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ABSTRACT

Transformer models have garnered a lot of interest in recent years by delivering
state-of-the-art performance in a range of Natural Language Processing (NLP)
tasks. However, these models can have over a hundred billion parameters, present-
ing very high computational and memory requirements. We address this challenge
through Approximate Computing, specifically targeting the use of Transformers
in NLP tasks. Transformers are typically pre-trained and subsequently specialized
for specific tasks through transfer learning. Based on the observation that pre-
trained Transformers are often over-parameterized for several downstream NLP
tasks, we propose a framework to create smaller, faster and in some cases more
accurate models. The key cornerstones of the framework are a Significance Anal-
ysis (SA) method that identifies components in a pre-trained Transformer that are
less significant for a given task, and techniques to approximate the less signifi-
cant components. Our approximations include pruning of blocks, attention heads
and weight groups, quantization of less significant weights and a low-complexity
sign-matching based attention mechanism. Our framework can be adapted to pro-
duce models that are faster, smaller and/or more accurate, depending on the user’s
constraints. We apply our framework to seven Transformer models, including op-
timized models like DistilBERT and Q8BERT, and three downstream tasks. We
demonstrate that our framework produces models that are up to 4x faster and up
to 14 x smaller (with less than 0.5% relative accuracy degradation), or up to 5.5%
more accurate with simultaneous improvements of up to 9.83x in model size or
2.94 % in speed.

1 INTRODUCTION

Transformer networks with hundreds of billions of parameters, such as T5 (Raffel et al.| (2019)),
Megatron (Shoeybi et al.| (2019)), BERT (Devlin et al.| (2019)), GPT-2 (Radford et al.[|(2019)) and
GPT-3 (Brown et al|(2020)), have achieved state-of-the-art performance in several Natural Lan-
guage Processing tasks. Model sizes are expected to grow further in the future as increasing the
number of parameters has been shown to improve performance. For instance, increasing the number
of parameters from 1.5B to 175B enabled a reduction in perplexity for Language Modelling (Penn
Treebank) from 35.8 in GPT-2 to 20.5 in GPT-3. This makes it computationally challenging to train
Transformers as well as perform inference using them. The challenges associated with training these
models are alleviated through the (re-)use of pre-trained models that are subsequently fine-tuned for
different tasks. Consequently, these models incur a major one-time cost in computational resources,
time and energy during the pre-training process, but the repeated fine-tuning for individual down-
stream tasks is performed at a considerably lower cost.

However, performing inference using fine-tuned Transformer models continues to remain a chal-
lenge because of the large amount of storage and compute operations required. Prior research
efforts have explored different techniques for improving the efficiency of Transformer inference.
However, several of the proposed approaches either require training the network completely from
scratch (which is extremely compute and memory-intensive), or cause significant degradation in
accuracy on the downstream task. In this work, we overcome these limitations by exploiting the
transfer learning step in Transformers to produce individually optimized models for the different



Under review as a conference paper at ICLR 2021

downstream tasks, using techniques that do not require training from scratch and maintain or im-
prove accuracy levels.

From the runtime and memory breakdown of Transformers (Fig. [I)), we observe that the most time-
consuming and memory-intensive operations in a Transformer are the self-attention (ATTN) blocks,
which are used to identify and form relationships between the different tokens in text, and the feed-
forward neural network blocks (FFN blocks) in the Transformer layers. These blocks together ac-
count for more than 85% of the inference time (and more than 75% of the model’s parameters). We
accordingly optimize the execution of these two components in our approach. The self-attention
component dominates the execution time and memory size for longer context lengths as its opera-
tion scales quadratically in time and memory with sequence length. Some previous works (Kitaev
et al.[(2020),|Ye et al.|(2019)) have addressed this issue, accelerating training and inference of Trans-
formers when large context lengths are used. However, they suffer from significant overheads and
slowdowns in applications with smaller context lengths, such as question answering, where ques-
tions and answers are usually short, in the order of a few hundred tokens. Our approach, on the
other hand, performs well across context lengths, size of hidden layers, number of layers and other
network characteristics.

The pre-training of Transformer models with some initial objective (most commonly predicting
masked words in a large text corpus) and the subsequent fine-tuning on a downstream task leads to
highly over-parameterized models for many downstream tasks (Michel et al.[(2019)), providing am-
ple opportunities for approximations. As these models grow larger, such opportunities are expected
to increase even further. We observe that for a given downstream task, some parts of the pre-trained
Transformer are more significant to obtain good accuracy, while other parts are less important or
unimportant. In order to exploit this observation in a principled manner, we introduce a framework
to introduce approximations while fine-tuning a pre-trained Transformer network, optimizing for
either size, latency, or accuracy of the final network. We perform and apply significance analysis in
a hierarchical manner, first pruning entire blocks, followed by attention heads, and finally pruning
weight groups. We achieve further gains by also allowing elements that cannot be pruned to be ap-
proximated by other techniques. We specifically apply two forms of approximations, depending on
the element type. For weights, we utilize quantization. For the self-attention operation, we replace
the scaled dot product attention mechanism with a novel sign matching-based attention mechanism.

‘We summarize our main contributions as follows:

* We introduce a framework for creating fine-tuned models from pre-trained Transformer
models that are optimized for various metrics (size, latency, accuracy).

* We incorporate multiple heuristics in the framework, such as hierarchical processing,
model-driven insights, and run-time based ordering of elements.

* We propose a significance analysis technique to identify the importance of each element
of the pre-trained Transformer for a given downstream task. We use this technique to
prune entire blocks, attention heads, and weight groups and to guide the quantization of
low-importance weights.

* We propose a low-complexity attention mechanism, sign matching, in order to approximate
dot product attention in the less significant attention layers.

* Across a suite of different Transformer networks, including previously proposed optimized
networks, we demonstrate that our techniques produce models that are up to 4 x faster and
up to 14x smaller (with less than 0.5% relative accuracy degradation), or up to 5.5% more
accurate with simultaneous size and latency improvements.

2 RELATED WORK

Given the effectiveness and popularity of Transformer models, several techniques have been pro-
posed to overcome their computational and memory challenges, and to accelerate inference using
these models. Most of these works directly pre-train efficient models from scratch. For exam-
ple, DistilBERT (Sanh et al.| (2019)), MobileBERT (Sun et al.| (2020)) and TinyBERT (Jiao et al.
(2019)) use knowledge distillation to train smaller and faster networks using the original network as
a teacher. LayerDrop (Fan et al.|(2020)) randomly drops layers during pre-training, thereby enabling
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their dropping during inference. SchuBERT (Khetan & Karnin| (2020)) learns the optimal sizes of
the BERT elements during pre-training. Lite Transformer (Wu et al.|(2020)) uses Long-Short Range
Attention to speed up the self-attention operation, with different attention heads attending to local
and global context. Depth-adaptive Transformer (Elbayad et al.| (2020)) and DeeBERT (Xin et al.
(2020)) modulate Transformer depth depending on the complexity of each input sample using gat-
ing functions that are trained along with the model. AIBERT (Lan et al.[ (2020)) uses factorized
embeddings and cross-layer parameter sharing. These works are orthogonal to ours, as the models
that they produce are still subsequently fine-tuned for downstream tasks. We demonstrate using Dis-
tilBERT, AIBERT and LayerDrop as examples that these optimized networks still have significant
opportunities that our techniques can take advantage of.

