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Abstract

Instruction variety greatly impacts a model’s
ability to generalise outside of its training cor-
pus. While language choices and paraphrases
help models generalise to more complex tasks,
embodied domain instructing models through
multiple modalities (e.g., visual referents) can
further help minimise ambiguities and improve
the overall success rate. We investigate the im-
pact of multimodal language instructions on
a model’s generalisation capacities on VIMA-
Bench, an environment designed to evaluate
generalisation performance through increasing
levels of complexity. We design different per-
turbations that affect both the language and the
visual referents in multimodal instructions. Our
findings indicate that a VIMA model trained on
multimodal instructions not only shows high
performance when provided with gibberish in-
structions, but can even perform better on un-
seen tasks, casting doubts as to whether con-
tent from text in multimodal instructions is
more useful than the necessary visual referents.
Our findings suggest that current Transformer-
based models for Embodied Al tasks are lim-
ited as to how way they integrate multiple
modalities. Therefore, future work should fo-
cus on improvements in architecture design and
training regimes to further facilitate multimodal
fusion allowing the model to place more impor-
tance on the content of the instructions, thereby
improving generalisation capabilities. !

1 Introduction

Designing artificial agents that can follow natural
language instructions is a long-term goal of Artifi-
cial Intelligence (Winograd, 1972). In these scenar-
ios, agents must understand the instructions within
the context of the observations to predict the next
action to take. Ideally, we expect an artificial agent
to be able to generalise to previously unseen tasks

'We will release the codebase on GitHub upon acceptance.

by combining concepts and skills underpinning its
training tasks in novel ways (Lake et al., 2017).
Failure to do so means that a model is only good in
the environment it was trained in, undermining its
ability to adapt to novel scenarios that are likely to
happen in the real world.

Previous work has proposed several language-
guided tasks for tackling this long-term goal fo-
cused more on the ability to generalise to environ-
ments with different layouts from the training ones
(e.g., ALFRED from Shridhar et al., 2020). Un-
fortunately, this represents only one facet of the
generalisation ability of an agent.

Another limitation of language-guided action ex-
ecution is that while providing instructions and con-
text using only language can unlock benefits from
in-context learning (Bhattacharyya et al., 2023), us-
ing language alone is not sufficient to capture all
nuances and details within visual scenes (Pezzelle,
2023). Additionally, for multimodal tasks (e.g.,
action execution tasks (Shridhar et al., 2020)), us-
ing language alone is less efficient than using in-
structions that fuse language with visual represen-
tations (Li et al., 2023). For this reason, Jiang et al.
(2023) presented VIM A-BENCH, the first bench-
mark aimed at studying several axes of generalisa-
tion involving novel concepts as well as novel tasks
where the agent receives multimodal instructions
combining both language and visual referents.

However, as multimodal instructions interleave
both language and visual representations in a sin-
gle instruction, the stark contrast between the la-
tent spaces between the modalities might result in
models using them as anchors (Wang et al., 2023):
over-relying on seeing a visual representation at a
specific position within the instruction for the task.
If this were the case, it means that models are us-
ing superficial characteristics of the input (e.g., the
shallow syntactic form of the instruction) to deter-
mine what actions to perform, which will directly
impact its ability to generalise to unseen tasks and
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Figure 1: Example of how fused multimodal instructions from VIMA-BENCH (Jiang et al., 2023) impact on the
model’s evaluation performance. The model exhibits similar levels of success when given either incomprehensible
words (Gobbledygood Words- top left), words that are syntactically but not grammatically sound (Gobbledygook
Tokens - left), or fully syntactically and grammatically sound information (Replace objects with text - bottom left).

instruction forms as the model will be less good at
performing multimodal fusion (Ahuja et al., 2017).

Our Contributions We investigate the impact
of multimodal language instructions for state-of-
the-art Embodied Al architectures designed for
VIMA-BENCH. Motivated by Pythia (Biderman
etal., 2023), we recognise the importance of provid-
ing the research community with both the training
setup as well as training data used to train Em-
bodied AI models because it can have an impact
on the final downstream performance. For this
reason, we build on top of the data released by
VIMA-BENCH (Jiang et al., 2023) and release a
reproducible training framework that includes: 1)
specific dataset splits to train and evaluate model
performance; 2) a training regime to reproduce
the VIMA model (Jiang et al., 2023). Thanks to
this controllable setup, we were able to design an
evaluation framework aimed at studying the im-
pact of properties of the multimodal prompts on
the model’s performance. For instance, we were
able to investigate how well models can perform
the task when visual referents are replaced with
language descriptions as well as what is the impact
of perturbing language instructions.

We found that a VIMA model trained on mul-
timodal instructions can, to our surprise, still per-
form several tasks of the benchmark even when
provided with gibberish instructions or can per-
form the task even better when visual referents
are replaced with language descriptions of the ob-
jects. With this study, we aim to shed some light
on state-of-the-art model performance and better
understand what role language plays in the general-
isation abilities of Embodied Al models designed
for robotics tasks.

2 Related work

In this section, we provide a survey of the literature
on Embodied Al with a focus on evaluating the
generalisation ability of embodied agents as well
as their ability to understand nuanced language
instructions.

