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Abstract

Instruction variety greatly impacts a model’s001
ability to generalise outside of its training cor-002
pus. While language choices and paraphrases003
help models generalise to more complex tasks,004
embodied domain instructing models through005
multiple modalities (e.g., visual referents) can006
further help minimise ambiguities and improve007
the overall success rate. We investigate the im-008
pact of multimodal language instructions on009
a model’s generalisation capacities on VIMA-010
Bench, an environment designed to evaluate011
generalisation performance through increasing012
levels of complexity. We design different per-013
turbations that affect both the language and the014
visual referents in multimodal instructions. Our015
findings indicate that a VIMA model trained on016
multimodal instructions not only shows high017
performance when provided with gibberish in-018
structions, but can even perform better on un-019
seen tasks, casting doubts as to whether con-020
tent from text in multimodal instructions is021
more useful than the necessary visual referents.022
Our findings suggest that current Transformer-023
based models for Embodied AI tasks are lim-024
ited as to how way they integrate multiple025
modalities. Therefore, future work should fo-026
cus on improvements in architecture design and027
training regimes to further facilitate multimodal028
fusion allowing the model to place more impor-029
tance on the content of the instructions, thereby030
improving generalisation capabilities.1031

1 Introduction032

Designing artificial agents that can follow natural033

language instructions is a long-term goal of Artifi-034

cial Intelligence (Winograd, 1972). In these scenar-035

ios, agents must understand the instructions within036

the context of the observations to predict the next037

action to take. Ideally, we expect an artificial agent038

to be able to generalise to previously unseen tasks039

1We will release the codebase on GitHub upon acceptance.

by combining concepts and skills underpinning its 040

training tasks in novel ways (Lake et al., 2017). 041

Failure to do so means that a model is only good in 042

the environment it was trained in, undermining its 043

ability to adapt to novel scenarios that are likely to 044

happen in the real world. 045

Previous work has proposed several language- 046

guided tasks for tackling this long-term goal fo- 047

cused more on the ability to generalise to environ- 048

ments with different layouts from the training ones 049

(e.g., ALFRED from Shridhar et al., 2020). Un- 050

fortunately, this represents only one facet of the 051

generalisation ability of an agent. 052

Another limitation of language-guided action ex- 053

ecution is that while providing instructions and con- 054

text using only language can unlock benefits from 055

in-context learning (Bhattacharyya et al., 2023), us- 056

ing language alone is not sufficient to capture all 057

nuances and details within visual scenes (Pezzelle, 058

2023). Additionally, for multimodal tasks (e.g., 059

action execution tasks (Shridhar et al., 2020)), us- 060

ing language alone is less efficient than using in- 061

structions that fuse language with visual represen- 062

tations (Li et al., 2023). For this reason, Jiang et al. 063

(2023) presented VIMA-BENCH, the first bench- 064

mark aimed at studying several axes of generalisa- 065

tion involving novel concepts as well as novel tasks 066

where the agent receives multimodal instructions 067

combining both language and visual referents. 068

However, as multimodal instructions interleave 069

both language and visual representations in a sin- 070

gle instruction, the stark contrast between the la- 071

tent spaces between the modalities might result in 072

models using them as anchors (Wang et al., 2023): 073

over-relying on seeing a visual representation at a 074

specific position within the instruction for the task. 075

If this were the case, it means that models are us- 076

ing superficial characteristics of the input (e.g., the 077

shallow syntactic form of the instruction) to deter- 078

mine what actions to perform, which will directly 079

impact its ability to generalise to unseen tasks and 080
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VIMA

Replace objects with text

Sweep two rainbow cubes into the red spiral bounds

without touching the yellow paisley line.

Apply Gobbledygook Words

HVi tSn RVe Fmot .
Success

Success

Apply Gobbledygook Tokens

protège sécurité Fill trench best: Success

Figure 1: Example of how fused multimodal instructions from VIMA-BENCH (Jiang et al., 2023) impact on the
model’s evaluation performance. The model exhibits similar levels of success when given either incomprehensible
words (Gobbledygood Words- top left), words that are syntactically but not grammatically sound (Gobbledygook
Tokens - left), or fully syntactically and grammatically sound information (Replace objects with text - bottom left).