Other works (including ours) aim to improve the inference efficiency of Transformers using tech-
niques that do not require training new models from scratch. Among these, POWER-BERT (Goyal
et al.| (2020)), which eliminates redundant word vectors from the model without removing any pa-
rameters, and Q8BERT (Zafrir et al.| (2019)), which quantizes all weights and activations in the
model to 8-bit integers through the use of Quantization-Aware Training at fine-tuning time, are or-
thogonal and complementary to our work. Poor Man’s BERT (Sajjad et al.| (2020)) evaluates several
layer-dropping techniques that do not require re-training. Compared to layer-dropping techniques
that do not require re-training, our techniques produce models that are up to 20% more accurate
at comparable inference speed, and this is especially true when working with highly optimized
baselines such as Q8BERT. Our framework can also be adapted to satisfy a wide range of user
constraints.

3 PRELIMINARIES
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Figure 1: [Left] A typical Transformer architecture and its elements. [Right]
Runtime/parameter-count breakdown of Transformers. At smaller context lengths, the feed-
forward neural network is the time-dominant operation. As context length increases, self-attention
becomes the time-dominant operation. In both cases, ATTN and FFN blocks together account for
>75% of total parameters, and >85% of the total runtime on an NVIDIA GTX 1080 Ti GPU.

A Transformer (Fig. [I) consists of an embedding layer, followed by multiple transformer layers
stacked together, and a task-specific final layer. A transformer layer consists of the multi-headed
self-attention operation (ATTN block), followed by a feed-forward neural network (FFN block)
with layer norm operations at the input and output of the layer. In this work, we define the elements
of a Transformer to include different levels of granularity, i.e., ATTN blocks, FFN blocks, Attention
Heads and Weight Groups. We define Weight Groups only along dimensions that do not impact the
shape of the output of the block when these groups are removed.

The self-attention operation takes as input a sequence n of vectors X, and computes three matrices,
Query = X x W, Key = X x W), and Value = X x W,. Then, the output of the self-attention
operation is computed as Y = softmax((Query x Key™) 4 attention_mask) x Value. For
auto-regressive models, tokens are not allowed to attend to future tokens. Hence, an attention mask
is applied before the softmax operation, setting attention scores with future tokens to a very large
negative number, which becomes zero after the softmax operation. This operation has multiple
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“attention heads” working in parallel on the input sequence, where each head has its own set of
parameters to compute the query, key and value matrices. The independent attention outputs are
concatenated and transformed into the expected output dimensions. The self-attention operation
scales quadratically in time and memory with sequence length n since Query x Key? has n?
entries.

4 DESIGN METHODOLOGY
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Figure 2: Illustration of the Transformer Approximation Methodology. Sign Matching is illus-
trated with K=1

We propose a framework for producing fine-tuned Transformer models that are optimized for a
specific metric (speed, model size, or accuracy). Fig. [] presents an overview of the proposed frame-
work. As shown in the figure, the inputs to the framework are a pre-trained Transformer model,
the fine-tuning dataset, the goal of optimization (speed, size or accuracy) and acceptable accuracy
loss (when optimizing for speed or size). The framework has three major components: (i) a set
of heuristics used to build an ordered queue of elements (TransElements) to be considered, (ii) a
significance analysis method to identify insignificant elements in a pre-trained Transformer and (iii)
a set of techniques to prune or approximate the insignificant elements. The framework proceeds
in an iterative manner. That is, we first start with the original Transformer. We then remove an
element from the TransElements queue, analyze its significance, and apply pruning/approximation
techniques to the element. This results in new Transformer, where the element is replaced by the
pruned or approximated version. This modified Transformer is then used as the baseline for the
next iteration. After processing all of the identified elements, we fine-tune on the downstream task
for the same number of epochs as the baseline model to obtain the final, optimized model. A de-
tailed description of our methodology for approximating Transformers is presented in Fig. [2] and
in Algorithm 4 In the following subsections, we further describe our techniques for generating the
ordered queue TransElements, followed by the significance analysis method, and finally the pruning
and approximation techniques for different Transformer elements.

TransElement Ordered Queue. In order to optimize a given model, we would ideally want to char-
acterize the significance of each and every parameter in the model, rank them in order of importance,
and finally prune/approximate only the least significant parameters, as in Molchanov et al.| (2017).
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However, Transformers have billions of parameters, making this process computationally infeasi-
ble. In addition, previously proposed techniques that can efficiently estimate the importance of each
parameter, such as using Taylor expansion, are not applicable. This is because the {approximate,
fine-tune, approximate} cycle does not work for Transformers during fine-tuning, since they very
quickly overfit the training data for the downstream task (usually within 5 epochs). We take advan-
tage of hierarchical structure of Transformers and consider them in a hierarchical manner, ordered
by increasing granularity. Specifically, we place entire FFN and ATTN blocks earlier in the queue,
followed by heads, and finally weight groups. Through this ordering, we are able to quickly elim-
inate large numbers of parameters from further consideration, speeding up future iterations of the
framework. For example, eliminating a single FFN block in the BERT-Base model removes 5.6% of
all parameters under consideration. To further reduce the number of elements under consideration,
we also dynamically remove elements from the queue if they are encompassed by a high-importance
block. For example, if a given ATTN block is determined to be of high importance, we remove all
heads and weight groups within that block from the TransElement queue.

Since the framework iterates through the entries of the TransElement queue sequentially, its efficacy
is dependent on the ordering of the elements at each level of granularity. In order to minimize the
run-time of the framework, we provide two additional heuristics to guide the ordering of elements.
First, we use the unique linguistic properties captured by the different Transformer layers (Jawahar
et al.| (2019))). These properties depend on both the Transformer and the downstream task under
consideration, since different tasks require different types of linguistic knowledge. For example,
top layers usually have low significance for Language Understanding tasks, since long-range depen-
dency information is not required for most tasks (for example, sentiment analysis requires only local
context). Hence, we place the final layer at the front of the queue, and work our way backwards to-
wards the first layer, since blocks in the final layers are more likely to be removed, thereby speeding
up future iterations. Second, we use a run-time (or parameter-count) aware ordering of the TransE-
lements, such the most time consuming blocks (or blocks with the most parameters) are likely to
be removed earlier in the algorithm. For example, at large context lengths, we start with the ATTN
blocks in all layers before moving on to the FFN blocks, and vice-versa at small context lengths.
This has the dual benefit of producing highly optimized models for inference, as well as speeding
up the significance analysis process by eliminating time-consuming blocks early and making further
iterations faster. Algorithm [I]and Fig. 2] describe the process of creating the TransElement Queue.
The utility of this framework and the heuristics used are discussed in Appendix

