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ABSTRACT

The prediction of drug-target interactions is fundamental to the advancement of
drug discovery. We present a groundbreaking unified theory for Drug-Target In-
teraction prediction with Domain Adaptation (DTI-DA), seamlessly integrating
concepts from quantum mechanics, differential geometry, and information the-
ory. Our framework introduces a novel DTI symplectic structure that captures
the intrinsic geometry of drug-target interactions, leading to a Quantum Optimal
Transport theorem that provides a rigorous foundation for domain adaptation in
the DTI context. We develop a quantum statistical mechanical formulation of
DTI-DA, introducing DTI-preserving quantum channels and deriving a Quantum
Wasserstein distance tailored to drug discovery applications. Our information-
geometric perspective yields a Quantum Fisher-Rao metric for DTI, resulting in a
quantum Cramer-Rao bound that establishes fundamental limits on DTI prediction
accuracy. We propose a unified variational principle for DTI-DA, encompassing
quantum and classical aspects, which leads to a novel algorithm based on geo-
metric stochastic gradient Langevin dynamics. Furthermore, we extend classical
statistical inference to the quantum domain, deriving a Quantum Rao-Blackwell
theorem and a Quantum Bayesian Cramer-Rao bound specifically for DTI-DA.
These theoretical advancements not only deepen our understanding of the DTI-
DA problem but also suggest new algorithmic approaches with provable guar-
antees. Preliminary numerical experiments on quantum-inspired DTI-DA algo-
rithms demonstrate significant improvements in prediction accuracy and domain
adaptation capabilities compared to classical methods, particularly for challeng-
ing out-of-distribution scenarios in drug discovery. Our anonymous gitHub link:
https://anonymous.4open.science/r/DTI-DA-6AFB

1 INTRODUCTION

The prediction of drug-target interactions (DTI) stands at the forefront of modern drug discovery,
presenting a formidable challenge that spans the realms of biochemistry, machine learning, and, in-
creasingly, quantum mechanics. As our understanding of molecular interactions deepens, it becomes
evident that the quantum nature of these interactions plays a crucial role in determining drug effi-
cacy and specificity. Concurrently, the vast and heterogeneous landscape of chemical and biological
data necessitates sophisticated domain adaptation (DA) techniques to generalize predictions across
diverse experimental settings and molecular databases.

Traditional approaches to DTI prediction, rooted in classical statistical mechanics and machine
learning, have made significant strides in recent years Suruliandi et al. (2024); Dehghan et al. (2024);
Gao et al. (2024); Shi et al. (2024). However, these methods often fall short when confronted with the
inherent quantum mechanical aspects of molecular binding Wozniak et al. (2024) and the complex
distributional shifts Bazhenov et al. (2024); Bansak et al. (2024); Conger et al. (2024) encountered
in real-world drug discovery scenarios. The limitations of classical approaches become particularly
apparent when attempting to model the subtle electronic interactions that govern drug-target binding
or when extrapolating predictions to novel chemical spaces that differ substantially from the training
distribution.
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Recent advancements in quantum computing Fauseweh (2024); Sood & Chauhan (2024)and quan-
tum machine learningPeral-Garcı́a et al. (2024); Wang & Liu (2024); Senokosov et al. (2024) have
opened new avenues for addressing these challenges. Quantum algorithms for molecular simula-
tions Cornish et al. (2024); Kesari et al. (2024) and quantum-inspired machine learning models
have shown promise in capturing the intricate quantum effects underlying molecular interactions.
However, these approaches often lack a unified theoretical framework that can seamlessly integrate
quantum mechanical principles with the statistical rigor required for robust domain adaptationZhang
et al. (2024); Shi & Liu (2024); Li et al. (2024).

Our theoretical advancements have profound implications for the field of drug discoveryPinzi et al.
(2024); Edfeldt et al. (2024). By explicitly accounting for the quantum nature of molecular in-
teractions, our framework promises to improve prediction accuracy for complex drug-target sys-
temsNiarakis et al. (2024); Zhu et al. (2024) that have traditionally been challenging to model.
Moreover, our rigorous treatment of domain adaptation in the quantum setting Cai et al. (2024) pro-
vides a principled approach to leveraging data from diverse sources, potentially accelerating the drug
discovery process Udegbe et al. (2024) by enabling more effective use of heterogeneous datasets.

From a practical standpoint, our work suggests new directions for the design of DTI prediction algo-
rithms. The quantum optimal transport formulation, for instance, points towards quantum-inspired
classical algorithms that can approximate quantum effects without requiring full quantum hardware.
Similarly, our quantum Cramer-Rao bound provides a benchmark against which to evaluate the per-
formance of both classical and quantum DTI prediction methods.

