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Abstract

Equation discovery, the problem of identifying mathematical expressions from
data, has witnessed the emergence of symbolic regression (SR) techniques aided
by benchmarking systems like SRbench [1]. However, these systems are limited
by their reliance on static expressions and datasets, which, in turn, provides limited
insight into the circumstances under which SR algorithms perform well versus
fail. To address this issue, we introduce an open-source method1 for generating
comprehensive SR datasets via random sampling of mathematical expressions.
This method enables dynamic expression sampling while controlling for various
expression characteristics pertaining to expression complexity. The method also
allows for using prior information about expression distributions, for example,
to simulate expression distributions for a specific scientific domain. Using this
dynamic benchmark, we demonstrate that the overall performance of established
SR algorithms decreases with expression complexity and provide insight into which
equation features are best recovered. Our results suggest that most SR algorithms
overestimate the number of expression tree nodes and trigonometric functions and
underestimate the number of input variables present in the ground truth.

1 Introduction

The automated discovery of mathematical equations plays a major role in accelerating scientific
discovery. Symbolic Regression (SR) is a family of data-driven methods designed to discover such
mathematical equations [2]–[9]. The backbone of SR research is benchmark datasets that enable
comparing different types of methods, exposing their successes and failures in recovering different
equations [1], [10]. However, conventional benchmarking practices typically rely on a small static set
of equations [1], [2], [11], [12]. These provide no systematic insights into which aspects of equations
facilitate or hamper recovery, underscoring the need for a more adaptable benchmarking paradigm.
This study presents such a paradigm in the form of an expression sampler capable of controlling for
various metrics of expression complexity and prior information about expression distributions.

There are several benchmark datasets for SR methods. Some of them, like the Feynman Symbolic
Regression Database (FSReD) [2], are inspired by real-world equations. FSReD consists of 100

1The method is available as a python package and documented at https://autoresearch.github.io/equation-tree/.
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equations based on the Feynman Lectures on Physics [13]–[15] and 20 more challenging (bonus)
equations from other physics books [16]–[19]. Udrescu and Tegmark [2] provide data tables for
each equation accompanied by tables of the physical units for SR algorithms that can use these
units (for example, [20]). Inspired by Hoai, McKay, Essam, et al. [21], Keijzer [22], and Johnson
[23], Uy, Hoai, O’Neill, et al. [11] suggested ten different real-valued SR equations and created the
corresponding dataset (Nguyen dataset). They generated each dataset from the same set of equations
by randomly sampling 20 - 100 data points. As synthetic benchmarks are not always indicative of
real-world scientific discovery, Cranmer [4] introduced EmpiricalBench, consisting of 9 equations
discovered from experimental data; Cornelio, Dash, Austel, et al. [24] used Kepler’s Third Law,
Relativistic Time Dilation, and Langmuir’s Adsorption Equation. Cava, Orzechowski, Burlacu, et
al. [1] designed an SR benchmark, named SRBench, and conducted a comprehensive benchmark
experiment using existing SR datasets such as FSReD and Ordinary Differential Equation Strogatz
repository [12]. In SRBench, SR methods are assessed based on 1) the squared error between
estimated and ground truth data and 2) the solution rate corresponding to the percentage of estimated
equations that match the ground truth after simplification [25].

Existing approaches to benchmarking SR algorithms suffer from a critical limitation: they rely on a
static set of equations. Such static sets provide limited insight into which aspects of equations facilitate
or hinder discovery by SR methods. To address these limitations, we introduce a novel approach that
offers flexibility in the evaluation process by enabling dynamic sampling of mathematical expressions.
Researchers and practitioners can adjust key parameters pertaining to expression complexity, such
as expression length, the number of input variables, the number of constants involved, and features
specific to the distribution from which expressions are sampled. As such, researchers can tailor the
benchmarks to suit the needs of different scientific disciplines or problem domains and investigate
the strengths and weaknesses of specific SR algorithms. The ability to control various metrics for
expression complexity enables a more systematic diagnosis of which aspects of equations make SR
algorithms fail or succeed. Altogether, we make the following contributions:

1. We introduce an expression sampling algorithm to benchmark SR methods systematically.
The algorithm allows researchers to control various parameters of expression complexity and
tailor generated expressions to a specific scientific domain by incorporating domain-specific
priors for mathematical expressions.