Significance Analysis. To determine the significance of each Transformer element, we first fine-
tune the original Transformer model for the given downstream task to obtain the baseline loss. We
then use this baseline loss, along with the provided acceptable accuracy degradation, to generate a
set of loss thresholds that determine whether a given element is of low importance and therefore
can be pruned/approximated. This is a one-time step and performed globally for all elements in the
TransElements queue. Then, for the element under consideration in each iteration of the framework,
we compute the loss of the current Transformer model with the element removed. We then com-
pare this loss to the thresholds determined above. The exact thresholds used are dependent on the
optimization metric: speed, size, or accuracy. If we are optimizing the network for speed or size,
we prune the element under consideration if the training/validation loss upon removing it from the
Transformer is less than the pruning threshold. If we are optimizing for accuracy, we prune the ele-
ment only if the training/validation loss when it is removed is less than the minimum loss seen thus
far during the optimization process, since the goal is to find a model with minimum loss. Similarly,
we apply approximations if the loss with the element removed from the Transformer is greater than
the pruning threshold but lower than the approximation threshold. Algorithm [2] describes Signifi-
cance Analysis.

Pruning and Approximating. As evident from Section[3] the structure and functionality of ATTN
blocks differ significantly from that of FFN blocks in a Transformer. We accordingly adopt different
strategies for approximating them, as described below. But pruning an entire ATTN or FFN block
is effectively the same as it simply involves using the skip connection to bypass that block. The
pruning strategies for the FFN and ATTN blocks are illustrated in Fig. ] and Fig. [3

Pruning Weight Groups within approximable FFN Blocks. Consider an approximable FFN block
that performs the transformation R™*¢ x R4X¥ — R"™*¥, with weight groups defined along the d
dimension ((d/W) weight groups of (W) weights each, where W is a hyperparameter that defines
the granularity of approximations). When optimizing models for accuracy, we remove weight groups
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only if doing so results in a reduction in the model loss. When optimizing for size, we remove weight
groups that maintain loss within the pruning threshold when removed. When optimizing for speed,
however, removing weight groups with low significance from arbitrary locations does not help, since
it introduces unstructured sparsity in the weight matrix that can be difficult to exploit to achieve
speedups. Instead, we impose structure on our pruning. Specifically, we use a “greedy shrinking”
algorithm that finds the largest number of weight groups that can be removed while maintaining
loss below the threshold, such that the weight groups that remain in the model form a contiguous
block. We first start from the bottom (weight group 0), work our way up and remove as many weight
groups as possible while staying within the loss threshold. We then start from the top (weight group
d/W), work our way down and remove as many weight groups as possible while staying within the
loss threshold. When this process is completed, the weight groups that remain form a contiguous
dense block, enabling speedups on all hardware platforms. Since weight groups are removed along
the “hidden” dimension d, our methods do not change the shape of the output of this block; instead,
we are simply “shrinking” the effective hidden dimension size through structured pruning.

Quantizing Weight Groups within approximable FFN and ATTN Blocks. When optimizing the
Transformer for size, we also quantize weight values within weight groups for which the loss lies
between the pruning and approximation thresholds. We use uniform quantization with Quantization-
Aware Training proposed in Q8BERT (Zafrir et al.| (2019)) within our hierarchical framework to
quantize insignificant weight groups to lower precisions. This reduces the memory requirements of
those weight groups but does not improve the execution time as the computations are still performed
at the baseline precision.

Pruning ATTN heads and Weight Groups within approximable ATTN Blocks. We divide
the multi-headed self-attention operation into two main steps. In the first step, we compute the
Query, Key and Value matrices by multiplying the input to this layer with the corresponding
weight matrices (R"*¢ x R¥*Y — R™*Y) and then reshape them into multiple attention heads
R Y — R™*hxW/h)) - Our approach to pruning this step is exactly the same as for the FFN
blocks, where we iteratively prune weight groups along the d dimension using our shrinking algo-
rithm. In the second step, we compute the “attention output“ as Y = softmax((Query x Key™) +
attention_mask) x Value. To optimize this step, we apply two techniques. Firstly, we identify
insignificant attention heads, and prune them from the model. However, removing attention heads
changes the shape of the output of this layer. We overcome this by keeping track of the pruned
heads, and padding the output with zeros in the corresponding locations. In spite of this overhead,
we still manage to achieve significant speedup from this approximation technique since pruning
heads makes multiple downstream operations (computing the attention scores, applying softmax to
the attention scores, and computing the final score) considerably faster. Therefore, we do not use
our greedy shrinking method, but rather rely on unstructured pruning as it allows for greater pruning
which further benefits the downstream operations. Secondly, we dynamically reduce the size of the
key and value matrices by pruning weight groups from the same location along the n dimension in
both matrices, based on sign matches with the query vectors. This again makes multiple downstream
operations considerably faster and does not change the shape of the output of the pruned block.

Approximating self-attention within approximable ATTN Blocks. We observe that the “atten-
tion scores” matrix is highly sparse, especially after the softmax operation. This sparsity implies that
most of the dot products between the query and the key are unnecessary. Thus, we would ideally
like to perform the attention operations for the query vectors that give highest dot-product with each
key vector efficiently without explicitly performing all of the dot products. To this end, we propose
replacing the O(n?) dot product-based attention mechanism with a linear-time sign-matching-based
mechanism in approximable ATTN blocks. Sign-matching attention (SM) is based on the idea that
key vectors whose signs match with the largest number of query vectors will have high dot-products
with maximum number of query vectors. However, it is expensive to compute a sign match for all
pairs of query-key vectors, as this will grow quadratically. Instead, we employ a low-cost approx-
imation. For each column of the query matrix, we identify if more number of vectors will have a
positive or negative number in that column. This becomes the representative sign in that column for
all the query vectors. Each key vector is then scored by how well the sign of each of its elements
matches with the sign of the representative query vector by computing the Hamming distance be-
tween the two sign vectors. This score is used to select the top K key vectors. As a result, we reduce
the number of computations required to score each key vector (and the overall complexity) from
0O(n?) to O(n). Sign matching is illustrated in Fig.[2| and explained in detail in Appendix Bl As this
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approximation does not increase the accuracy of the models nor decrease the number of parameters,
they are only applied when optimizing the fine-tuned models for speed.

