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Autogenic Language Embedding for Coherent Point Tracking
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ABSTRACT
Point tracking is a challenging task in computer vision, aiming to
establish point-wise correspondence across long video sequences.
Recent advancements have primarily focused on temporal modeling
techniques to improve local feature similarity, often overlooking
the valuable semantic consistency inherent in tracked points. In
this paper, we introduce a novel approach leveraging language
embeddings to enhance the coherence of frame-wise visual fea-
tures related to the same object. We recognize that videos typically
involve a limited number of objects with specific semantics, allow-
ing us to automatically learn language embeddings. Our proposed
method, termed autogenic language embedding for visual feature
enhancement, strengthens point correspondence in long-term se-
quences. Unlike existing visual-language schemes, our approach
learns text embeddings from visual features through a dedicated
mapping network, enabling seamless adaptation to various tracking
tasks without explicit text annotations. Additionally, we introduce
a consistency decoder that efficiently integrates text tokens into
visual features with minimal computational overhead. Through
enhanced visual consistency, our approach significantly improves
point tracking trajectories in lengthy videos with substantial ap-
pearance variations. Extensive experiments on widely-used point
tracking benchmarks demonstrate the superior performance of our
method, showcasing notable enhancements compared to trackers
relying solely on visual cues.

CCS CONCEPTS
• Computing methodologies → Tracking; Matching; Motion
capture; Interest point and salient region detections.

KEYWORDS
Point Tracking, LanguageAssisted, Semantic Correspondence, Vision-
Language Model

1 INTRODUCTION
Point tracking represents a cutting-edge approach in the field of
visual tracking, aiming to establish pixel-level correspondences
across successive video frames. This task poses significant chal-
lenges as it requires an implicit understanding of both the structural
and dynamic aspects of the scene to ensure accurate tracking. Point
tracking is akin to optical flow [14, 38, 49], yet it extends the scope
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(a) without autogenic language embedding

(b) with autogenic language embedding

Figure 1: Visualizing trajectories of tracked points. We visu-
alize the motion of the object at various times and compare
the tracking trajectory between the baseline method relying
solely on visual features (without autogenic language embed-
ding) and our approach (with autogenic language embedding).
Our method maintains the same structural framework as the
baseline, differing only in the utilization of language-assisted
consistency.

of point correspondences across substantially longer temporal in-
tervals. Previous research in point tracking has predominantly con-
centrated on enhancing temporal modeling. This includes strategies
such as learning temporal priors for predicting pixel locations [12],
identifying robust long-term flow sequences in scenarios involving
occlusion [25], and synchronously tracking points across extended
frame sequences [16]. These methods primarily leverage similar-
ities in local features across frames, while they are vulnerable to
changes in appearance and other variations.

In this paper, we introduce a novel approach by focusing on
the semantic coherence of tracked points, a facet that has hitherto
been overlooked. We argue that corresponding points across frames
should consistently represent the same object and share identical
semantics. Typically, the number of objects—and consequently, the
semantic groups—in a scene is limited. This observation suggests
a straightforward strategy of clustering points into groups and
restricting matchings within these clusters. However, such an ex-
plicit clustering approach is heavily dependent on the clustering
quality and is susceptible to noise. To address these challenges, our
work proposes associating features across different frames within
a language-assisted semantic space, capitalizing on the expansive
and open-ended nature of language semantics. We hypothesize that

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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the integration of textual tokens into visual features can bridge
the spatial discrepancies of identical objects across frames, thereby
enhancing semantic consistency. This approach has demonstrated
superiority in semantic correspondence tasks when compared to
traditional visual hypercolumn features [23].

While it is common to incorporate text embeddings into visual
features to condition them [20, 37], applying this technique to
point tracking introduces unique challenges. For one, point tracking
tasks generally lack associated textual data, making it unfeasible to
consistently input accurate descriptions for each video sequence
manually. Furthermore, point tracking often relies on lightweight
convolutional neural networks to satisfy the constraints of real-
time processing and handling multiple frames, presenting a stark
contrast to the more complex architectures typically used in vision-
language tasks.