2.1 Instruction following in Embodied AI

Embodied Al focuses on designing artificial agents
that are embodied in an environment (either sim-
ulated or real) and learning to generate actions to
complete a given task, whose objective is typically
specified in natural language (Das et al., 2018). In
the literature, embodied tasks have been formulated
in different ways depending on the degree of com-
plexity of the action space. Vision+Language Nav-
igation (e.g., VLN (Anderson et al., 2018), CVDN
(Thomason et al., 2020), etc.) is one of the first
examples of an agent that can follow instructions
in natural language to reach a given destination.
However, in this case, the agent’s action space in-
cluded navigation commands only. Thanks to more
sophisticated 3D simulated environments such as
AI2Thor (Kolve et al., 2017), researchers defined
several tasks involving object interaction as well
(e.g., ALFRED (Shridhar et al., 2020), Simbot (Shi
et al., 2023)).

2.2 Assessing Generalisation in Embodied Al

When deploying Embodied Al systems in the real
world they must possess generalisation abilities
to dynamically adjust to the increasingly complex
and novel tasks that they might face (Duan et al.,
2022). Current Embodied Al benchmarks provide
seen/unseen splits to assess generalisation across
multiple environments/rooms. However, they as-
sume that all the tasks that the agent has to com-
plete, and the objects that the agent has to interact
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Figure 2: Sample tasks from VIMA-BENCH (Jiang et al., 2023). We refer readers to Appendix B within the VIMA
paper for a comprehensive description of all tasks within the benchmark.

with are fully specified at training time. There is
no notion of systematic generalisation to new con-
cepts (Suglia et al., 2020), or novel tasks (Chung
et al., 2022). To overcome some of these limita-
tions, VIMA-BENCH (Jiang et al., 2023) evalu-
ates generalisation in tabletop robotic manipulation
tasks by defining different levels of complexity in-
volving both novel object generalisation and novel
task generation as well.

2.3 The Role of Language in Embodied Al

In most of the Embodied Al tasks, language instruc-
tions are typically hand-crafted via templates (e.g.,
VIMA-BENCH) and, in some instances crowd-
sourced (e.g., ALFRED). Considering that lan-
guage represents a generic interface for task learn-
ing (Laird et al., 2017), it is important to understand
what role language plays in these tasks. Previous
work from Akula et al. (2022) discovered that state-
of-the-art models trained for the ALFRED bench-
mark are not sensitive to the language instructions.
As reported by Zhu et al. (2023), a similar down-
side was showcased for the VLN benchmark where
even nonsensical instructions seemed to improve
downstream performance.

All these efforts therefore highlight the need for
a systematic investigation of the role played by
language in VIMA-BENCH and the interesting in-
terplay between language and the systematic gen-
eralisation capabilities of the agent. Thanks to our
reproducible experimental setup, we hope to shed
light on many of these problems and provide the
community with interesting directions for future
work. We describe our experimental setup in the
following section.

3 Experimental Setup

We explore the role of language for action execu-
tion by evaluating models in the VIMA-BENCH
environment (Jiang et al., 2023). Built on top of
the Ravens simulator (Zeng et al., 2021), VIMA-
BENCH contains 17 tabletop object manipulation
tasks to assess the capabilities learned by Vi-
sion+Language models through a four-level pro-
tocol that evaluates their systematic generalisation
capabilities. 50K expert demonstrations are pro-
vided for each of 13 tasks, with 4 tasks held out for
zero-shot evaluation.

3.1 Skills that models are expected to perform

One of the benefits of VIMA-BENCH is that mod-
els must learn skills either in isolation or in com-
bination with other skills, which is a desirable ca-
pability of intelligent systems (Lake et al., 2017).
Figure 2 shows how skills overlap between tasks:

1. Simple Object Manipulation. Picking up ob-
jects from their name or a visual representa-
tion, and placing them in specific locations
and positions.

2. Visual Goal Completion. Manipulating ob-
jects to match the scene in the provided frame.

3. Visual Memory. After performing actions, re-
member the previous state of the workspace
and perform an action given information from
that time.

4. Visual Reasoning. Only performing actions
on objects that have the same colours/shapes
as in the instruction.

“We outline our procedure for creating train-validation
splits in Appendix A.2.
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Figure 3: An overview of the VIMA architecture, adapted from Jiang et al. (2023). The VIMA architecture is an
encoder-decoder model. A fused multimodal instruction with interweaved language and visual referents is provided
to a pretrained T5 encoder. For each observation in the environment, the model must autoregressively predict
the correct movement to perform given an instruction. The model must continue to predict movements for each
observation until it successfully completes the task or performs the maximum number of moves.

5. One-Shot Imitation. Imitate the actions neces-
sary to make the workspace look like a given
sequence of frames.

6. Novel Concept Grounding. The prompt con-
tains unfamiliar words like “dax’ which are
explained through visual referents and used
within an instruction similar to multimodal
in-context learning (Zhang et al., 2023).