5 EXPERIMENTS AND RESULTS

We implement our techniques within Huggingface’s Transformers library in PyTorch (Wolf et al.
(2019)). We use Intel AI’'s NLP Architect for experiments on Q8BERT. The experiments were per-
formed on a GeForce RTX 2080 Ti GPU with 11GB memory. All results reported are the average of
10 runs with random seeds after 3 epochs of fine-tuning on the dev set, unless otherwise specified.
When reporting results on the development set, for the larger datasets (like MNLI), we create a vali-
dation set using a small subset ( 15%) of the training data. We use the loss on this set to characterize
the significance. On the smaller datasets (like WNLI), there isn’t enough data to get a meaningful
training-validation split. Hence, we directly use the loss on the training set. When reporting results
on the test set, we use loss on the development set to characterize significance. Detailed descriptions
of the tasks and Transformers used in our experiments is given in Appendix [E] Additional results on
the GLUE test set are presented in Appendix [F|

Primary Results. We
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(Wang et al| (2019)) in XLNet
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. (Speedup) | (2.92x) | (1.29x) | (2.21x) | (1.28x) | (1.84x) | (3.29x) | (1.33x) | (1.89x) | (3.51x) | (2.17x)
model size as much as Size Focus | 53.91 | 84.26 | 86.05 | 90.32 | 90.81 | 64.32 | 92.99 | 88.02 | 56.33 | 78.56
possible while maintaining | (Compression) |(13.16x)| (5.19x) | (6.61x) | (5.22x) | (8.36x) |(10.88x)| (8.01x) | (5.08x) |(14.08x)| (8.5x)

the <0.5% accuracy degra-
dation constraint. We use
uniform quantization with
Quantization-Aware Train-
ing proposed in Q8BERT
(Zafrir et al.|(2019)) within our hierarchical framework to quantize insignificant blocks, heads and
weight groups to lower precisions. This leads to models that are smaller than and at least as fast as a
uniform 8-bit integer quantized model such as Q8BERT (Table|[T). Our results are competitive with
QBERT (Shen et al|(2020)), while maintaining the advantages of uniform 8-bit quantization over
the group-wise quantization proposed in QBERT. The compression is lowest for AIBERT since
its parameters are shared across layers, and most of the compression is from quantization. While
the focus in these experiments is on size, we find that our framework still leads to models that are
1.07x-3.26x faster due to elements being dropped from the pre-trained model, with potential
for much greater speedups on optimized 8-bit integer kernels. When optimizing for accuracy, the
goal is to maximize the accuracy of the pre-trained Transformer model for any given downstream
task. While the focus in these experiments is on accuracy, we find that our framework still leads to
models that are 1.28x-9.83x smaller and 1.03x-2.94 x faster due to TransElements being
dropped from the pre-trained model.

Table 1: Results on GLUE. We report Matthews correlation for
CoLA, Pearson Correlation for STS-B and accuracy for all other tasks.
We report only “matched” accuracy for MNLI.
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Table 2: [Left] Results on SQUAD v1.1. We report the Exact Match score. The compression is
lowest for AIBERT since parameters are shared across layers, and most of the compression is from
quantization. [Right] Results on Penn Treebank. We report perplexity (lower is better).

Speed .
. Accuracy Size Focus
Network Baseline Focus Focus (Compression) Speed .
(Speedup) Network | Baseline ACF?C'::Y Focus ( c::;e :::sl::n)
ABERT | 80.97 81.32 80.66 80.71 (Speedup) P
' ' (1.42X) (1.28x) 12.08 12.09
8126 8124 BERT-large | 12.04 11.92 (2.47%) (13.16%)
XLNet 81.48 81.89
(1.39X) (7.72X) , , 1404 1403
Q8BERT | 80.28 80.99 80.14 80.11 ePT 12t 1408 1 (2.08x) (7.64X)
: : (1.27X) (6.61X)
Tuning the Approximation Knobs: 80
In this work, we considered a tight >
accuracy constaint of <0.5% accu- g7 .
. . . o . Q
racy degradation while optimizing < 78 B
. w
the model, and determined the hy- 3
(L] .
perparameter values (PruneThresh- e o size
old and ApproxThreshold) empiri- ?:;76 A Inference Time
cally for that constraint. = How- <
ever, users of different applications 75
o 0% 20% 40% 60% 80% 100%
and platforms may be willing relax Model Size / Inference Time
the accuracy constraint for obtaining
faster or smaller models. In view of ©BERT Q8BERT
thiS, we demonstrate the ability of Q8BERT with Size Focus Q8BERT with Speed Focus
our framework to operate at differ- + QBBERT

ent points in the speed-size-accuracy

tradeoff curve (Fig.3)) through differ- Figure 3: Tuning the SA Approximation Knobs with Size
ent values of hyperparameters. We and Speed Focus. The average GLUE scores across the 9
note that directly using optimized tasks using Q8BERT are reported for different acceptable
pre-trained Transformers for infer- accuracy loss levels.

ence works best when there is a need

for significant speed/size improvement with negligible loss in accuracy (<2%), or if there is a need
for more accurate models. When significant degradation in accuracy (>3%) is acceptable, tech-
niques that distil knowledge into simpler networks that no longer maintain the structure of Trans-
formers may be more beneficial. Even in these situations, our techniques are still useful, since they
serve as better teachers/baselines during distillation/architecture search.

Comparison to previously proposed compression techniques: A majority of previous works for
improving efficiency of Transformers directly pre-train efficient models from scratch. Using a repre-
sentative subset of these networks (covering the most commonly used techniques used to create effi-
cient models), we demonstrate that our techniques are complementary, since these efficient networks
are still fine-tuned for different downstream tasks, providing opportunities for optimization. In addi-
tion, we show that our techniques are also complementary to Q8BERT, a post-training quantization
method. Poor Man’s BERT (Sajjad et al.|(2020)) evaluated several layer dropping strategies that do
not require pre-training, and found top-layer dropping to produce least accuracy degradation across
tasks. Comparing our framework to top-layer dropping, we observe greater speedups/compression
at iso-accuracy across all tasks and networks, and the largest benefits are observed on Q8BERT,
where the use of quantization greatly reduces the resilience of the network, making it unsuitable for
drastic changes such as dropping entire layers. However, by approaching the problem of improving
inference efficiency in a hierarchical manner and with finer granularity, we are able to exploit redun-
dancies in the model missed by a layer-only strategy, achieving greater benefits without significant
loss in accuracy. In fact, in our experiments, we observe that starting on the layers as a first step
leads to worse models than starting with blocks. We find that the effect of removing an ATTN block
of relatively high significance may be masked by removing the FFN block of very low significance
in the same layer (and vice-versa), leading to low significance for the entire layer. This has con-
sequences further along in the process, since removing a high-significance block greatly reduces
further opportunities for pruning and approximating the model. For experiments with Layerdrop
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(Fan et al.| (2020)), we experiment on ROBERTA (Liu et al.| (2019)) using fairseq (Ott et al.| (2019))
pre-trained with a layer drop rate of 0.5, and then drop every other layer at fine-tuning time. For
QBERT, we directly use the results reported by the authors (Table [3).