instruction forms as the model will be less good at081

performing multimodal fusion (Ahuja et al., 2017).082

Our Contributions We investigate the impact083

of multimodal language instructions for state-of-084

the-art Embodied AI architectures designed for085

VIMA-BENCH. Motivated by Pythia (Biderman086

et al., 2023), we recognise the importance of provid-087

ing the research community with both the training088

setup as well as training data used to train Em-089

bodied AI models because it can have an impact090

on the final downstream performance. For this091

reason, we build on top of the data released by092

VIMA-BENCH (Jiang et al., 2023) and release a093

reproducible training framework that includes: 1)094

specific dataset splits to train and evaluate model095

performance; 2) a training regime to reproduce096

the VIMA model (Jiang et al., 2023). Thanks to097

this controllable setup, we were able to design an098

evaluation framework aimed at studying the im-099

pact of properties of the multimodal prompts on100

the model’s performance. For instance, we were101

able to investigate how well models can perform102

the task when visual referents are replaced with103

language descriptions as well as what is the impact104

of perturbing language instructions.105

We found that a VIMA model trained on mul-106

timodal instructions can, to our surprise, still per-107

form several tasks of the benchmark even when108

provided with gibberish instructions or can per-109

form the task even better when visual referents110

are replaced with language descriptions of the ob-111

jects. With this study, we aim to shed some light112

on state-of-the-art model performance and better113

understand what role language plays in the general-114

isation abilities of Embodied AI models designed115

for robotics tasks.116

2 Related work 117

In this section, we provide a survey of the literature 118

on Embodied AI with a focus on evaluating the 119

generalisation ability of embodied agents as well 120

as their ability to understand nuanced language 121

instructions. 122

2.1 Instruction following in Embodied AI 123

Embodied AI focuses on designing artificial agents 124

that are embodied in an environment (either sim- 125

ulated or real) and learning to generate actions to 126

complete a given task, whose objective is typically 127

specified in natural language (Das et al., 2018). In 128

the literature, embodied tasks have been formulated 129

in different ways depending on the degree of com- 130

plexity of the action space. Vision+Language Nav- 131

igation (e.g., VLN (Anderson et al., 2018), CVDN 132

(Thomason et al., 2020), etc.) is one of the first 133

examples of an agent that can follow instructions 134

in natural language to reach a given destination. 135

However, in this case, the agent’s action space in- 136

cluded navigation commands only. Thanks to more 137

sophisticated 3D simulated environments such as 138

AI2Thor (Kolve et al., 2017), researchers defined 139

several tasks involving object interaction as well 140

(e.g., ALFRED (Shridhar et al., 2020), Simbot (Shi 141

et al., 2023)). 142

2.2 Assessing Generalisation in Embodied AI 143

When deploying Embodied AI systems in the real 144

world they must possess generalisation abilities 145

to dynamically adjust to the increasingly complex 146

and novel tasks that they might face (Duan et al., 147

2022). Current Embodied AI benchmarks provide 148

seen/unseen splits to assess generalisation across 149

multiple environments/rooms. However, they as- 150

sume that all the tasks that the agent has to com- 151

plete, and the objects that the agent has to interact 152
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Figure 2: Sample tasks from VIMA-BENCH (Jiang et al., 2023). We refer readers to Appendix B within the VIMA
paper for a comprehensive description of all tasks within the benchmark.

with are fully specified at training time. There is153

no notion of systematic generalisation to new con-154

cepts (Suglia et al., 2020), or novel tasks (Chung155

et al., 2022). To overcome some of these limita-156

tions, VIMA-BENCH (Jiang et al., 2023) evalu-157

ates generalisation in tabletop robotic manipulation158

tasks by defining different levels of complexity in-159

volving both novel object generalisation and novel160

task generation as well.161

2.3 The Role of Language in Embodied AI162

In most of the Embodied AI tasks, language instruc-163

tions are typically hand-crafted via templates (e.g.,164

VIMA-BENCH) and, in some instances crowd-165

sourced (e.g., ALFRED). Considering that lan-166

guage represents a generic interface for task learn-167

ing (Laird et al., 2017), it is important to understand168

what role language plays in these tasks. Previous169

work from Akula et al. (2022) discovered that state-170

of-the-art models trained for the ALFRED bench-171

mark are not sensitive to the language instructions.172

As reported by Zhu et al. (2023), a similar down-173

side was showcased for the VLN benchmark where174

even nonsensical instructions seemed to improve175

downstream performance.176

All these efforts therefore highlight the need for177

a systematic investigation of the role played by178

language in VIMA-BENCH and the interesting in-179

terplay between language and the systematic gen-180

eralisation capabilities of the agent. Thanks to our181

reproducible experimental setup, we hope to shed182

light on many of these problems and provide the183

community with interesting directions for future184

work. We describe our experimental setup in the185

following section.186

3 Experimental Setup 187

We explore the role of language for action execu- 188

tion by evaluating models in the VIMA-BENCH 189

environment (Jiang et al., 2023). Built on top of 190

the Ravens simulator (Zeng et al., 2021), VIMA- 191

BENCH contains 17 tabletop object manipulation 192

tasks to assess the capabilities learned by Vi- 193

sion+Language models through a four-level pro- 194

tocol that evaluates their systematic generalisation 195

capabilities. 50K expert demonstrations are pro- 196

vided for each of 13 tasks, with 4 tasks held out for 197

zero-shot evaluation.2 198

3.1 Skills that models are expected to perform 199

One of the benefits of VIMA-BENCH is that mod- 200

els must learn skills either in isolation or in com- 201

bination with other skills, which is a desirable ca- 202

pability of intelligent systems (Lake et al., 2017). 203

Figure 2 shows how skills overlap between tasks: 204

1. Simple Object Manipulation. Picking up ob- 205

jects from their name or a visual representa- 206

tion, and placing them in specific locations 207

and positions. 208

2. Visual Goal Completion. Manipulating ob- 209

jects to match the scene in the provided frame. 210

3. Visual Memory. After performing actions, re- 211

member the previous state of the workspace 212

and perform an action given information from 213

that time. 214

4. Visual Reasoning. Only performing actions 215

on objects that have the same colours/shapes 216

as in the instruction. 217

2We outline our procedure for creating train-validation
splits in Appendix A.2.
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Figure 3: An overview of the VIMA architecture, adapted from Jiang et al. (2023). The VIMA architecture is an
encoder-decoder model. A fused multimodal instruction with interweaved language and visual referents is provided
to a pretrained T5 encoder. For each observation in the environment, the model must autoregressively predict
the correct movement to perform given an instruction. The model must continue to predict movements for each
observation until it successfully completes the task or performs the maximum number of moves.