2. We compare several SR methods with respect to their ability to recover equations from
dynamic datasets and examine the impact of different equation complexity metrics on
equation recovery. Our results indicate that various complexity metrics have distinct effects
on different SR algorithms.

2 Expression Sampler

We introduce an expression sampler designed to streamline the benchmarking of SR algorithms.
We begin with outlining the expression format utilized by our sampler—an incomplete binary tree
(with unary or binary nodes). Subsequently, we detail the sampling methods that can be used for SR
benchmarking.

2.1 Expression Tree

Our sampler represents mathematical expressions as incomplete binary trees, with operators and
functions as internal nodes and features as leaves (see Figure 1). In this framework, operators (e.g.,
addition, subtraction multiplication) operate on two operants (requiring two child nodes). Functions
(e.g., cosine, sine, square root) operate on a single operant (requiring a single child node). Features
devoid of any operant represent either variables or constants (for more details, see Appendix A.1).

An advantage of the aforementioned tree representation is the dissociation between an expression’s
structure and its content. The structure is the tree configuration, which can be mapped by a preorder
traversal, recording the node depth (number of edges from the root node) without its value. In
preorder traversal, the left subtree of each node is evaluated first, beginning with the root and then
recursively exhausting each left subtree before moving on to the right subtree. Examples of tree
structures are depicted in Figure 1: The expression x1 +

3
x1

depicted in Figure 1A has the structure
(0, 1, 1, 2, 2). Similarly, the expression sin(x1 + xx3

2 ) in Figure 1B has a structure of (0, 1, 2, 2, 3, 3),
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Figure 1: Examples for expressions as incomplete binary trees: Tree (A) represents x1 +
3
x1

. Tree
(B) represents sin(x1 + x2

x3). Tree (C) represents ecos(
√
x1−x2). Operators (yellow) have two child

nodes. Functions (purple) have one child node. Features (green) have no child node. Traversing in
preorder (left subtree first; letters next to nodes indicate traversal order) and noting the node depth
(number of edges from the root node; indicated on the left side of the figures), we obtain the following
structures: tree (A) has the structure (0, 1, 1, 2, 2), tree (B) the structure (0, 1, 2, 2, 3, 3), and tree (C)
the structure (0, 1, 1, 2, 3, 4, 3).

while ecos(
√
x1−x2) in Figure 1C is structured as (0, 1, 1, 2, 3, 4, 3). Different expressions can have

the same structure. For example, x1 + x2 and x1 − 1 have the same structure but different content.

2.2 Expression Sampling

We begin by sampling tree structures without any node values. For a given structure, nodes with two
children are populated through sampling from operators, while those with one and zero children are
sampled from functions and features, respectively. This procedure leaves us with a sampled tree with
values in each node, but the tree might not be a valid expression or might be overly complicated.
Therefore, after sampling the expression, we employ ‘Sympy‘ [25] to simplify the expression and
then convert it to standard conventions (see Appendix A.1). We subsequently perform validity checks,
discarding any invalid expressions, such as

√
−(x2) or 1

0 .

Prior information about frequencies of structural attributes (e.g., tree depth) or content attributes
(e.g., operators) can be integrated as priors during both the structure and node value sampling
processes. Structure priors modulate the sampling probabilities of specific structures. For example,
the sampling probability of the tree structure in Figure 1 could be fixed, represented as p(structure =
(0, 1, 1, 2, 2)), p(structure = (0, 1, 2, 2, 3, 3)), and p(structure = (0, 1, 1, 2, 3, 4, 3)). Beyond this
direct probability manipulation, our sampler implementation can derive structure priors from broader
structural characteristics, such as node count or tree depth.

