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ABSTRACT

Although recent sparse-view scene reconstruction with 3D Gaussian Splatting
(3DGS) like InstantSplat has made significant progress, it still suffers from geo-
metric inconsistencies including floating artifacts, incomplete surface reconstruc-
tion, and unstable Gaussian primitives, which significantly degrade both visual
quality and geometric fidelity. Additionally, the inaccurate camera pose will also
exacerbate these issues. Therefore, we present a novel geometric enhancement
framework for 3DGS including multi-view consistency enforcement and two ge-
ometric regularizations to fundamentally address these limitations. Specifically,
our approach is composed of three key components: Side-view Inconsistency Fil-
tering (SIF) at initialization, Local Depth Regularization (LDR), and Anisotropy-
aware Shape Regularization (ASR) at training. The SIF module mainly leverages
multi-view information to eliminate geometrically inconsistent points, which aims
to reduce floating artifacts and improve surface coherence. LDR enforces spa-
tial consistency by identifying and penalizing regions with high geometric uncer-
tainty through patch-based depth correlation analysis. By controlling the opacity
and scale ratio, ASR can constrain Gaussian primitives to geometrically plausi-
ble shapes, preventing degenerate elongated structures. Extensive experiments on
two widely used datasets demonstrate the effectiveness and superiority of our ge-
ometric enhancement when compared to pose-free methods and even pose-known
baselines.

1 INTRODUCTION

Reconstructing 3D scenes has always been a challenging task in computer vision and has been
widely applied in virtual reality [Kamran-Pishhesari et al.|(2024), autonomous navigation Liao et al.
(2025), and digital content creation Wang et al.| (2023b). Based on Multi-View Stereo (MVS) [Fu-
rukawa & Ponce (2009) and Structure-from-Motion (SfM)|Schonberger & Frahm|(2016), traditional
methods require dense image collections and robust feature correspondences, and thus they will lead
to incomplete reconstructions and significant geometric artifacts in scenarios with a limited number
of viewpoints.

This naturally led to the emergence of sparse-view scene reconstruction. Recently, due to the appli-
cation of Neural Radiance Fields (NeRFs) Mildenhall et al.| (2021)); Barron et al.| (2022)); |Sitzmann
et al.| (2021) and Gaussian splatting (3DGS) [Kerbl et al.| (2023); |Yan et al.| (2024b); [Feng et al.
(2025); [Zuo et al|(2025), significant progress has been made in sparse-view scene reconstruction,
but it remains a formidable challenge. This difficulty stems from the inherently ill-posed nature
of the problem: due to the limited observational constraints, the same set of 2D observations can
correspond to multiple 3D structures, thereby causing inherent ambiguity in geometric estimation,
which serves as an obstacle to achieving high-fidelity scene representations.

As illustrated in the top of Figure |1} floating artifacts are Gaussian primitives that appear in free
space and can not correspond to actual surfaces, which is a particularly thorny issue. Such artifacts
usually arise due to insufficient geometric constraints during the optimization process, causing the
Gaussian primitives to deviate from the true geometry of the scene, thereby resulting in visually
scattered elements to reduce the rendering quality. Another key challenge lies in the incomplete
surface reconstruction, particularly in areas with limited coverage from input views, as evidenced
by the bottom of Figure|l| Since sparse observations provide little information about occluded or
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Figure 1: Visual examples of reconstruction challenges. The top images are: GT and floating arti-
facts, while the bottom images are both for incomplete surface reconstruction.

less-visible regions, the model may fail to place Gaussian primitives correctly, leading to holes or
discontinuities in the reconstructed geometry. Furthermore, the emergence of unstable Gaussians
with implausible shapes, such as overly elongated or flattened distributions, indicates that there are
flaws in the underlying geometric representation. When camera poses are inaccurate, these problems
will be further exacerbated, as misaligned viewpoints will introduce inconsistent spatial cues, often
resulting in repetitive or distorted geometries.

