et al., 2019; Dumont et al.,
2020; Magrini et al., 2020), but the unavailability of multisurvey
data sets is still a major impediment for researchers, as it makes
the transfer of predictive models precarious across surveys.
This is especially true for the field of reflection seismology
for mineral exploration in hardrock environments, which suffers
from the lack of a public multisurvey labeled data set or benchmark.
In this work, we introduce a data set of land seismic surveys cap-

tured across multiple mining sites and labeled for first break picks.
This data set is used to define a sound evaluation protocol that can
be used to assess how well automatic first break picking models
generalize to new unseen testing sites that could be considered
out-of-distribution with respect to the training data. Following this
protocol, we propose a benchmark for the evaluation of future au-
tomated first break picking solutions with baseline results obtained
using a U-Net-based deep learning model.
To the best of our knowledge, this is the first public contribution

of a curated multisurvey seismic data set focused on crystalline har-
drock environments. The size of our data set, which contains mil-
lions of seismic traces with labeled first break picks, will allow
researchers to assess how well their predictive models generalize
across varied conditions. Each of the 3D seismic surveys focuses
on a massive sulfide deposit hosted in metasedimentary or metaig-
neous crystalline rocks. Our benchmark’s evaluation protocol is es-
tablished so that the performance of predictive models for first break
picking is directly measured on sites unseen during training. This is
aligned with first break picking use cases where automatic methods
are applied to new data sets for which no annotated first breaks are
yet available. The baseline evaluation results that we provide are
based on a model that interprets receiver-line gathers as images.
We also describe several ideas on how to improve upon this design
and how to incorporate prior geophysical knowledge to further im-
prove model performance.
The paper is organized as follows. First, we describe the seismic

data used in this work and detail some of the challenges of working
with land seismic surveys. Then, we describe the task of automated
first break picking in seismic traces and detail popular approaches
from the literature based on machine learning. Next, we present our
proposed benchmark methodology for first break picking across
different surveys as well as how we implement a robust method
to provide a performance baseline. Finally, we discuss improve-
ments for this baseline and new ways to interpret the seismic data
for future works.

SEISMIC DATA

Our data set is composed of five 3D surveys acquired at unique
mining sites, four in Canada and one in Finland. The Canadian sites
are referred to as “Lalor,” “Brunswick,” “Halfmile” (short for “Half-
mile Lake”), and “Sudbury”; and the Finnish site is referred to as
“Kevitsa.” The data were acquired with dynamite sources for all
Canadian sites, whereas hydraulic hammers, also known as vibsist
seismic sources (Yordkayhun et al., 2009), were used at Kevitsa in
combination with dynamite. Geophones were used at all sites ex-
cept at Lalor where microelectro-mechanical systems (MEMS) ac-
celerometers were used to record the seismic data. The sampling
rate of the recordings varies across the surveys: it can be either
1 ms (Lalor) or 2 ms (Brunswick, Halfmile, and Sudbury). Two
acquisition systems were used at Kevitsa, each configured with dif-
ferent sampling rates (1 or 2 ms) (see Malehmir et al., 2012). We
used a merged version of the Kevista data, which have a uniform
sampling rate of 1 ms. The traces at each receiver were sampled to
preserve the first 751, 1001, or 1501 samples, depending on the
survey. The sample ranges include first arrivals and sufficient data
at far offsets. With the exception of the resampling of the Kevitsa
data to 1 ms, all seismic data used as input to the CNNs were kept in
their original field state without the application of any preprocessing
(i.e., no MEMS-to-geophone conversion or other filtering). The
rationale for not applying any preprocessing is to keep data sets
as they are typically used for first break picking.
For first break picking, we define each seismic data set as a col-

lection of recordings of traces across each receiver line for each
shot. A “shot gather” is defined as the collection of all traces for
a given shot. We further define a “line gather” as the collection
of traces for a given receiver line and shot: a shot gather is thus
composed of multiple line gathers. Examples of three line gathers
taken from a common shot are shown in Figure 1 for each Canadian
site. Additional details on the acquisition of the 3D seismic surveys
and key geologic results can be found in Bellefleur et al. (2015) for
Lalor, Cheraghi et al. (2012) for Brunswick, Malehmir and
Bellefleur (2009) for Halfmile, Milkereit et al. (2000) for Sudbury,
and Malehmir et al. (2012) and Valasti et al. (2012) for Kevitsa.
The annotation of the first breaks can be accomplished visually

based on domain knowledge and specialized software tools. The
exact location of the first break in a line gather can however be
ambiguous. The first break can be defined at one of three moments
within the first-arrival window of the seismic trace, following the
SEG normal polarity convention (see Veeken, 2007): (1) when the
background noise starts being disrupted by the seismic event (the
onset), (2) when the amplitude reaches its first minimum (the
trough), or (3) when the amplitude reaches its first maximum
(the peak). Annotating the onset is the most reliable way to avoid
issues caused by phase inversions along a receiver line, but the onset
is not always easily identifiable due to background noise. Similarly,
identification of the first trough on seismic data with a low signal-
to-noise ratio can be challenging; this explains why maximum
peaks are sometimes used. We highlight that consistent annotations
are required to train good supervised machine learning models.
To enable the training of machine learning models on these data,

we relied on software-generated and human-validated annotations
for a substantial fraction of the recorded traces following the trough
convention. Each survey contains bad picks due to a variety of fac-
tors such as the choice of autopicking method, its performance on
noisy data, and the amount of editing performed on picks. The latter
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is often a function of the volume of data and time allocated for
manual first break picking by experts. A visual inspection revealed
that picks from Halfmile, Brunswick, and Lalor are more consistent
(and thus of higher quality) compared with Sudbury and Kevitsa,
where stronger noise levels make the annotation process more
difficult due to ambiguities. In addition, in contrast to the other sites,
picks from Lalor followed the onset annotation convention. Thus,
they were shifted to the trough convention by relying on an auto-
matic tool that fine tuned the picks to the deepest trough in a bidi-
rectional window of �5ms centered on the original picks. A visual
inspection of a sample of the transformed picks suggests that this
approach works well on traces with high signal-to-noise ratios but is
imperfect when the noise level is high. These issues seem to impact
only a small percentage of the data. Note that traces across all sites
are not systematically annotated because low signal-to-noise ratios
sometimes make the process too ambiguous. Consequently, we
deem a whole line gather to be invalid if all of its composing traces
are missing an annotation. Although such data may be of interest in

an unsupervised machine learning setting, for line gather-based
supervised learning, these provide no useful signal. Finally, some
valid line gathers were ultimately rejected following a visual inspec-
tion to only keep gathers whose first break annotations all seem
roughly located over samples with any significant seismic activity.
We stress that this final sanitization step was conducted at the line
gather level: this allowed the removal of line gathers that were
largely ambiguous but did not prevent the presence of some noisy
picks within line gathers that looked mostly correct. A detailed sum-
mary of the studied sites is presented in Tables 1 and 2.

