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ABSTRACT

Neural memory enables fast adaptation to new tasks with just a few training sam-
ples. Existing memory models store features only from the single last layer, which
does not generalize well in presence of a domain shift between training and test
distributions. Rather than relying on a flat memory, we propose a hierarchical
alternative that stores features at different semantic levels. We introduce a hierar-
chical prototype model, where each level of the prototype fetches corresponding
information from the hierarchical memory. The model is endowed with the ability
to flexibly rely on features at different semantic levels if the domain shift circum-
stances so demand. We meta-learn the model by a newly derived hierarchical
variational inference framework, where hierarchical memory and prototypes are
jointly optimized. To explore and exploit the importance of different semantic
levels, we further propose to learn the weights associated with the prototype at
each level in a data-driven way, which enables the model to adaptively choose the
most generalizable features. We conduct thorough ablation studies to demonstrate
the effectiveness of each component in our model. The new state-of-the-art per-
formance on cross-domain and competitive performance on traditional few-shot
classification further substantiates the benefit of hierarchical variational memory.

1 INTRODUCTION

Few-shot learning with an external memory is known to learn new concepts quickly with only a few
samples, especially when embedded in a meta-learning setting (Santoro et al., 2016). A common
tactic is to store short-term memory (Munkhdalai & Yu, 2017; Munkhdalai et al., 2018; Kaiser et al.,
2017) as obtained from the support set of the current task, and to empty it at the end of a task. Another
tactic is to let the memory store long-term knowledge distilled from all the training tasks (Zhen
et al., 2020a), which provides a conceptual context to learn a new task. The long-term memory has
demonstrated effectiveness in enabling a model to quickly learn new few-shot learning tasks within
domains (Zhen et al., 2020a). Nonetheless, for both the short- and long-term memory tactics, the
learning ability is limited when facing a task from an unseen domain (Tseng et al., 2020; Guo et al.,
2020; Cai & Shen, 2020; Du et al., 2021).

Cross-domain few-shot learning (Tseng et al., 2020; Guo et al., 2020) is even more challenging than
the conventional few-shot learning problem as it also has to take distribution shift into account. In
cross-domain few-shot learning, directly using traditional external memory, which often only stores
high-level semantic features (Zhen et al., 2020a), is unable to find the suitable semantics in memory
due to the domain shift causing side effects. Nonetheless, low-level features like textures, shapes,
edges, etc. from training domains are often still meaningful for a new domain (Adler et al., 2020). We
hypothesize, features at different levels would play distinctive roles in generalizing across domains.
It remains unexplored to investigate hierarchical features in memory that can enable quick adaptation,
as humans do, when faced with a few samples from new domains.

In this paper, we make three contributions. First, we propose hierarchical variational memory,
which accrues and stores the long-term semantic knowledge of multiple network layers from past
experiences. Each entry stores features at different hierarchical levels by summarizing the feature
representations of class samples, thus generalizing well in presence of a domain shift between the
training and test distributions. We formulate the memory recall at different hierarchical levels as a
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variational inference of the latent memory, which is an intermediate stochastic variable. Second, to
better deploy the hierarchical memory, we introduce a hierarchical variational prototype model to
obtain prototypes at different levels as well. We also develop the hierarchical variational prototype
in a latent model by treating the prototypes at different levels as the latent variable. In doing so,
the model is endowed with the ability to flexibly rely on low-level textures or high-level semantic
features if the domain shift circumstances so demand. As the third contribution, we propose to learn
the weights associated with the prototype at each level in a data-driven way, which can explore and
exploit the importance of the different feature levels for domain generalization. We leverage the few
training samples in the new domain to generate reasonable weights for each prototype, since these
samples already carry sufficient appearance cues about the new domain, which enables the model to
adaptively choose the most generalizable features. Two different hierarchical variational inference
problems are included in our optimization objective: 1) the inference of the latent memory, which
conditions on the latent memory of previous layers and the memory contents of the current layer; 2)
the inference of prototypes, which treats the support set, the latent memory of the current layer and
the prototype of previous layers as conditions.

We demonstrate the effectiveness of the proposed hierarchical memory by extensive experiments
on the cross-domain few-shot learning classification tasks introduced by (Guo et al., 2020) and
the more traditional within-domain few-shot learning classification tasks (Snell et al., 2017). We
conduct an extensive ablation study to demonstrate the contributions of different components in our
model. We also analyze how hierarchical memory adaptively chooses the weights in the face of
domain change and identifies the appropriate layer of the prototype that should be used. An extensive
evaluation of cross-domain few-shot and traditional few-shot classification benchmarks reveals that
our hierarchical memory consistently achieves results that are better, or at least competitive, compared
to other methods.

2 METHODOLOGY

2.1 PRELIMINARIES

In the following, we present the relevant background on few-shot classification and its cross-domain
setting, as well as the preliminaries of the (variational) prototypical network and variational semantic
memory (Zhen et al., 2020a).

Few-shot classification In the few-shot classification scenario, we define the N-way K -shot classi-
fication problem, which is comprised of the support sets S and query set Q. Each task also called
an episode, is a classification problem sampled from a task distribution p(7). The ‘way’ of the
episode refers to the number of classes in the support, while the ‘shot’ of the episode refers to the
number of examples per class. Tasks are drawn from a dataset by randomly sampling a subset of
classes, sampling points from these classes, and then partitioning the points into support and query
sets. Episodic optimization (Vinyals et al., 2016) iteratively trains the model by taking one episode
update at a time.