3.2 Levels of Difficulty

VIMA-BENCH introduces specific levels of diffi-
culty to precisely assess specific model capabilities.
We review the different levels of difficulty below:

Placement Generalisation (L1) Identical to the
training data; however, the starting location and
orientation for each object have not been seen be-
fore, ensuring that models understand how to move
around the physical space they are in.

Combinatorial Generalisation (L2) All of the
tasks, objects, and textures have been seen at some
point during training. However, the textures ap-
plied to a given object have not been seen together
before. This ensures that models do not solely look
at the given texture on an object, and can focus on
the object itself and the movements necessary to
complete the task.

Novel Object Generalisation (L3) Objects and
their textures have not been seen during training,

ensuring that models are capable of abstracting
beyond the specifics of an object.

Novel Task Generalisation (L4) Tasks (includ-
ing instructions and success criteria) have not been
seen before, ensuring that models can abstract fur-
ther from the training tasks and understand the
underlying skills/movements needed to complete
the task, combining them in new ways to properly
understand and complete the new task.

3.3 VIMA: The Baseline Model

In the environment, models must learn a policy
m: P x H — A that maps a multimodal prompt
p € P with a history trajectory of observations and
actions hy = (09, ag, 01, ...,at—1,0) € H (up to
some discrete timestep t) to the two-pose action
primitive a; = (Tstart, Tend) € A. Each multi-
modal prompt with length [ is an ordered sequence
p = (x1,...,2;) where each element z; is either
a word w; or a visual representation of an object
or frame of a scene v;. An action token for the
environment, a;, defines a movement between the
two end effector poses in SE(3)3: the start pose
Tstart and the end pose Tong.-

Jiang et al. (2023) also proposed a model archi-
tecture (Figure 3) that we use for our evaluation.*

3State vector (z,v, 2, qw, qx, qy, qz) where x,y, z are
Cartesian coordinates and qw, gz, qy, gz represent the ori-
entation in a quaternion.

“We were unable to create a setup that is directly compara-
ble to Jiang et al. (2023). We refer readers to Appendix B.2



The VIMA model follows a transformer encoder-
decoder architecture with a frozen pretrained T5
encoder (Raffel et al., 2020; Tsimpoukelli et al.,
2021) to encode the multimodal prompts, and a
transformer decoder that predicts actions from the
history trajectory by conditioning on the prompt
through cross-attention layers. The model makes
predictions for the position and rotation for each
pose using four independent 2-layer MLPs which
receive the decoder hidden state for that action as
input. Following Pantazopoulos et al. (2023), the
model is trained through behaviour cloning that
minimises a loss function® for a trajectory of T'
actions given by Equation (1):

T
1
L(0) = = > _logm(arlp, hn) ()
t=0

For model training, we follow the same training
regime described in Jiang et al. (2023) and report
additional details that are essential to fully replicate
their setup in Appendix A.

4 Evaluating model robustness to
language

We explore VIMA'’s robustness to changes in the
multimodal instructions that are different to the
ones it was trained on. In this section, we provide
a selected number of results but please refer to
Appendix B for our comprehensive evaluation.

4.1 Language Perturbation

We define two systematic methods to remove infor-
mation from the language of a fused multimodal
instruction: Gobbledygook Words (GDGworps)
and Gobbledygook Tokens (GDGrokgns). As illus-
trated in Figure 4, both methods remove informa-
tion regarding the task from the language modality,
leaving only the visual referents.

To avoid introducing additional difficulty into
the tasks, we ensure that the length of the instruc-
tion is identical to before perturbing for either nat-
ural language words or the tokenized form. Ta-
ble 1 further verifies this by indicating that the
number of words in an instruction does not change
for GDGworps, and the number of tokens does not
change for GDGrokens. From this, we remove the

for more details on the matter.

SThis was modified from the original VIMA-BENCH loss
function to prevent the model from being influenced by the
trajectory length.

# Words # Tokens
Original Instruction 129+7.6 20.2+13.6
GDGrokens 152+93 20.2+13.6
GDGyorps 129+7.6 49.7+27.8

Table 1: Average length of the original instructions
before and after transforming them through either
GDGyorps, 0r GDGrokens-

meaning of the instruction from the natural lan-
guage itself. It also allows for checking whether or
not the length of the instruction in natural language
has any impact on model performance.

4.1.1 Experimental Setup

Here we concretely define both language perturba-
tions that we perform on the language.

Gobbledygook Words Let w; = (c1,¢2,...,¢;))
represent a word with j characters and each c; is
a character from a set A that contains all upper-
case and lowercase alphabetical English characters.
Given a multimodal prompt p consisting of multi-
ple words, we transform the sequence in two steps.
First, for each word w; € p, we replace each char-
acter with a random one chosen from A to modify
every word within the sequence. Secondly, we ran-
domly swap the positions of words within the se-
quence without changing the position of any visual
representations within the sequence. As illustrated
in Figure 4, GDGyorps ensures that the number
of characters and “words” within the multimodal
prompt—and the number of words between each
visual placeholder—does not change. However, the
length of the prompt after tokenizing has increased
on average because TS5 uses a SentencePiece to-
kenizer that was trained on natural language text
(Raffel et al., 2020).