After the structure is sampled, operators, functions, and features are sampled independently. Once
again, the integration of priors is possible. For instance, one can modulate the sampling probabilities of
specific operators such as p(operator node = +), p(operator node = −), and p(operator node = ∗).
With features, it is possible to tweak the likelihood of sampling either a variable or a constant,
represented as p(leaf = variable) and p(leaf = constant). The sampler also incorporates conditional
priors based on the parent node’s value. This means the probability of an addition operator within a
cosine can be adjusted as p(operator node = addition|parent = cos), and so on.2

2To simplify expressions and prevent complexities, we fix the probability of encountering a constant within
a function to zero: p(leaf = constant|parent = function) = 0. This is motivated by cases in which constants
within functions can invariably be reduced to a straight constant. For instance, cos(0) = 1 and log(10) = 1.
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Given various post-sampling modifications (e.g., expression simplification), it is essential to re-
calibrate the sampling probabilities of all the steps described above—structure sampling, operator
sampling, function sampling, and feature sampling. To do so, we burn expressions by (a) sam-
pling them, (b) analyzing the frequencies of expression attributes, and (c) fine-tuning the sampling
probabilities. See Appendix A.2 for a comprehensive overview of this process.

In the last step before benchmarking, the sampler can sample an arbitrary amount of experimental
conditions and produce data points while introducing different noise levels to the dependent variable
(see Appendix A.3.2).

3 Experiment

One of the key advantages of utilizing a dynamic equation benchmark lies in its capacity for a
nuanced, systematic exploration of the factors that influence the efficacy of SR algorithms. In this
experiment, we examine how varying levels of equation complexity impact the performance of four
SR algorithms.

3.1 Methods

3.1.1 Symbolic Regression Algorithms

We evaluate the performance of four of the best-performing SR algorithms from SRBench: gplearn 3,
AIFeynman [2], GP-GOMEA [26], [27], SBP-GP [28].

gplearn. The most traditional implementation of GP-based SR algorithm we tested is gplearn, which
initializes a random population of models, then iterates through tournament selection, mutation, and
crossover.

AIFeynman. AIFeynman is a divide-and-conquer algorithm that builds symbolic models [2]. It
employs brute-force solvers and problem-decomposition techniques, including differentiated function
approximations. Here, we probed the most recent version of this method that combines Pareto
optimization with an information-theoretic complexity metric [29] to yield simple equations.

GP-GOMEA. GP-GOMEA is an extension of the GOMEA evolutionary algorithm to GP, designed to
efficiently mix and preserve beneficial tree structures in the population [26], [27].

SBP. Semantic backpropagation (SBP) computes a value at a tree node position to align the model’s
output with the target [30]–[32]. We assess the GP SBP-GP algorithm[28], which enhances SBP-based
recombination through dynamic adjustments of intermediate outputs with affine transformations.

3.1.2 Datasets

We based all analyses reported below on an equation dataset resembling equations from the domain of
physics. We first extracted equation priors based on the frequencies of tree structures, input variables,
constants, operators, and functions of physics equations scraped from Wikipedia (see Appendix
A.3.4). We then generated 120 equations using those priors. Finally, we randomly sampled 1000 data
points representing the input variables and output of the respective ground-truth equation. The input
variables were sampled from the range [-10, 10].

3.2 Metrics

Independent Variables: Complexity Metrics. Our primary interest lies in the effects of different
complexity metrics on the performance of SR algorithms. Here, we focus on the following metrics
extracted from each equation: (1) number of nodes, (2) expression tree depth, (3) number of input
variables, (4) number of constants, and (5) number of trigonometric functions4.