Cross-domain setting For few-shot classification, the test tasks are typically assumed to come from
the same task distribution p(7") as the training tasks. The recently introduced task of cross-domain
few-shot learning (Guo et al., 2020) considers the few-shot classification challenge under domain
shift. Concretely, the training task comes from a single source domain p(7g), while the test tasks
come from several unseen domains {77, - - - , Tas }. The goal of cross-domain few-shot learning is to
learn a meta-learning model using a single source domain that generalizes to several unseen domains.

Prototypical network Our model builds upon the prototypical network (Snell et al., 2017), which
is widely used for few-shot image classification. It computes a prototype zy=7 >_, fo(x)) for
each class through an embedding function fy, which is realized by neural networks. It computes a
distribution over classes for a query sample x given a distance function d(-, -) as the softmax over its
distances to the prototypes in the embedding space:

exp(=d(fs(x), zx))

plyi = klx) = S exp(—d(fo(x), z1r)) v

Variational prototype network The variational prototype network (Zhen et al., 2020a) is a powerful
model for learning latent representations from small amounts of data, where the prototype z per class
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is treated as a distribution. Given a task with a support set .S and query set (), the ELBO takes the
following form:

QI Q]

log [ [T p(yilxo)] = 3" [Eyais) [logplyilxi 2)] — Di(a(lS)Ip(zixi)], @)

=1 =1

where ¢(z]S) is the variational posterior over z, p(z|x;) is the prior, and L, is the number of Monte
Carlo samples for z.

Variational semantic memory Variational semantic memory (Zhen et al., 2020a) is proposed to
accumulate and store the semantic information from previous tasks for the inference of prototypes of
new tasks. It consists of two main processes: memory recall, which retrieves relevant information that
fits with specific tasks based on the support set of the current task; memory update, which effectively
collects new information from the task and gradually consolidates the semantic knowledge in the
memory. Variational semantic memory formulates the memory recall as a variational inference of the
latent memory, which is an intermediate stochastic variable. The objective is written as follows:

Q|
Lysm = Z {— Eq(z|s,m) [Ing(Yi|Xia Z)} + DkL [Q(Z\S’ m)||p(z|xi)]

i=1

3)
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where p(m/|S) is the introduced prior over latent memory m and M denotes the memory content.

The above networks and memory only focus on the problem of few-shot classification within domain
and their performance would be degrade for cross domain few-shot learning, because of the domain
shift problem. In this paper, we propose hierarchical memory to address few-shot classification under
domain shift.

2.2 HIERARCHICAL VARIATIONAL PROTOTYPE

In the variational prototype network (Zhen et al., 2020a), the probabilistic prototype is obtained by
feeding the last layer of features to an amortization network. Hence, it is not possible to obtain the
prototypes of different layers when addressing the domain shift problem, making it relying on the
high-level prototype only, which is not necessarily shared between domains.

We introduce the hierarchical variational prototype network to generate different layer prototypes.
Compared to its flat counterpart, it introduces ¢(z'|z' !, S) instead of q(z|S), so we approximate the
true posterior by minimizing the KL divergence:

Dxu[a(2'2", 9)|lp(2'[x, y)], )

where z' is the prototype of layer I. By applying the Baye’s rule, we then obtain the following ELBO:

1Q QI
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In practice, the variational posterior ¢(z!'|z'~!,S) is implemented by an amortization net-
work (Kingma & Welling, 2013) that takes the concatenation of the average feature representations of
samples in the support set S and the upper layer prototype z'~! and returns the mean and variance of
the current layer prototype z'. The hierarchical probabilistic prototype provides both a more informa-
tive representation than the deterministic prototype and the ability to capture different representation
levels, making it more suitable for cross-domain few-shot learning. More importantly, the hierarchical
variational prototype also provides a principled way of incorporating the prior knowledge of the
different levels from the past experienced tasks. Therefore, we introduce the external hierarchical
memory to enhance the prototype at different levels.
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2.3 HIERARCHICAL VARIATIONAL MEMORY

We introduce the hierarchical variational memory to accrue and store the long-term semantic knowl-
edge at different levels from previously experienced tasks for the hierarchical inference of prototypes
for new tasks. By seeing more examples of objects at different semantic feature levels, the knowledge
in the memory is enriched and consolidated, which allows for quick learning on new tasks.

Concretely, our model has L layers of memory, each having M storage units which store a key-
value pair in each row of the memory array. The key in each memory stores the average feature
representations of images from the same class and the value is the corresponding label. We adopt
a similar memory mechanism as (Zhen et al., 2020a): memory recall and memory update, but we
introduce a hierarchical version of memory recall.