Gobbledygook Tokens The GDGokens method
transforms the multimodal prompt by randomising
each sub-word unit after tokenizing the instruction
with any other token from the vocabulary such that
the number of sub-word units is the same as the
original instruction. See Figure 4 for an example
where an instruction perturbed with GDGrokens
does not contain any information in the language
modality pertaining to the original task.

4.1.2 Results and Discussion

As we are removing any semblance of well-formed
natural language from the instruction across both
perturbation methods, we would naturally expect
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Figure 5: Comparison of the average success rate for
each generalisation level when the model is instructed
without any language perturbations, and when perturb-
ing the language through GDGyorps 0r GDGrokens-

evaluation performance to plummet. However, Fig-
ure 5 reveals that when a model trained on the origi-
nal instructions from VIMA-BENCH is exposed to
the language perturbations, the model is still able to
perform the task at each generalisation level, with
little impact on the average performance. Figure 6
contains some examples where the model still suc-
ceeds in performing the task, even when provided
with perturbed language from GDGyogps.

More specifically, from examples 1 to 3, the
model successfully followed through on incompre-
hensible instructions and successfully performed
the tasks of identifying the task to perform with the
stated object of a choice of two, picking it up and
putting it into a destination. Example 4 indicates
interesting behaviour: the model incorrectly identi-
fied the correct object, placed it into the destination,

picked the second object, and placed it in the desti-
nation. This would indicate that the environment
has not been made aware of such failures; models
are permitted to continue until a catastrophic fail-
ure occurs.® Such a failure is indicated in Example
4, where the model picked the object and placed
it into the receptacle in a way that resulted in an
unsalvageable scenario, potentially due to there not
being any other objects for it to keep trying.
Surprisingly, Figure 5 also illustrates that when
faced with GDGrokgns, the model performs better
on unseen tasks than when given original instruc-
tions, with the average success rate on L4 increas-
ing from 16.6% to 20% on tasks in L4. This perfor-
mance increase implies that the semantic content
provided by words somehow inhibits performance
when faced with unseen tasks. This phenomenon
is evidenced in Table 2, which shows model perfor-
mance on tasks from L4. For example, when the
model must understand the task from GDGrokgns,
performance on T8—when faced with both a novel
noun and a novel adjective for Novel Concept
Grounding—is greater than when provided with
linguistically and syntactically sound instructions.
Our results indicate that the model might be re-
lying on the visual referents as these remain un-
changed across both perturbations which suggests
that the fine-tuning of the TS5 encoder might not
work congruently. Following this, we consider the

®We outline the termination conditions for a given episode
in Appendix A.4.
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Original Instructions 385 05 00 275
w/ GDGrrokens 675 05 00 120
w/ GDGworps 425 0.0 0.0 0.5

Table 2: Evaluation performance of a model trained on
the original instructions from VIMA-BENCH on Novel
Task Generalisation (L4).

1. IPy oXV {dragged_obj_1} xzcl TzN {base_obj}.

N

2. trP EZDn {dragged_obj_1} nGY Dtx {base_obj}.

Figure 6: Shown above are in-environment observations
seen by the model, showing task performance when
using GDGy,orps- Instructions given to the model are
shown on top of the images, with the images themselves
showing different iterations of either success (top and
bottom images) or failure (middle).

possibility that—as the syntax of the instructions
in VIMA-BENCH are mostly identical except for
the visual referents used—the model has learned
the structure and syntax of an instruction, including
positions of the visual referents, over the language
content of an instruction. We study this case in our
next experimental setup.

4.2 Paraphrasing Prompts

Considering that VIMA-BENCH had no diversity
in their language templates, we explore the impor-
tance of syntactical and lexical choices by creating
paraphrases of the original instructions. We do so
by manually inspecting the instructions and using
meta-templates to construct variations. Table 4
shows some example paraphrases generated using
the meta-templates, and we report further details

Original - NEE— 4.9
Instructions - [N 260

Paraphrased - [N 457
Instructions - [N 255

Figure 7: Evaluation performance before and after train-
ing on paraphrases.

Without - I <o
Perturbations - D 255

Gobbledygook -+ GGG 229
Tokens - G 5.2

Gobbledygook - N 36.4
Words - N 220

Figure 8: Comparison of model performance when
trained on paraphrases and evaluated on language per-
turbations: GDGyorps and GDGrokens-

and analyses in Appendix A.3.

Results Figure 7 shows the result of the model
before and after training on paraphrases. Success
rates for original instructions followed along with
expected rates results indicating the highest success
rates on L1, followed by L2, L3, and L4, which is
to be expected due to the mounting difficulty of the
tasks. Paraphrasing performed marginally worse
on L1, marginally better on L2, worse on L3 and
significantly better on L4.

These results showcase that a model trained on
additional paraphrased instructions is more success-
ful when faced with the most difficult task available
in our environment. Although we expect models to
generalise better on unseen tasks when trained on
paraphrases, we also expect that they should pay
more attention to the language instructions because
they have to generalise over different linguistic
variants during training.