Dependent Variables: Performance Metrics. In the first analysis, we examine the impact of each com-
plexity metric on three performance measures commonly used to evaluate SR algorithms: symbolic

3Documentation can be found here: https://gplearn.readthedocs.io/en/stable/
4The number of trigonometric functions was used as complexity metric since it had been shown to impact

the performance in various SR algorithms
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solution rate, normalized tree distance (NED), and mean square error (MSE). The symbolic solution
rate indexes if the predicted equation matches the ground truth or if it can be derived by scaling or
constant shifting [1]. The NED measures the distance between the tree representations of the ground
truth and predicted equations in terms of the number of tree modifications needed to transform the
latter into the former [33]. We compute the MSE between the predicted and the ground truth equation
on a randomly sampled set of hold-out conditions. For more details on each performance metric, see
Appendix A.3.3

3.3 Simulation Procedure

We formatted the generated datasets to be compatible with SRBench, and executed the benchmarking5

on the four algorithms using the following hyperparameters: 1 recovery trial allowed for each
algorithm per equation, 16384 MB memory limit, nine hours time limit, and allowing for estimators
to be tuned on black-box regression problems. After obtaining a symbolic solution, we computed all
metrics for the obtained symbolic model, including symbolic solution and MSE. We leveraged the
expression tree representation described above to compute the complexity metrics and the NED.

3.4 Analysis

We first examine the degree to which each SR performance metric is impacted by (a) the SR algorithm
itself and (b) the complexity metric. Thus, for each complexity metric, we regress the respective
performance metric against the complexity metric and the algorithms, using either a logistic regression
(for symbolic solution hit) or linear regression (for NED and MSE). An interaction effect between the
complexity metric and algorithms would indicate that different algorithms are differentially impacted
by the different complexity metrics.

In the second analysis, we examine whether a given SR algorithm is capable of recovering the
complexity metric of the ground-truth equation, e.g., whether the output equation of an SR algorithm
had as many constants as the data-generating equation. If a feature is recovered perfectly, the
regression should be an identity. Regression lines above the identity lines suggest overly complicated
expressions in this feature, and regression lines below the identity lines suggest oversimplification of
this feature.

3.5 Results

Table 1: Main effects of algorithm and complexity metrics for the logistic (symbolic solution
probability) and linear regression (NED and MSE).

Symbolic Solution NED MSE

OR CI p coef CI p coef CI p

Intercept .88 [.66, 1.17] .377 .42 [.37, .47] <.001 .77 [.12, 1.43] .02
AIFeynman 1.57 [1.04, 2.35] .03 -.13 [-.2, -.07] <.001 -.23 [-1.13, .68] .625
GP-GOMEA .74 [.5, 1.09] .124 .13 [.07, .2] <.001 .46 [-.43, 1.35] .308
SBP-GP .69 [.46, 1.04] .073 .3 [.23, .36] <.001 -.21 [-1.15, .74] .667
Nodes .54 [.49, .6] <.001 .04 [.03, .04] <.001 .27 [.18, .37] <.001
Depth .2 [.16, .25] <.001 .13 [.11, .14] <.001 .89 [.62, 1.15] <.001
Variables .33 [.27, .4] <.001 .12 [.11, .14] <.001 1.34 [1.03, 1.65] <.001
Constants .35 [.29, .43] <.001 .11 [.09, .14] <.001 .02 [-.31, .36] .886
Trigonometric .15 [.06, .36] <.001 .29 [.18, .4] <.001 .31 [.18, .44] <.001

Note. Odds ratio (OR) for logistic regression and coefficient (coef) for linear regression. Confidence
interval (CI), p-value (p) for both.