AUTOMATIC FIRST BREAK PICKING

The main challenge preventing us from using simple, trace-wise,
automatic first break picking approaches (e.g., Coppens, 1985;
Sabbione and Velis, 2010) in practice is that they fail in ambiguous
situations where the signal-to-noise ratio of the waveforms is poor.
Hence, machine learning, due to its capacity to build features from

Figure 1. Example of line gathers taken from the Canadian 3D seismic surveys released as part of our benchmark data set. Each image (or line
gather) shown corresponds to a receiver line that recorded the same shot from different locations. These images are individually processed in
our baseline model. Note that we resized, cropped, and normalized the images to help show seismic patterns for all sites. The raw seismic
amplitudes of a single trace (highlighted in red) are plotted on the right with the location of the first arrival that should be picked by predictive
models as a blue line.
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contextual information, is increasingly applied for first break picking.
In particular, deep learning based on neural networks, with minimal
needs for adaptation, is suitable to address the first break picking
problem. In contrast to “shallow” neural networks that have been
used in the past to interpret the combinations of handcrafted features
(Dai and MacBeth, 1997; Gentili and Michelini, 2006), deep neural
networks are typically applied in a holistic (“end-to-end”) fashion. In
other words, they can be trained to automatically extract, combine,
and interpret task-relevant features with varying levels of complexity.
This ability is dependent on the availability of a sufficient amount of
training data that can be processed in a structured fashion.
Predictive models can be built from a vast spectrum of neural

network architectures that essentially dictate how the input data
are encoded into complex features and how the predictions are de-
coded from these features. A simple encoding approach is to group
seismic traces into line gathers and process them as if they were 2D
images. With this approach, the gaps or variations in receiver dis-
tances would not be reflected in the shape or stride of the array it-
self, but the seismic amplitude values would still be provided in a
32-bit floating point format. This interpretation of line gathers as
images allows for the use of convolutional layers that can exploit
the correlations between neighboring traces, a popular strategy in
the first break picking literature. For example, CNNs have been spe-
cifically shown by Gillfeather-Clark et al. (2021) to be more robust
than other encoder architectures for first break picking on the traces
of an ore deposit survey. Using larger and deeper CNNs can in-
crease the amount of contextual information available for picking,
leading to more accurate results (if sufficient training data are avail-
able). The U-Net architecture of Ronneberger et al. (2015) is a good

example of an encoder-decoder setup that can predict sample-wise
attributes (such as the first break probability) over an entire line
gather at once. This particular architecture seems to have been
the most popular design choice for first break picking in recent
years (Cova et al., 2020; Fernhout et al., 2020; Ma et al., 2020;
Yuan et al., 2020; Zheng et al., 2020; Zwartjes et al., 2020;
Nikita et al., 2021; Zwartjes and Yoo, 2022). The work of
Zwartjes and Yoo (2022) stands out from the rest in terms of pro-
tocol quality: they conduct a thorough performance analysis with
respect to various hyperparameters, considering fully convolutional,
standard U-Net, and U-Net with ResNet block architectures. The
neural networks are trained with a two-class mask setup (pre
and postfirst break) and the mean absolute error of their first break
pick predictions is reported. The authors leverage four land seismic
data sets: namely the Teapot Dome 3D, the Stratton 3D, the BP 2D
synthetic, and an in-house data set. These data sets do not have hu-
man expert-level labels; those labels were instead generated using
an automated approach. The authors conclude that the standard U-
Net architecture performs best; however, the various site data sets
were randomly mixed to train and evaluate, so it is unclear what the
generalization performance would be to an unseen new site.
Most published approaches for automatic first break picking rely

on image processing architectures directly, and few researchers have
worked on adapting these architectures to process geophysical data.
The work of Yuan et al. (2020) is one example of the latter: they
combined their U-Net architecture with recurrent neural blocks to
improve the pick accuracy of the model by integrating features over
sequences of concatenated line gathers. This can be seen as a first
step toward the design of model architectures made explicitly for

Table 1. Basic information and line gather counts for the sites of interest.

Site name
Trace sampling rate

(ms)
Samples per

trace
Total line
gathers

Valid line gathers (and
percentage)

Rejected line
gathers

Useful line
gathers

Sudbury 2 1001 11,420 5106 (44.7%) 463 4643

Halfmile 2 751 5520 5497 (99.6%) 6 5491

Kevitsa 1 1001 23,111 22,770 (98.5%) 2271 20,499

Brunswick 2 751 18,475 18,457 (99.9%) 14 18,443

Lalor 1 1501 14,455 12,119 (83.8%) 79 12,040

An entire line gather is deemed invalid if none of its traces has a valid first break pick (i.e., within image bounds and at a nonzero sample index). Valid line gathers were manually
inspected and a number were flagged for rejection based on the poor quality of their annotations; the useful count is the number of valid line gathers minus the number of rejected line
gathers. Although a large fraction of line gathers are valid for most sites, Sudbury stands out with more than half of its line gathers being invalid.

Table 2. Total number of unique shots, receiver lines, and traces for the set of all useful line gathers across our surveys.

Site name

Total count over all useful line gathers Average count per useful line gather

Shots Receiver lines Traces Invalid picks Dead traces Traces

Sudbury 777 12 762,506 118.2 0.0 164.2

Halfmile 690 8 1,093,842 18.4 2.7 199.2

Kevitsa 2798 24 1,862,240 13.3 0.2 90.8

Brunswick 1541 28 4,490,714 41.2 0.0 243.5

Lalor 905 16 2,027,587 75.5 0.0 168.4

The average counts of invalid picks (i.e., picks with out-of-bounds sample indices), dead traces (i.e., traces without any observable seismic signal due to sporadic acquisition
problems), and traces per useful line gather for the various sites are also provided.
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seismic data processing, which is a practice we want to encourage.
However, their recurrent blocks had little information to understand
the first break time discontinuities between receiver lines, meaning
that improvements are still warranted. In addition, more generally,
our review and understanding of the recent literature highlights the
prominent position of 2D image processing approaches for auto-
mated first break picking. In conjunction with the difficulty of de-
veloping a generic solution for the processing of 3D seismic data
across different sites due to variations in line gather sizes and res-
olutions, this entails that a 2D CNN-based first break picking model
can be considered today as a baseline solution. Future works should
aim to improve upon the performance of such a baseline under sim-
ilar training and evaluation settings; we provide some directions for
improvements in our discussion section. However, we must stress
that there is no evidence that non-CNN approaches (such as those
based on transformers, as proposed by Harsuko and Alkhalifah,
2022) cannot compete with CNNs. More generally, we hope that
the introduction of our multisurvey data set will allow new types
of models to be designed and trained, and these new models will
exploit the full potential of geophysical data.
We now highlight two fundamental issues found in previously