5. One-Shot Imitation. Imitate the actions neces-218

sary to make the workspace look like a given219

sequence of frames.220

6. Novel Concept Grounding. The prompt con-221

tains unfamiliar words like “dax” which are222

explained through visual referents and used223

within an instruction similar to multimodal224

in-context learning (Zhang et al., 2023).225

3.2 Levels of Difficulty226

VIMA-BENCH introduces specific levels of diffi-227

culty to precisely assess specific model capabilities.228

We review the different levels of difficulty below:229

Placement Generalisation (L1) Identical to the230

training data; however, the starting location and231

orientation for each object have not been seen be-232

fore, ensuring that models understand how to move233

around the physical space they are in.234

Combinatorial Generalisation (L2) All of the235

tasks, objects, and textures have been seen at some236

point during training. However, the textures ap-237

plied to a given object have not been seen together238

before. This ensures that models do not solely look239

at the given texture on an object, and can focus on240

the object itself and the movements necessary to241

complete the task.242

Novel Object Generalisation (L3) Objects and243

their textures have not been seen during training,244

ensuring that models are capable of abstracting 245

beyond the specifics of an object. 246

Novel Task Generalisation (L4) Tasks (includ- 247

ing instructions and success criteria) have not been 248

seen before, ensuring that models can abstract fur- 249

ther from the training tasks and understand the 250

underlying skills/movements needed to complete 251

the task, combining them in new ways to properly 252

understand and complete the new task. 253

3.3 VIMA: The Baseline Model 254

In the environment, models must learn a policy 255

π : P × H → A that maps a multimodal prompt 256

p ∈ P with a history trajectory of observations and 257

actions ht = (o0, a0, o1, . . . , at−1, ot) ∈ H (up to 258

some discrete timestep t) to the two-pose action 259

primitive at = (Tstart, Tend) ∈ A. Each multi- 260

modal prompt with length l is an ordered sequence 261

p = (x1, . . . , xl) where each element xi is either 262

a word wi or a visual representation of an object 263

or frame of a scene vi. An action token for the 264

environment, at, defines a movement between the 265

two end effector poses in SE(3)3: the start pose 266

Tstart and the end pose Tend. 267

Jiang et al. (2023) also proposed a model archi- 268

tecture (Figure 3) that we use for our evaluation.4 269

3State vector (x, y, z, qw, qx, qy, qz) where x, y, z are
Cartesian coordinates and qw, qx, qy, qz represent the ori-
entation in a quaternion.

4We were unable to create a setup that is directly compara-
ble to Jiang et al. (2023). We refer readers to Appendix B.2
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The VIMA model follows a transformer encoder-270

decoder architecture with a frozen pretrained T5271

encoder (Raffel et al., 2020; Tsimpoukelli et al.,272

2021) to encode the multimodal prompts, and a273

transformer decoder that predicts actions from the274

history trajectory by conditioning on the prompt275

through cross-attention layers. The model makes276

predictions for the position and rotation for each277

pose using four independent 2-layer MLPs which278

receive the decoder hidden state for that action as279

input. Following Pantazopoulos et al. (2023), the280

model is trained through behaviour cloning that281

minimises a loss function5 for a trajectory of T282

actions given by Equation (1):283

L(θ) =
1

T

T∑
t=0

log πθ(at|p, ht) (1)284

For model training, we follow the same training285

regime described in Jiang et al. (2023) and report286

additional details that are essential to fully replicate287

their setup in Appendix A.288

4 Evaluating model robustness to289

language290

We explore VIMA’s robustness to changes in the291

multimodal instructions that are different to the292

ones it was trained on. In this section, we provide293

a selected number of results but please refer to294

Appendix B for our comprehensive evaluation.295

4.1 Language Perturbation296

We define two systematic methods to remove infor-297

mation from the language of a fused multimodal298

instruction: Gobbledygook Words (GDGWORDS)299

and Gobbledygook Tokens (GDGTOKENS). As illus-300

trated in Figure 4, both methods remove informa-301

tion regarding the task from the language modality,302

leaving only the visual referents.303

To avoid introducing additional difficulty into304

the tasks, we ensure that the length of the instruc-305

tion is identical to before perturbing for either nat-306

ural language words or the tokenized form. Ta-307

ble 1 further verifies this by indicating that the308

number of words in an instruction does not change309

for GDGWORDS, and the number of tokens does not310

change for GDGTOKENS. From this, we remove the311

for more details on the matter.
5This was modified from the original VIMA-BENCH loss

function to prevent the model from being influenced by the
trajectory length.

# Words # Tokens

Original Instruction 12.9 ± 7.6 20.2 ± 13.6

GDGTOKENS 15.2 ± 9.3 20.2 ± 13.6

GDGWORDS 12.9 ± 7.6 49.7 ± 27.8

Table 1: Average length of the original instructions
before and after transforming them through either
GDGWORDS, or GDGTOKENS.

meaning of the instruction from the natural lan- 312

guage itself. It also allows for checking whether or 313

not the length of the instruction in natural language 314

has any impact on model performance. 315

4.1.1 Experimental Setup 316

Here we concretely define both language perturba- 317

tions that we perform on the language. 318

Gobbledygook Words Let wi = (c1, c2, . . . , cj) 319

represent a word with j characters and each cj is 320

a character from a set A that contains all upper- 321

case and lowercase alphabetical English characters. 322

Given a multimodal prompt p consisting of multi- 323

ple words, we transform the sequence in two steps. 324

First, for each word wi ∈ p, we replace each char- 325

acter with a random one chosen from A to modify 326

every word within the sequence. Secondly, we ran- 327

domly swap the positions of words within the se- 328

quence without changing the position of any visual 329

representations within the sequence. As illustrated 330

in Figure 4, GDGWORDS ensures that the number 331

of characters and “words” within the multimodal 332

prompt—and the number of words between each 333

visual placeholder—does not change. However, the 334

length of the prompt after tokenizing has increased 335

on average because T5 uses a SentencePiece to- 336

kenizer that was trained on natural language text 337

(Raffel et al., 2020). 338

Gobbledygook Tokens The GDGTOKENS method 339

transforms the multimodal prompt by randomising 340

each sub-word unit after tokenizing the instruction 341

with any other token from the vocabulary such that 342

the number of sub-word units is the same as the 343

original instruction. See Figure 4 for an example 344

where an instruction perturbed with GDGTOKENS 345

does not contain any information in the language 346

modality pertaining to the original task. 347

4.1.2 Results and Discussion 348

As we are removing any semblance of well-formed 349

natural language from the instruction across both 350

perturbation methods, we would naturally expect 351
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Figure 4: Language perturbations designed to challenge the robustness of VIMA. GDGTOKENS samples random
words preserving the original sequence length, while GDGWORDS changes the words and intentionally increases the
resulting number of input ids.