However, as shown in Figure 8, these models
are still robust to language perturbations as indi-
cated by evaluation showing relatively similar re-
sults to the paraphrased instructions even though
the instructions that they received make no sense in
linguistically Figure 4. Additionally, perturbations
with GDGrokens can even improve the overall per-
formance in L3—a negative result which seems
common in previous work in VLN as well (Zhu
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Figure 9: Evaluation performance across both models
when all visual referents to objects within instructions
have been replaced with natural language text.

et al., 2023).

Notably, similar to the trend in Figure 5,
GDGyyorps negatively impacts performance more
than GDGrokgns- While the model under-
performed in all tasks compared to the GD Grokgns.,
it still performed relatively successfully through in-
structions that consisted of randomised characters.

This result implies that even once the meaning
of the instruction is removed by the perturbation, a
perturbation that results in the same number of to-
kens provided to the model is preferable to one that
increases the overall tokenised instruction length.
This suggests a potential problem in the absolute
positional embeddings of the Transformer archi-
tecture used by VIMA—a problem highlighted by
Sinha et al. (2022) for Transformer-based Large
Language Models (LLMs).

4.3 Do we even need visual referents in
multimodal instructions?

Considering that language instructions seem to
have little impact on model performance, we in-
troduce perturbations of the visual referents and
explore how useful they are. As shown by Figure 2,
a visual referent can either stand for an object or the
equivalent of a frame from a scene. Therefore, we
only explore the effect of removing visual referents
to objects and, as such, limit our evaluation to the
subset of tasks that only contain object visual refer-
ents (see Figure 2 for examples). To ensure models
are given a fair shot during evaluation, we replace
each visual referent with a natural language alter-
native. Concretely, as demonstrated in Figure 1,
for every visual referent that refers to an object,
we replace it with an adjective-noun pair that also
uniquely describes the object.

As shown in Figure 9, regardless of the instruc-
tion provided to the model, the model is much
better at generalising across all complexity levels.
We consider this problem similar to the problem of

spurious correlation in Visual Question Answering
(e.g., (Selvaraju et al., 2019)), where models ig-
nore the provided input, and output the most likely
answer based on language priors. An additional
reason for this suboptimal behaviour is the fact
that VIMA finetunes an adapter for multimodal
encoding (Tsimpoukelli et al., 2021) using only
the action prediction loss. As shown by Liu et al.
(2023), a preliminary “alignment pretraining stage”
seems to be required to reliably align the visual
and language modality for a pretrained language
model.

5 Conclusion

Embodied Al is a field at the intersection between
Robotics and NLP whose aim is to create artifi-
cial agents that are embodied in an environment
and can execute actions to complete a task. Pre-
vious work focused on designing agents that can
perform both visual navigation and object manip-
ulation tasks. However, most of them have some
drawbacks in terms of their ability to evaluate the
ability of models to generalise to novel concepts
or tasks. VIMA-BENCH was proposed to provide
the community with a benchmark aimed at assess-
ing different levels of systematic generalisation for
robotic manipulation tasks.

Despite its coverage of tasks, the VIMA-
BENCH ignored the role that language plays in
Embodied Al tasks. To study this problem in a
principled way, we built on top of VIMA-BENCH
to propose a well-defined training setup which pro-
vides: 1) specific dataset splits to train and evaluate
model performance; 2) a training regime to repro-
duce the VIMA model. Thanks to this controllable
setup, we were able to design an evaluation frame-
work aimed at studying the impact of properties
of the multimodal prompts on the model’s perfor-
mance. Therefore, in this study, we investigate
whether models proposed for the VIMA-BENCH
challenge are: 1) robust to language perturbations;
and 2) robust to visual perturbations. To our sur-
prise, we showcase that the VIMA model (Jiang
et al., 2023) still perform several tasks of the bench-
mark even when provided with gibberish instruc-
tions or can perform the task even better when
visual referents are replaced with language descrip-
tions of the objects. This highlights that there is
still a long way to go to create truly multimodal
models able to reliably perform multimodal fusion
(Ahuja et al., 2017).



6 Limitations & Risks

In this study, we investigate the robustness of
Embodied AI models proposed for the VIMA-
BENCH challenge, a benchmark for robotics ma-
nipulation tasks. This benchmark proposes several
tasks aimed at assessing the level of generalisation
across several axes such as placement generalisa-
tion and combinatorial generalisation. We consider
this benchmark as instrumental to analyse the capa-
bilities of current Vision+Language models. How-
ever, we recognise that the VIMA-BENCH doesn’t
cover all possible ranges of tasks and conditions
that might happen in other benchmarks (e.g., AL-
FRED) or other real-world scenarios. Therefore,
we consider our research paper as an important
milestone in investigating the robustness and gen-
eralisation of Embodied Al models and we hope to
have raised awareness about the importance of cre-
ating ecologically valid and linguistically informed
Vision+Language benchmarks.
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A Training details

To control for possible confounding variables
across all models, we use the same training hyper-
parameters from Appendix D in Jiang et al. (2023)
and from the various GitHub issues. We report a
comprehensive table of hyperparameters in Table 3.

All models were trained using 4 NVIDIA A100
GPUs for each run, each taking approximately 10
hours. Each evaluation run on the environment took
approximately 2 hours and did not require the use
of any GPUs. Therefore, the total computational
budget for this work is 122 hours.