Recent advances with various innovative strategies, including InstantSplat and
MASt3R [Leroy et al] (2024), have demonstrated the feasibility of sparse-view reconstruction via
3DGS techniques even without precise camera poses. However, these approaches often only ad-
dress some individual aspects of the sparse-view problem, they do not provide a comprehensive
solution to the geometric inconsistency for better sparse-view reconstruction. To this end, we pro-
pose a novel and comprehensive Geometric Enhancement framework in 3D Gaussian Splatting
(dubbed GEGS) to systematically address these limitations, which is composed of three comple-
mentary modules. Specifically, Side-view Inconsistency Filtering (SIF) is a preprocessing strategy
performed at initialization, which aims to identify and then remove those geometrically inconsistent
points by leveraging multi-view depth and position consistency, to prevent error propagation and
effectively mitigate floating artifacts from the outset. Then, during the optimization phase, Local
Depth Regularization (LDR) is designed to enforce intra-patch depth coherence. Through analyz-
ing viewpoint-dependent depth correlation within local neighborhoods, LDR penalizes regions with
high uncertainty or inconsistency to enhance surface completeness in under-constrained areas. In the
end, Anisotropy-aware Shape Regularization (ASR) constrains Gaussian primitives to remain within
plausible geometric bounds by regulating scale anisotropy and opacity for effectively suppressing
degenerate shapes that compromise both appearance and geometry.

In a word, we conclude our contributions as follows:

* We introduce a unified geometric enhancement framework with SIF, LDR, and ASR to
improve reconstruction quality by eliminating geometry-ambiguous initializations and en-
forcing geometric coherences at training.

* Our GEGS strategy is compatible with existing pose-free 3DGS pipelines and can be seam-
lessly integrated into current frameworks without requiring additional supervision or pose
refinement.

* Extensive experiments demonstrate that our method consistently outperforms existing
pose-free approaches on multiple datasets by effectively preserving both visual fidelity and
geometric consistency.

2 RELATED WORK

Sparse-view Scene Reconstruction aimed at recovering detailed geometry and appearance of a
given scene from a limited number of input viewpoints. Prior works mainly focused on the regular-
ization strategies of NeRF to solve the sparse-view challenge. For example, FreeNeRF Yang et al.



Under review as a conference paper at ICLR 2026

Predicted Depth Map Depth Map Patches Local Depth
ERES - . . Regularization
— ERE =D || 5.5
ol BRN'RN
I -
Initialization Camera Training

; NA 4

Side-view Inconsistency Filtering

3D G i
ausstans Rendering

IR . i Anisotropy-aware Shape Regularization
—>

—>
° before
depth

Figure 2: An overview of our GEGS pipeline. Following InstantSplat, we employ MASt3R to
perform initialization, and then design SIF to remove redundant and erroneous points. At training,
we jointly optimize with our novel regularizations: LDR enforcing local consistency, and ASR
penalizing elongated Gaussians to improve geometric compactness.

employed frequency regularization to constrain the spectrum of learned radiance fields, and
RegNeRF Niemeyer et al.|(2022) combined with the constraints of depth smoothness and appear-
ance consistency. The following methods like SparseNeRF|[Wang et al.|(20234), utilized multi-scale
training with depth-guided sampling to improve convergence in sparse settings. Meanwhile, 3DGS
brought new opportunities and challenges for sparse-view reconstruction. For instance, FSGS
(2024) demonstrated real-time few-shot view synthesis by incorporating specialized initializa-
tion strategies and adaptive densification on regions with sufficient observational support. DNGaus-
sian addressed scale ambiguity through global-local depth normalization, ensur-
ing consistency between depth estimates and 3D Gaussian representations. CoR-GS
(2024)) proposed a co-regularization framework that enforces consistency between multiple geomet-
ric representations, while DropGaussian tackled structural regularization through
strategic Gaussian elimination during training.

While they focus on individual geometric ambiguities, our GEGS strategy addresses the issue of
geometric inconsistency from multiple perspectives both during initialization and training stages.