Main Effects. Figure 2 illustrates the symbolic solution probability as a function of various complexity
metrics for different algorithms, highlighting the main effects of algorithms and the decrease in
performance for all algorithms as the complexity increases (for the other performance metrics, see
Appendix A.4). Table 1 shows these main effects of the SR algorithm and the complexity metrics
on all the performance metrics, the symbolic solution, NED, and MSE. For example, AIFeynman
was significantly more likely to find a symbolic solution than the baseline (gplearn), and also yielded

5https://github.com/cavalab/srbench/blob/master/experiment/analyze.py
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Figure 2: Symbolic solution probability as a function of various complexity metrics for different
algorithms. On all the complexity metrics, the performance of AIFeynman is best, followed by
gplearn, GP-GOMEA, and SBP-GP.

a significantly smaller NED between the ground truth and the proposed equation was smaller. GP-
GOMEA and SBP-GP had a higher NED between the ground truth and the proposed equation
compared to gplearn. None of the algorithms differed significantly in terms of MSE. Together, these
results indicate that the SR algorithms impact performance metrics differently. All of the main effects
of the complexity metrics except for Constants on MSE were significant. The higher the value of
each complexity was, the lower the algorithm’s performance on each performance metric was.

Table 2: Interaction effects of logistic (symbolic solution probability) and linear regression (NED and
MSE) against algorithms and various complexity metrics.

Symbolic Solution NED MSE

OR CI p coef CI p coef CI p

AIFeynman:Nodes 1.26 [.82, 1.92] .293 .02 [.0, .03] .01 .06 [-.21, .33] .659
GP-GOMEA:Nodes 1.74 [1.19, 2.55] .004 -.03 [-.04, -.02] <.001 .08 [-.16, .31] .521
SBP-GP:Nodes 2.31 [1.61, 3.32] <.001 -.02 [-.03, -.01] <.001 -.03 [-.31, .25] .833
AIFeynman:Depth 2.78 [.99, 7.84] .053 .0 [-.04, .04] .988 .03 [-.71, .77] .936
GP-GOMEA:Depth 3.36 [1.24, 9.12] .018 -.09 [-.13, -.06] <.001 .29 [-.4, .98] .407
SBP-GP:Depth 6.64 [2.54, 17.35] <.001 -.08 [-.12, -.04] <.001 -.0 [-.84, .83] .994
AIFeynman:Variables .72 [.37, 1.4] .329 .04 [-.01, .1] .089 -.02 [-.97, .92] .963
GP-GOMEA:Variables 1.19 [.68, 2.09] .547 -.06 [-.1, -.02] .003 .41 [-.4, 1.23] .318
SBP-GP:Variables 1.54 [.89, 2.68] .126 -.05 [-.09, -.0] .03 - .33 [-1.23, .57] .47
AIFeynman:Constants 1.16 [.56, 2.39] .695 .001 [-.05, .06] .867 -.03 [-.97, .91] .952
GP-GOMEA:Constants 1.96 [1.02, 3.77] .043 -.12 [-.17, -.06] <.001 -.05 [-.95, .85] .917
SBP-GP:Constants 3.03 [1.6, 5.71] .001 -.13 [-.18, -.07] <.001 -.14 [-1.15, .87] .784
AIFeynman:Trigonometric 2.31 [.36, 14.97] .381 -.01 [-.23, .2] .895 -.22 [-.48, .04] .096

Note. Odds ratio (OR) for logistic regression and coefficient (coef) for linear regression. Confidence
interval (CI), p-value (p) for both.

Interaction Effects. Table 2 lists interaction effects between the algorithm and complexity metrics.
Results indicate that different complexity metrics differently impacted different algorithms. This
effect was most prevalent within the NED performance metric. For example, the interaction term for
AIFeynman and number of nodes is significant. For every node, the average NED increase compared
to gplearn is .02 units more. This means that the NED increases more rapidly as a function of nodes
for AIFeynman, likely due to its simplicity bias. The interaction term for GP-GOMEA and node
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count is also significant. For each node, the average change in the NED is .03 units less compared to
gplearn. This indicates that the relationship between NED and complexity differs for the GP-GOMEA
group, with the NED increasing less steeply. Together, the significant interaction effects show that
the different complexity metrics differentially impacts different algorithms, with some algorithms
(e.g., GP-GOMEA) scaling better with equation complexity (e.g., node count) compared to others
(e.g., AIFeynman).