Table 3: Comparison to previously proposed compression techniques. Results reported are aver-
aged across the GLUE tasks, unless otherwise specified.

Pruning/
Network | Optimization | Accuracy | Speedup | Compression
Strategy Pruning/
BERT-Base None 78.58 I ™ Network Opstimization Accuracy | Speedup | Compression
- trategy
8-bit Integer | ;g 5 1x 4x Top Layer
Quantization Dropping (4
OBBERT | ced Focus| 7823 | 1.61x 6.09x Layers 7515 | 1.39% 1.24x
+ Size Focus 78.24 1.19x 8.6x dropped)
Kr?O\'NIecljge 76.59 1.6x Lax Poor Man’s | Q8BERT +
Distillation BERT Speed Focus
DistilBERT (applied to | (iso-accurac 75.16 5.08x 8.68x
+ Speed Focus| 76.57 2.26x 3.2x PP Y
3 Q8BERT) point)
+ Size Focus 76.57 1.92x 7.84x
Q8BERT +
Parameter Size Focus
Sharerg + 812 1.7 0.00x (iso-accuracy 75.15 2.92x 10.94x
Factorized int)
AIBERT Embeddings poin
Hessian-
+ Speed Focus| 81.03 2.35x 9.2x .
based mixed
+Size Focus | 81.03 | 1.86x 11.64x precision 81.75 Ix 9.01x
Layer QBERT - | Quantization
ROBERTa + Dropping (6 | o5 o4 1.89% 1.64x MNLI | Q8BERT +Size
LayerD ravers Focus (iso- | g7 70 | 210 9.06x
?;Nﬁp dropped) accuracy ' ' '
+ Speed Focus| 82.79 2.33x 1.92x point)
+ Size Focus 82.76 1.99x 2.36x
Impact on fine-tuning time. Un- ——
. . . . ..__..__|Final Fine-
like the baseline models, our frame- Fine-tuning \Optimization\ ™"y "o o™ | 15021 time
: : : Transformer | Task | Passes for Time " .
work requires 'multlple fine-tuning Optimization | (minutes) (m.TrIITtZ o (minutes)
passes to optimize the model (Table
[). We minimize this overhead in | BERT-Base | MNLI 18 356 154 510
two ways. FIFSt, since our iterative BERT-Base | WNLI 2 65 016 6.06
method potentially eliminates a com- rBERT
. ISt -
ponent in each pass and our order- Base MNLI 44 93 94 187

ing of elements ensures that time-

consuming components are elimi- L L. .
nated early, each subsequent opti- 1able 4: Optimization and fine-tuning time. The baseline

mization fine-tuning pass takes less final fine-tuning times are 189, 0.3 and 114 minutes respec-
time. Second, for the optimization tively. For MNLI, we use only 15% of the training data for
fine-tuning passes, we do not use ©ach pass during optimization. For WNLI (which has only
the entire dataset for large datasets. 635 training samples), we use the entire training data.

Instead, we compute the thresholds

based on a smaller subset of the target data. Specifically, we randomly sample a small subset of
the training data (20%) to fine-tune the model, and a validation set (15% of the training set) to char-
acterize significance. We find empirically that doing so results in the same elements getting pruned
and approximated as when the entire training data is used. We further see that this subsampling
is robust across models; if the reduced dataset works for one model, it works for all other models.
Thus, by both greedily reducing the size of the model to be fine-tuned as well as reducing the amount
of work performed for each optimization fine-tuning pass, we can quickly explore the search space.

6 CONCLUSION

We proposed an approximate computing framework to optimize pre-trained Transformers. The
framework identifies elements that are insignificant for the downstream task at hand, and applies
techniques to approximate these elements. We demonstrated that this framework can be adapted to
produce models that are faster, smaller or more accurate, depending on the user’s constraints. Us-
ing this framework, we produced models that were up to 4.22x faster, up to 14.08 x smaller (with
less than 0.5% relative accuracy degradation) and up to 5.46% absolute points more accurate with
simultaneous speed and size benefits.
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Al

DETAILED DESCRIPTION OF THE OPTIMIZATION FRAMEWORK

ALGORITHMS AND ILLUSTRATION OF PRUNING STRATEGIES

Algorithm 1: Creating TransElement Queue

Input: Pre-trained Transformer T, Focus of optimization F, Downstream task D
Output: TransElement Queue Q, containing ordered elements of T for Significance Analysis

Q = empty_queue()
if FFN Blocks are more time-consuming/parameter-intensive then

if Knowledge in bottom layers is more important then

for layer = I to num_layers do
Q[ granularity=0].push(F F N _block[layer])
Qlgranularity=1].push(F F N _block[layer|. W eight_Groups)

for layer = I to num_layers do
Qlgranularity=0].push(ATT N _block[layer])
Qlgranularity=1].push(ATT N _block[layer].Attention_H eads)
Qlgranularity=2].push(ATT N _block[layer].W eight_Groups)

else if Knowledge in top layers is more important then

for layer = num_layers to 1 do
Qlgranularity=0].push(F F N _block[layer])
Qlgranularity=1].push(F'F N _block[layer]. W eight_Groups)

for layer = num_layers to 1 do
Qlgranularity=0].push(ATT N _block[layer]
Qlgranularity=1].push(ATT N _block[layer|.Attention_H eads)
Qlgranularity=2].push(ATT N _block[layer].W eight_Groups))

else if ATTN Blocks are more time-consuming/parameter-intensive then

if Knowledge in bottom layers is more important then

for layer = 1 to num_layers do

Qlgranularity=0].push(ATT N _block[layer])
Qlgranularity=1].push(ATT N _block[layer]. Attention_Heads)
| Qlgranularity=2].push(ATT N _block[layer|. W eight_Groups))

for layer = I to num_layers do
Qlgranularity=0].push(F F N _block[layer])
| Qlgranularity=1].push(F F'N _block[layer].W eight_Groups)

else if Knowledge in top layers is more important then

for layer = num_layers to 1 do

Qlgranularity=0].push(ATT N _block[layer])
Qlgranularity=1].push(ATT N _block[layer]. Attention_H eads)
| Qlgranularity=2].push(ATT N _block[layer]|. W eight_Groups)
for layer = num_layers to 1 do

Qlgranularity=0].push(F F N _block[layer])

| Qlgranularity=1].push(F F'N _block[layer].W eight_Groups)

return )
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Algorithm 2: Significance Analysis

Input: Current state of the Transformer model T , Fine-tuning-dataset (or its reduced subset)
D, TrialElement E, Thresholds {Pruning_Threshold, Approximation_Threshold }
Output: Action to be performed on E (whether to prune E, approximate E, or retain E as-is)
action = NULL
T1=T-E
TransElement_Loss = Fine_tune(T1,D)
if TransElement_Loss < Pruning_Threshold then
L action = "Prune”
else if TransElement_Loss >= Pruning_-Threshold and
TransElement_Loss < Approzimation_Threshold then
| action = ”Approximate”

return action

Algorithm 3: Transformer Optimization

Input: Pre-trained Transformer T , Fine-tuning-dataset D (and its reduced subset D’ for large
datasets, else D’=D), Focus of Optimization F, Acceptable Accuracy Loss A