Pose-free Neural Renderings. The requirement for accurate camera poses significantly limits the
applications of neural rendering. Despite the success in camera parameters estimation by tradi-
tional SfM methods such as COLMAP [Schonberger & Frahm| (2016)), they often fail in sparse-view
scenarios due to insufficient feature correspondences or challenging imaging conditions. Bundle-
Adjusting Neural Radiance Fields (BARF) pioneered the pose-free reconstruction
by jointly optimizing camera poses and neural radiance fields with a coarse-to-fine strategy that
gradually increases the frequency components of positional encodings. On the shoulder of BARF,
several subsequent works explored different aspects of pose-free neural rendering. GARF
(2022) handled more challenging scenarios with larger pose uncertainties based on bundle
adjustment. NoPe-NeRF incorporated monocular depth estimation as additional
supervision to better estimate pose. CF-NeRF Yan et al.| progressively added new views to
jointly optimized poses and scene representation. A concurrent work of CF-3DGS (2024)
first attempted to eliminate the COLMAP dependency in Gaussian Splatting by jointly optimizing
camera poses and Gaussian parameters, which demonstrated that the explicit nature of Gaussian
representations can facilitate pose estimation through direct geometric alignment of Gaussian cen-
ters across frames. Recently, InstantSplatFan et al | leverages a pre-trained multi-view stereo
network by MASt3R |Leroy et al.| (2024) to initialize geometric estimates, and then achieves rapid
sparse-view reconstruction even without SfM preprocessing. The method demonstrates significant
speedup compared to traditional SEIM+3DGS pipelines while maintaining competitive reconstruction
quality.

Moreover, our GEGS comprehensively assures geometric consistency from several aspects to en-
hance the rendering quality under the pose-free condition.
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3 METHOD

3.1 PRELIMINARY

Unlike NeRF Mildenhall et al.| (2021)), 3DGS [Kerbl et al.| (2023) explicitly represents a given scene
as a collection of anisotropic 3D Gaussian primitives. Each primitive encodes both geometric and
appearance attributes, and is directly optimized through differentiable rasterization. Each Gaussian
primitive G; is parameterized by its 3D center u; € R?, a positive semi-definite covariance matrix
3, € R3*X3, opacity «; € [0,1], and view-dependent color coefficients represented via spherical
harmonics (SH) |Greenl (2003)). The Gaussian density function is defined as:

Gulx) = exp(— g (x — 1) TS (x — ). n

To ensure numerical stability and positive semi-definiteness, the covariance matrix X; is parame-
terized through eigendecomposition: 3; = RiSZ-SiT R,L-T , where R; € SO(3) is a rotation matrix
controlling the orientation of the Gaussian ellipsoid, and S; = diag(s?, s?, s7) is a diagonal scaling

1751 %
matrix with s7, s¥, s7 > 0 representing the semi-axes lengths along the principal directions.

For differentiable rendering, 3D Gaussians are projected onto the image plane using the camera
projection matrix P € R3*%. The 2D covariance matrix X/, for the projected Gaussian is computed
as: B! = JWX,WTJT, where J is the Jacobian of the projection transformation at g;, and W
is the world-to-camera transformation matrix |Hartley & Zisserman|(2003). The final pixel color C),
at pixel p is computed through alpha compositing over all contributing Gaussians sorted in front-to-
back order:

N i—1
Cp :ZCiOLiH(lfOZj), (2)
i=1 j=1

where c; represents the color contribution of the ¢-th Gaussian, and ¢; is its opacity after projection.

When the number of input views is severely limited, the reconstruction accuracy of 3DGS degrades
significantly due to insufficient geometric constraints. Previous approaches [L1 et al.|(2024); Zhang
et al.|[ (2024)) have attempted to address this by incorporating global depth priors during training,
typically formulated as:

L3dgs = M\ ||C = Cll1 + Ao Lp.ssu(C, C) + Mg d(D, D)1, 3)

where C and C denote the ground truth and rendered images respectively, D and D represent the
corresponding depth maps, and d(-) is a depth consistency metric. Aforementioned, these methods
typically require accurate camera poses by Structure-from-Motion (SfM) preprocessing|Schonberger,
& Frahm)|(2016)), which limits their applicability in practical scenarios only available with sparse and
uncalibrated images.

3.2 OUR GEGS APPROACH

Based on the recent pose-free strategy InstantSplat Fan et al.| (2024)), we propose a novel geometric
enhancement framework to systematically address the issue of geometric inconsistency in sparse-
view 3DGS reconstruction. As illustrated in Figure[2] our GEGS strategy consists of three key com-
ponents that operate at different stages in the reconstruction. Following InstantSplat, we first employ
a pre-trained multi-view stereo network like MASt3R [Leroy et al.|(2024) to provide initial geometric
estimations, which treats image matching as a 3D reconstruction problem by learning dense corre-
spondences and 3D scene understanding simultaneously. Then, Side-view Inconsistency Filtering
(SIF) is designed to identify and then remove those geometrically inconsistent initializations. Dur-
ing the optimization phase, Local Depth Regularization (LDR) will further penalize regions with
high uncertainty or inconsistency to enhancing surface completeness in under-constrained areas. In
the end, Anisotropy-aware Shape Regularization (ASR) constrains Gaussian primitives to remain
within plausible geometric bounds.