To address these challenges, we propose a coherent point track-
ing framework augmented with Autogenic Language embedding,
termed ALTracker. This autogenic language-assisted strategic em-
phasis ensures that, even in lengthy sequences with substantial
appearance variations, as shown in Figure 1, our approach (with au-
togenic language embedding) demonstrates more robust semantic
correspondence compared to approaches relying solely on visual
features (without autogenic language embedding). Our approach
comprises three key components: 1. an automatic text prompt gen-
eration module that generates text tokens from image features
through a vision-language mapping network; 2. a text embedding
enhancement module, ensuring precise text descriptions by incor-
porating image embeddings; and 3. a text-image integration module
designed to enrich the consistency of image features with textual
information. In contrast to other vision-language tasks, our text
information is automatically generated from image features, thus it
can be adapted to any tracking task without requiring explicit text
data. In addition, our visual consistency enhancement approach can
be plugged into any point tracking method to effectively improve
the tracking performance with slight computation overhead. Ap-
plying our feature enhancement to the baseline tracker enhances
the Average Jaccard (AJ) score from 54.2 to 61.6 on the TAP-Vid-
DAVIS [6] dataset. Extensive comparison experiments on several
challenging datasets including TAP-Vid [6] and PointOdyssey [47]
exhibit state-of-the-art performance, which further evidences the
correctness of our analysis regarding the language impact on visual
features.

In summary, our main contributions include:

(1) We demonstrate that text prompts notably strengthen visual
consistency, with detailed textual descriptions providing a
greater contribution to semantic correspondence. Following
this revelation, we utilized this insight for point tracking in
long video sequences.

(2) We propose a autogenic language-assisted point tracking ap-
proach. Our text embedding is learned from visual features
through a specializedmapping network, and we design a con-
sistency decoder which efficiently incorporates text tokens
into visual features with minimal computational overhead.
As text information is automatically generated from visual
features, our approach can be seamlessly adapted to any
tracking task without requiring explicit text description.

2 RELATEDWORK
Optical flow. Optical flow aims to attain pixel-level motion es-

timation of objects in image pairs. Traditionally, optical flow is
conceptualized as an optimization problem and addressed through
variational methods [2, 3, 14, 17, 19, 49]. Presently, convolutional
network-based methods have demonstrated superior performance.
FlowNet [9] employs a deep learning framework to learn end-to-
end optical flow estimation models. DCFlow [43] constructs a 4D
cost volumewith convolutional features and refines the cost volume
through Semi Global Matching. PWCNet [35] reduces computing
costs by employing a feature pyramid to learn multi-scale features
and incorporating wrapping techniques. RAFT [38] extracts pixel-
level features, generates a 4D cost volume for each pixel, and itera-
tively updates the optical flow field by searching the cost volume.
Recently, transformers [40] have made significant strides in opti-
cal flow research. FlowFormer [15] encodes the 4D cost volume
into cost memory using an alternative group transformer layer
and decodes the location cost queries through a recurrent decoder.
GMFlow [46] formulates the flow estimation as a global matching
problem, acquiring the matching relationship through a direct com-
parison of feature similarities. While optical flow methods allow
for precise motion estimation between consecutive frames, they
are not suited to long-range motion estimation.