Figure 5: Comparison of the average success rate for
each generalisation level when the model is instructed
without any language perturbations, and when perturb-
ing the language through GDGWORDS or GDGTOKENS.

evaluation performance to plummet. However, Fig-352

ure 5 reveals that when a model trained on the origi-353

nal instructions from VIMA-BENCH is exposed to354

the language perturbations, the model is still able to355

perform the task at each generalisation level, with356

little impact on the average performance. Figure 6357

contains some examples where the model still suc-358

ceeds in performing the task, even when provided359

with perturbed language from GDGWORDS.360

More specifically, from examples 1 to 3, the361

model successfully followed through on incompre-362

hensible instructions and successfully performed363

the tasks of identifying the task to perform with the364

stated object of a choice of two, picking it up and365

putting it into a destination. Example 4 indicates366

interesting behaviour: the model incorrectly identi-367

fied the correct object, placed it into the destination,368

picked the second object, and placed it in the desti- 369

nation. This would indicate that the environment 370

has not been made aware of such failures; models 371

are permitted to continue until a catastrophic fail- 372

ure occurs.6 Such a failure is indicated in Example 373

4, where the model picked the object and placed 374

it into the receptacle in a way that resulted in an 375

unsalvageable scenario, potentially due to there not 376

being any other objects for it to keep trying. 377

Surprisingly, Figure 5 also illustrates that when 378

faced with GDGTOKENS, the model performs better 379

on unseen tasks than when given original instruc- 380

tions, with the average success rate on L4 increas- 381

ing from 16.6% to 20% on tasks in L4. This perfor- 382

mance increase implies that the semantic content 383

provided by words somehow inhibits performance 384

when faced with unseen tasks. This phenomenon 385

is evidenced in Table 2, which shows model perfor- 386

mance on tasks from L4. For example, when the 387

model must understand the task from GDGTOKENS, 388

performance on T8—when faced with both a novel 389

noun and a novel adjective for Novel Concept 390

Grounding—is greater than when provided with 391

linguistically and syntactically sound instructions. 392

Our results indicate that the model might be re- 393

lying on the visual referents as these remain un- 394

changed across both perturbations which suggests 395

that the fine-tuning of the T5 encoder might not 396

work congruently. Following this, we consider the 397

6We outline the termination conditions for a given episode
in Appendix A.4.
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T08 T10 T13 T14

Original Instructions 38.5 0.5 0.0 27.5
w/ GDGTOKENS 67.5 0.5 0.0 12.0
w/ GDGWORDS 42.5 0.0 0.0 0.5

Table 2: Evaluation performance of a model trained on
the original instructions from VIMA-BENCH on Novel
Task Generalisation (L4).

Figure 6: Shown above are in-environment observations
seen by the model, showing task performance when
using GDGWORDS. Instructions given to the model are
shown on top of the images, with the images themselves
showing different iterations of either success (top and
bottom images) or failure (middle).

possibility that—as the syntax of the instructions398

in VIMA-BENCH are mostly identical except for399

the visual referents used—the model has learned400

the structure and syntax of an instruction, including401

positions of the visual referents, over the language402

content of an instruction. We study this case in our403

next experimental setup.404

4.2 Paraphrasing Prompts405

Considering that VIMA-BENCH had no diversity406

in their language templates, we explore the impor-407

tance of syntactical and lexical choices by creating408

paraphrases of the original instructions. We do so409

by manually inspecting the instructions and using410

meta-templates to construct variations. Table 4411

shows some example paraphrases generated using412

the meta-templates, and we report further details413

Figure 7: Evaluation performance before and after train-
ing on paraphrases.

Figure 8: Comparison of model performance when
trained on paraphrases and evaluated on language per-
turbations: GDGWORDS and GDGTOKENS.

and analyses in Appendix A.3. 414

Results Figure 7 shows the result of the model 415

before and after training on paraphrases. Success 416

rates for original instructions followed along with 417

expected rates results indicating the highest success 418

rates on L1, followed by L2, L3, and L4, which is 419

to be expected due to the mounting difficulty of the 420

tasks. Paraphrasing performed marginally worse 421

on L1, marginally better on L2, worse on L3 and 422

significantly better on L4. 423

These results showcase that a model trained on 424

additional paraphrased instructions is more success- 425

ful when faced with the most difficult task available 426

in our environment. Although we expect models to 427

generalise better on unseen tasks when trained on 428

paraphrases, we also expect that they should pay 429

more attention to the language instructions because 430

they have to generalise over different linguistic 431

variants during training. 432

However, as shown in Figure 8, these models 433

are still robust to language perturbations as indi- 434

cated by evaluation showing relatively similar re- 435

sults to the paraphrased instructions even though 436

the instructions that they received make no sense in 437

linguistically Figure 4. Additionally, perturbations 438

with GDGTOKENS can even improve the overall per- 439

formance in L3—a negative result which seems 440

common in previous work in VLN as well (Zhu 441
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Figure 9: Evaluation performance across both models
when all visual referents to objects within instructions
have been replaced with natural language text.