Side-view Inconsistency Filtering. At initialization, MASt3R |Leroy et al.| (2024) may produce
depth estimation errors, especially in areas with limited texture or ambiguous geometry |Godard
et al. (2019). These errors manifest as inconsistent depth predictions across different viewpoints,
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Table 1: Comparison of average PSNR, SSIM, and LPIPS with different methods on the Tanks and
Temples dataset. The best results for pose-free methods are highlighted in bold.

PSNR? SSIM?T LPIPS|
12-view 6-view 3-view 12-view 6-view 3-view [2-view 6-view 3-view
COLMAP+3DGS  30.01 25.33 18.24 0.917 0.808  0.601 0.095 0.171 0.348

Method

Posesknown oyl NAPLESGS 3017 2570 1988 0914 0814 0638 0099  0.169  0.302
NoPe-NeRF 1722 1556 1489 0582 0496 0444 0411 0516  0.587
Posefrce _CF-3DGS 2177 1960 1627 0681 0613 0554 0272 0293 0335
InstantSplat-XL 2851 2535 2359 0883 0849 0753 0.106 0121 0.188
+GEGS 3022 2786 2370 0926 0872 0764  0.093 0100 0.174

which lead to floating artifacts and geometric instabilities if directly used for Gaussian initialization,
evidenced by Figure [I] Thereby, SIF leverages cross-view geometric consistency to identify and
remove erroneous points. For a given reference view i with point cloud P; = {pi}, we project
each point into all other views j # i and compare the projected depth with the corresponding depth
prediction from MASt3R. Then, the side-view filtering for removing erroneous points from view ¢
can be formulated as:

_ [ 1 if Dy (x; (Py) =D (m; (Py)] > 6,
M; = { 0 0th|er\ZviseJ, T | @
P, = (1-M,)-P;, )

where 7,(-) denotes projection into view j, D; is the reference depth in view j, and ﬁj is the
projected depth. The final mask M, filters out points with large cross-view depth inconsistencies to
reduce initialization noise and prevent error propagation during subsequent optimization.

Local Depth Regularization. Previous works Zhu et al| (2024) utilized global depth priors to
successfully improve 3DGS, while often insufficient in capturing fine-grained details of complex
scenes containing multiple objects. Inspired by DNGaussian [Li et al.| (2024), we propose a local
depth regularization strategy to enforce consistency at a finer spatial granularity. Specifically, we
first use a pre-trained monocular depth prediction model to estimate per-pixel depth map DP for the
training views. Then for each view ¢, we obtain the rendered depth map D' from our current 3DGS
model, and divide both the predicted and rendered depth maps into K non-overlapping patches.
Finally, we compute the Pearson correlation coefficient p;, for each patch &, and define a global
similarity threshold pgjobal as the Pearson similarity over the full image. Patches with local similarity
Pr < Palobal are considered inconsistent to be included in the local depth loss:

Cov(D:,DF
> willpxlly s ox = CovDi; D) (6)

1
‘S| kes A /‘/(J//']:)rk‘/(J/f']:y;v ,

where S = {k | pr. < pglobal} is the set of selected inconsistent patches, and wy, is a linearly assigned
weight proportional to the severity of inconsistency (i.e., lower pj receives higher weight). This loss
encourages the model to focus on local regions with the most significant errors, thereby improving
the reconstruction quality of fine-grained details.

Ligr =

Anisotropy-aware Shape Regularization. In sparse-view scenarios, unconstrained optimization
of 3D Gaussians often leads to degenerate shapes, particularly overly elongated Gaussians that span
large spatial regions without corresponding to actual scene geometry [Yu et al.| (2024). These ar-
tifacts not only impair geometric interpretability but also lead to training instability and floating
artifacts in novel view synthesis. To this end, ASR is designed to explicitly couple the opacity and
shape characteristics of each Gaussian primitive. The key insight is that a Gaussian with extreme
anisotropic shape should either reduce its opacity to minimize its visual impact or contract towards a
more regular, isotropic form. Specifically, for each Gaussian ¢, we first compute its shape anisotropy
ratio: 7; = s /sInwhere s = max(s?, s?, s7) and s = min(s?,s?, s7) represent the
maximum and minimum scaling factors along the principal axes respectively.