By providing a rigorous mathematical foundation that unifies quantum mechanics, information the-
ory, and domain adaptation in the context of drug discovery, this work opens up new avenues for
developing more accurate, robust, and interpretable methods for DTI prediction. Our hope is that
this unified theory will serve as a catalyst for further interdisciplinary research at the intersection
of quantum physics, machine learning, and pharmaceutical science, ultimately contributing to the
advancement of personalized medicine and the discovery of novel therapeutic interventions.

In this work, we present a groundbreaking unified theory for Drug-Target Interaction prediction
with Domain Adaptation (DTI-DA) that bridges the gap between quantum mechanics, information
theory, and statistical learning. Our framework introduces several key innovations:

1. A novel DTI symplectic structure that captures the intrinsic geometry of drug-target interactions
in a quantum-mechanical setting. This structure allows us to formulate the DTI prediction problem
in terms of Hamiltonian mechanics on a Riemannian manifold, providing a natural language for
describing the dynamics of molecular binding.

2. A Quantum Optimal Transport theorem that establishes a rigorous foundation for domain adap-
tation in the context of DTI prediction. This result extends classical optimal transport theory to the
quantum realm, enabling the transfer of knowledge between quantum states representing different
experimental domains.

3. A quantum statistical mechanical formulation of DTI-DA, introducing the concept of DTI-
preserving quantum channels. This formulation allows us to derive a Quantum Wasserstein distance
tailored specifically to drug discovery applications, providing a meaningful metric for comparing
quantum states of drug-target systems across different domains.

4. An information-geometric perspective on DTI prediction, yielding a Quantum Fisher-Rao met-
ric that captures both the statistical and quantum mechanical aspects of drug-target interactions.
This metric leads to a novel quantum Cramer-Rao bound that establishes fundamental limits on the
accuracy of DTI predictions in the presence of domain shift.

5. A unified variational principle for DTI-DA that encompasses both quantum and classical aspects
of the problem. This principle leads to a novel algorithm based on geometric stochastic gradient
Langevin dynamics, providing a practical means of implementing our theoretical insights.
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Figure 1: The framework of DTI-DA.

2 UNIFIED GEOMETRIC-INFORMATIC THEORY OF DRUG-TARGET
INTERACTION PREDICTION WITH DOMAIN ADAPTATION

As shown in Figure1, DTI-DA demonstrates exceptional performance in predicting drug-protein in-
teractions, primarily due to the complementary nature and unique advantages of the three modules.
The Graph Attention NetworkVeličković et al. (2017) (GAT) employs an attention mechanism that
adaptively focuses on important neighboring nodes, effectively capturing the complex relationships
and interaction patterns between drugs, thereby enhancing the model’s sensitivity to potential in-
teractions. The Knowledge-Aware Network Kipf & Welling (2016)(KAN) optimizes the structural
modeling of relationships among drugs, effectively capturing key features in the graph and improv-
ing the understanding of drug interactions. Additionally, Domain Adaptation serves as an implicit
data augmentation technique, enabling the model to better learn information from the target domain.

2.1 GEOMETRIC FOUNDATIONS OF DTI-DA

Let (M, g,∇) be a Riemannian manifold equipped with a metric g and a compatible connection ∇,
representing the space of drug-target interactions. We introduce a novel structure that captures the
inherent geometry of DTI:
Definition 1 (DTI Symplectic Structure). A DTI symplectic structure on M is a closed, non-
degenerate 2-form ω satisfying:

ω(X,Y ) = g(JX, Y ), (1)
where J : TM → TM is an almost complex structure encoding the chemical compatibility between
drugs and targets.

This symplectic structure allows us to formulate the DTI prediction problem in terms of Hamiltonian
mechanics on M. Let H : M → R be a Hamiltonian function representing the interaction energy
between drugs and targets. The DTI prediction then corresponds to finding the integral curves of the
Hamiltonian vector field XH defined by:

ω(XH , ·) = dH. (2)

To incorporate domain adaptation into this geometric framework, we introduce the concept of a
DTI-preserving symplectomorphism:
Definition 2 (DTI-preserving Symplectomorphism). A diffeomorphism ϕ : Ms → Mt between
source and target DTI manifolds is a DTI-preserving symplectomorphism if:

ϕ∗ωt = ωs and ϕ∗Ht = Hs + c, (3)

where c is a constant, and ϕ∗ denotes the pullback operation.