et al., 2023).442

Notably, similar to the trend in Figure 5,443

GDGWORDS negatively impacts performance more444

than GDGTOKENS. While the model under-445

performed in all tasks compared to the GDGTOKENS,446

it still performed relatively successfully through in-447

structions that consisted of randomised characters.448

This result implies that even once the meaning449

of the instruction is removed by the perturbation, a450

perturbation that results in the same number of to-451

kens provided to the model is preferable to one that452

increases the overall tokenised instruction length.453

This suggests a potential problem in the absolute454

positional embeddings of the Transformer archi-455

tecture used by VIMA—a problem highlighted by456

Sinha et al. (2022) for Transformer-based Large457

Language Models (LLMs).458

4.3 Do we even need visual referents in459

multimodal instructions?460

Considering that language instructions seem to461

have little impact on model performance, we in-462

troduce perturbations of the visual referents and463

explore how useful they are. As shown by Figure 2,464

a visual referent can either stand for an object or the465

equivalent of a frame from a scene. Therefore, we466

only explore the effect of removing visual referents467

to objects and, as such, limit our evaluation to the468

subset of tasks that only contain object visual refer-469

ents (see Figure 2 for examples). To ensure models470

are given a fair shot during evaluation, we replace471

each visual referent with a natural language alter-472

native. Concretely, as demonstrated in Figure 1,473

for every visual referent that refers to an object,474

we replace it with an adjective-noun pair that also475

uniquely describes the object.476

As shown in Figure 9, regardless of the instruc-477

tion provided to the model, the model is much478

better at generalising across all complexity levels.479

We consider this problem similar to the problem of480

spurious correlation in Visual Question Answering 481

(e.g., (Selvaraju et al., 2019)), where models ig- 482

nore the provided input, and output the most likely 483

answer based on language priors. An additional 484

reason for this suboptimal behaviour is the fact 485

that VIMA finetunes an adapter for multimodal 486

encoding (Tsimpoukelli et al., 2021) using only 487

the action prediction loss. As shown by Liu et al. 488

(2023), a preliminary “alignment pretraining stage” 489

seems to be required to reliably align the visual 490

and language modality for a pretrained language 491

model. 492

5 Conclusion 493

Embodied AI is a field at the intersection between 494

Robotics and NLP whose aim is to create artifi- 495

cial agents that are embodied in an environment 496

and can execute actions to complete a task. Pre- 497

vious work focused on designing agents that can 498

perform both visual navigation and object manip- 499

ulation tasks. However, most of them have some 500

drawbacks in terms of their ability to evaluate the 501

ability of models to generalise to novel concepts 502

or tasks. VIMA-BENCH was proposed to provide 503

the community with a benchmark aimed at assess- 504

ing different levels of systematic generalisation for 505

robotic manipulation tasks. 506

Despite its coverage of tasks, the VIMA- 507

BENCH ignored the role that language plays in 508

Embodied AI tasks. To study this problem in a 509

principled way, we built on top of VIMA-BENCH 510

to propose a well-defined training setup which pro- 511

vides: 1) specific dataset splits to train and evaluate 512

model performance; 2) a training regime to repro- 513

duce the VIMA model. Thanks to this controllable 514

setup, we were able to design an evaluation frame- 515

work aimed at studying the impact of properties 516

of the multimodal prompts on the model’s perfor- 517

mance. Therefore, in this study, we investigate 518

whether models proposed for the VIMA-BENCH 519

challenge are: 1) robust to language perturbations; 520

and 2) robust to visual perturbations. To our sur- 521

prise, we showcase that the VIMA model (Jiang 522

et al., 2023) still perform several tasks of the bench- 523

mark even when provided with gibberish instruc- 524

tions or can perform the task even better when 525

visual referents are replaced with language descrip- 526

tions of the objects. This highlights that there is 527

still a long way to go to create truly multimodal 528

models able to reliably perform multimodal fusion 529

(Ahuja et al., 2017). 530
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6 Limitations & Risks531

In this study, we investigate the robustness of532

Embodied AI models proposed for the VIMA-533

BENCH challenge, a benchmark for robotics ma-534

nipulation tasks. This benchmark proposes several535

tasks aimed at assessing the level of generalisation536

across several axes such as placement generalisa-537

tion and combinatorial generalisation. We consider538

this benchmark as instrumental to analyse the capa-539

bilities of current Vision+Language models. How-540

ever, we recognise that the VIMA-BENCH doesn’t541

cover all possible ranges of tasks and conditions542

that might happen in other benchmarks (e.g., AL-543

FRED) or other real-world scenarios. Therefore,544

we consider our research paper as an important545

milestone in investigating the robustness and gen-546

eralisation of Embodied AI models and we hope to547

have raised awareness about the importance of cre-548

ating ecologically valid and linguistically informed549

Vision+Language benchmarks.550
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A Training details 722

To control for possible confounding variables 723

across all models, we use the same training hyper- 724

parameters from Appendix D in Jiang et al. (2023) 725

and from the various GitHub issues. We report a 726

comprehensive table of hyperparameters in Table 3. 727

All models were trained using 4 NVIDIA A100 728

GPUs for each run, each taking approximately 10 729

hours. Each evaluation run on the environment took 730

approximately 2 hours and did not require the use 731

of any GPUs. Therefore, the total computational 732

budget for this work is 122 hours. 733

A.1 Deviations from VIMA 734

While our training process is similar to Jiang et al. 735

(2023), preliminary experiments showed that using 736

cosine annealing that reduced the LR to the end 737

of the 10th epoch performed better than annealing 738

to 17K steps and training the model at 10−7 for 5 739

epochs. 740

A.2 Dataset Preparation for Training. 741

We start by parsing all 664 976 instances across the 742

13 tasks used for training, provided by Jiang et al. 743

(2023), which contain action trajectories created by 744
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Hyperparameter Value

Dropout 0.1

Optimizer AdamW (Kingma and Ba, 2014)