proposed evaluation methodologies for automated first break pick-
ing solutions. The first issue pertains to the choice of performance
evaluation metrics. As noted previously, many researchers now opt
for the image processing approach to first break picking where
sample-wise (or pixel-wise) first break class probability maps
are produced for an entire line gather at a time. This is not prob-
lematic per se, but it creates a gap between the predictions of the
trained models and the definition of first break picking, which is a
regression task, namely the prediction of a continuous quantity (as
opposed to a classification task, in which a selection must be made
over a limited number of possible choices). Specifically, in first
break picking, a single and unique first break should be located
in each trace, and temporal location errors can be quantified using,
for example, the absolute difference between the annotated and
predicted first break locations. Converting predicted sample-wise
first break probabilities into trace-wise temporal locations is a
postprocessing step that can have a significant impact on model
performance. As a consequence, many researchers (e.g., Xie
et al., 2019; Cova et al., 2020; Yuan et al., 2020, 2022) have opted
to evaluate model performance using classification metrics such as
pixel-wise accuracy. Given the imbalanced nature of the pixel-
wise first break classification problem, the accuracy is a poor
choice as it makes models seem better than they actually are.
For example, given a line gather of traces with N ¼ 1000 samples
each, a model that always predicts “not first break” for all samples
would obtain 99.9% accuracy. This problem underlines the need to
focus on regression metrics based on temporal location errors in-
stead of pixel-wise classification metrics for the evaluation of pre-
dictive models.
The second and more widespread evaluation issue pertains to the

potential generalization of predictive models across different sites or
surveys. Deep neural networks can perform well when predicting
on data that is “in-distribution” (i.e., similar in terms of features and
annotations) with respect to their training data set. In contrast,
evaluating out-of-distribution data may result in subpar prediction
quality, as what these models learn does not always generalize well
across different environments or acquisition conditions. Thus,
evaluation protocols need to be carefully designed so that perfor-

mance indicators truly reflect what would happen in realistic
cross-site application scenarios. In the case of first break picking,
predictive models would likely be used to assist experts in the an-
notation process of new survey data. This means that an ideal evalu-
ation protocol should always rely on a separate, never-seen-before
testing site; this is however rarely the approach used in the literature.
As we discuss in the next section, our proposed benchmarking
methodology addresses these issues.

METHODOLOGY

In this section, we detail our proposed methodology for the
preparation and separation of the survey site data, for the evaluation
of first break picking performance, and for the development of a
solid baseline model for future comparisons.

Data preparation and separation

The first step in the preparation of the supervised training of a
machine learning model is to determine the format of examples

Figure 2. Schematic representation of the proposed baseline model
inputs and outputs, which are image-like tensors. The vertical axis
corresponds to time and the horizontal axis corresponds to positions
along a line gather. The inputs have various channels for the seismic
amplitudes and geospatial information and the outputs are pixel-
wise probabilities over several predicted classes. Because our pro-
posed model architecture is fully convolutional, it can ingest images
of variable sizes. In other words, our baseline approach will work on
receiver lines and traces of varying lengths, even after training.
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(i.e., pairs of provided inputs and expected outputs or targets) that
will be used. A schematic view of our proposed baseline model’s
inputs and outputs is shown in Figure 2. The input to the model is a
line gather, which is treated as an image where samples from receiv-
ers on the same line are considered neighboring pixels in the image.
Note that using line gathers instead of shot gathers allows us to use
well-known 2D architectures that are fully convolutional for our
baseline. Note also that we keep the 32-bit precision of trace data
intact during processing, as all inputs to our models are provided as
arrays of floating point numbers.
Our input images also contain additional channels that are used to

provide trace-wise geospatial cues to the model along with the con-
catenated trace samples. We create three extra image channels in
total for each line gather. Concretely, these encode the distance be-
tween the shot location and each receiver as well as the two distan-
ces between each receiver and its two closest neighbors on the same
receiver line. All three distance channels are constant along the time
axis. We rescale the shot-to-receiver distances by dividing them by
3000 m; similarly, we rescale the receiver-to-receiver distances by
dividing them by 50 m. The 3000 and 50 m normalizing factors
were chosen empirically to produce input feature values close to
the ½0; 1� interval. As for the trace data itself, we normalize the am-
plitudes to the ½−1; 1� range by dividing them by the maximum ab-
solute amplitude found in each trace. Normalizing the input feature
values to these ranges is a commonly used strategy to improve train-
ing speed and numerical stability.
For the model output, we use pixel-wise class probability maps that

have the same temporal and line gather axes as the input. For training
and evaluation, we generate the target class label maps that the model
should predict by transforming the trace-wise first break annotations
into pixel-wise indices. We consider two class setups that seem to
work relatively well in practice: a binary and a ternary setup. For each
trace, the single pixel that matches the location of the first break is set
to the class “first break.” In the binary class setup, all other pixels on
the trace are assigned the class “not first break.” In the ternary class
setup, the pixels that correspond to the times before the first break are
assigned the class “before,” and the pixels corresponding to the times
after the first break are assigned the class “after.” This latter setup
relies on two auxiliary classes: although the before and after classes
are of no real use to downstream applications, they can still help the
model understand and locate the first break class itself more accu-
rately. This setup might also help mitigate the issue of class imbalance
caused by the underrepresentation of the first break class. The predic-
tive model is designed to output a probability distribution over these
two or three classes for each pixel using a softmax function (see
Bridle, 1990). The softmax function σ takes n real numbers
x ¼ ðxi; ::; xnÞ as an input and returns a probability distribution over
n possibilities; explicitly, σðxÞ ¼ ðσðxÞi; ::; σðxÞnÞ, where

σðxÞi ¼ ðexpðxiÞ=
P

n
j¼1 expðxjÞÞ. For each trace, the pixel with

the largest first break probability is retained as the model’s prediction
for the first break pick.
As for data splitting, the main driver for our experiments is to

determine whether trained models can generalize their knowledge
across survey sites. To reach such a conclusion, we manually split
the sites at our disposal into different cross-validation folds. As
shown in Table 3, we first consider training sets composed of three
sites and use one site each for the validation set and the test set. To
limit the computational requirements of our experiments, we only
kept five combinations with all sites (folds A–E) by requiring that
each site appears once in the validation set and once in the test set.
Given that the Kevitsa site cannot be released for public use due to
licensing concerns, we also define folds without the Kevitsa with
only two sites in the training set (folds H–K) for future comparisons
by other researchers.

Evaluation metrics

For the performance metrics, we consider the mean average error
(MAE), the mean bias error (MBE), and the root mean square error
(RMSE). These are defined as

MAE ¼ 1

N

XN
i¼1

jt̂i − tij; (1)

MBE ¼ 1

N

XN
i¼1

ðt̂i − tiÞ; (2)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1ðt̂i − tiÞ2

N

s
; (3)

whereN is the number of annotated traces, ti is the ground truth value
of the first break pick for the ith trace, and t̂i is the corresponding
model prediction. The picks are located in terms of sample indices,
i.e., on a pixel scale; correspondingly, all errors are measured on the
same scale, namely in terms of pixel distances in the line gather im-
ages. The MAE, MBE, and RMSE are standard metrics commonly
used to evaluate regression models. The MAE provides an overall
measure that is less sensitive to outliers, the MBE provides insight
into whether the first break is predicted early or late, and the RMSE
provides an overall measure with a larger penalty for outliers.
We also rely on the hit rate at δ pixels (HR@δpx), defined as the

fraction of annotated traces where the prediction error is smaller
than δ pixels, namely

Table 3. Proposed site folds for experiments with the full data set (A–E) and for future comparisons without Kevitsa (H–K).