We apply hierarchical variational memory into the hierarchical variational prototype network to
generate the prototypes at different layers. From a Bayesian perspective, the prototype posterior can
be inferred by:

q(2'S) = / q(z'|m',z'~*, S)p(m'|z' !, S)dm, (6)

where m' is the latent memory of layer [. Different from the variational semantic memory (Zhen et al.,
2020a), we design a hierarchical variational approximation ¢(m'/m!~1, M, .S) to the posterior over
the latent memory m' of layer [ by inferring from M conditioned on S. The hierarchical variational
inference of prototypes by a hierarchical Bayesian framework is written as :

|M|
q(z'|M, S) Zp a|M, S) /q(zl|zl_1,S,ml)p(ml|Ma,ml_l,S)dml7 @)

where a is the addressed categorical variable, M, represents the corresponding memory content at
address a, and | M| indicates the memory size. We first leverage the support set S and memory M to
generate the addressed categorical variable a, and then use the fetched memory content M, support
set S, and the latent memory m’~! of upper layer [ — 1 to infer the latent memory m' of layer [. For
the prototype z', we use the upper layer prototype z' !, the support set S, and the latent memory m!’
as conditions.

By combining the ELBO in Eq. (5) for the hierarchical variational network and Eq. 7, we obtain the
following ELBO for hierarchical variational inference:

Q| Ql l L

log Hp YZ|X2 = Z Z [ (z'|S,m!,z!—1) [1ng(YE|Xi7zl)]

i=1 i=1 =1
[ M|

- Dic[a(a'|,ml 2 a1 x —DKL[ZMmHml-l,Mbm(mlml-l,snﬂ
Z (8)
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The overall computational graph of our approach is shown in Fig. 1. Directly optimizing the above
objective does not consider the role of the different feature levels for domain generalization. Thus, we
propose to learn the weights associated with the prototype at each level to achieve adaptive prototypes,
which enables the model to adaptively choose the most generalizable features.

2.4 LEARNING TO WEIGH PROTOTYPES

Features from different layers contain different levels of semantic abstraction about an object and
should contribute differently to the generalization of new tasks. Therefore, the importance of
established prototypes from different feature levels need to be treated distinctively by depending on
the domain from which a new task originates. To this end, we propose learning to weigh prototypes
of different levels in a data-driven way.

Assume we have L prototypes: {z',---,z"}, and we can obtain L different prediction logits
{y',---,¥%} based on Eq. (1). We can produce the final logit y by bagging (Breiman, 1996) to vote
which category it should be categorized into. However, this approach does not allow the model to
adaptively choose the weight that different level prototypes should occupy based on the new domain.

L
In general, the final logit can be represented as a weighted sum: y = > oy, where we learn
=1
the weight «; for each prototype, by conditioning on the support set of the task. For cross-domain
few-shot learning, we have a few samples S when testing on new domains, we can generate a
reasonable weight for prototypes at different levels of .S, because, intuitively, these samples already
carry sufficient domain information. To generate the weight o of layer I, we deploy a hypernetwork
fL() that takes the average gradients (Munkhdalai et al., 2018) of all the support sets .S as input, and
returns the weight o by softmax:

oy = softmax(f.(V%)), )

where Vls are the average gradients on layer [ of all the support sets. The hypernetwork f.(-) is
first learned at meta-training time and then directly used as the support set .S from the test domain
at meta-test time. Note that on the test domain we do not learn the parameter of f.(-); instead,
we simply rely on the support gradient of each layer to generate its weight for the final result. We
propose to learn the weights associated with the prototype at each level of the hierarchical variational
prototype and hierarchical variational memory to adaptively unify different prototypes at different
levels, which enables the model to adaptively choose the most generalizable features, thus achieving
generalization for cross-domain few-shot learning.

3 RELATED WORKS

Memory Several works augment neural networks with an external memory module to improve
learning (Santoro et al., 2016; Pritzel et al., 2017; Weston et al., 2014; Graves et al., 2016; Kaiser
et al., 2017; Munkhdalai & Yu, 2017; Munkhdalai et al., 2018; Ramalho & Garnelo, 2019). (Santoro
et al., 2016) equip neural networks with a neural Turing machine for few-shot learning. The external
memory stores samples in the support set in order to quickly encode and retrieve information from
new tasks. (Bornschein et al., 2017) proposed augmenting generative models with an external
memory, where the chosen address is treated as a latent variable. Sampled entries from training
data are stored in the form of raw pixels in the memory for few-shot generative learning. In order
to store a minimal amount of data, (Ramalho & Garnelo, 2019) proposed a surprise-based memory
module, which deploys a memory controller to select minimal samples to write into the memory. An
external memory was introduced to enhance recurrent neural network in (Munkhdalai et al., 2019), in
which memory is conceptualized as an adaptable function and implemented as a deep neural network.
Semantic memory has recently been introduced by (Zhen et al., 2020a) for few-shot learning to
enhance prototypical representations of objects, where memory recall is cast as a variational inference
problem. In contrast to (Zhen et al., 2020a), our memory adopts a hierarchical structure, which stores
the knowledge at different levels instead of the last layer only.

Prototypes The prototypical network for few-shot learning is first proposed by (Snell et al., 2017).
It learns to project the samples into a common metric space where classification is conducted by
computing the distance from query samples to prototypes of classes. Infinite Mixture Prototypes was
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proposed by (Allen et al., 2019), which improved the prototypical network by an infinite mixture of
prototypes that represents each category of objects by multiple clusters. (Triantafillou et al., 2020)
combines the complementary strengths of Prototypical Networks and MAML (Finn et al., 2017) by
leveraging their effective inductive bias and flexible adaptation mechanism for few-shot learning.
(Zhen et al., 2020a) proposed the variational prototypical network to improve the prototypical network
by probabilistic modeling of prototypes, which provided more informative representations of classes.
Different from their work, we propose hierarchical variational prototype networks to generate different
layer prototypes instead of using one prototype, which could capture information at different levels
for few-shot learning across domains.