We then define a shape-dependent penalty weight using a smooth activation function: w; = o(7(r; —
T)), where o(-) is the sigmoid function, 7 > 0 is a temperature parameter to control the sharpness
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Table 2: Comparison of average PSNR, SSIM, and LPIPS with different apporaches on the
MVImgNet dataset. The best results for pose-free methods are highlighted in bold.

PSNR? SSIM?T LPIPS|
12-view 6-view 3-view 12-view 6-view 3-view [2-view 6-view 3-view
COLMAP+3DGS  23.11 18.98 14.72 0.712 0.618 0313 0.216 0.390  0.529

Method

Pose-known -1 \APLFSGS 2431 2166 1668 0798 0706 0544 0215 0309 0462
NoPe-NeRF 1641 1588 1482 0492 0463 0447 0423 0517  0.588
Posefree _ CF-3DGS 1879 1751 1695 0632 0581 0527 0378 0424 0431
InstantSplat-XL 2351 2178 1811 0738  0.685 0.563 0241 0276  0.349
+GEGS 2462 2251 1920 0778 0.698 0.583 0216 0260 0.334

of transition, and 7" > 1 defines the acceptable level of anisotropy. Thus, the shape regularization
loss is formulated as:

1 N
—_ PN 2
Lasr = N ;:1 w; - o, @)

where N is the total number of Gaussians and «; is the opacity of the i-th Gaussian. This formulation
creates a dynamic trade-off: the penalty weight w; increases as r; becomes large (indicating high
anisotropy), which reversely encourages the optimizer to reduce «; towards zero. Conversely, to
maintain high opacity «;, the Gaussian must adopt a more balanced shape.

Training Objective. After SIF is performed at initialization, we combine the standard 3D Gaussian
Splatting reconstruction loss L3445 With our proposed regularization terms, formulated as:

L= £3dgs + )\ldrﬁldr + )\asrﬁasr; 3

where )\, are aimed at balancing the different contributions.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets. We conduct comprehensive experiments on two widely used multi-view datasets to thor-
oughly evaluate our effectiveness and generalization, as these datasets provide diverse scenarios with
varying geometric complexity, lighting conditions, and scene types.

Tanks and Temples Dataset [Knapitsch et al.| (2017)) consists of 8 challenging scenes: Ballroom,
Bran, Church, Family, Francis, Horse, Ignatius, and Museum. The dataset features both indoor
and outdoor environments with complex geometric structures and reflective surfaces. Each scene
contains 150-300 images captured with calibrated cameras, and provides camera poses and intrinsic
parameters.

MVImgNet Dataset Yu et al.|(2023) includes 7 outdoor scenes featuring diverse object categories:
Bench, Bicycle, Car, Chair, Ladder, SUV, and Table. MVImgNet provides a challenging benchmark
with varying lighting conditions, object scales, and scene complexities. The images captured under
natural lighting conditions. Unlike Tanks and Temples, MVImgNet focuses on object-centric scenes,
allowing evaluation on different types of geometric structures.

Evaluation Protocol. To ensure fair and comprehensive evaluation under sparse-view settings, we
adopt a systematic sampling strategy as InstantSplat|Fan et al.|(2024)). For each scene, we uniformly
sample 12 images as the testing set for novel view synthesis evaluation. From the remaining images,
we further uniformly sample 3, 6, or 12 views as the training set to evaluate performance under
different levels of view sparsity. Three standard metrics are used for quantitative evaluation. Peak
Signal-to-Noise Ratio (PSNR) measures pixel-level reconstruction accuracy with higher values in-
dicating better quality. Structural Similarity Index Measure (SSIM) Wang et al.[(2004) evaluates
perceptual similarity between rendered and ground truth images, considering luminance, contrast,
and structure. Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018) assesses
perceptual quality using deep features, with lower values indicating better perceptual fidelity.
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4.1.1 IMPLEMENTATION DETAILS