Data set Fold A Fold B Fold C Fold D Fold E Fold H Fold I Fold J Fold K

Train Lalor Kevitsa Halfmile Sudbury Brunswick Halfmile Sudbury Lalor Brunswick

Brunswick Lalor Kevitsa Halfmile Sudbury Lalor Halfmile Brunswick Sudbury

Sudbury Brunswick Lalor Kevitsa Halfmile

Validation Halfmile Sudbury Brunswick Lalor Kevitsa Brunswick Lalor Sudbury Halfmile

Test Kevitsa Halfmile Sudbury Brunswick Lalor Sudbury Brunswick Halfmile Lalor
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HR@δpx ¼ 1

N

XN
i¼1

hðt̂i; ti; δÞ; (4)

where hð·Þ is a thresholding function defined as

hðt̂i; ti; δÞ ¼
�
1 if jt̂i − tij < δ
0 otherwise

: (5)

Thus, the parameter δ controls how stringent the corresponding
metric is: a choice of δ ¼ 1 penalizes any prediction that is not ex-
actly correct, whereas larger values of δ are more lenient. In this
work, we consider values of δ between 1 and 9.
Finally, we define trace coverage (TC) as the fraction of anno-

tated traces where the model makes a prediction. This metric
may be useful for applications in which a minimum prediction con-
fidence is required, as the model might sometimes refrain from pre-
dicting anything on ambiguous traces. The TC is equivalent to
HR@δpx in the limit where δ becomes very large. Note that we
do not consider a confidence threshold in our own predictive mod-
els, consequently, our models always make a prediction and the TC
is essentially 100%. As we will detail subsequently, the automated
pick baselines have TC scores that differ from 100%.
For a given data set fold, we conduct a random hyperparameter

search over 50 trials. The hyperparameters are configuration vari-
ables that have an impact on the model architecture or its training
process. The definition of these hyperparameters and their potential
values are provided in the next section. For each trial, we train a
model from a random initialization on the training sites and evaluate
it on the validation site. After 50 trials, the hyperparameter configu-
ration leading to the model with the highest validation HR@1px
score is selected, and 10 models are trained once again with this
configuration, starting from different random seeds. These 10 mod-
els are finally evaluated on the test site to give a range of per-
formance.

Baseline model description

For our baseline, we consider the U-Net archi-
tecture where the encoder and decoder are com-
posed of stacks of fully convolutional blocks.
This architecture is shown in Figure 3. For the
encoder, we evaluate ResNet blocks (He et al.,
2016) with two different depths (18 and 34 total
layers) and EfficientNet blocks with b0, b2, and
b4 configurations (defined by Tan and Le, 2019);
these are all CNNs with increasing levels of
complexity and learnable parameters. For the
decoder, we use blocks composed of stacked
3 × 3 convolutions, batch normalization (Ioffe
and Szegedy, 2015), and rectified linear unit ac-
tivation layers. Normalization layers (such as
batch normalization) are commonly used in
CNNs to stabilize intermediate features during
training. We explore three different levels of
complexity for the decoder blocks by scaling
the number of feature maps carried over from
the encoder. Specifically, we use [256, 128,
64, 32, 16], [512, 256, 128, 64, 32], or [1024,
512, 256, 128, 64] feature maps, where each

number corresponds to the input depth for each of the five decoder
blocks. Note that across all potential hyperparameter configura-
tions, our smallest model has approximately 14M trainable param-
eters, whereas the biggest model has 49M trainable parameters. The
entire list of hyperparameters and their ranges are shown in Table 4.
We use four data augmentation operations during training to

increase the perceived diversity of the data set and help avoid over-
fitting. First, line gather images are randomly cropped so that they
have between 512 and 1024 samples on their time axis. Second,
traces inside each gather are randomly dropped (as if there were
a gap in the receiver line) or added with null amplitudes (as if
an extra receiver were present but “dead”) to reach a new line gather
axis length that is randomly selected in [64, 128, 256, 512]. These
operations allow us to generate a wide range of image formats even
when training on sites with relatively consistent line gather lengths.
Note that when needed, distances used in the extra input channels
for added receivers are interpolated from the data of the nearest
(real) receivers. Third, we nullify the amplitudes (i.e., we replace
all sample values with zero) of approximately 8% of all the traces
in the gathers. This forces the model to rely on more contextual
information. Finally, we flip the gather images along their receiver
axis to increase the (perceived) diversity of the data sets. Other aug-
mentation operations were originally considered, but their impact
was subsequently found to be marginal. The parameter values
for the selected operations were found empirically on a small subset
of the available data before conducting the large-scale hyperpara-
meter search.
Given our binary or ternary class setup, we define a loss function

to train our models based on one of two possible approaches. The
first approach relies on the standard pixel-wise cross-entropy (CE)
loss. The CE measures how different two probability distributions
are; specifically, for fp1; : : : ; png and fq1; : : : ; qng, respectively,
the target and estimated probability distributions over n discrete
events, the CE is given by CEðp; qÞ ¼ −

P
n
i¼1 pi ln qi, which is

often used in the image segmentation literature (Ronneberger

Figure 3. Illustration of the U-Net model architecture we use for first break picking. The
conv1–conv5 blocks form the encoder and conv6–conv10 blocks form the decoder. The
exact composition of each convolutional block can vary by application. The skip con-
nections are shown in the middle and allow the concatenation of encoder and decoder
feature maps.

First break detection benchmark WA285

Downloaded from http://pubs.geoscienceworld.org/seg/geophysics/article-pdf/89/1/WA279/6175892/geo-2022-0741.1.pdf
by guest
on 17 April 2025



et al., 2015). The most common criticism of this loss for semantic
segmentation is that it does not properly handle imbalanced classes.
Because this is the case in our application, we also experiment
with a second loss based on the Dice coefficient (the Dice coeffi-
cient is a continuous version of the F1 score, which can thus be used
as a loss). Specifically, for fp1; : : : ; png and fq1; : : : ; qng, two
probability distributions over n discrete events, the Dice coefficient
is given by

DCðp;qÞ¼ 1−
��Xn

i¼1

piqiþ ϵ

�.Xn
i¼1

piþqiþ ϵ

�

−
��Xn

i¼1

ð1−piÞð1−qiÞþ ϵ

�.Xn
i¼1

2−pi−qiþ ϵ

�
; (6)

where ε is a small value used to ensure numerical stability (Sudre
et al., 2017). An interesting property of the Dice loss is that it results
in very sharp boundaries in the predicted class probability maps.
Although this might seem beneficial in some cases, it also means
that gradients will not be as smooth as when using the CE loss,
which may impact the training process.
For the optimization, we rely on the Adam optimizer. The opti-

mizer is the algorithm that updates the weights of a neural network
during training based on the gradient of the loss function with re-
spect to these weights. The Adam optimizer is a standard approach
that uses a smoothed version of the gradients to accelerate conver-
gence (Kingma and Ba, 2014). We pick the base learning rates uni-
formly across a logarithmic scale of ½10−5; 5 × 10−3�. We train for a
maximum of 20 epochs and either never modify the learning rate or
reduce it by multiplying it with a factor of 0.1 after either 5 or 10
epochs. These hyperparameters were selected empirically following
preliminary experiments: the maximum number of epochs seems to
correspond to the typical duration it took for our models to converge
with three training sites. The learning rate is commonly reduced
during training in most deep learning experiments to help the model
converge more effectively toward a minimum in the loss function.