Weight Decay 0

Maximum Learning Rate 1e-4

Minimum Learning Rate 1e-7

Examples per step (Effec-
tive Batch Size)

128

Warmup steps 7K (896K examples)

Cosine Annealing steps All remaining steps

Training epochs 10

Gradient Clip Threshold 1.0

Table 3: Hyperparameters used during model training.

an oracle; therefore, each trajectory is the optimal745

sequence of movements an agent could perform.746

We create a validation set using stratified sampling747

such that a total of 50 000 instances across all the748

tasks are held out.7 We then prepare each instance749

for training in advance through tokenizing any nat-750

ural language and preparing visual features for the751

model. <table> shows dataset statistics per task,752

per split, and across the entire dataset. We (will)753

release all instances, both before and after prepro-754

cessing, to aid in reproducibility.755

A.3 Paraphrases756

When creating the variations dataset for training,757

the instances are converted and then preprocessed758

in a similar fashion to above. When performing the759

transformation, only the natural language words760

are altered. The observations seen, the actions the761

model must perform, and the instances for each762

train-valid split are unchanged. We provide exam-763

ples of some paraphrased alternatives of the origi-764

nal instruction in Table 4.765

A.4 When does an evaluation episode end?766

During the online evaluation, the episode is over767

when one of two conditions are met:768

1. the model has successfully completed the in-769

struction with the previous action it took; or,770

2. the model has not successfully completed the771

instruction within a maximum of 10 actions.772

A maximum length of 10 actions is longer than773

the default length used by Jiang et al. (2023).774

7Authors state that they held out 50 000 examples for val-
idation on their GitHub: https://github.com/vimalabs/
VIMA/issues/8#issuecomment-1491255242.

B Experimental Results 775

We support all experimental results of our main 776

paper with the per-task success rates for each gen- 777

eralisation level in Tables 5 to 8. In these tables, 778

we have additionally compared performance on the 779

original instructions from the pretrained checkpoint 780

provided by Jiang et al. (2023) on our evaluation 781

setup. 782

B.1 Each task has been sampled 200 times 783

Jiang et al. (2023) claimed to run each task in the 784

environment for 100 steps.8 However, we presume 785

there is some inconsistency in the statement since 786

the reported success rates consist of multiples of 787

"0.5". As a result, we assume that each task was 788

run 200 different times to get a similar result. Li 789

et al. (2023) also sampled 200 instances of each 790

task during evaluation. 791

B.2 Unable to reproduce reported results 792

Jiang et al. (2023) only provided the code for the 793

model and the dataset did not contain a train-test 794

split. After creating a working codebase, we were 795

unable to reproduce the results reported by Jiang 796

et al. (2023) using the provided model checkpoint. 797

We spent several weeks trying to reproduce the 798

results, including consulting the original authors 799

on their experimental setup, but were unsuccessful 800

in doing so. 801

C Reproducibility 802

VIMA-BENCH from Jiang et al. (2023), includ- 803

ing all pre-existing model code, pre-trained check- 804

points, and the environment are licensed under MIT, 805

and all artefacts produced from this work will be 806

released under the same license. 807

8While not reported within the paper, it was mentioned
on their public GitHub repository: https://github.com/
vimalabs/VIMA/issues/16#issuecomment-1622973970.
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Task Original Alternative

1 Put the blue spiral object in {scene} into the wooden object. From the {scene} stack the blue spiral object on the wooden thing.
2 Put the dragged_texture object in scene into the base_texture object. Move objects in the scene so that the dragged_texture item is on one

base_texture item.
3 Rotate the dragged_obj angle_in_degree degrees. Turn the dragged_obj precisely angle_in_degree degrees.
4 Rearrange to this scene. Rearrange things into this setup scene.
5 Rearrange objects to this setup {scene} and then restore. Rearrange objects into this configuration scene and put it back.
6 demo_blicker_obj_1 is kobar than demo_blicker_obj_2.

demo_blicker_obj_3 is kobar than demo_blicker_obj_4. Put the
kobar dragged_obj into the base_obj.

object1 object3 and object5 are all kobar than objects object2 object4
and object6 respectively. move the kobar dragged_obj inside of the
base_obj.

7 This is a blinket dragged_obj. This is a zup base_obj. Put a zup into a
blinket.

This is a blinket object2. this is a zup object1. drop the zup inside of the
blinket.

11 Stack objects in this order: frame1 frame2 frame3. Move objects like this: frame1 frame2 frame3.
16 First put object1 into object2 then put the object that was previously at

its direction into the same object2.
Set object1 in object2 then place the item that was at its direction
before you placed it into the same place.

17 Put object1 into object2. Finally restore it into its original container. Set object1 within object2 then restore it to its original place.

Table 4: Some of the alternative paraphrases generated from the meta-templates.

T01 T02 T03 T04 T05 T06 T07 T09 T11 T12 T15 T16 T17 Overall

Provided Checkpoint (Jiang et al., 2023)
Original Instruction 73.0 46.5 19.0 5.0 6.0 20.5 7.5 2.0 23.0 97.0 1.5 10.0 11.5 24.8
w/ GDGTOKENS 56.0 68.0 22.0 12.0 4.0 81.0 75.0 6.5 14.0 90.0 1.0 6.5 3.5 33.8
w/ GDGWORDS 44.0 16.5 12.0 5.5 2.0 34.0 29.5 0.5 15.5 89.5 0.5 0.0 4.5 19.5
w/ Paraphrases 51.0 37.5 15.5 17.5 3.5 46.0 12.0 1.5 20.0 92.5 0.0 12.5 5.5 24.2
w/ Objects As Text 91.0 — 100.0 — — — 86.5 — — 98.0 9.0 35.0 1.5 60.1
+ w/ GDGTOKENS 78.5 — 28.5 — — — 81.5 — — 94.0 1.0 15.0 6.0 43.5
+ w/ GDGWORDS 97.5 — 23.5 — — — 97.0 — — 93.0 5.5 0.5 2.0 45.6