Point Tracking. Several works develop the point tracker for pre-
dicting long-range pixel-level tracks in a feedforward manner. TAP-
Vid [6] formulates the problem of Tracking Any Point (TAP) as
continuously tracking target points through occlusion in a video
sequence, which calculates a cost volume independently for each
frame pair and utilizes it for coordinate regression and occlusion
branches. Particle Video Revisited (PIPs) [12] revisits the classic
Particle Video [31] problem, presenting a model which iteratively
refines the features of multiple consecutive frames within a sliding
window, enabling the prediction of the tracking point’s trajectory
and visibility. Recently, many concurrent works have emerged.
MFT [25] identifies the most reliable sequence of flows by consider-
ing the occlusion and uncertainty map. Context-TAP [1] enhances
PIPs by incorporating spatial context during the tracking of tra-
jectories. TAPIR [7] combines two-stage approaches: a matching
stage inspired by TAP-Net and a refinement stage inspired by PIPs.
PointOdyssey [47] extends PIPs by removing its rigid 8-frame con-
straint, enabling it to consider a much broader temporal context.
OmniMotion [41] represents a video using a quasi-3D canonical vol-
ume and achieves pixel-wise tracking through bijections between
local and canonical space. CoTracker [16] collectively models the
correlation of different points in time through specialized attention
layers and iteratively updates the trajectories. Our contribution is
complementary to these works: the language information can be
automatically generated and embedded into the visual feature to
enhance the consistency across long-range video frames.

Vision-language models. Recently, the CLIP model [28] measures
the similarity between images and text, it maps images and their
corresponding text descriptions into a shared feature space that
allows the model to perform various tasks, such as image segmen-
tation [29], few-shot learning [39] and image caption [24]. Several
methods explore utilizing language signals to the area of object
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Source image
with text prompts

Target images with various text prompts

Figure 2: Visualization of semantic correspondence with various text prompts. The leftmost image is the source image with a
set of key points; target images on the right part show correspondence results under various text prompts. We use circles to
denote correctly-predicted points under the threshold 𝛼𝑏𝑏𝑜𝑥 ≤ 0.1 and crosses for incorrect matches.

tracking [21, 33, 34, 45]. Some trackers [10, 42, 44] use the language
signal as an additional cue and combine it with the commonly used
visual cue to compute the final tracking result. SNLT tracker [10]
exploits visual and language descriptions individually to predict the
target state and then dynamically aggregates these predictions for

generating the final tracking result. Other methods [11, 22] focuses
on integrating the visual and textual signals to get an enhanced
representation for visual tracking. CapsuleTNL [22] develops a
visual-textual routing module and a textual-visual routing module
to promote the relationships within the feature embedding space
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Figure 3: The architecture of our ALTracker. We introduce a mapping network that aligns image features with corresponding
mapped tokens to automatically obtain the text information. A consistency decoder is designed to jointly process textual
and visual information, the text enhancement module refines text embedding with enhanced descriptive capabilities, and an
image-text integration module integrates the enhanced text embeddings seamlessly into image features. Finally, the tracking
result is obtained through any point tracker.

of query-to-frame and frame-to-query for object tracking. In con-
trast to previous research, we leverage the semantic information of
language to improve consistency in point tracking tasks over long
sequences. Furthermore, our approach generates text descriptions
from the image example, which eliminates the need for language
annotations and expands the range of potential applications.

3 METHOD
In this section, we introduce our coherent point tracker approach
with autogenic language embedding. Before proceeding, we first
present an analysis about text prompts in semantic correspondence.

3.1 Revisiting text-embedded visual features in
semantic correspondence

Text-embedded visual features [20, 37] have recently demonstrated
strong dominance in semantic correspondence tasks. These features
are mainly derived from generative diffusion networks [13, 30, 32].
The diffusion feature of a given image is defined as feature maps
of intermediate layers at a specific time step during the backward
diffusion process. The precise correspondences between two dif-
ferent images can be established using a straightforward approach:
locating the maximum cosine similarity of feature maps between
the target image and the search image. We refer readers to [37] for
more details.