This prevents oscillations around the optimal solution and prompts
better model generalization.
The batch size is fixed for all experiments at 16 line gathers. We

use a custom collate function for batching to ensure that all gathers
are padded to a common resolution that is also a power of two for
compatibility with the U-Net’s default decoder architecture. Be-
cause the overall architecture of our models is fully convolutional,
the actual dimensions of the input gathers following this padding
should not have an impact on the quality of predictions, as long
as the padded gathers are sufficiently large. Early stopping is per-
formed if the HR@1px on the validation site does not improve for
more than four consecutive epochs.
To provide a sense of scale for the performance of our baseline

model, we also apply a classic picking algorithm across all sites.
The picks were generated automatically by sequentially combining
the three following methods: linear moveout based on a constant
velocity, autoregressive Akaike-information-criterion (AR-AIC)
picking that focuses only on P waves (Sleeman and Van Eck,
1999), and fine-tuning search. The linear moveout makes a coarse
approximation of the first arrivals based on a 6 km/s moveout veloc-
ity. Those coarse approximations are then used as input to the AR-
AIC method to separate the seismic traces into two intervals, each
fitted with an autoregressive function. The position of the first break
is determined by finding the time that best separates the seismic
trace into noise (nondeterministic) and signal (deterministic) com-
ponents. This is accomplished by finding the intervals that provide
the lowest order of the variance not explained by the autoregressive
models and estimated with the Akaike information criterion
(Akaike, 1974). Finally, the final and most precise picks are fine
tuned by finding the nearest trough within a 10 ms window of
the AR-AIC pick. The same parameters were used for all data sets.
Trace amplitude balancing was applied to all data sets prior to au-
topicking. The picks were then subjected to a noise-based filtering
process. The root mean square (RMS) amplitude of the trace was
computed in a 30 ms window before (RMS1) and after (RMS2) the
pick, and the ratio RMS1=RMS2 was then compared with a user-
specified threshold value. If the ratio was larger than the threshold,

Table 4. Main hyperparameters and their possible values or ranges.

Hyperparameter Possible values Description

Maximum epoch 20 Maximum number of epochs a training session can run for.

Patience 4 Maximum number of consecutive epochs without improvement
before stopping a training session.

Encoder type ResNet18, ResNet34, EffNetB0,
EffNetB2, and EffNetB4

Configuration of the encoder blocks.

Decoder blocks [256, 128, 64, 32, 16], [512, 256, 128, 64, 32],
and [1024, 512, 256, 128, 64]

Number of feature channels for all decoder blocks.

Class setup Binary and ternary Number of classes to predict; either first break or
not, or before/after/first break.

Optimizer Adam (Kingma and Ba, 2014) Optimizer used to update the model’s weights.
Learning rate LogUniform ½10−5; 5 × 10−3� Controls the magnitude of the weight updates.

Weight decay 10−6 Magnitude of the penalty added to the loss to keep
weights as small as possible.

Loss type CE and Dice Objective function used for backpropagation.

Scheduler step 5, 10, and ∞ Number of epochs before the learning rate is multiplied by a factor of 0.1.

When a single value is present, the hyperparameter is fixed to that value.
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then the pick was rejected; thus, the autopicker did not necessarily
generate picks for all traces. A small threshold is more conservative
and refrains from producing a pick when the noise level is high; a
higher threshold value is more permissive with respect to the noise
level. Each site is evaluated for two values of the noise level thresh-
old parameter: 0.3 and 1.0. We note that, in practice, such automatic
picks are considered an intermediate product that needs editing and
validation and would not be used directly: correspondingly, we do
not consider the comparison of our baseline models with the auto-
picker to be a robust performance indicator.

EXPERIMENTAL RESULTS

The performance of the automated picking algorithm (i.e., the
sequential approach described previously) is presented in Table 5.
For every site, the corresponding hit rates (HRs) are higher when the
threshold is set to 1.0 but are still somewhat poor, reaching the high-
est HR@1px of 77.2% on the Halfmile site.
An overview of the results of the random

searches of the hyperparameters related to the
U-Net model is shown in Figure 4. As Figure 4
makes it clear, many trained models have
HR@1px values in a narrow range of the nomi-
nal “best.” Each trial can be considered as a point
estimate of expected performance for its corre-
sponding set of hyperparameters, and as such
we cannot make statements about the statistical
significance of choosing one model over another
at the highest levels of performance. Making
such robust statistical statements would require
a large computational budget and would provide
diminishing value at this stage; thus, we adopt
the pragmatic approach of selecting a good
model without claiming it is necessarily the best
in a statistical sense.
We present the hyperparameter combinations

of the top-performing models on the validation
set of each fold in Table 6 and the corresponding
metrics in Table 7. We can first observe that the
HR@1px performance on folds A, B, C and D is

fairly high, while it is low for fold E. This latter fold is validated on
the Kevitsa site, which suffers from less consistent annotations and
uses a different source type (i.e., hydraulic hammers) (for more in-
formation, see Valasti et al., 2012). Furthermore, fold E is the only
full data set fold where we train on sites with 2 ms sampling rates
but validate on a site that had mixed sampling rates subsequently
resampled to 1 ms; all the other folds train on combinations of sites
that exhibit both sampling rates as can be deduced from Tables 1
and 3. Folds A and C have the best performance (mid to high 80s
percentage), whereas folds B and D lag behind with performance in
the mid 70s percentage. This correlates with the putative quality of
the ground truth picks, where Halfmile and Brunswick were anno-
tated by careful experts, whereas the annotations at Sudbury are of
lower quality, and those at Lalor followed the incorrect convention
(onset instead of trough) and were corrected using an automated
tool (a pragmatic but imperfect solution). Other factors that might
explain the performance variations are detailed in the next para-
graph. We further note that HR performance increases sharply as

Table 5. Various metrics for the baseline autopicks method.

Site Th.

HR@

TC RMSE MAE MBE1px 3px 5px 7px 9px

Sudbury 0.3 65.1 82.7 84.3 85.1 85.5 86.1 42.9 15.5 −15.0
1.0 68.9 87.8 90.4 92.4 93.5 96.2 22.8 5.1 −3.8

Lalor 0.3 47.6 48.2 51.4 58.1 63.1 66.3 152.5 82.3 −80.0
1.0 51.7 52.4 58.3 75.4 89.2 95.0 61.1 15.4 −9.8

Brunswick 0.3 29.6 38.1 46.6 62.6 70.6 83.0 132.2 53.7 −50.3
1.0 31.0 40.8 50.4 68.0 77.3 94.7 74.3 20.3 −15.6

Kevitsa 0.3 16.5 38.4 53.1 59.7 62.0 69.0 75.9 42.1 −38.5
1.0 20.6 46.8 64.7 73.3 76.5 90.7 41.8 16.2 −9.4

Halfmile 0.3 71.4 75.6 77.6 79.3 80.5 82.3 97.0 39.4 −39.1
1.0 77.2 82.4 85.1 87.6 89.6 96.0 47.7 10.7 −9.7

The noise threshold is represented by “Th.” The HR and TC are in percentage and the errors (RMSE, MAE, and MBE) are in the number of samples.