Output: Optimized and fine-tuned Transformer for the given task

T’, Baseline_Loss = Fine-tune(T,D”)

Pruning_Threshold, Approximation_Threshold =
Compute_Thresholds(Baseline_Loss, F, A)

Q =Create_TransElement_Queue(T, F, D’)

granularity =0

while Q is not empty do
TrialElement = Q[granularity].pop()
action =

Significance_Analysis|T, D', Trial Element, Pruning_Threshold, Approximation_Threshold)
if action = ”Prune” then

modi fied_TransFElement = None
| Q.pop(All elements encompassed by TrialElement)

else if action = ”Approximate” then
if granularity = max_granularity then
if Focus = ”Accuracy” then
| modified_TransElement = trialElement
else if Focus = ”Size” then
| modified_TransElement = quantize_lower(trialElement)
else if Focus = ”Speed then
if TrialElement is encompassed by a FFN block then
| modified_TransElement = trialElement
else if TrialElement is encompassed by an ATTN block then
| modified_TransElement = Sign_M atching(trialElement)

else
| modified_TransElement = TrialElement

else
Q.pop(All elements encompassed by TrialElement)
| modified_TransFElement = TrialElement
if Qfgranularity] is empty then
| granularity++
| T=T - TrialElement + mod: fied_TransElement
T, Final_Loss = Fine_tune(T, D)
return T
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Figure 4: Illustration of pruning techniques used in FFN Blocks. A’ denotes activations and "W’
denotes weights, transposed for clarity. When optimizing for accuracy/size, unstructured pruning is
used. When optimizing for speed, our greedy shrinking method is used to prune weight groups, so
that the remaining weight groups form a contiguous dense block.
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Figure 5: Illustration of pruning techniques used in ATTN Blocks. A’ denotes activations and
"W’ denotes weights, transposed for clarity. Pruning heads in the second step is illustrated this way
for the sake of clarity. In the actual implementation, heads are pruned by pruning the corresponding
weight groups along the y dimension of Wq,, kv in step 1. Greedy shrinking is not used when

optimizing for speed for pruning heads.
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B SIGN MATCHING - DETAILED DESCRIPTION AND ABLATION STUDIES

B.1 ALGORITHM

Algorithm 4: Sign Matching

Input: Set of query vectors Query = [q1, g2, ---, ¢n], set of key vectors Key = [k1, k2, ..., kn],
set of value vectors Value = [v1, va, ..., v, ], number of key vectors to select K
Output: Set of key vectors with highest sign match with query vectors Key’ = [k], k5, ..., k%] .
set of corresponding value vectors Value’ = [v], v5, ..., Vi ]
/* Build sign representation of Query vectors */
141
count < 0
while i <= d do
71
while j <= ndo
if qji > 0 then
| count[i] < count[i] + 1
j7+1
if count[i] >= (n/2) then
| walli] <1
else
| walli] < —1
L i+1+1
/* Compute sign matches of Key vectors with the representative
Query vector */
141
matches < 0
while ¢ <= n do
H _Dist[i] + Hamming_Distance(sign(k;),val)
1 1+1
matches « indices(sort_ascending(H _Dist))
matches < matches[l : K]
K' + gather(K (matches))
V' « gather(V (matches))

B.2 SIGN MATCHING IN AUTO-REGRESSIVE MODELS

In Auto-regressive models (XL-Net, GPT-2, Transformer-XL, etc.), tokens are not allowed to attend
to tokens in the future, and an attention mask is applied to set the corresponding weights to a large
negative value. This is a problem because the key vectors selected by SM may be such that vectors at
the start of the sequence (first few query vectors) may not be able to attend to any of the key vectors
(i.e., their attention outputs will be 0), leading to significant loss of information and degradation
in accuracy. We avoid this by selecting the top-scoring (K/4) vectors from the top quarter of the
key matrix, and the top-scoring (3K /4) vectors from the overall key matrix and not included in the
(K /4) vectors initially selected, instead of directly selecting top K vectors from overall key matrix.
This reduces the probability of vectors having no vectors from their past to attend to.

B.3 COMPARISON TO OTHER DYNAMIC KEY-SELECTION TECHNIQUES

We compare our Sign-Matching based attention with other intuitive dynamic Key-selection that do
not require training from scratch and provide speedups even at small context lengths. We find that
Sign Matching provides the best trade-off between accuracy and speed. The techniques considered
are described below:

Norm-based Selection (NBS). NBS is based on the idea that the “most important” key vectors
(corresponding to the “most important” tokens in the dataset) will have highest norm, and hence
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highest attention (dot-product) with the query vectors. The key vectors are ranked in descending
order of their norm, and the top K vectors are selected. Attention is then computed only between
the query vectors and the selected key vectors.

Value-based Selection (VBS). One of the disadvantages of NBS is the fact that a vector with only
one very large value will have high norm, but it is unlikely to produce high dot-products with other
vectors. VBS overcomes this by using distribution of values in a vector, rather than the norm, as
the selection criteria. In particular, we count the number of elements in each vector greater than a
specified “value threshold”. We then select the K vectors with maximum number of elements with
absolute values greater than the ”value threshold”.

Grouped Attention (GA). GA places vectors that are likely to have high dot-product with each
other in the same group, and vectors likely to have low dot-product with each other in different
groups with high probability. The concept of GA was previously explored in Reformer (Kitaev
et al.| (2020)), where Locality Sensitive Hashing was used to group vectors. However, since we
apply this approximation only to resilient layers, we use a simpler and faster grouping criterion, the
position of maximum and minimum value. In addition, there is no need for multiple iterations of
grouping and computing attention scores that was used in Reformer to ensure that query-key pairs
with high attention scores were placed in the same group in at least one of the iterations. Both of
these factors together greatly reduce our overheads, enabling speedups even at small context lengths.
Our grouping criteria is based on the intuition that vectors that have highest positive/negative values
in the same position will have high dot-products with each other. Attention scores are then computed
only between query-key pairs in the same group, since they are most likely to have high dot-products
with each other. We limit the number of key vectors in each group to K vectors with the highest
absolute value in that position, and therefore GA scales linearly in time and memory with context
length instead of quadratically.

B.4 SPEEDUP WITH INCREASING CONTEXT LENGTH

Since Sign Matching is a linear-time approximation of the quadratic self-attention operation,
speedup increases significantly with increase in context length. As context length increases, ATTN
Blocks become time-dominant, and hence more emphasis is placed on these blocks by our frame-
work. In addition, the memory requirements increase quadratically with context length due to
the self-attention operation, making Transformers extremely memory-bottlenecked. Sign Matching
helps alleviate this bottleneck. Through the combination of these factors, we find a large increase in
speedup as context length increases from our Sign Matching technique (Table [3)).