Meta-learning or learning to learn (Schmidhuber, 1987; Bengio et al., 1991; Thrun & Pratt, 1998), is
a learning paradigm where a model is trained on distribution of tasks so as to enable rapid learning on
new tasks. Meta-learning approaches to few-shot learning (Vinyals et al., 2016; Ravi & Larochelle,
2017; Snell et al., 2017; Zhen et al., 2020a; Finn et al., 2017; Du et al., 2021) and the domain
generalization (Du et al., 2020; Xiao et al., 2021; 2022) differ in the way they acquire inductive
biases and adapt to individual tasks. They can be roughly categorized into three groups. Those
based on metric-learning generally learn a shared embedding space in which query images are
matched to support images for classification (Vinyals et al., 2016; Snell et al., 2017; Santoro et al.,
2016; Oreshkin et al., 2018; Allen et al., 2019). The second, optimization-based group learn an
optimization algorithm that is shared across tasks, which can be adapted to new tasks for efficient
and effective learning (Ravi & Larochelle, 2017; Andrychowicz et al., 2016; Finn et al., 2017; 2018;
Grant et al., 2018; Triantafillou et al., 2017; Rusu et al., 2019; Zhen et al., 2020b). The memory-based
meta-learning group leverages an external memory module to store prior knowledge that enables
quick adaptation to new tasks (Santoro et al., 2016; Munkhdalai & Yu, 2017; Munkhdalai et al., 2018;
Mishra et al., 2018; Zhen et al., 2020a). Our method belongs to the first and third group, as it is based
on prototypes with external hierarchical memory, with the goal to perform cross-domain few-shot
classification.

Cross-domain few-shot learning The problem is formally posed by (Tseng et al., 2020), who attack
it with feature-wise transformation layers for augmenting mage features using affine transforms to
simulate various feature distribution. Then, (Guo et al., 2020) proposed the cross-domain few-shot
learning benchmark, which covers several target domains with varying similarities to natural images.
(Phoo & Hariharan, 2020) introduce a method, which allows few-shot learners to adapt feature
representations to the target domain while retaining class grouping induced by the base classifier. It
performed cross-domain low-level feature alignment and also encodes and aligns semantic structures
in the shared embedding space across domains. (Wang & Deng, 2021) proposed a method which
improved the cross-domain generalization capability in the cross-domain few-shot learning through
task augmentation. In contrast, we first address cross-domain few-shot learning by a variational
inference approach, which enables us to better handle the prediction uncertainty on the unseen
domains. Moreover, we propose a hierarchical variational memory for cross-domain few-shot
learning, and to better deploy the hierarchical memory, we introduce a hierarchical variational
prototype model to obtain prototypes at different levels.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We apply our method to four cross-domain few-shot challenges and two within-domain few-shot
image classification benchmarks. Sample images from all datasets are provided in the appendix A.

Cross-domain datasets The 5-way 5-shot cross-domain few-shot classification experiments use
minilmagenet (Vinyals et al., 2016) as training domain and test on four different domains,
i.e., CropDisease (Mohanty et al., 2016) containing plant disease images, EuroSAT (Helber et al.,
2019) consisting of a collection of satellite images, ISIC2018 (Tschandl et al., 2018) containing
dermoscopic images of skin lesions, and ChestX (Wang et al., 2017), a set of X-ray images. Results
on the 5-way 20-shot and 5-way 50-shot are provided in the appendix.

Within-domain datasets The traditional few-shot within-domain experiments are conducted on
minilmagenet (Vinyals et al., 2016) which consists of 100 randomly chosen classes from ILSVRC-
2012 (Russakovsky et al., 2015), and tieredIlmagenet (Ren et al., 2019) which is composed of 608
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Table 1: Benefit of hierarchical variational prototype in (%) on four cross-domain challenges under
the 5-way 5-shot setting. Hierarchical variational prototype achieves slighly better or comparable
performance to the variational prototype on all domains.

Method CropDiseases  EuroSAT ISIC ChestX
Variational prototype (Zhen et al., 2020a) 80.72 + 037 73.21 041 40.53 +035 25.03 £ 041
Hierarchical variational prototype 83.75 + 033 74.29 + 042 41.21 +033 26.15 + 045

Table 2: Hierarchical vs. flat variational memory in (%) on four cross-domain challenges under
the 5-way 5-shot setting. Hierarchical variational memory is more critical than the flat variational
memory for cross-domain few-shot learning.

Method CropDiseases EuroSAT ISIC ChestX
Flat variational memory (Zhen et al., 2020a) 79.12 +0.65 72.21 £070 38.97 053 22.15 +1.00
Hierarchical variational memory 87.65 +0.35 74.88 +045 42.05 +034 27.15 +045

classes grouped in 34 high-level categories. In the test stage, we measure the accuracy of 600 tasks
sampled from the meta-test set. In this paper, we focus on 5-way 1-shot/5-shot tasks following the
prior work (Snell et al., 2017; Finn et al., 2017; Zhen et al., 2020a).