Figure 4. Distribution of HRs at one pixel (HR@1px) over the validation set for all
folds, based on 50 random hyperparameter choices per fold.
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the threshold varies from 1 to 9 pixels. Already at three pixels, the
HR is above 90% on folds A, B, and C. Approximately a 20% im-
provement from HR@1px to HR@3px on Sudbury is especially
notable: a brief inspection of the predictions suggests that this
may be caused by some ground truth annotations being slightly
off trough, such that the predictions made on the trough are penal-
ized in terms of HR@1px but quickly contribute to HRs at larger
thresholds. The performance eventually reaches approximately 99%
for folds A, B, and C, 93% for fold D, and approximately 90% for
fold E at nine pixels. This indicates that trained models can place
first break picks in the correct region most of the time, but either
struggle to locate the pick precisely in ambiguous situations or are

evaluated against incorrect/inconsistent annotations. Finally, we
highlight that the trained models perform much better than the au-
topick baseline, from approximately 3% HR@1px improvement on
the Kevitsa site to approximately 58% on the Brunswick site. How-
ever, we stress once again that the autopick baseline is not strong: it
is meant to reflect how well a traditional approach fares when ap-
plied to different sites without hyperparameter adjustments.
Apart from variations in the quality of annotations, other factors

can explain the lagging validation performance on some sites. For
Lalor, one factor is the frequency content of seismic traces below
5 Hz and above 200 Hz due to the use of MEMS and 1 ms sampling
rate, which makes this site quite different compared with the other

sites; this is shown in Figure 5. As shown in Ta-
ble 7, the RMSE, MAE, and MBE metrics are
much larger when a model is evaluated on Lalor;
the error distribution for the model correspond-
ing to fold D is shown in Figure 6. We can
see that there is a substantial number of predic-
tions resulting in large errors. We investigated
and found that these bad predictions often corre-
spond to noisy traces that are common on this
site, to annotation errors, or to the model being
confused by reflected waves that do not corre-
spond to the first break; examples are shown
in Figure 7. Some of these bad predictions also
exceed the number of samples per trace (1501 for
Lalor), as the model sometimes predicts the first
breaks inside the image’s zero-padding zone (be-
cause our architecture requires power-of-two di-
mensions, we use 2048 time samples per seismic
trace for Lalor, with samples beyond 1501 set to
a value of zero). This misbehavior is likely due to
the out-of-distribution nature of Lalor with re-
spect to other sites. If we discard the predictions
made beyond the real sample range, the TC for
fold D falls from 100% to 98.6% and the regres-
sion errors become 10.4 pixels for the RMSE, 1.6
pixels for the MAE, and 0.7 pixels for the
MBE; these values are much closer to the range
of values from the other sites. As shown in
Figure 8, the error distribution for the model
of fold C applied to the Brunswick site also

Table 6. Best hyperparameter configurations found for all folds, after 50 trials, in terms of HR@1px on each fold’s validation
site.

Fold Encoder type Decoder blocks Loss type Learning rate Scheduler step Class setup

A ResNet18 [256, 128, 64, 32, 16] CE 0.002136 10 Binary

B EffNetB4 [512, 256, 128, 64, 32] CE 0.002708 10 Binary

C EffNetB0 [512, 256, 128, 64, 32] CE 0.003417 5 Binary

D EffNetB4 [512, 256, 128, 64, 32] CE 0.002580 5 Binary

E EffNetB0 [1024, 512, 256, 128, 64] CE 0.000295 10 Binary

H EffNetB4 [512, 256, 128, 64, 32] CE 0.003480 5 Binary

I EffNetB0 [512, 256, 128, 64, 32] CE 0.002453 10 Binary

J EffNetB4 [1024, 512, 256, 128, 64] CE 0.002762 5 Binary

K EffNetB4 [512, 256, 128, 64, 32] CE 0.001053 10 Binary

Figure 5. Averaged power spectral densities of raw field seismic signals for all sites (the
inset plot shows the low-frequency part of the average power spectral densities). This is
obtained for each site by averaging the power spectral densities of all the normalized
traces of the useful line gathers, as defined in Table 1. As discussed in the “Data prepa-
ration and separation” section, the seismic amplitudes are normalized by dividing them
by the maximum absolute amplitude found in each trace so that the resulting normalized
amplitudes lie in the ½−1; 1� range. As evidenced in the inset, Lalor has a large average
power density peak below 5 Hz, probably due to the use of MEMS. In addition, although
the average power density drops after 200 Hz for most sites, we can see that Lalor still
has significant spectral weight at higher frequencies due to the 1 ms sampling rate com-
bined with the broad spectral signature of explosives. The Kevitsa data, although ac-
quired with mixed sampling rates, have a power spectral density similar to the other
2 ms data sets (Brunswick, Halfmile, and Sudbury).
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shows predictions made inside the zero-padding zone with low
probabilities, leading to larger RMSE, MAE, and MBE values.
If again we discard these predictions beyond the real sample range,
the TC for fold C falls from 100% to 99% and the regression errors
become 5.1 pixels for the RMSE, 0.4 pixels for the MAE, and 0.1
pixels for the MBE. Furthermore, some high-probability predictions
that lead to large errors that are not in the padding are shown in
Figure 8. These occur when the model is confused by late, high-
intensity samples recorded by the receivers clos-
est to the source stemming from explosion-in-
duced air waves; examples are shown in
Figure 9. For other sites, predictions in the pad-
ding affect less than approximately 0.2% of the
traces, not warranting further discussion.
The impact of Kevitsa in training can be

gauged by comparing the performance of the
folds provided for future comparisons (H–K)
with their parent full-data set folds A–E. Fold
H (parent fold C), with an HR@1px of 89.6%
(89.4%), and fold J (parent fold B), with an
HR@1px of 74.3% (74.2%), see their perfor-
mance marginally increase by the removal of Ke-
vitsa, suggesting that this latter site may not
always provide a useful signal during training.
In contrast, fold I (parent fold D), with an
HR@1px of 72.4% (75.4%), sees its perfor-
mance reduced by a nonnegligible 3% with re-
spect to its parent. One possible explanation
for this drop in performance is the fact that in this
case, similar to fold E, we are training on sites
with 2 ms sampling rates, whereas we are vali-
dating on a site with a 1 ms sampling rate and
that used MEMS as receivers.
Next, we report the performance of our best