Table 5: [Left] Comparing Sign-Matching with other dynamic Key-selection algorithms. Re-
duction in accuracy and time are reported on MRPC using BERT-Base (context length of 128). They
are measured as the difference in accuracy and inference time when all approximable ATTN Blocks
are replaced with approximate versions of the self-attention operation. [Right] Speedup from Sign
Matching at increased context lengths.

L L Reduction in Speedup vs Context Length
Approximation |Reduction in Accuracy .
time 5
- = 4
Norm B.ased 0.22% 31% =
Selection 2 3
Value-Based B
alue-base 0.14% 32% g 2
Selection g
Sign Matching 0.06% 32% 0
Grouped 128 512 1024 4096
Attention 0.05% 6% Context Length
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C ANALYSIS OF THE OPTIMIZATION FRAMEWORK

C.1 PREVIOUSLY PROPOSED METHODS FOR ESTIMATING IMPORTANCE OF ELEMENTS ARE
NOT APPLICABLE

Due to the enormous size of
Transformer models, brute-force
approaches to estimating impor- Method Accuracy | _Model Model

tance are not feasible. In addition, Speedup | Compression
previously  proposed techniques

for efficient importance estimation Baseline 84.06 x x
are not well-suited due to the fact | Tayior Expansion (negative gradient |  80.65 2.64x 4.53x
that Transformers cannot be re- oure OAf loss) - 50,66 228 6.06
peatedly fine-tuned to recover the urs (Iso-Accuracy point) - = =
accuracy losses from approximating Taylor Expansion (smallest absolute 80.69 2.51x 4.48x

gradient of loss)

the mOdel’ smce they very quICkly Ours (Iso-Accuracy point) 80.7 3.3x 6.09x

overfit the training data for the
downstream tasks (usually within 5 Ours (Accuracy Focus) 84.63 1.14x 1.98x
epochs). Therefore, Taylor expan-

sion, which uses gradient of loss to . L.
estimate importance, is not reliable, Table 6: Comparison of our method of estimating impor-

as evidenced in Table 6l We observe tance with previously proposed methods. We show results
that in addition to providing greater ©ON MRPC using DistilBERT with Accuracy Focus.

control over the accuracy of the final
model (and the ability to increase accuracy), our framework also provides better speedup and
compression at similar accuracy.

C.2 EVALUATION OF HEURISTICS USED

We compare different possible heuristics to the ones used in our framework (Table [7) on MRPC
using DistilBERT. When we remove the element with the lowest loss in each iteration (with loss
characterized using our method), there is negligible change in the quality of the final model pro-
duced, but the fine-tuning+optimization process is an order of magnitude slower if elements are still
considered in the order of coarser to finer granularity, and two orders of magnitude slower otherwise
compared to our approach. If the loss is characterized using Taylor expansion, it greatly destabi-
lizes the system, leading to models that do not meet the accuracy constraints. To drive home the
fact that our greedy approach combined with a global error bound does not lead to inferior models,
we use an adaptive loss threshold. In particular, we use a very tight constraint when analyzing el-
ements at coarse granularities, and relax the constraint as we move towards finer granularities. We
again find that there is negligible change in the quality of the final model produced, but the fine-
tuning+optimization process is significantly slower. We hypothesize that a single global error bound
is sufficient because we order the elements in such a way that for the given task at hand, we intu-
itively expect that the elements at the head of the queue are likely to be removed using the linguistic
knowledge in different layers. Therefore, it is reasonable to expect that if an element at the head
of the queue is identified by our framework as prunable, it can be pruned without using up a large
portion of our error budget.

C.3 GAINS FROM DIFFERENT OPTIMIZATION TECHNIQUES

The gains obtained from different optimization techniques for different tasks and models depends
on two factors: Number of elements to which each technique has been applied, and the gain from
applying each technique to a single element. In general, we observe that the largest gains are ob-
tained from pruning entire blocks that are most time-consuming/ parameter-intensive. This means
that at small context lengths (such as BERT-Base on MRPC in Fig. [6), pruning entire FFN Blocks
produces maximum gain. And at large context lengths (such as GPT-2 Base on Penn Treebank in
Fig. [6), pruning entire ATTN Blocks provides maximum gain. Our analysis also demonstrates that
all techniques are vital for producing highly optimized models, since no single strategy can provide
drastic gains with minimal accuracy degradation.
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Table 7: Comparison of different heuristics. 1 denotes a strategy where it examines all elements
(of the same granularity), and then prunes the element causing lowest loss. If marked as Taylor,
Taylor expansion is used to estimate importance with a single pass of the validation set. Otherwise,
importance is estimated by our method with multiple fine-tuning passes before an element is pruned.
2 denotes a greedy-strategy where if an element is found to maintain accuracy within the respective
thresholds when removed, it is pruned/approximated right away. a denotes hierarchical processing
of elements. b denotes non-hierarchical processing of elements (all elements are considered to be

of same granularity for the purpose of importance estimation).

Contribution to Speedup

Optimized Optimized Optimized Optimization
Heuristic Model Model Model Time
Accuracy | Compression Speedup (minutes)
Drop element
with lowest loss
in each 83.22 2.64x 2.03x 61
iteration -
Taylor'2
Drop element
ith | t 1
e | 84.05 1.95x 1.36x 1081
iteration@
Random?? 84.06 1.92x 1.34x 66
Non-hierarchial
(Min Loss)1b 84.03 2.01x 1.37x 13822
Non-hierarchial
(Greedy)Zb 84.03 2.01x 1.37x 3634
Adaplive 84.05 1.95 1.36 143
Threshold?? : FOX 90X
TransElement
Ordered Queue| 84.06 1.92x 1.34x 39
(Ours)?@

GPT-2 Base on Penn Treebank
(n=1024)

BERT-Base on MRPC (n=128)

M Sign Matching

Pruning Weight Groups inside FFN Blocks

BERT-Large on Penn Treebank
(n=512)

® Pruning Heads/ Weight Groups inside ATTN Blocks ® Pruning Entire FFN Blocks

¥ Pruning Entire ATTN Blocks

Figure 6: Gains from different optimization techniques using Speed Focus.
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D ANALYSIS OF IMPORTANT ELEMENTS ACROSS DOWNSTREAM TASKS AND
TRANSFORMER MODELS