Our analysis highlights the pivotal role played by text prompts
in semantic correspondence. Since the diffusion feature [37] used
in the semantic correspondence task integrates text embedding
as conditions within visual features, we refer to this as the text-
embedded visual feature. This feature processes both an image
and a text prompt as inputs, maintaining consistency by utilizing
the identical text prompt for various images. In pursuit of this
understanding, we conduct experiments by adopting various text
prompts on target images to find corresponding points, as visualized

in Figure 2. We identify two key patterns: (1) Consistently using the
same text prompt between source image and target image improves
the correctness of correspondence, as illustrated in the 2nd and
3rd columns in the right part of Figure 2; (2) The accuracy of text
description is a crucial factor influencing association ability, as
depicted in the 4th column in the right part of Figure 2.

We hypothesize that the text encoder, pretrained by contrast
learning [28], generates text embedding containing semantic infor-
mation similar to visual representations. This ability facilitates con-
sistency across images when aligning these image features within
the shared textual semantic space. Furthermore, finer textual de-
scriptions yield more precise semantic information, a quality that
distinctly impacts cross-image correspondence.

3.2 Autogenic language-assisted tracker
According to the above findings, we propose leveraging the text-
embedded visual feature to improve the performance of point
tracking algorithms. However, directly incorporating the vision-
language model into the point tracking framework poses challenges
due to the intricate nature of its feature extraction network. The
computational load associated with extracting a single image of
the vision-language model is already considerable, making it chal-
lenging to fulfill the simultaneous processing demands for long
sequences in tracking. Additionally, most datasets in the track-
ing field lack text information, it is difficult to obtain the detailed
description of each sequence through manual input.

We propose the ALTracker, an autogenic language-assisted vi-
sual feature enhancement for point tracking to integrate consis-
tency of text prompts into a lightweight image encoder, as illus-
trated in Figure 3. For text descriptions not available in the tracking
dataset, we designed the automatic generation strategy of text
tokens, which are generated from learnable tokens and mapped
tokens. We introduce a mapping network that aligns image fea-
tures with corresponding text tokens (i.e. mapped tokens), the text
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Figure 4: The architecture of the consistency decoder. Text
enhancement module enriches text embeddings by integrat-
ing image embeddings into the attention mechanism. Text-
image integration module combines enhanced text embed-
dings with image features to obtain the consistency feature.

encoder and the image encoder are the same as been adopted in the
CLIP [28]. To utilize language consistency in visual features, we
incorporate a consistency decoder consisting of a text enhancement
module and an image-text integration module. The former refines
text embedding with precise descriptive capabilities and the latter
integrates the enhanced text embedding into image features.

3.2.1 Automatic generation of text tokens. Unlike the original vision-
language models that relied on human-designed text prompts, pre-
vious language-assisted methods like CoOp [48] and DenseClip [29]
introduce learnable text prompts to enhance transferability in down-
stream tasks. These methods achieved learnable tokens by directly
optimizing the text tokens through back-propagation. Taking in-
spiration from these methods, our framework incorporates the
learnable text tokens as a baseline, focusing solely on language-
domain prompting. In order to generate visually descriptive text
prompts, we introduce mapped tokens on the foundation of learn-
able tokens as the final text tokens. Mapped tokens are obtained
from the image features by a lightweight mapping network. Defin-
ing p as the learnable tokens and x as the input image, the final text
tokens for the text encoder become:

[𝑝,𝑀𝐴𝑃 (𝑓𝑐𝑙𝑠−𝑡𝑜𝑘𝑒𝑛 (𝑥))] (1)

where the 𝑓𝑐𝑙𝑠−𝑡𝑜𝑘𝑒𝑛 represents the class token of the input image
x like the ViT architecture [8]. As the learnable tokens can be easily
fine-tuned through the training process, we can employ a simple

Multi-Layer Perception (MLP) as our mapping network MAP. The
input to the mapping network is the class token, derived from
image features via a single-layer attention pooling. This class token
encapsulates the global image information and facilitates a more
effective alignment with text tokens.