Our implementation is based on the PyTorch framework and all experiments are conducted on a
single NVIDIA RTX 3090 GPU. In the initialization stage, we employ MASt3R with an input reso-
lution of 512, and utilize the cupy library to accelerate initialization. The threshold § for Side-view
Inconsistency Filtering is set to 0.1. During the optimization stage, we train the model for 5000 iter-
ations. The patch size for LDR is set to 13 x 13 pixels, and predicted depth maps are obtained using
Depth Anything V2 Large [Yang et al.| (2024), a monocular depth estimation model that provides
reliable depth priors across diverse scene types. The patch weights are assigned by linear interpola-
tion between 1.0 and 2.0. For the ASR, the temperature coefficient 7 is set to 1.0 and the anisotropy
threshold 7" is set to 5.0. The base reconstruction loss L34 follows the same configuration as pre-
vious works (2024). The weight A4, for the LDR term is set to 0.3, while the value of
Aasr 1s set to 1.0. For fairness, all other unspecified settings are consistent with InstantSplat

et all] (2024).

Figure 3: Visual comparison of initial point clouds with/out our SIF in the Bench scene, The images
from left to right are GT, GT w/o SIF, GT with SIF, respectively.

4.2 EXPERIMENTAL RESULTS

We compare our GEGS method with several representative baselines published recently, including
both pose-known and pose-free approaches. Specifically, 3DGS and FSGS are utilized by COLMAP
to estimate accurate camera poses from the complete image set, and then sample sparse views as
input for training. In contrast, Nope-NeRF, CF-3DGS, InstantSplat-XL, and our GEGS method are
all pose-free methods that do not require to access accurrate camera poses. We report the detailed
results in Table [T] and Table 2] respectively. A thorough analysis of these tables can easily lead to
the following important conclusions:

1) For the dataset of Tanks and Temples, we can achieve better performance when compared with/
without the pose information across all different view inputting. Specifically, we can obtain an im-
provement up to 1.71dB at the metric of PSNR under 12-view input setting over the strongest base-
line of InstantSplat-XL [Fan et al|(2024). Similarly, performance enhancements were also observed
in other metrics to varying degrees, such as from 0.883 to 0.926 in SSIM, and from 0.106 to 0.093
in LPIPS. Even under more challenging sparse view conditions of 6 or 3 inputs, our reconstruction
quality can also improve remarkably, especially on the evaluations of SSIM and LPIPS.

2) On MVImgNet, the consistent and continuous performance uptrend can also be observed, with
1.11dB, 0.040, 0.025 improvements over InstantSplat-XL. under 12-view conditions on PSNR,
SSIM, LPIPS, respectively. Under the conditions of 6-view- and 3-view, the performance still
showed a significant improvement, which indicates the effectiveness and superiority of our geo-
metric enhancement framework in sparse viewpoint scene reconstruction.

3) Even compared with pose-known methods, our geometric enhancement without pose informa-
tion renders comparable or even superior performance to pose-known baselines in almost scenarios.
On Tanks and Temples with 12 views, our method (30.22dB PSNR) outperforms COLMAP+3DGS
(30.01dB) and is marginally ahead of COLMAP+FSGS (30.17dB). This indicates that our geomet-
ric enhancement strategy can effectively compensate for the lack of accurate pose information by
improving geometric consistency constraints.

In summary, the quantitative comparisons provided in Tables [T]and 2] comprehensively demonstrate
that our GEGS strategy can win the pose-free SOTA method at different levels of view sparsity in
all evaluation metrics. Even when compared with methods that require pose information, our GEGS
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CF-3DGS InstantSplat-XL Ours Ground Truth

Figure 4: Visualized examples comparisons under 12-view input. Image sources, the first
two:MVImgNet, and the third: T&T. The red boxes and their zoom in indicate that our recon-
structions are with clearer geometric details and fewer artifacts.

still presents advanced performance, albeit to a lesser extent. All of these gains can be attributed to
our geomentric consistnecy enhancements from different perspectives at initialization or training.

4.3 FURTHER ANALYSIS

Ablation Studies are solidly carried out on the MVImagNet dataset under 12-view input setting to
investigate the effectiveness of each component in our GEGS framework from three aspects: (1)
the impact of Side-view Inconsistency Filtering on the initialization quality and final reconstruction
performance; (2) the contribution of Local Depth Regularization to the reconstruction quality; and
(3) the effect of Shape Regularization on the final results.

Table 3: Ablation study of each component on the MVImgNet dataset under the 12-view setting.