hyperparameter configurations on the withheld
test set of each fold in Table 8. As a reminder,
we highlight that these final scores were com-
puted 10 times with different random seeds for
each fold, and only after all hyperparameters
were fixed using the validation set. We can ob-
serve that the results seem to be mostly similar to
those of Table 7 when considering only the
evaluation site instead of the actual fold. This in-
dicates that our best models are relatively robust
to the different training set configurations we
used and that the reported performance of a
model is tied closely to how different the test site
is from the training (and, at least partially, from
the validation) sites. The largest spread of perfor-
mance for a particular site happens with Lalor,
with validation scores of 75.4% (fold D) and
72.4% (fold I) and test scores of 71.6% (fold
E) and 76.3% (fold K). Many factors may affect
this spread in performance: the size of the train-
ing set, the quality of the validation site used for
model selection, the match or mismatch of sam-
pling rates between training sites and Lalor, and
the finiteness of the hyperparameter searches.
Although there does not appear to be a simple

relationship between these factors and the observed HR@1px, it
could be that the underperformance on fold E is most impacted
by the strategy that was used to select the best model for this fold:
we relied on the Kevitsa site for model selection, a site with a differ-
ent source type and less consistent annotations. Those elements can
lead to models that might be unfit for other data distributions.
Finally, we ran a series of experiments to quantitatively assess the

difficulty of generating predictions for all sites which may better

Figure 6. (a) Distribution of prediction errors, i.e., the distance between predicted and an-
notated first breaks in sample or pixel units and (b) scatter plot of predicted first break
probability with respect to prediction errors, using the model reported for fold D (validated
on Lalor) in Table 7. (a) Several predictions are in the zero-padding zone and result in large
errors. (b) These predictions (drawn in red) have relatively low probability.

Figure 7. Examples of predicted first break picks with large errors for Lalor using the
model reported for fold D in Table 7. (a) An example in which some annotations are
manifestly incorrect. (b) An example in which a large amount of noise induces the model
to predict a first break pick too early. (c and d) Examples where the model is confused by
reflected waves at subsequent times.
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explain the differences in performance across folds. In Figure 10,
we show the quality of the seismic recordings by computing a ratio
that quantifies the amount of noise around the annotated picks in
each trace. The ratios are computed using the same approach used
for automatic picking, i.e., by comparing RMS amplitudes com-

puted over fixed-size (30 ms) windows on each side of the first
break. In short, small RMS ratios indicate that there is a strong con-
trast between prefirst and postfirst break amplitudes. This should
lead to more easily predictable picks, as the exact location of the
first break is less ambiguous. Here, we can observe that these ratios

are significantly larger in Kevitsa than in the
other sites. This supports our original intuition
regarding the difficulty of this site based on a vis-
ual analysis of its gathers. Next, we run the best
validation model of each fold on its correspond-
ing test site and analyze the quality of its predic-
tions from two other angles. In Figure 11, we first
show the HR@1px scores computed for all traces
at different RMS amplitude ratios. As expected,
higher RMS ratios lead to a degradation in pre-
diction performance, but it is interesting to note
that low ratios on Kevitsa still lead to subpar per-
formance. This indicates that noise and less con-
sistent picks may account for this performance,
although the effect of each is difficult to distin-
guish as the quality of picks generally degrades
with increasing noise for any land seismic data
set. Finally, the relation between HR@1px scores
and the receiver-shot (offset) distances is shown
in Figure 12. Most of these curves confirm the
intuition that bigger offsets lead to weaker sig-
nals in the recorded traces, and thus harder-to-
predict pick locations; however, some sites (Ke-
vitsa, Sudbury) do not support this conclusion.
This may be due to the smaller spatial dimen-
sions of their surveys, which translate into
smaller maximum offsets.

Remarks for future works

Ultimately, with this study, our hope is to pro-
mote the design and development of new models
specifically tailored to assist in the picking of
first arrivals. In particular, it is unclear whether
the interpretation of line gathers as images is
ideal. Our proposed baseline ingests such images
with extra channels specifically designed to ex-
press the geospatial setup of seismic surveys, but
this is an indirect way to provide this information
that can be ignored by the model during training.
There are model architectures designed for graph
or point cloud data processing (e.g., Zhang et al.,
2019) that could be better suited to leverage
spatial information for first break picking. Using
model architectures that are not translation
invariant (e.g., vision transformers; Dosovitskiy
et al., 2020) or removing this property from CNN
architectures using coordinate convolutions (Liu
et al., 2018) could help models rely more on
the geospatial data. However, these approaches
may increase the risk of overfitting on smaller
surveys, and they may reduce the robustness
to variations in line gather sizes or resolution.
Exploiting the correlation across all traces re-
corded for a single shot (i.e., using shot gathers

Figure 8. (a) Distribution of prediction errors, i.e., the distance between predicted and
annotated first breaks in sample or pixel units and (b) scatter plot of predicted first break
probability with respect to prediction errors, using the model reported for fold C
(validated on Brunswick) in Table 7. (a) Several predictions are in the zero-padding
zone and result in large errors. (b) These predictions (drawn in red) have relatively
low probability.

Figure 9. Examples of line gathers with ground truth and predicted first break picks for
Brunswick using the model reported for fold C in Table 7. (a), (b) and (c): some pre-
dicted picks for receivers closest to the source have large errors because the model is
confused by a bright signal at subsequent times. This irrelevant signal is probably caused
by an air wave induced by the source explosion. (d) Predictions are also impacted by the
presence of coherent noise before the first arrivals.
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as examples instead of line gathers) should
provide another source of improvement for mod-
els. This could be achieved by modifying our
current baseline approach to use 3D CNN blocks
that are also fully convolutional. These new
blocks would allow entire shot gathers to be
processed at once without having to worry about
variations in terms of the number of line gathers
per shot, traces per line gather, or samples per
trace. However, such a modification would
require a significant amount of padding to be
used to process smaller examples of shot gathers
or data from 2D surveys, which may be detri-
mental to the model’s performance.
Regarding the computational costs of deep

learning approaches, note that an ordinary desk-
top computer equipped with a modern CPU and
GPU can be used to train the models proposed in
this study. When considering the largest back-
bone architecture studied here (with 49M learn-

Table 7. Performance metrics computed on the validation site of each fold using a U-Net model whose hyperparameter
configuration resulted in the highest HR@1px score found after 50 trials.

Fold Site

HR@

RMSE MAE MBE1px 3px 5px 7px 9px

A Halfmile 84.0 92.7 96.1 98.1 99.1 28.0 1.7 1.1

B Sudbury 74.2 95.4 97.6 98.7 99.2 10.3 0.7 0.5

C Brunswick 89.4 96.3 97.7 98.2 98.5 65.8 6.8 6.5

D Lalor 75.4 80.8 84.5 89.5 93.1 200.1 24.8 24.0

E Kevitsa 23.5 54.7 75.8 85.8 89.6 46.9 6.3 4.8

H Brunswick 89.6 96.8 98.3 98.8 99.1 43.5 3.1 2.4

I Lalor 72.4 76.0 79.5 84.3 87.8 453.1 117.3 116.0

J Sudbury 74.3 95.4 97.7 98.7 99.2 19.2 1.0 0.7

K Halfmile 83.7 92.8 96.2 98.2 99.1 27.5 1.6 0.9

The validation site over which the metrics are evaluated is restated for convenience in the column “Site.” The HRs are in percentage and the errors (RMSE, MAE, and MBE) are in
the number of samples.