Implementation details We extract image features using a ResNet-10 backbone, which is commonly
used for cross-domain few-shot classification (Ye et al., 2020; Guo et al., 2020). For the computation
of features at each level, we first input the last convolutional layer feature map of each residual
block through a flattening operation and then input the flattened features into the two fully connected
layers. For the within-domain experiments, we use two backbones: Conv-4 and ResNet-12. The
Conv-4 was first used for few-shot classification by (Vinyals et al., 2016), and is widely used (Snell
et al., 2017; Finn et al., 2017; Sun et al., 2019; Zhen et al., 2020a). To gain better performance,
ResNet-12 (Bertinetto et al., 2019; Gidaris & Komodakis, 2018; Yoon et al., 2018) is also widely
reported for few-shot classification. Following the prior works, we configure the ResNet-12 backbone
as 4 residual blocks. Each prototype is obtained in the same way as the cross-domain few-shot
classification. We use a two-layer inference network for the few-shot cross domain experiments.
Following the VSM (Zhen et al., 2020a), we use the same three-layer inference network for the
few-shot within domain experiments. Our code will be publicly released. !

Metrics The average cross-domain/ within-domain few-shot classification accuracy (%, top-1) along
with 95% confidence intervals are reported across all test images and tasks.

4.2 RESULTS

Benefit of hierarchical prototypes To show the benefit of the hierarchical prototypes, we compare
hierarchical variational prototypes with variational prototypes (Zhen et al., 2020a), which obtains
probabilistic prototypes of the last layer only. Table 1 shows the hierarchical prototype achieves
a slightly better or comparable performance to the single prototypes on all cross-domain few-shot
classification tasks. More importantly, the experiments confirm that hierarchical prototypes can
capture features at different levels, which allows for better deployment of hierarchical memory. As it
may fetch the corresponding information for each level of prototype, which we will demonstrate next.

Hierarchical vs. flat variational memory We first show that a flat memory as used in (Zhen et al.,
2020a) is less suitable for cross-domain few-shot learning in Table 2. With flat memory, performance
even degrades a bit compared to variational prototypes (see Table 1). One interesting observation is
that on ChestX — with the largest domain gap — the performance of flat memory degrades the most
compared to the variational prototype. This is reasonable since features vary for the domains, resulting
in the tested domains not finding the appropriate semantic information. Our hierarchical variational
memory consistently surpasses flat memory on all test domains. We attribute the improvements to
our model’s ability to leverage memory of different layers to generate prototypes. The hierarchical
memory provides more context information at different layers, enabling more information to be
transferred to new domains, and thus leads to improvements over flat memory.

Benefit of learning to weigh prototypes We investigate the benefit of adding the learning to weigh
prototypes to the hierarchical variational memory. The experimental results are reported in Table 3.
Hierarchical variational memory with bagging produces the final result by bagging (Breiman, 1996)

"https://github.com/YDU-uva/HierMemory.
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Table 3: Benefit of learning to weigh prototypes in (%) on four cross-domain challenges. Hierarchical
variational memory with learning to weigh prototypes achieves better performance than with bagging.

Method CropDiseases  EuroSAT ISIC ChestX
Hierarchical variational memory with bagging 8543 +033 74.02 041 4039 £032 2598 £043
Hierarchical variational memory 87.65 +0.35 74.88 045 42.05 +034 27.15 + 045
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Figure 2: Visualization of weights o! at different residual blocks. The weight a! varies per test-
domain, the larger the domain shift between the training and test domain, the larger the weight of the
low-level prototype.

to vote which category it should be categorized into. Adding the learning to weigh prototypes on
top of the hierarchical variational memory leads to a small but consistent gain under all test domains.
Thus, the learned adaptive weight acquires the ability to adaptively choose the most generalizable
features for the new test domain, resulting in improved performance.

Importance of prototypes at different levels We present a visualization of the influence of the
prototypes at different levels, using a varying number of shots, in Fig. 2. We sample 600 test tasks
on each domain to show the value of o at different blocks, and average o/ among all the test tasks.
We choose the last three blocks of ResNet-10 to generate the memory and prototype. As presented
in (Guo et al., 2020), the degree of domain shift between minilmageNet and target domains is ordered
by: CropDiseases < EuroSAT < ISIC < ChestX. From Fig. 2, we can see that the value of « increases
along with the increase in domain shift. Another interesting observation is that as the training samples
(shots) in each class increase, the weight of the high-level prototypes also increases. This is expected
as high-level features can already better represent the information of the new domain due to the
increase in the number of training samples. However, the weight of the low-level prototypes is still
larger than the weight of the high-level ones. This experiment demonstrates that the lower-level
features may be more useful across different domains than the more specialized high-level concepts.

Visualization of hierarchical variational prototypes To understand the empirical benefit of using
prototype at different levels, we visualize the distribution of prototypes obtained by different blocks on
the most challenging ChestX domain under the 5-way 5-shot setting in Fig. 3. The level 1 (low-level)
prototypes enable different classes to be more distinctive and distant from each other, while the
prototypes obtained by level 3 (high-level) have much more overlap among classes. This suggests that
with a large domain shift between the original source domain and the new target domain, low-level
textures are more useful and distinctive. This again demonstrates that our hierarchical variational
memory to leverage prototypes at different levels is suitable for cross-domain few-shot learning.

Table 4: Comparative results of different algorithms on four proposed cross-domain few-shot chal-
lenges. The results of other methods are provided by (Guo et al., 2020). Runner-up method is
underlined. Our hierarchical variational memory is a consistent top-performer.