A B

C D E

Figure 3: Recovered versus ground-truth equation complexity. Each figure depicts the linear regres-
sion fit obtained from regressing the equation complexity metric of the recovered equation against
that of the ground-truth equation.

Figure 3 highlights the degree to which the recovered and ground-truth equations match one another
in terms of different complexity metrics. Table 3 shows the deviation of the regression line between
the proposed and the ground truth metrics from the identity. We observed that the number of nodes
was higher in the predicted equations for all algorithms other than the AIFeynman algorithm (which
predicted a lowe node number). The tree depth was recovered well by AIFeynman and overestimated
by the other algorithms. The number of input variables was underestimated by all of the algorithms.
The number of constants was overestimated by GP-GOMEA and SBP-GP and recovered well by
gplearn and AIFeynman. The number of trigonometric functions was overestimated by all but
GP-GOMEA, which did not propose a single trigonometric function even when they were present in
the ground truth equation.

Table 3: Linear regression of various proposed complexity metrics against the ground truth metrics.
In this analysis, the identity was subtracted from the proposed equation metrics. Values deemed
significant indicate that the regression line deviates from the identity line.

Metric gplearn AIFeynman GP-GOMEA SBP-GP

coef CI p coef CI p coef CI p coef CI p

Nodes 1.14 [.58, 1.69] <.001 -.19 [-.24, -.14] <.001 .64 .55, .74 <.001 4.7 [3.54, 5.86] <.001
Depth .61 [.41, .82] <.001 .003 [-.05, .06] .91 .28 [.22, .34] <.001 1.06 [.77, 1.36] <.001
Var. -.26 [-.30, -.23] <.001 -.26 [.31, -.22] <.001 -.13 [-.16, -.11] <.001 -.46 [-.52, -.41] <.001
Const. .04 [-.12, .21] .6 -.11 [-.18, -.05] <.001 .93 [.77, 1.1] <.001 3.21 [2.2, 4.23] <.001
Trig. 1.28 [.36, 2.19] .007 .23 [.05, .41] <.001 4.48 [2.01, 6.95] <.001

Note. Coefficient (coef), confidence interval (CI), p-value (p) for linear regression.
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4 Conclusion and Future Work

We introduced a new benchmarking approach for SR. In contrast to the existing datasets for bench-
marking SR algorithms, the introduced benchmarking method relies on an expression sampler capable
of generating an arbitrary number of expressions. Critically, the user may generate those expressions
based on user-defined metrics of equation complexity, such as a number of expression tree nodes,
expression tree depth, or the number of variables, or based on priors for a specific domain (e.g.,
physics). Using this sampler, we examined the performance of various SR methods based on different
equation complexity metrics. We found that the performance of the SR algorithms decreases with
equation complexity. In particular, we found that the degree to which the recovered and ground-truth
equations match one another as a function of different complexity metrics varies, with tree depth
being most often recovered and trigonometric functions least often.

Our results suggest that the benchmarking method can yield novel insights into the strengths and
weaknesses of existing SR algorithms, such as which kinds of equation complexities different
SR algorithms fail to capture. Insights into complexity-specific weaknesses may not just aid in
the comparison of existing SR algorithms but may also help steer the development of novel SR
algorithms. For instance, we observed that most SR algorithms we evaluated (except AIFeynman)
overestimate the complexity of an equation in terms of the number of expression tree nodes or the
number of trigonometric functions. This suggests that SR algorithms may benefit from biases against
such complexity.