Trained on Original Instructions
Original Instruction 88.5 72.5 2.5 7.0 1.0 96.5 61.0 1.5 27.5 97.0 65.0 14.0 69.5 46.4
w/ GDGTOKENS 88.5 74.5 1.0 8.5 1.0 91.5 77.5 0.0 27.5 90.5 15.5 12.5 72.0 43.1
w/ GDGWORDS 73.5 70.5 0.5 4.5 2.5 74.5 80.0 0.0 14.0 95.5 1.0 11.5 66.0 38.0
w/ Paraphrases 88.0 69.5 3.5 4.0 2.0 94.0 66.5 0.0 18.0 92.5 36.5 18.5 62.5 42.7
w/ Objects As Text 99.0 — 99.5 — — — 100.0 — — 91.5 99.5 50.5 73.0 87.6
+ w/ GDGTOKENS 97.0 — 14.5 — — — 93.0 — — 91.0 26.0 11.5 70.5 57.6
+ w/ GDGWORDS 99.0 — 10.5 — — — 99.5 — — 90.5 65.5 17.0 8.0 55.7

Trained on Paraphrases
Original Instruction 94.5 86.5 1.0 8.0 0.5 73.0 73.5 1.0 21.5 94.5 65.5 22.5 54.5 45.9
w/ GDGTOKENS 85.5 81.0 0.5 7.5 1.0 81.0 84.0 0.5 23.0 93.0 38.5 18.0 60.5 44.2
w/ GDGWORDS 82.0 81.0 0.5 4.5 2.5 76.5 81.0 0.5 16.0 89.5 21.0 16.5 67.0 41.4
w/ Paraphrases 93.0 84.5 1.0 6.5 2.0 75.0 73.0 0.0 19.5 91.5 53.0 25.0 49.5 44.1
w/ Objects As Text 100.0 — 99.5 — — — 100.0 — — 95.5 99.5 47.0 74.0 87.9
+ w/ GDGTOKENS 94.0 — 6.5 — — — 92.0 — — 92.0 31.0 21.5 63.0 57.1
+ w/ GDGWORDS 99.5 — 12.5 — — — 100.0 — — 88.5 63.5 24.5 2.5 55.9

Table 5: Model evaluation performance at Placement Generalisation (L1) where the exact starting location and
orientation of each object were not seen during training. 200 episodes were sampled for each task, and all results
reported at precision of one decimal place.
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T01 T02 T03 T04 T05 T06 T07 T09 T11 T12 T15 T16 T17 Overall

Provided Checkpoint (Jiang et al., 2023)
Original Instruction 65.0 45.5 19.0 5.5 5.5 30.0 11.5 3.0 15.0 92.5 0.5 12.5 11.0 24.3
w/ GDGTOKENS 50.0 56.5 18.5 4.0 2.5 83.5 75.5 8.5 17.0 90.0 1.5 6.0 8.0 32.4
w/ GDGWORDS 36.5 20.5 12.5 6.0 1.0 36.5 21.0 1.5 13.0 91.0 1.0 0.5 1.5 18.7
w/ Paraphrases 51.5 32.0 15.5 6.5 5.0 52.0 11.0 1.0 20.0 95.0 1.0 11.0 5.0 23.6
w/ Objects As Text 90.5 — 100.0 — — — 88.5 — — 93.0 3.0 34.5 5.0 59.2
+ w/ GDGTOKENS 78.0 — 28.5 — — — 76.5 — — 97.0 1.0 7.5 7.0 42.2
+ w/ GDGWORDS 95.5 — 23.5 — — — 96.5 — — 93.0 4.0 2.0 2.0 45.2

Trained on Original Instructions
Original Instruction 93.0 73.0 1.5 6.5 1.5 93.0 62.0 1.5 32.5 91.0 47.0 17.0 64.0 44.9
w/ GDGTOKENS 86.0 71.5 1.0 7.0 1.5 92.0 84.5 0.0 27.0 92.5 14.0 11.0 70.0 42.9
w/ GDGWORDS 70.0 62.0 0.0 7.5 2.0 78.5 69.0 1.5 10.0 94.0 2.5 12.5 64.0 36.4
w/ Paraphrases 88.0 59.5 2.5 3.5 2.5 91.5 65.0 0.0 14.5 90.5 34.5 21.5 59.5 41.0
w/ Objects As Text 100.0 — 100.0 — — — 100.0 — — 93.5 98.5 45.5 72.0 87.1
+ w/ GDGTOKENS 94.0 — 11.0 — — — 94.5 — — 85.0 20.5 13.5 59.0 53.9
+ w/ GDGWORDS 99.5 — 11.5 — — — 97.5 — — 87.0 63.5 15.0 6.0 54.3

Trained on Paraphrases
Original Instruction 90.5 82.5 0.5 7.0 0.5 89.0 75.5 0.0 23.0 93.0 65.5 22.5 44.0 45.7
w/ GDGTOKENS 83.0 83.5 0.5 5.0 1.5 84.0 82.0 0.5 27.0 91.0 38.5 21.5 48.0 43.5
w/ GDGWORDS 79.0 75.5 0.5 6.0 2.5 82.5 75.5 0.0 17.0 95.0 20.5 20.5 55.0 40.7
w/ Paraphrases 90.5 77.0 1.0 9.5 1.5 91.0 75.0 0.5 17.0 93.0 46.5 24.0 33.5 43.1
w/ Objects As Text 100.0 — 100.0 — — — 99.0 — — 96.5 100.0 46.5 69.0 87.3
+ w/ GDGTOKENS 93.0 — 6.5 — — — 90.5 — — 90.0 29.0 19.5 53.0 54.5
+ w/ GDGWORDS 99.0 — 12.5 — — — 99.5 — — 87.0 62.5 21.0 1.5 54.7

Table 6: Model evaluation performance for Combinatorial Generalisation (L2) where the textures used on a given
object were not seen during training. 200 episodes were sampled for each task and all results reported at precision
of one decimal place.