A.1 Deviations from VIMA

While our training process is similar to Jiang et al.
(2023), preliminary experiments showed that using
cosine annealing that reduced the LR to the end
of the 10th epoch performed better than annealing
to 17K steps and training the model at 10~/ for 5
epochs.

A.2 Dataset Preparation for Training.

We start by parsing all 664 976 instances across the
13 tasks used for training, provided by Jiang et al.
(2023), which contain action trajectories created by
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Hyperparameter Value

Dropout 0.1

Optimizer AdamW (Kingma and Ba, 2014)
Weight Decay 0

Maximum Learning Rate  le-4

Minimum Learning Rate  le-7

Examples per step (Effec- 128

tive Batch Size)

Warmup steps 7K (896K examples)
Cosine Annealing steps  All remaining steps
Training epochs 10

Gradient Clip Threshold 1.0

Table 3: Hyperparameters used during model training.

an oracle; therefore, each trajectory is the optimal
sequence of movements an agent could perform.
We create a validation set using stratified sampling
such that a total of 50 000 instances across all the
tasks are held out.” We then prepare each instance
for training in advance through tokenizing any nat-
ural language and preparing visual features for the
model. <table> shows dataset statistics per task,
per split, and across the entire dataset. We (will)
release all instances, both before and after prepro-
cessing, to aid in reproducibility.

A.3 Paraphrases

When creating the variations dataset for training,
the instances are converted and then preprocessed
in a similar fashion to above. When performing the
transformation, only the natural language words
are altered. The observations seen, the actions the
model must perform, and the instances for each
train-valid split are unchanged. We provide exam-
ples of some paraphrased alternatives of the origi-
nal instruction in Table 4.

A.4 When does an evaluation episode end?

During the online evaluation, the episode is over
when one of two conditions are met:

1. the model has successfully completed the in-
struction with the previous action it took; or,
the model has not successfully completed the
instruction within a maximum of 10 actions.

A maximum length of 10 actions is longer than
the default length used by Jiang et al. (2023).

7 Authors state that they held out 50 000 examples for val-
idation on their GitHub: https://github.com/vimalabs/
VIMA/issues/8#issuecomment-1491255242.

11

B Experimental Results

We support all experimental results of our main
paper with the per-task success rates for each gen-
eralisation level in Tables 5 to 8. In these tables,
we have additionally compared performance on the
original instructions from the pretrained checkpoint
provided by Jiang et al. (2023) on our evaluation
setup.

B.1 Each task has been sampled 200 times

Jiang et al. (2023) claimed to run each task in the
environment for 100 steps.® However, we presume
there is some inconsistency in the statement since
the reported success rates consist of multiples of
"0.5". As a result, we assume that each task was
run 200 different times to get a similar result. Li
et al. (2023) also sampled 200 instances of each
task during evaluation.

B.2 Unable to reproduce reported results

Jiang et al. (2023) only provided the code for the
model and the dataset did not contain a train-test
split. After creating a working codebase, we were
unable to reproduce the results reported by Jiang
et al. (2023) using the provided model checkpoint.
We spent several weeks trying to reproduce the
results, including consulting the original authors
on their experimental setup, but were unsuccessful
in doing so.

C Reproducibility

VIMA-BENCH from Jiang et al. (2023), includ-
ing all pre-existing model code, pre-trained check-
points, and the environment are licensed under MIT,
and all artefacts produced from this work will be
released under the same license.

$While not reported within the paper, it was mentioned
on their public GitHub repository: https://github.com/
vimalabs/VIMA/issues/16#issuecomment-1622973970.
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Task  Original Alternative

1 Put the blue spiral object in {scene} into the wooden object. From the {scene} stack the blue spiral object on the wooden thing.

2 Put the dragged_texture object in scene into the base_texture object. Move objects in the scene so that the dragged_texture item is on one

base_texture item.

3 Rotate the dragged_obj angle_in_degree degrees. Turn the dragged_obj precisely angle_in_degree degrees.

4 Rearrange to this scene. Rearrange things into this setup scene.

5 Rearrange objects to this setup {scene} and then restore. Rearrange objects into this configuration scene and put it back.

6 demo_blicker_obj_1 is kobar than demo_blicker_obj_2. objectlobject3andobject5 are all kobar than objects object2 object4
demo_blicker_obj_3 is kobar than demo_blicker_obj_4. Put the and object6 respectively. move the kobar dragged_obj inside of the
kobar dragged_obj into the base_obj. base_obj.

7 This is a blinket dragged_obj. This is a zup base_obj. Put a zup into a  This is a blinket object2. this is a zup object1. drop the zup inside of the
blinket. blinket.

11 Stack objects in this order: framel frame2 frame3. Move objects like this: frame1 frame2 frame3.

16 First put object1 into object?2 then put the object that was previously at ~ Set object1 in object2 then place the item that was at its direction
its direction into the same object2. before you placed it into the same place.

17 Put object1 into object2. Finally restore it into its original container. Set object1 within object?2 then restore it to its original place.

Table 4: Some of the alternative paraphrases generated from the meta-templates.