CropDiseases 5-way EuroSAT 5-way ISIC 5-way ChestX 5-way

Method 5-shot 20-shot 5-shot 20-shot 5-shot 20-shot 5-shot 20-shot

MatchingNet 66.39 +078 7638 £067 64.45+063 77.10 057 36.74 £053 4572 +053 2240 +070 23.61 +£0.86
MatchingNet+FWT  62.74 £o90 74.90 £071  56.04 065 63.38 £069 30.40 048 32.01 048 21.26 £031 23.23 £037
MAML 78.05 +068 89.75 +042 71.70 £072 8195 +055 40.13 +o058 52.36 +057 2348 +096 27.53 £043
ProtoNet 79.72 +067 88.15+051 73.29 +071 8227 +057 39.57 057 49.50 +055 24.05 +101  28.21 +1.15
ProtoNet+FWT 72.72 +070 85.82+051 67.34+076 7574 +070 3887 +052 4378 +047 23.77 +042 26.87 £043
RelationNet 68.99 +075 80.45 +064 6131 +072 7443 +066 39.41 £058 41.77 +049 22.96 +088 26.63 +£0.92
RelationNet+FWT 6491 +079 7843 £059 61.16 070 69.40 +064 3554 £055 43.31 +051 22.74 +040 26.75 £041
MetaOpt 68.41 +073 8289 +0s54 6444 +073 79.19 +062 3628 £050 4942 +060 22.53 +091 2553 +£1.02
Ours 87.65 +035 9513 +035 74.88 +045 84.81 +034 42.05+034 5497 +035 27.15+045 30.54 +047
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Figure 3: Prototype distributions at different levels with our hierarchical variational memory on
ChestX under the 5-way 5-shot setting, where different colors indicate different categories. The
prototypes of Level 1 are more distinctive and distant from each other, which reflects the lower-level
feature are more crucial when the domain shift is large.

Few-shot across domains We evaluate hierarchical variational memory on the four different datasets
under 5-way 5-shot and 5-way 20-shot in Table 4, the results for 50-shot are provided in the
appendix B.4. Our hierarchical variational memory achieves state-of-the-artperformance on all four
cross-domain few-shot learning benchmarks under each setting. On CropDisease (Mohanty et al.,
2016), our model achieves high recognition accuracy under various shot configurations, surpassing
the second best method, i.e. ProtoNet (Snell et al., 2017), by a large margin of 7.93% on the 5-way
5-shot. Even on the most challenging ChestX (Wang et al., 2017), which has a large domain gap
with the minilmageNet, delivers 27.15% on the 5-way 5-shot setting, surpassing the second best
ProtoNet (Snell et al., 2017) by 3.10%. The consistent improvements on all benchmarks under
various configurations confirm that our hierarchical variational memory is effective for cross-domain
few-shot learning.

Few-shot within domain We also evaluate our method on few-shot classification within domains,
in which the training domain is consistent with the test domain. The results using ResNet-12 are
reported in Table 5, the results using Conv-4 are reported in the appendix B.5. Our hierarchical
variational memory achieves consistently better performance compared to the previous methods on
both datasets. The results demonstrate that hierarchical variational memory also benefits performance
for few-shot learning within domains.

Table 5: Comparative results for few-shot learning on minilmagenet and tieredlmagenet using a
ResNet-12 backbone. Runner-up method is underlined. The proposed hierarchical variational memory
can also improve performance for few-shot learning within domains.

minilmagenet 5-way tieredIlmagenet 5-way
Method 1-shot 5-shot 1-shot 5-shot
SNAIL (Mishra et al., 2018) 55.71 £099  68.88 £0.92 - -
Dynamic FS (Gidaris & Komodakis, 2018)  55.45 089  70.13 +0.68 - -
TADAM (Oreshkin et al., 2018) 58.50 £030  76.70 £0.30 - -
MTL (Sun et al., 2019) 61.20 £180  75.50 +0.80 - -
VariationalFSL (Zhang et al., 2019) 61.23 £026  77.69 +0.17 - -
TapNet (Yoon et al., 2019) 61.65 £0.15  76.36 010 63.08 015  80.26 +o0.12
MetaOptNet (Lee et al., 2019) 62.64 +061  78.63 +046  65.81 074 81.75 £053
CTM (Li et al., 2019) 62.05 055  78.63 +006 64.78 o011 81.05 +052
CAN (Hou et al., 2020) 63.85 +048  79.44 £034  69.89 +051  84.23 +037
VSM (Zhen et al., 2020a) 65.72 +057  82.73 +051  72.01 +071  86.77 + 044
Ours 67.83 +032 83.88+025 73.67 +034 88.05+0.14

5 CONCLUSION

In this paper, we propose hierarchical variational memory for few-shot learning across domains. The
hierarchical memory stores features at different levels, which is incorporated as an external memory
into the hierarchical variational prototype model to obtain prototypes at different levels. Furthermore,
to explore the importance of different feature levels, we propose learning to weigh prototypes in
a data-driven way, which further improves generalization performance. Extensive experiments on
six benchmarks demonstrate the efficacy of each component in our model and the effectiveness of
hierarchical variational memory in handling both the domain shift and few-shot learning problems.
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A  DATASETS

We apply our method to four cross-domain few-shot challenges and two within-domain few-shot
image classification benchmarks. Sample images from each dataset are provided in Figure 4.

miniimageNet
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Figure 4: Examples from each dataset. The color of the border of each image represents the category
of this image in this task. S and Q indicate the support and query sets for each task.