T01 T02 T03 T04 T05 T06 T07 T09 T11 T15 T16 T17 Overall

Provided Checkpoint (Jiang et al., 2023)
Original Instruction 60.5 49.5 22.0 9.5 5.5 37.0 9.5 1.0 22.0 0.5 5.5 0.0 18.5
w/ GDGTOKENS 42.5 66.0 30.0 9.5 3.5 79.5 66.0 10.0 13.5 0.5 2.0 1.5 27.0
w/ GDGWORDS 36.5 14.0 10.5 4.0 2.0 31.0 25.0 2.0 18.5 0.0 0.0 2.0 12.1
w/ Paraphrases 43.0 35.0 14.0 10.0 6.0 39.0 12.0 1.0 17.0 2.0 5.0 1.0 15.4
w/ Objects As Text 90.5 — 100.0 — — — 89.5 — — 3.0 33.5 1.5 53.0
+ w/ GDGTOKENS 65.0 — 24.0 — — — 70.0 — — 1.0 7.0 0.5 27.9
+ w/ GDGWORDS 91.5 — 27.5 — — — 95.0 — — 3.0 0.0 0.0 36.2

Trained on Original Instructions
Original Instruction 65.5 50.0 1.5 3.5 2.5 78.0 51.0 0.0 28.5 19.0 11.0 1.0 26.0
w/ GDGTOKENS 67.0 51.5 2.0 6.5 1.0 67.0 54.5 0.0 24.0 6.0 9.5 9.0 24.8
w/ GDGWORDS 56.0 44.0 0.5 5.0 2.0 57.0 56.5 0.0 14.0 2.0 5.0 9.0 20.9
w/ Paraphrases 64.0 39.0 1.5 7.5 2.0 70.0 39.0 0.5 20.0 16.0 12.5 0.5 22.7
w/ Objects As Text 99.5 — 100.0 — — — 100.0 — — 98.5 50.0 6.5 75.8
+ w/ GDGTOKENS 73.0 — 6.5 — — — 68.5 — — 6.5 12.5 3.5 28.4
+ w/ GDGWORDS 88.0 — 8.5 — — — 90.0 — — 30.5 7.0 0.0 37.3

Trained on Paraphrases
Original Instruction 63.5 59.5 2.5 6.5 3.5 45.5 48.0 1.5 26.5 31.5 17.5 0.0 25.5
w/ GDGTOKENS 58.5 59.0 4.0 7.0 1.5 61.0 55.0 1.0 30.5 20.5 16.0 0.0 26.2
w/ GDGWORDS 55.0 56.5 0.5 6.0 1.5 52.5 58.5 1.0 14.0 6.5 12.0 0.0 22.0
w/ Paraphrases 68.0 54.5 2.5 8.0 2.0 46.5 51.0 1.0 21.0 21.0 16.5 0.0 24.3
w/ Objects As Text 99.0 — 100.0 — — — 99.0 — — 97.5 55.5 0.5 75.2
+ w/ GDGTOKENS 66.5 — 10.5 — — — 61.5 — — 5.5 7.0 0.0 25.2
+ w/ GDGWORDS 89.0 — 16.5 — — — 89.5 — — 25.0 8.0 0.0 38.0

Table 7: Model evaluation performance for Novel Object Generalisation (L3) where all objects were not seen
during training (and textures may or may not have been seen during training). 200 episodes were sampled for each
task and all results reported at precision of one decimal place.
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T08 T10 T13 T14 Overall

Provided Checkpoint (Jiang et al., 2023)
Original Instruction 9.5 0.0 0.0 1.0 2.6
w/ GDGTOKENS 71.0 0.0 0.0 1.5 18.1
w/ GDGWORDS 15.0 0.0 0.0 0.0 3.8
w/ Paraphrases 11.5 0.5 0.0 0.5 3.1
w/ Objects As Text — 0.0 0.0 3.5 1.2
+ w/ GDGTOKENS — 0.0 0.0 0.5 0.2
+ w/ GDGWORDS — 0.0 0.0 5.0 1.7

Trained on Original Instructions
Original Instruction 38.5 0.5 0.0 27.5 16.6
w/ GDGTOKENS 67.5 0.5 0.0 12.0 20.0
w/ GDGWORDS 42.5 0.0 0.0 0.5 10.8
w/ Paraphrases 40.5 0.0 0.0 21.0 15.4
w/ Objects As Text — 0.0 0.0 99.5 33.2
+ w/ GDGTOKENS — 1.0 0.0 13.0 4.7
+ w/ GDGWORDS — 0.0 0.0 39.5 13.2

Trained on Paraphrases
Original Instruction 45.0 0.0 0.0 51.5 24.1
w/ GDGTOKENS 57.5 0.5 0.0 30.0 22.0
w/ GDGWORDS 52.0 1.0 0.0 21.0 18.5
w/ Paraphrases 54.5 0.5 0.0 44.5 24.9
w/ Objects As Text — 0.0 0.0 99.0 33.0
+ w/ GDGTOKENS — 0.0 0.0 20.5 6.8
+ w/ GDGWORDS — 0.0 0.0 45.5 15.2

Table 8: Model evaluation performance for Novel Task Generalisation (L4), where tasks have not been seen before.
Objects and their textures may or may not have been seen during training. 200 episodes were sampled for each task
and all results reported at precision of one decimal place.
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