TOl TO2 TO3 TO04 TO5 TO6 TO7 TO9 TIl TI2 TI5 T16 T17  Overall
Provided Checkpoint (Jiang et al., 2023)
Original Instruction 73.0 465 19.0 5.0 6.0 205 715 20 230 970 1.5 100 115 24.8
w/ GDGroxens 56.0 68.0 220 120 40 810 750 6.5 140 90.0 1.0 6.5 35 33.8
w/ GDGworps 440 165 120 5.5 20 340 295 05 155 895 0.5 0.0 45 19.5
w/ Paraphrases 510 375 155 175 35 460 120 1.5 200 925 00 125 55 24.2
w/ Objects As Text 91.0 — 100.0 — — — 865 — — 980 9.0 350 1.5 60.1
+ w/ GDGrokens 78.5 — 285 — — — 815 — — 940 1.0 150 6.0 435
+ w/ GDGworps 97.5 — 235 — — — 970 — — 930 5.5 0.5 2.0 45.6
Trained on Original Instructions
Original Instruction 88,5 725 2.5 7.0 1.0 965 610 1.5 275 970 650 140 695 46.4
w/ GDGrokens 885 745 1.0 8.5 1.0 915 715 00 275 905 155 125 720 43.1
w/ GDGworps 735 705 0.5 4.5 25 745 800 00 140 955 1.0 115 660 38.0
w/ Paraphrases 88.0 69.5 35 4.0 20 940 665 00 180 925 365 185 625 427
w/ Objects As Text 99.0 — 995 — — — 100.0 — — 915 995 505 73.0 87.6
+ W/ GDGrokens 97.0 — 145 — — — 930 — — 910 260 115 705 57.6
+ w/ GDGworps 99.0 — 10.5 — — — 995 — — 905 655 170 8.0 55.7
Trained on Paraphrases
Original Instruction 945  86.5 1.0 8.0 05 730 735 1.0 215 945 655 225 545 459
w/ GDGrokens 855 81.0 0.5 7.5 1.0 81.0 840 05 230 930 385 18.0 60.5 442
w/ GDGworps 82.0 81.0 0.5 4.5 25 765  81.0 05 160 895 21.0 165 670 414
w/ Paraphrases 93.0 845 1.0 6.5 20 750 730 00 195 915 53.0 250 495 441
w/ Objects As Text 100.0 — 995 — — — 100.0 — — 955 995 470 740 87.9
+ w/ GDGrokens 94.0 — 6.5 — — — 920 — — 920 310 215 630 57.1
+ w/ GDGyorps 99.5 — 125 — — — 100.0 — — 85 635 245 2.5 559

Table 5: Model evaluation performance at Placement Generalisation (I.1) where the exact starting location and
orientation of each object were not seen during training. 200 episodes were sampled for each task, and all results
reported at precision of one decimal place.
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TO1 TO2 TO3 T04 TO5 TO6 TO7 TO09 TI11 T12 T15 TI16 T17  Overall
Provided Checkpoint (Jiang et al., 2023)
Original Instruction 65.0 455 19.0 5.5 55 300 115 30 150 925 05 125 110 243
w/ GDGrokens 500 565 185 4.0 25 835 755 85 17.0  90.0 1.5 6.0 8.0 32.4
w/ GDGworps 365 205 125 6.0 1.0 365 210 1.5 13.0 910 1.0 0.5 1.5 18.7
w/ Paraphrases 51.5 320 155 6.5 50 520 110 1.0 200 950 1.0 11.0 5.0 23.6
w/ Objects As Text 90.5 — 100.0 — — — 885 — — 930 30 345 5.0 59.2
+ w/ GDGrokens 78.0 — 285 — — — 765 — — 970 1.0 7.5 7.0 422
+ w/ GDGyorps 95.5 — 235 — — — 965 — — 930 4.0 2.0 2.0 452
Trained on Original Instructions
Original Instruction 93.0 73.0 1.5 6.5 1.5 930 620 1.5 325 910 470 17.0 640 449
w/ GDGrokens 86.0 715 1.0 7.0 1.5 920 845 00 270 925 140 11.0 70.0 429
w/ GDGyorps 700 620 0.0 7.5 20 785 69.0 1.5 100 940 25 125 640 36.4
w/ Paraphrases 88.0 595 2.5 35 25 915 650 00 145 905 345 215 595 41.0
w/ Objects As Text 100.0 — 100.0 — — — 100.0 — — 935 985 455 720 87.1
+ W/ GDGrokens 94.0 — 110 — — — 945 — — 850 205 135 590 53.9
+ w/ GDGworps 99.5 — 115 — — — 975 — — 870 635 150 6.0 54.3
Trained on Paraphrases
Original Instruction 90.5 825 0.5 7.0 05 890 755 00 230 930 655 225 440 457
w/ GDGrokens 83.0 835 0.5 5.0 1.5 840 820 05 270 910 385 215 480 435
w/ GDGworps 79.0 755 0.5 6.0 25 825 755 00 170 950 205 205 550 40.7
w/ Paraphrases 90.5 770 1.0 9.5 1.5 910 750 05 170 93.0 465 240 335 43.1
w/ Objects As Text 100.0 — 100.0 — — — 990 — — 965 100.0 465 69.0 87.3
+ w/ GDGrokens 93.0 — 6.5 — — — 905 — — 900 290 195 530 54.5
+ w/ GDGworps 99.0 — 125 — — — 995 — — 870 625 210 1.5 54.7

Table 6: Model evaluation performance for Combinatorial Generalisation (L.2) where the textures used on a given
object were not seen during training. 200 episodes were sampled for each task and all results reported at precision
of one decimal place.