3.2.2 Vision-language consistency decoder. The consistency de-
coder comprises a text enhancement module and an image-text
integration module. The text enhancement module refines the text
embeddings, endowing them with precise descriptive capabilities,
while the image-text integration module seamlessly incorporates
the enhanced text embeddings into the image features.

Text description enhancement enhances the accuracy of text
description by integrating global image embeddings into the text
embeddings, which is inspired by the findings that the accuracy
of text description is a crucial factor influencing association abil-
ity. For example, “a sitting cat with gray and white color” is more
accurate than “a cat” and performs more effectively in semantic
correspondence. Based on the basic attention block in the semantic
correspondence network [37], we introduce a text enhancement
module that incorporates self-attention and cross-attention, as il-
lustrated in Figure 4. Specifically, self-attention operates on the
text embedding, while cross-attention operates jointly on the text
embedding and the global image embedding, the text embedding
serves as the query (q), and the image embedding functions as the
key (k) and value (v). Throughout the multi-layer iteration, the text
embedding undergoes continuous updates, while the global image
embedding is consistently sourced from the original input. The
global image embedding is derived by flatting the image feature
through an attention pooling layer.

Image-text integration is proposed to model the interactions
between vision and language to obtain features with semantic con-
sistency. By employingmatrixmultiplication, we combine enhanced
text embedding 𝑡 ∈ R𝐾×𝑑 with image features 𝑥𝐼 ∈ R𝐻×𝑊 ×𝑑 to
derive a integrated map 𝑧 = 𝑥𝐼 𝑡

𝑇 , 𝑧 ∈ R𝐻×𝑊 ×𝐾 . This integrated
map can be regarded as a mapping result in a consistent space,
offering consistent semantic information across a long sequence.
The integrated map is concatenated with the image features to yield
final features 𝑥 𝑓 ∈ R𝐻×𝑊 ×𝑑 , as defined by the equation:

𝑥 𝑓 = 𝑃𝑟𝑜 𝑗 (𝐶𝑎𝑡 (𝑥𝐼 , 𝑥𝐼 ¤𝑡𝑇 )) (2)

where the 𝑃𝑟𝑜 𝑗 indicates the linear projection and the𝐶𝑎𝑡 means the
concatenation along the last dimension. The obtained final features
are used as input to the point tracker to estimate trajectories of
interested points. Our framework is scalable and can be applied to
many video tasks to enhance feature consistency across long video
sequences.

3.3 Training Process
We use an off-the-shelf training process for point tracking (e.g., [17,
33, 72]) and freeze the text encoder parameters during training. The
other parameters of our ALTracker are optimized byminimizing the
sum of a track regression loss which is the L1 distance between the
estimated track locations and the ground-truth track locations, and
a visibility prediction objective which is the binary cross entropy
between the predicted and the ground-truth masks. We employ the
point motion estimation in an unrolled window manner as in the
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Table 1: Evaluation on TAP-Vid-DAVIS and TAP-Vid-Kinetics datasets [6]. The methods are evaluated under the “queried first"
protocol and the “queried strided" protocol on DAVIS. The baseline tracker removing the language-assisted function of our
ALTracker and solely rely on visual feature.

Method Kinetics First DAVIS First DAVIS Strided
AJ < 𝛿𝑥𝑎𝑣𝑔 OA AJ < 𝛿𝑥𝑎𝑣𝑔 OA AJ < 𝛿𝑥𝑎𝑣𝑔 OA

TAP-Net [6] 38.5 54.4 80.6 33.0 48.6 78.8 38.4 53.1 82.3
PIPs [12] 31.7 53.7 72.9 42.2 64.8 77.7 52.4 70.0 83.6
MFT [25] - - - 47.3 66.8 77.8 56.1 70.8 86.9
OmniMotion [41] - - - - - - 51.7 67.5 85.3
TAPIR [7] 49.6 64.2 85.0 56.2 70.0 86.5 61.3 73.6 88.8
CoTracker [16] 48.7 64.3 86.5 60.6 75.4 89.3 64.8 79.1 88.7