A crucial yet unexplored feature of our benchmarking method pertains to the ability to sample
equations according to domain-specific priors. Existing (static) benchmarks for equations are often
aligned with problems in physics, potentially tempting SR researchers to tailor their algorithms
toward these datasets. This may come at the expense of generalizability across other types of
equations and scientific domains. For instance, in biology, equations may tend to incorporate more
exponential functions to model complex growth phenomena, while in physics, multiplications might
dominate equations describing physical laws. Future benchmarking efforts may benefit from evaluat-
ing the domain-specificity of different SR algorithms by examining their performance across equation
datasets generated from priors based on different scientific disciplines. Thus, our novel benchmark-
ing approach not only offers a more flexible and comprehensive evaluation of SR algorithms but
also highlights the need for future research to consider domain-specificity, thereby enhancing the
generalizability and adaptability of these algorithms across various scientific disciplines.
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A Appendix

A.1 Expression Tree

We represent mathematical expressions as trees with operators or functions as internal nodes and constants or
variables as leaves. For this approach to be suitable for ML and especially SR benchmarking, we introduce
conventions to make the trees identifiable and the mapping between string representation and tree a one-to-one
correspondence:

Nodes can have a maximum of two children. Expressions like sums and products may correspond to
several trees. For instance, the expression x1 + x2 + 2 can be represented as any of various trees as shown in
Figure A1. Here, we assume that all operators have at most two operands, resulting in an expression tree data
structure where each node can have one or two children.

Figure A1: The mathematical expression x1 + x2 + 2 using two distinct equation tree structures:
Tree (A), characterized by nodes with an arbitrary number of children, and Tree (B), featuring nodes
with a maximum of two children.

Trees use binary minus and division. In many mathematical frameworks, the operation of subtraction is
commonly represented as the addition of an additive inverse:

x− y := x+ (−y) where − y := y′ with y + y′ = 0

The same holds for division. It is represented as the multiplication of a multiplicative inverse :

x/y := x ∗ y−1 where y−1 := y′ with and y ∗ y−1 = 1 (∀ y ̸= 0)

While the conventional notation benefits from the commutative property of operators, our proposed notation
introduces distinctions by exclusively allowing binary minus and division operations. This notation aligns more
closely with the prevalent usage in (SR) algorithms and offers the advantage of generally generating shallower
tree structures (see Figure A2). When required, unary minus is transformed into a binary minus following the
convention that −x is replaced with 0− x if converting a plus sign to a minus sign at another location is not
feasible.

Figure A2: Expressions with unary or binary minus: Tree (A), characterized by the unary minus,
representing the additional inverse. Tree (B), featuring the same expression as (A) with a binary
minus. Tree (C) expressing −x1 with a binary minus.
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A.2 Expression Sampler

In our expression sampling process, we simplify expressions and remove invalid ones. For instance, after creating
a tree structure and populating its nodes, we might produce expressions such as

√
x2 or

√
−|x+ 1|. While the

former reduces to x, the latter is eliminated because it lacks a valid domain in R.

This post-sampling adjustment can cause a disparity between the intended sampling probabilities and the actual
outcomes since the likelihood of an expression being simplified or changed isn’t independent of its structural
and mathematical elements. For example, expressions containing log, power, or √ functions are more prone to
being discarded.

Users can perform an expression burn-in procedure to address this discrepancy. Here, expressions are sampled,
and their attribute frequencies are measured against the desired attribute probabilities. If there’s a misalignment,
an adjusted probability is recorded and subsequently used for sampling, steering the results closer to the original
goal.

Our repository already includes pre-calculated adjusted probabilities for certain target distributions, like uniform
sampling. Moreover, the burn-in procedure only needs to be executed once. Once completed, these adjusted
probabilities are saved to a file for future reference.

A.3 Additional Features

A.3.1 Collection of Priors

The expression sampler can collect information about frequencies of given sets of equations—for example, from
existing benchmarking datasets. This information can then be used to inform the sampling of expressions.

A.3.2 Sampling of Datapoints

The expression sampler is tailored for SR benchmarking, allowing to export sampled expressions compatible with
the SR Bench format [1]. The process begins by sampling a user-specified number of conditions. Subsequently,
the sampled expression is evaluated against these conditions, from which we generate data tables and an
associated meta-data file.