Table 8. Performance metrics computed on the test site of each fold averaged using 10 U-Net models.

Fold Site

HR@

RMSE MAE MBE1px 3px 5px 7px 9px

A Kevita 22.4� 0.6 53.3� 1.0 74.3� 1.3 84.3� 1.4 87.9� 1.4 61.7� 39.5 10.6� 8.6 7.6� 9.1

B Halfmile 82.5� 0.9 92.6� 0.2 96.0� 0.3 98.1� 0.3 99.0� 0.3 12.9� 4.6 1.1� 0.6 0.3� 0.5

C Sudbury 73.4� 0.6 94.0� 0.6 96.2� 0.6 97.6� 0.5 98.4� 0.5 18.8� 7.7 1.5� 0.6 0.9� 0.6

D Brunswick 87.7� 0.8 96.2� 0.4 98.0� 0.1 98.5� 0.1 98.8� 0.1 50.9� 7.6 4.2� 0.9 3.9� 1.0

E Lalor 71.6� 3.2 76.3� 3.5 79.5� 3.8 83.8� 4.3 86.8� 4.7 415.6� 226.0 127.3� 109.7 125.4� 110.3

H Sudbury 73.1� 0.5 93.9� 0.6 96.2� 0.6 97.5� 0.5 98.2� 0.5 35.1� 12.3 2.8� 1.2 1.2� 1.1

I Brunswick 87.6� 1.4 96.4� 0.6 97.8� 0.6 98.3� 0.6 98.6� 0.6 50.2� 13.8 4.5� 2.3 3.8� 2.5

J Halfmile 83.8� 0.5 92.6� 0.5 95.9� 0.6 97.9� 0.6 98.8� 0.6 35.2� 33.3 3.8� 4.3 2.9� 4.1

K Lalor 76.3� 1.8 80.0� 1.7 82.7� 1.7 86.4� 1.9 89.0� 2.0 460.0� 73.7 123.9� 40.3 123.1� 40.4

The models were trained on each fold’s training sites while using the hyperparameter configuration found based on the best HR@1px performance on that fold’s validation site. For
each of the 10 models, a new random seed that affects initialization weights and augmentation operations was randomly picked. The table reports the mean plus-or-minus standard
deviation of all metrics obtained using these different models. The test site over which the metrics are evaluated is restated for convenience in the column “Site”. The HRs are in
percentage and the various errors are in the number of samples.

Figure 10. Distribution of the ratios of RMS amplitude values before and after the anno-
tated first break picks for all sites. Smaller ratios mean a more pronounced transition from
background noise to relevant seismic events and potentially easier-to-detect first breaks.
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able parameters), a maximum VRAM size of 20 GB is required
when using a batch size of 16 gathers with mixed precision. This
is compatible with most high-end GPUs from the past few years;
lower-end GPUs could be accommodated by reducing the batch
size, which would result not only in smaller VRAM usage but also
in longer training times. To give an example with practical numbers,
using an NVIDIA GeForce RTX 3090 GPU, one training epoch
(with three survey sites) for the largest proposed model can be com-
pleted in approximately 10 min. This means that a 49M parameter
model can be trained entirely in a few hours. To predict first breaks
on new data using an already-trained model, for a 512 trace gather
and using only an Intel Core i7-8700K CPU, the typical inference
time is between 1 and 2 s. In the end, these timings show that the
training and use of pre-trained models are dwarfed by the time po-

tentially required to manually analyze and correct picks generated
by a not-fully-automated approach. The potential for transfer learn-
ing using pre-trained models is also compelling, as significant im-
provements in the quality of predictions on new data would likely
be attainable with very few human annotations on the new data.
We also acknowledge a preprint by Wang et al. (2022) that ap-

peared as we were writing this paper. They adopt our proposed
benchmark data set and evaluation methodology and propose a mul-
tistaged approach with ingenious improvements to the basic U-Net
architecture. They report excellent HR@1px performance (from
92% to 98%, depending on the fold). These numbers cannot be di-
rectly compared with our own, however, as they modified the
ground truth labels by moving them to the nearest trough (aside
from Lalor, we used the ground truth labels as provided). In addi-

tion, they apply a postprocessing step where pre-
dictions are rejected if they deviate by more than
five pixels from a velocity-based estimation: this
rejection procedure affects the TC, which is not
reported, and it inflates the HR as they define it.
They define HR as the ratio of the number of ac-
curate predictions to the total number of nonre-
jected predictions. We define the HR with the
total number of labeled traces as the denomina-
tor. By rejecting poor predictions, they reduce the
value of their denominator and thus inflate the
value of their HR. In short, this is precisely
the kind of work we hope to foster, but it high-
lights the need for great care in comparing the
reported performance between studies. To quan-
tify whether new ideas bring tangible benefits, it
is necessary for the community to use open-
source data sets, standardized annotations, and
standardized metrics.

CONCLUSION

We have presented a multisite data set of an-
notated seismic traces from hardrock mining
environments and benchmark results for first
break picking based on the U-Net architecture
following a sound methodology. Our results
show that the approach of analyzing line gathers
as images using fully convolutional architectures
with a proper experimental protocol leads to sat-
isfactory performance across multiple survey
sites. Visual inspection of our model predictions
also confirms that many line gathers can be auto-
matically assigned first break picks of expert-
level quality. In contrast to related works found
in the literature, these results are meaningful due
to the use of separate surveys for the training of
models, for the validation of their hyperpara-
meters, and their final evaluation. However, we
have observed that our models can misbehave
when there are important differences in the ap-
pearance of seismic patterns and the quality
and consistency of annotations used across sur-
veys. This is not entirely unexpected, as training
models using noisy labels and applying them to

Figure 12. Relationship between the receiver-shot (offset) distances and the accuracy of
model predictions in terms of HR@1px. The traces across the test set for each fold were
binned into 30 intervals of offset distances. Note that the horizontal axis of each plot is
scaled differently.

Figure 11. Relationship between the noise in the recorded seismic traces and the ac-
curacy of model predictions on test sites in terms of HR@1px. The traces across the test
set for each fold were binned into 30 intervals of before/after RMS ratios.
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so-called out-of-distribution data sets are two active research topics
in machine learning.
We ran experiments with a wide array of model architectures and

hyperparameters. Interestingly, the most drastic improvements that
were obtained in terms of performance over the course of our study
were linked to the rectification or elimination of bad annotations. In
particular, high-quality annotations in validation data sets helped us
distinguish real improvements from spurious correlations. The de-
velopment and promotion of an annotation standard for future data
acquisition and annotation efforts would help accelerate the devel-
opment of state-of-the-art methods for the task of first break pick-
ing. In parallel, we hope this work will promote the use of a
standard evaluation methodology for trained models. Many works
in the literature have tackled first break picking as an image seg-
mentation problem and thus evaluated their models with image seg-
mentation metrics; we discuss in this paper why this approach is not
ideal and why all first break picking methods should always be
evaluated from the perspective of a regression task.
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