Baseline 45.6 62.2 83.9 54.2 72.7 81.5 60.2 74.7 88.0
ALTracker(ours) 48.7 64.3 85.8 61.6 75.5 89.3 65.2 79.0 89.1

CoTracker [16]. The primary track regression loss can be defined
as:

L𝑝𝑟𝑖 =
𝐽∑︁
𝑗=1

| |𝑃 (𝑚) − 𝑃 ( 𝑗 ) | | (3)

in this equation, 𝑃 ( 𝑗 ) represents the estimated trajectories, while
𝑃 ( 𝑗 ) denotes the ground-truth trajectories, both specific to window
j. For trajectories starting in the middle of the window, backwards
padding is applied.

4 EXPERIMENTS
In this section, we verify the distinct contributions in the ablation
study, and present the tracking evaluation on several challenging
benchmarks containing manually annotated trajectories in real
videos, including PointOdyssey [47], TAP-Vid-DAVIS [6] and TAP-
Vid-Kinetics [6].

4.1 Setting
Implementation Details. We employ a text encoder and an im-
age encoder in the CLIP [28], the point motion estimation in the
CoTracker [16]. In the training phase, we train our approach on
the PointOdyssey [47] training set for 80,000 iterations, and we
randomly choose a 1/2/3-interval for consecutive frames. Points
are preferentially sampled on objects and we randomly sample 256
trajectories for each batch, with points visible either in the first
or in the middle frame. The size of an input image is resized to
384×512. The AdamW [18] optimizer is employed with an initial
learning rate of 5𝑒−4. We train our model on 4 Nvidia Tesla V100
GPUs. The mini-batch size is set to 4 with each GPU hosting 1 batch.
Our approach is implemented in Python 3.8 with PyTorch 1.10.

Datasets. PointOdyssey [47] is a large-scale synthetic dataset
for long-term point tracking of 80 videos on training set, 11 videos
on validation set, and 12 videos on test set, with 2035 average
frames and 18,700 tracks per video. TAP-Vid-DAVIS [6] is a real-
world dataset of 30 videos from the DAVIS 2017 val set [27], which
clips ranging from 34∼104 frames and an average of 21.7 point
annotations per video. TAP-Vid-Kinetics [6] is a real-world dataset
of 1,189 videos each with 250 frames from the Kinetics-700-2020
val set [5] with an average of 26.3 point annotations per video.

Evaluation Metrics. We report both the position and occlusion
accuracy of predicted tracks. Following the TAP-Vid and PointOdyssy
benchmarks, our evaluation metrics include: Average Position Ac-
curacy (< 𝛿𝑥𝑎𝑣𝑔) measures the average position accuracy of visible
points over 5 threholds {1, 2, 4, 8, 16}; Average Jaccard (AJ) evaluates
both occlusion and position accuracy on the same thresholds as
< 𝛿𝑥𝑎𝑣𝑔 ; Occlusion Accuracy (OA) evaluates the accuracy of the
visibility/occlusion prediction at each frame; Median Trajectory
Error (MTE) measures the distance between the estimated tracks
and ground truth tracks; “Survival” rate means the average number
of frames until tracking failure and is reported as a ratio of video
length, failure is when L2 distance exceeds 50 pixels.

Table 2: Evaluation on PointOdyssey test set [47].

Method MTE↓ 𝛿 ↑ Survival↑
RAFT [38] 319.46 23.75 17.01
DINO [4] 118.38 10.07 32.61
TAP-Net [6] 63.51 28.37 18.27
PIPs [12] 63.98 27.34 42.33
PIPs++ [47] 26.95 33.64 50.47

Baseline 27.53 29.41 49.22
ALTracker(ours) 24.44 33.91 51.37

4.2 State-of-the-art Comparison
We set the tracker solely rely on visual features as our baseline, and
compare the performance of a autogenic language-assisted visual
tracker with the baseline tracker. The baseline tracker uses the
same image encoder and motion estimation modules as ALTracker,
removing the language-assisted function including text encoder,
mapping network and consistency decoder.