A.3.3 Benchmarking Metrics

Our expression sampler includes various metrics to measure the ’accuracy’ of the SR algorithm’s output against
the sampled expressions.

Prediction distance. Among these is the prediction distance proposed by Cava, Orzechowski, Burlacu, et al. [1]:

dprediction =

N∑
i=1

(fpred(Xi)− ftrue(Xi))
2/N

where N indicates the number of samples.

Symbolic solution. Another metric proposed by Cava, Orzechowski, Burlacu, et al. [1] is called symbolic
solution, designed to capture SR models that differ from the true model by a constant or scalar. In our application,
we define the symbolic constant difference as:

dconstant =

{
c ∃c ∈ R : (fpred − ftrue)(X) = c

∞ otherwise

And the symbolic scalar difference as:

dscalar =

{
s ftrue ̸= 0 and ∃s ∈ R : (fpred/ftrue)(X) = s

∞ otherwise

Normalized edit distance. In addition to the metrics above, Matsubara, Chiba, Igarashi, et al. [33] propose
a normalized edit distance for the trees. Its primary use has been to study the search process for genetic
programming approaches [34]–[36]. For a pair of two trees, edit distance computes the minimum cost to
transform one to another with a sequence of operations, each of which either 1) inserts, 2) deletes, or 3) renames
a node. To calculate the tree edit distance, we use the algorithm proposed by Zhang and Shasha [37] and
normalize it via the following equation:

ned(t1, t2) =
2 ∗ ed(t1, t2)

ed(t1, t2) + |t1|+ |t2|
,
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where ned(t1, t2) is the normalized edit distance between two trees t1 and t2. This normalization method
has the advantage over naive normalization methods like ed(t1,t2)

|t1|+|t2|
or ed(t1,t2)

max(|t1|,|t2|)
that it satisfies the triangle

inequality (ned(t1, t2) + ned(t2, t3) ≥ ned(t1, t2)∀t1, t2, t3). It also satisfies the following axioms:

Non-Negativity: ned(t1, t2) ≥ 0 and ned(t1, t2) = 0 ⇔ t1 = t2

Symetry: ned(t1, t2) = ned(t2, t1)

It is, therefore, a metric. For a detailed proof, we refer readers to Li and Chenguang [38].

A.3.4 Scraping Priors

The expression sampler can make use of priors. For example, to generate expressions to a specific scientific
domain by incorporating domain-specific. The prior distribution contains the number of times each tree structure,
operator, function, and feature appeared per equation.

We created an informed prior for the domain of Physics by webscraping equations from Wikipedia pages using
the open-source package equation scraper6. This equation scraper accumulates equations from links to a certain
depth and then parses scraped expressions using the expression tree. Here, we used a search depth. This means
all links within the corresponding category page, links within these links, and finally, links within these sublinks
were considered. The first path of the Physics domain was . We then extracted equations from all levels of these
links for parsing.

A.4 Additional Figures: Performance Metrics

A B

C D E

Figure A3: Normalized Edit Distance (NED) as a function of various complexity metrics for different
algorithms and datasets. The dataset is only from sampled equations (Feynman Priors and Physics
Priors). On all the complexity metrics, the performance of AIFeynman is best, followed by gplearn,
GP-GOMEA, and SBP-GP.

6The scraper is available as pyhthon package and documented athttps://autoresearch.github.io/equation-
scraper/.
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A B

C D E

Figure A4: Mean Square Error (MSE) as a function of various complexity metrics for different
algorithms and datasets. The dataset is only from sampled equations (Feynman Priors and Physics
Priors). On all the complexity metrics, the performance of AIFeynman is best, followed by gplearn,
GP-GOMEA, and SBP-GP.

A.5 Sampled Expressions

A1 shows the benchmark expressions we used. Each constant ci was sampled uniformly between 0 and 5. We
sampled with replacement so that an expression can occur more than once in the set.7

7The expression sampler also allows for sampling without replacement
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