We study which blocks are pruned and approximated for different downstream tasks using dif-
ferent Transformers (Fig. [7). We find that the differences in importance of blocks are more pro-
nounced across different tasks than across different models. For example, for sentiment analy-
sis, long-range dependency information is not very important. Hence, for all models fine-tuned
for sentiment analysis, we observe that components in later layers (closer to the output) are more
likely to be pruned. Across models, we only observe subtle differences. For example, we find that
XLNet(auto-regressive) is able to learn important task-specific information earlier than BERT(non
auto-regressive), similar to the observation made in (Sajjad et al.[{(2020)). Hence, we are able to drop
more components (in earlier layers) in XLNet than in BERT, leading to more efficient models for
inference. In DistilBERT (a distilled model), we find that there is a clear demarcation in linguistic
knowledge across layers due to the reduced capacity of the model. This is evidenced by the fact that
components in the top four layers are never pruned across all Language Understanding tasks, while
the boundaries are more soft in the original models. At a high level, these trends agree with pre-
vious works on understanding how Transformers process language (Jawahar et al.| (2019)) that use
probing classifiers to discern the linguistic knowledge captured by the different layers. For example,
on GLUE tasks, we expect that long-range dependency information is not required for most tasks,
since most of these tasks depend on local contexts. This is confirmed by the fact that blocks in layers
are more likely to be pruned/approximated than earlier layers using our framework. Similarly, we
expect that this is not the case for Language Modelling, since long-range dependency information
is vital to fully understand the text. This is also confirmed by the observed trends using our frame-
work. As future work, our framework can be combined with previously proposed techniques to gain
deeper understanding of the working of Transformers, especially at finer levels of granularity.

” Sequence Classification Short Question Answering Language Modelling
g 40 8 5 ATTN-Approx
B |30 6 m ATTN-Skip
o M FFN-Approx
g |20 4 1 = FFN-Skip
5 I il [ 1
: 1
5|, -1t o BRRRENGR,

1234567 8 9101112 123456 7 8 9101112 1234567 89101112

(a)

“ XLNet BERT DistilBERT
g |2 24 2
=
‘s |16 16 16
ut
[
N 1 - [1): 11
£, _halsld Y} .

1234567 8 9101112 123456 7 8 9101112 1 2 3 4 5 6

Layer

(b)

Figure 7: Distribution of unimportant blocks across (a) downstream tasks and (b) Transform-
ers.
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E EXPERIMENT DETAILS AND HYPERPARAMETERS

E.1 DESCRIPTION OF TASKS AND TRANSFORMERS USED IN OUR EXPERIMENTS

Table 8: [Left] Transformer models and [Right] downstream tasks used in our experiments
and studies.

Transformer | Layers |Parameters(M) Auto_- Optimizations
Regressive?
BERT-Base 12 110 No None
BERT-Large 24 340 No None
» Uses factorized embeddings and Transformers
cross-layer parameter sharing Task Dataset used Context Length|
AIBERT-Base 12 12 No * Faster and has less parameters Q8BERT-
than BERT. General Base,
* Uses Knowledge Distillation in the Language GLUE | DistilBERT- 128
pre-training phase Understanding Base, XLNET-
DistilBERT-Base| 6 66 No * Has half the number of layers with Base
<3% accuracy loss compared to :
BERT, A%z\T:L?:g SS;J_/;D AIBERT-Base 384
* Quantizes BERT to 8-bit integer
weights and activations Language Penn | BERT-Large, 512(BERT-
* Uses Fake Quantization and Modelling [Treebankl GPT-2 Base Large)/1024
Quantization Aware Training in the (GPT-2)
Q8BERT-Base 12 110 No fine-tuning phase.
* 4x smaller than BERT with potential
for greater speedups on optimized
int8 kernels with <1% accuracy
loss.
XLNET-Base 12 110 Yes None
GPT-2 Base 12 117 Yes None

E.2 HYPERPARAMETERS USED IN OUR EXPERIMENTS

Table 9: Hyperparameters used in our experiments.

Hyperparameter /Accuracy Focus Speed Focus Size Focus
Fine-tuning Epochs (baseline) 3 3 3 Number of bits
Fine-tuning Epochs (approx) 3 3 3 TransElement Loss used to represent
Learning rate 2.00E-05 2.00E-05 2.00E-05 the TransElement
Warmup steps 0 o 0 <1.005*baseline 0
32 (fine- . . . . N
- - 1.005*basell | -
Batch size tuning) / 8 32 (f{ne tuning) /8 |32 (f{ne tuning) / 8 kK aseline_loss 4
) (inference) (inference) 1.006*baseline_loss
(inference)
W (size of one weight group in SA) 256 256 256 1.006*baseline_loss - 5
" ber of key el | d 16, if n<=128 1.007*baseline_loss
(number of key elements selecte N/A 64, if 128<n<1024 N/A 1.007*baseline loss -
in Sign Matching) ) . ! 6
128, if n>=1024 1.008*baseline_loss
i 9
Sklp_Threshollzsf:)O.SA: aceuracy min_loss 1.005*baseline_loss |1.005*baseline_loss 1.008*baseline_loss - -
1.009*baseline_loss
o _
Approx_Threshf)olst§<0.5/o accuracy 1.02*min_loss| 1.02*baseline_loss | 1.02*baseline_loss >1.009*baseline_loss 8

* min_loss refers to the smallest loss seen during the Significance Analysis process. We use
this as the threshold when optimizing for accuracy since the goal is to produce a model
with the smallest possible loss.

* baseline_loss refers to the loss when the pre-trained transformer is used as-is, without any
TransElements skipped or approximated. We use this to compute the threshold when opti-
mizing for speed and size since small accuracy loss is acceptable.

* Table [§] [Right] shows how we quantize insignificant TransElements to lower precisions
when operating with Size ApproxFocus.
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F RESULTS ON THE GLUE TEST SET

While our main results are on the dev set following standard practice, we report results on the test
set also using the BERT (base) model in Table@} We use the GLUE evaluation server to obtain the
scores, and make use of code from Xu et al.|(2020) to prepare the data for submission.

Table 10: Results on GLUE Test Set. We report Matthews correlation for CoL A, Pearson Correla-
tion for STS-B and accuracy for all other tasks, averaged across 10 random seeds. We report only
”matched” accuracy for MNLL
CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI Average
Baseline 50.38 | 84.37 | 8211 | 89.74 | 8876 | 6165 | 9494 | 828 | 5819 | 76.99
Accuracy Focus| 51.21 | 84.59 | 83.15 | 89.8 | 89.44 | 63.82 | 9502 | 83.17 | 6514 | 7837

Speed Focus 50.42 84.21 81.97 89.58 88.47 61.32 94.68 82.62 59.33 76.95
(Speedup) (2.81x) | (1.35x) | (2.12x) | (1.32x) | (1.98x) | (3.03x) | (1.37x) | (1.96x) | (3.49x) | (2.16x)

Size Focus 50.18 84.03 81.72 89.43 88.24 61.4 94.39 82.42 59.13 76.77
(Compression) | (13.13x) | (5.12x) | (6.28x) | (5.16x) | (8.08x) | (10.9x) | (5.58x) | (7.12x) | (14.14x) | (8.39x)
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