B MORE RESULTS

The more ablation results on the 5-way 20-shot and 5-way 50-shot for cross-domain few-shot
classification are shown in Sec. B.1, Sec. B.2 and Sec. B.3. The results on four proposed cross-
domain few-shot challenges under 5-way 50-shot setting are shown in Sec. B.4. The results of
few-shot learning methods on the two benchmark datasets minilmagenet and tieredlmagenet by the
Conv-4 are shown in the Sec. B.5.

B.1 BENEFIT OF HIERARCHICAL PROTOTYPE

To show the benefit of the hierarchical prototypes, we compare hierarchical variational prototypes
with variational prototypes (Zhen et al., 2020a), which obtains the probabilistic prototypes of the last
layer. Table 10 and Table 11 show the the hierarchical variational prototypes consistently outperform
variational prototypes on all cross-domain few-shot classification tasks under the 5-way 20-shot and
5-way 50-shot setting.

Table 6: Benefit of hierarchical variational prototype in (%) on four cross-domain challenges under
5-way 20-shots setting.

Method CropDiseases  EuroSAT ISIC ChestX
Variational prototype (Zhen et al., 2020a) 89.73 + 035 83.21 +037  50.64 +038 29.12 + 046
Hierarchical variational prototype 93.15 + 033 85.13 +034 52.65 +039 30.14 + 045

Table 7: Benefit of hierarchical variational prototype in (%) on four cross-domain challenges under
5-way 50-shots setting.

Method CropDiseases  EuroSAT ISIC ChestX
Variational prototype (Zhen et al., 2020a) ~ 92.01 +0.33 81.96 +037 54.56 £032 30.98 +o042
Hierarchical variational prototype 94.25 + 031 84.33 +035 57.74 +032 31.27 +043
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B.2 HIERARCHICAL VS. FLAT VARIATIONAL MEMORY

We show that a flat memory as used in (Zhen et al., 2020a) is less suitable for cross-domain few-shot
learning in Table 8 and 9 under the 5-way 20-shot and 5-way 50-shot setting. Hierarchical variational
memory consistently achieves the best performance among all the datasets and settings.

Table 8: Hierarchical vs. flat variational memory in (%) on four cross-domain challenges under 5-way
20-shot setting.

Method CropDiseases  EuroSAT ISIC ChestX
Flat variational memory (Zhen et al., 2020a) 87.27 £ 033 81.25 037 49.10 035 26.21 +045
Hierarchical variational memory 95.13 +0.35 84.81 +034 54.97 +035 30.54 +047

Table 9: Hierarchical vs. flat variational memory in (%) on four cross-domain challenges under 5-way
50-shot setting.

Method CropDiseases  EuroSAT ISIC ChestX
Flat variational memory (Zhen et al., 2020a) 91.59 + 032 80.28 +035 50.15 +o031 28.12 +042
Hierarchical variational memory 97.83 +0.33 87.16 +035 61.71 +032 32.76 + 046

B.3 BENEFIT OF LEARNING TO WEIGH PROTOTYPES

Table 10 and 11 show the results of hierarchical variational memory with bagging vs. hierarchical
variational memory for the cross-domain few-shot classification under the 5-way 20-shot and 5-way
50-shot setting. hierarchical variational memory with learning to weigh prototype performs best
overall.

Table 10: Benefit of learning to weigh prototypes in (%) on four cross-domain challenges under
5-way 20-shot setting.

Method CropDiseases  EuroSAT ISIC ChestX
Hierarchical variational memory with bagging 93.39 034 8335 +035 53.13 £038 29.17 +045
Hierarchical variational memory 95.13 + 035 84.81 +034 54.97 +035 30.54 +047

B.4 FEW-SHOT ACROSS DOMAIN
We evaluate hierarchical variational memory on the four different datasets under 5-way and 50-shot

configurations in Table 12. Our hierarchical variational memory achieves the new state-of-the-art
performance on all the cross-domain few-shot learning benchmarks under 5-way and 50-shot setting.

B.5 FEW-SHOT WITHIN DOMAIN
We report the results of few-shot learning methods on the two few-shot within domain benchmark

datasets minilmagenet and tieredImagenet by the Conv-4 backbones in Table 13. Under both datasets,
hierarchical variational memory consistently outperforms the previous approaches.

C TRAINING SPEED
We plot the training loss versus training iterations for different algorithms in Figure 5. From Figure 5
and Table 4, we conclude our hierarchical variational memory achieves best training efficiency and

classification accuracy, which demonstrates that our hierarchical variational memory is effective for
cross-domain and within domain few-shot learning.

D RESULTS ON DATA AUGMENTATION

We also provide results for few-shot within domain using a ResNet-12 backbone under data augmenta-
tion in the meta-training stage following (Zhang et al., 2021). The results are shown in Table 14. With
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Table 11: Benefit of learning to weigh prototypes in (%) on four cross-domain challenges under
5-way 50-shot setting.