SIF ASR LDR PSNRt SSIMt LPIPS|

23.51 0.738 0.241
24.18 0.761 0.230
23.89 0.752 0.235
24.05 0.756 0.232
24.32 0.769 0.222
24.56 0.773 0.219
24.62 0.778 0.216

NS X XN\ %
N X N\ X\ X% X%
SN X N X X X

We present the results of our ablation study in Table[3] When our SIF is integrated into the baseline,
notable improvements on PSNR (+0.67dB), SSIM (+0.023) and LPIPS (-0.009) can be obtained,
which indicates the importance of high-quality initialization for subsequent optimization. It can be
further demonstrated by Figure[3] where SIF can obviously reduce noise and outliers in the initial-
izations of point cloud. Benefiting from ASR’s suppression on the degenerate of Gaussian primitives
and its enhancement on geometric consistency, the continous combination will bring about further
improvements by achieving at 24.32dB for PSNR. The better performance observed on the integra-
tion of LDR and SIF indicates the superiority of LDR to ASR in fine geometric alignment. Finally,
the effective ensemble of the proposed three novel components can help the baseline to achieve the
optimal performance, highlighting their complementary advantages in achieving a balance between
initialization quality and geometric consistency.

Parameter Analysis. To better understand the effectiveness of our GEGS method, we continue
to analyze the sensitivity of two weight coefficients \;4- and A\, for different geometric regu-
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Table 4: Effect on weight of Local Depth Regularization (MVImgNet, 12-view input).

\ MVImgNet 12-view
| PSNRT  SSIM{  LPIPS]

0.01 | 24.36 0.769 0.215
0.02 | 2454 0.772 0.209
0.03 | 24.56 0.774 0.214
0.05 | 24.28 0.767 0.231
0.07 | 24.33 0.771 0.211
0.10 | 24.35 0.770 0.212

Aldr

Table 5: Effect on weight of Anisotropy-aware Shape Regularization (MVImgNet, 12-view input).

\ \ MVImgNet 12-view
| PSNRT SSIMT LPIPS|

0.05 | 2424 0.765 0.230
0.10 | 24.29 0.769 0.221
0.30 | 24.26 0.767 0.228
0.50 | 24.31 0.768 0.223
1.00 | 24.32 0.769 0.222
1.50 | 24.29 0.765 0.226

larizations, as displayed in Eq. [§] We set different numerical range for them according to their
function,such as [0.01,0.1] for ;g and [0.05,1.5] for A\,s,, respectively. We fix the value of the
selected parameter and search the best value of the left one, which could dynamically reflect our
performance under different evaluation metrics.

From the detailed results in Table [4] and Table [3] we can observe that under all the metrics, the
performance boosts as two coefficients rise up, and arrive at the peak when A4, = 0.03 (24.56dB
PSNR) and A\,s = 1.00, respectively. Then the performance declines constantly when continuously
increasing the values of the weights. Therefore, we obtain the optimals for different coefficients.

Visualizations. To better demonstrate our superiority on tackling geometric inconsistencies, we
perform several visualizations of reconstructions results in MVImgNet under 12-view input between
our GEGS method and two pose-known methods, one pose-free approach. As displayed by figure4]
our reconstruction quality are obviously better than the counterparts regardless of pose-known or
pose-free strategy. For better understanding, we marked the local visuasizations in red rectangles.
We attribute the improvement in reconstruction quality to the fact that our GEGS method can sig-
nificantly reduce the geometric inconsistency.

5 CONCLUSION

In this paper, we presented a geometric enhancement framework in 3D Gaussian Splatting termed
GEGS that addresses the challenges of sparse-view scene reconstruction without requiring pre-
computed camera poses. Specifically, our method introduces three key components: Side-view In-
consistency Filtering for robust initialization, Local Depth Regularization for fine-grained geometric
consistency, and Anisotropy-aware Shape Regularization for preventing degenerate Gaussian prim-
itives. Extensive experiments on two widely used datasets demonstrate that our approach achieves
a new bar of performance over existing pose-free methods with +1.71dB PSNR improvement under
12-view conditions and even larger gains under more challenging sparse-view scenarios. More im-
portantly, our pose-free method can achieve comparable or even leading performance to pose-known
baselines in several cases, highlighting the effectiveness of our geometric enhancements.

In future work, we plan to enhance the robustness under extreme sparse-view conditions by incor-
porating semantic priors or large-scale vision foundation models.
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