TAP-Vid. For the TAP-Vid benchmarks, we follow the standard
protocol and downsample videos to 256 × 256 before passing them
to the model, all the metrics are then computed in 256 × 256. We
evaluate our models on the TAP-Vid-DAVIS and TAP-Vid-Kinetics,
points are queried on objects at random frames and the goal is
to predict positions and occlusion labels of queried points. In the
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Table 3: Ablation experiments on the text generation and text enhancement module. In the text generation module, we present
the effectiveness of learning tokens and the type of mapping network. In the text enhancement module, we provide the
evaluation of self-attention layers (self) and cross-attention layers (cross). Default settings are marked in gray.

Learnable
tokens

Mapping
network

Text enhancement Kinetics First DAVIS First
self cross AJ < 𝛿𝑥𝑎𝑣𝑔 OA AJ < 𝛿𝑥𝑎𝑣𝑔 OA

- MLP - - 40.6 55.2 76.7 42.2 61.2 72.3
✓ MLP 6 - 45.6 61.2 81.1 58.8 73.5 85.2
✓ MLP - 6 44.3 60.1 80.0 53.5 68.7 83.9
✓ MLP 4 4 46.6 60.7 84.9 60.8 75.1 89.1
✓ MLP 6 6 48.7 64.3 85.8 61.6 75.5 89.3
- MLP 6 6 48.0 63.2 85.8 59.5 74.6 88.6
✓ Transformer 6 6 46.2 62.9 83.6 60.1 75.1 87.2
✓ MLP 10 10 48.7 64.3 85.8 61.6 75.5 89.4

TAP-Vid, “queried first” evaluation protocol, each point is queried
only once in the video, at the first frame where it becomes visible.
Hence, the model should predict positions only for future frames. In
the “queried strided” protocol, points are queried every five frames
and tracking should be done in both directions. We adopt the online
method as our point tracker, it tracks points only forward, and we
run the tracker forward and backward starting from each queried
point. As “queried first" requires estimating the longest tracks, it is
a more difficult setting than “strided". Moreover, “strided" demands
estimating the same track from multiple starting locations and is
thus much more computationally expensive. From the experiment
results in Table 1, we can see that our method has achieved remark-
able performance with an AJ score of 48.7 in Kinetics First and
61.6 in DAVIS First. Furthermore, our method has made significant
improvements in all evaluation metrics compared to the baseline.

PointOdyssey. Inspecting results (as shown in Table 2) across
rows, we can see that our ALTracker achieves the best results among
all methods, achieving the highest MTE score of 24.4. Especially,
compared to the baseline, our method has achieved a significant
improvement by a specific gain of 3.09 of MTE. Our approach sig-
nificantly outperforms the best existing tracker and demonstrates
the effectiveness of the language-assisted feature consistency.

4.3 Ablation Study
We ablate our approach to verify the effectiveness of our design
decisions using the TAP-Vid-DAVIS and TAP-Vid-Kinetics datasets.

Automatic generation of text tokens. We compare the effec-
tiveness of learnable tokens and mapped tokens obtained through
different types of mapping network. Learning tokens are plugged
into the generated text tokens and can be finetuned through the
network training process. From Table 3 we can find that adopting
the learning tokens can greatly improve the performance of point
tracking (line 5 vs line 6 in Table 3). We also conduct the comparison
between the MLP and the Transformer as our mapping network,
each network adopts a three-layer basic unit. Evaluation results
(line 5 vs line 7 in Table 3) demonstrate that MLP is a more suitable
mapping network than Transformer for our purposes due to its
superior performance and lower computational complexity.