Method CropDiseases  EuroSAT ISIC ChestX
Hierarchical variational memory with bagging 95.91 + 035 8590 £034 5897 £033  30.95 +043
Hierarchical variational memory 97.83 +0.33 87.16 +035 61.71 +032 32.76 + 046

Table 12: Comparative results of few-shot learning methods on four proposed cross-domain few-shot
challenges under 5-way 50-shot setting.

Method CropDiseases  EuroSAT ISIC ChestX

MatchingNet 58.53 +0.73 54.44 o671 5458 +065 22.12 +o0s88
MatchingNet+FWT 75.68 £0.78 62.75 £076  33.17 +043  23.01 +034
ProtoNet 90.81 +043 80.48 057 41.05 +to052 2932 +1.12
ProtoNet+FWT 87.17 + 0.0 78.64 £057 49.84 +051  30.12 +046
RelationNet 85.08 +0.53 7491 058 4932 +051 28.45+120
RelationNet+FWT 81.14 + 056 73.84 £060 46.38 £053 27.56 +0.40
MetaOpt 91.76 +0.38 83.62 +068 54.80 +054 29.35 £0.99
Ours 97.83 +033 87.16 +035 61.71 032 32.76 +046
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Figure 5: Training loss versus iterations for different algorithms. Our hierarchical variational memory
achieves fastest training convergence.

data augmentation for few-shot within domain, our model also consistently achieves thecompetitive
performance.

E BENEFITS OF HIERARCHICAL STRUCTURES

We first show the benefit of hierarchical structures for few-shot within domain in Table 15. To
show the effect of our hierarchical formulation, we compare with VSM, which does not use the
hierarchical structure for the prototype, and with hierarchical variational memory (last level). We
found a performance improvement by using the hierarchical formulation for the prototype. Also, by
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Table 13: Comparative results of few-shot learning methods on minilmagenet and tieredImagenet
using a Conv-4 backbone. Runner-up method is underlined.

minilmagenet 5-way tieredImagenet 5-way
Method 1-shot 5-shot 1-shot 5-shot
MatchingNet (Vinyals et al., 2016) 43.56+£0.84  55.31+0.73 - -
Meta-LSTM (Ravi & Larochelle, 2017)  43.444+0.77  60.6040.71 - -
MAML (Finn et al., 2017) 48.70£1.84 63.11+0.92 51.67£1.81  70.30+1.75
ProtoNets (Snell et al., 2017) 49.424+0.78  68.20+0.66  48.58+0.87  69.57+0.75
Reptile (Nichol et al., 2018) 47.07+£0.26  62.74+0.37 48.97+0.21  66.47+0.21
RelationNet (Sung et al., 2018) 50.44+0.82  65.32+0.70  54.48+0.93  71.32+0.78
IMP (Allen et al., 2019) 49.60+£0.80  68.10+0.80 - -
FEAT (Ye et al., 2020) 55.15+0.20 71.614+0.16 - -
VSM (Zhen et al., 2020a) 54.73£1.60 68.01+£0.90 56.88+1.71 74.65 + 0.81
Ours 57.04+£0.92 72.65£0.20 59.01+0.83 77.76+0.62

Table 14: Comparative results for few-shot learning on minilmagenet and fieredImagenet using a
ResNet-12 backbone under same data augmentation as Zhang et al. (2021). With data augmentation,
our model also achieves competitive performance.

minilmagenet 5-way tieredIlmagenet 5-way
Method 1-shot 5-shot 1-shot 5-shot
Zhang et al. (2021) 69.68 £076  81.65 £054  74.19 £090  86.09 + 0.60
Ours 71.05 £031 84.54 +023 75.43 +029 88.97 +0.24

comparing the hierarchical variational memory (last level) and hierarchical variational memory, we
found that the performance has further improved, which shows the effect of ensembling.

F BENEFITS OF MODEL SIZE

We also ablate our approach in terms of model size, by varying the backbone. We report few-shot
classification within domain by using Conv-4, WRN-28-10, ResNet-12 and ResNet-18 in Table 16.
The performance of our method increases along with the increase in backbone capacity. As our
memory is much smaller than the backbones, the trend in experimental results is not affected by the
change of backbone.
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Table 15: Benefit of learning hierarchical structure for few-shot learning using a Conv-4 backbone.
The hierarchical structure benefits performance compared to the flat VSM.

minilmagenet 5-way tieredImagenet 5-way
Method 1-shot 5-shot 1-shot 5-shot
VSM (Zhen et al., 2020a) 54.73+1.60 68.01+0.90 56.88+1.71 74.65 + 0.81
Hierarchical variational memory (last level)  56.72+£0.90 70.11+£0.21 57.89£0.81 76.01 £ 0.60
Hierarchical variational memory 57.04+0.92 72.65+£0.20 59.01+0.83 77.76+0.62

Table 16: Comparative results for few-shot learning on minilmagenet and tieredImagenet using
different backbones.

minilmagenet 5-way tieredIlmagenet 5-way
Backbone 1-shot 5-shot 1-shot 5-shot
Conv-4 57.04 £092 72.65 +020 59.01 £083 77.76 +0.62

WRN-28-10 66.19 +035 81.61 £020 69.81 +033 84.76 +0.12
ResNet-12 67.01 £032 81.75+021 71.70 £035 85.13 +0.09
ResNet-18 68.94 o030 82.75+025 73.13+088 85.06 +0.14
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