TO1 TO2 TO3 TO04 TO5 TO6 TO7 TO9 TI11 T15 T16  T17  Overall

Provided Checkpoint (Jiang et al., 2023)

Original Instruction 60.5 495 220 9.5 55 370 9.5 1.0 220 0.5 55 0.0 18.5
w/ GDGrokens 425 660 300 9.5 35 795 660 100 135 0.5 2.0 1.5 27.0
w/ GDGyorps 365 140 105 4.0 20 310 250 20 185 0.0 0.0 2.0 12.1
w/ Paraphrases 430 350 140 100 6.0 390 120 1.0 170 2.0 5.0 1.0 15.4
w/ Objects As Text 90.5 — 100.0 — — — 895 — — 3.0 335 1.5 53.0
+ W/ GDGrokens 65.0 — 240 — — — 700 — — 1.0 7.0 0.5 279
+ w/ GDGworps 91.5 — 275 — — — 950 — — 3.0 0.0 0.0 36.2

Trained on Original Instructions

Original Instruction 655 50.0 1.5 35 25 780 510 0.0 285 190 11.0 1.0 26.0
w/ GDGrokens 67.0 515 2.0 6.5 1.0 670 545 0.0 240 6.0 9.5 9.0 24.8
w/ GDGworps 56.0 44.0 0.5 5.0 20 570 565 0.0 140 2.0 5.0 9.0 20.9
w/ Paraphrases 64.0 39.0 1.5 7.5 20 700 39.0 05 200 160 125 0.5 227
w/ Objects As Text 99.5 — 100.0 — — — 100.0 — — 985 500 6.5 75.8
+ W/ GDGroxens 73.0 — 6.5 — — — 685 — — 6.5 125 35 28.4
+ w/ GDGyorps 88.0 — 8.5 — — — 900 — — 305 7.0 0.0 37.3

Trained on Paraphrases

Original Instruction 63.5 595 2.5 6.5 35 455 480 1.5 265 315 175 0.0 25.5
w/ GDGrogens 585 59.0 4.0 7.0 1.5 610 550 1.0 305 205 160 0.0 26.2
w/ GDGyorps 550 565 0.5 6.0 1.5 525 585 1.0 14.0 6.5 120 0.0 22.0
w/ Paraphrases 68.0 545 2.5 8.0 20 465 510 1.0 21.0 21.0 165 0.0 243
w/ Objects As Text 99.0 — 100.0 — — — 990 — — 975 555 0.5 75.2
+ W/ GDGrokens 66.5 — 105 — — — 615 — — 5.5 7.0 0.0 252
+ w/ GDGworps 89.0 — 165 — — — 895 — — 250 8.0 0.0 38.0

Table 7: Model evaluation performance for Novel Object Generalisation (L.3) where all objects were not seen
during training (and textures may or may not have been seen during training). 200 episodes were sampled for each
task and all results reported at precision of one decimal place.
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TO8  TI10 TI3 T14 Overall

Provided Checkpoint (Jiang et al., 2023)

Original Instruction 9.5 0.0 0.0 1.0 2.6
w/ GDGrokens 71.0 0.0 0.0 1.5 18.1
w/ GDGworps 15.0 0.0 0.0 0.0 3.8
w/ Paraphrases 11.5 0.5 0.0 0.5 3.1
w/ Objects As Text — 0.0 0.0 3.5 1.2
+ W/ GDGrogens — 0.0 0.0 0.5 0.2
+ w/ GDGorps — 0.0 0.0 5.0 1.7

Trained on Original Instructions

Original Instruction 38.5 0.5 0.0 275 16.6
w/ GDGrokens 67.5 0.5 0.0 12.0 20.0
w/ GDGworps 42.5 0.0 0.0 0.5 10.8
w/ Paraphrases 40.5 0.0 00 210 15.4
w/ Objects As Text — 0.0 0.0 995 332
+ W/ GDGrokens — 1.0 0.0 13.0 4.7
+ w/ GDGworps — 0.0 0.0 395 132

Trained on Paraphrases

Original Instruction 45.0 0.0 00 515 24.1
w/ GDGrokens 57.5 0.5 0.0 300 22.0
w/ GDGworos 52.0 1.0 0.0 21.0 18.5
w/ Paraphrases 54.5 0.5 0.0 445 249
w/ Objects As Text — 0.0 0.0 99.0 33.0
+ W/ GDGrokens — 0.0 0.0 205 6.8
+ w/ GDGorps — 0.0 0.0 455 15.2

Table 8: Model evaluation performance for Novel Task Generalisation (L.4), where tasks have not been seen before.
Objects and their textures may or may not have been seen during training. 200 episodes were sampled for each task
and all results reported at precision of one decimal place.
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