Attention layers in text enhancement module. We tested
several text enhancement schemes, including no text enhance-
ment (line 1 in Table 3), self-attention enhancement only (line
2), cross-attention enhancement only (line 3), and simultaneous
self-attention and cross-attention enhancement at different layers
(line 4,5,8). Our experimental results demonstrate that both self-
attention and cross-attention can enhance the representation ability
of text embedding to varying degrees, and the impact remains con-
stant after 6 layers. For optimal accuracy and efficiency, we have
chosen 6 layers in our text enhancement module.

Table 4: Comparison of integration strategies. Cat indicates
the concatenation, Map means the integrated map obtained
by the matrix multiplication.

Integration DAVIS First
Cat Map AJ < 𝛿𝑥𝑎𝑣𝑔 OA

✓ - 59.1 73.6 89.5
- ✓ 55.9 71.0 84.7
✓ ✓ 61.6 75.5 89.3

Text-image integration methods. Different integration strate-
gies of text embeddings and image features have a large effect on
the performance of consistency. A simple way to approach this is to
concatenate these two cues (Cat) by flatting the image features and
finally map them back to the original size. Our proposed integrated
map (Map) through the matrix multiplication of text and image
embeddings, which can be used as features alone (line 2 in Table 4)
or concatenated with the original image features (line 3) for track-
ing purposes. The comparison results show that the concatenation
of image features and integrated map can effectively improve the
tracking performance.

4.4 Visualization
We offer visualizations of long-range trajectories of prototypical
challenging scenarios to demonstrate the tracking performance of
the proposed autogenic language-assisted tracker. Figure 5 shows
queried points of the shown frame between our method which
adopts the language-assisted consistency (w language embedding)
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Figure 5: Visualization of point trajectories on DAVIS [27]. We compare the visualization result between our ALTracker with
autogenic language embedding (w) and the baseline tracker without language information (w/o). The images show tracking
results over time. Different colors indicate different points. We use circles to indicate correctly-predicted points under the
threshold 𝛼𝑏𝑏𝑜𝑥 ≤ 0.1 and crosses for incorrect matches. Notably, our method yields accurate, coherent long-range motion even
for fast moving (Bmx-trees), object deformation (Motocross), scale change (Soapbox), and similar distractor (Lab-coat) scenarios.

and baseline tracker solely rely on the visual feature (w/o language
embedding). As can be seen from the figure, after a long period of
tracking, our ALTracker still achieves correct point tracking results.
Crosses in images indicate incorrect matches. We observe that our
approach has a strong discriminative ability for targets with severe
scale variations and keeps a reliable associative ability in many
challenging scenes.

5 CONCLUSION
In this study, we conduct an analysis to elucidate the factors con-
tributing to the robust semantic correspondence. And reveal that
text prompts significantly enhance visual correspondence across
visual semantics, and precise textual descriptions contribute to im-
proved semantic consistency. Incorporating this insight into the
point tracking task, we propose a coherent point tracking approach
with autogenic language embedding. Our ALTracker consists of an
automatic generation module which adopts a mapping network to

align image features with corresponding text tokens, and a consis-
tency decoder to enhance the descriptive accuracy of text embed-
ding, and then integrate textual information and visual information.
As our text information is automatically generated from visual fea-
tures, it can be seamlessly adapted to any tracking task without
requiring for explicit text input. Experiments conducted on several
challenging point tracking datasets exhibited impressive perfor-
mance, demonstrating that our approach renders point tracking
more stable and discriminative, particularly in lengthy videos with
substantial appearance variations.

Limitations. Due to our utilization of the CLIP encoder, our
main emphasis was on incorporating autogenic language embed-
ding into convolutional networks for coherent tracking. Neverthe-
less, we have not yet investigated the potential improvements on
alternative visual encoders, such as the various transformers [8, 26,
36]. In the future, we intend to integrate our autogenic language-
assisted consistency into more image encoders, enhancing its adapt-
ability to a broader range of scenarios.
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