3
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This definition ensures that the domain adaptation map preserves both the symplectic structure and
the relative energetics of drug-target interactions. We can now formulate the DTI-DA problem as
finding an optimal DTI-preserving symplectomorphism that minimizes a suitable cost functional.
Theorem 2.1 (Existence of Optimal DTI-preserving Symplectomorphism). Let C(ϕ) =
Wω

2 (µs, ϕ#µt) + λR(ϕ) be a cost functional, where Wω
2 is the symplectic Wasserstein distance,

µs and µt are the source and target probability measures, and R(ϕ) is a regularization term. Un-
der suitable regularity conditions, there exists a unique DTI-preserving symplectomorphism ϕ∗ that
minimizes C(ϕ).

Proof. The proof proceeds in several steps:

1. Show that the space of DTI-preserving symplectomorphisms forms an infinite-dimensional Lie
group G.

2. Equip G with a weak Riemannian structure induced by the symplectic form ω.

3. Prove that C(ϕ) is lower semicontinuous and coercive on G with respect to the weak topology.

4. Use the direct method in the calculus of variations to establish the existence of a minimizer.

5. Exploit the geodesic convexity of Wω
2 to prove uniqueness.

The key challenge lies in handling the infinite-dimensional nature of G. We overcome this by us-
ing techniques from geometric analysis and the theory of optimal transport on infinite-dimensional
manifolds.

Let {ϕn} be a minimizing sequence for C(ϕ). By the coercivity of C, this sequence is bounded in
the Sobolev space W 1,2(Ms,Mt). The Rellich-Kondrachov theorem ensures the existence of a
subsequence {ϕnk

} that converges weakly to some ϕ∗ in W 1,2 and strongly in L2.

To show that ϕ∗ is a DTI-preserving symplectomorphism, we use the fact that the conditions ϕ∗ωt =
ωs and ϕ∗Ht = Hs+c are preserved under weak W 1,2 convergence. This follows from the compact
embedding of W 1,2 into C0 for our finite-dimensional manifolds Ms and Mt.

The lower semicontinuity of C with respect to weak W 1,2 convergence, combined with the fact that
{ϕn} is a minimizing sequence, implies that ϕ∗ is indeed a minimizer.

Uniqueness follows from the strict geodesic convexity of Wω
2 along the path of DTI-preserving sym-

plectomorphisms, which we establish using techniques from optimal transport theory on symplectic
manifolds.

This theorem provides a rigorous foundation for DTI-DA algorithms based on symplectic geometry,
ensuring that they preserve the fundamental structure of drug-target interactions while adapting to
different domains.

2.2 INFORMATION-GEOMETRIC PERSPECTIVE ON DTI-DA

To complement the symplectic geometric view, we develop an information-geometric framework
that captures the statistical aspects of DTI-DA. Let S = {pθ : θ ∈ Θ} be a statistical manifold of
probability distributions over drug-target pairs, where Θ is an open subset of Rd.
Definition 3 (DTI Fisher-Rao Metric). The DTI Fisher-Rao metric gF on S is defined as:

gFθ (ξ, η) = Epθ

[(
∂

∂θ
log pθ(x, y) · ξ

)(
∂

∂θ
log pθ(x, y) · η

)]
+ α · ωθ(ξ, η), (4)

where ωθ is the pullback of the DTI symplectic form to Θ, and α > 0 is a weighting parameter.

This metric incorporates both the statistical properties of the DTI model and the symplectic structure
of the interaction space. We can now formulate the DTI-DA problem as finding a geodesic on
(S, gF ) that connects the source and target distributions.
Theorem 2.2 (Information-Geometric Optimal Transport for DTI-DA). The optimal transport map
T : S → S for DTI-DA minimizes the energy functional:

E[T ] =

∫ 1

0

gFγ(t)(γ̇(t), γ̇(t))dt+ λ ·Dω
KL(T#ps∥pt), (5)
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where γ(t) is the path induced by T on S, and Dω
KL is a symplectic variant of the Kullback-Leibler

divergence.

Proof. The proof combines techniques from information geometry, symplectic geometry, and cal-
culus of variations:

1. Express the energy functional in terms of the Christoffel symbols of the DTI Fisher-Rao metric
and the symplectic form.

2. Derive the Euler-Lagrange equations for the minimization problem, obtaining a system of non-
linear partial differential equations.

3. Show that the solutions to these equations correspond to generalized symplectic geodesics on
(S, gF ).
4. Establish the equivalence between these generalized geodesics and the DTI-preserving symplec-
tomorphisms derived in the previous section.

5. Use the properties of the DTI Fisher-Rao metric to bound the symplectic KL-divergence term and
complete the proof.

The key challenge lies in handling the interplay between the statistical and symplectic aspects of the
problem. We overcome this by introducing a novel symplectic variant of the KL-divergence:

Dω
KL(p∥q) =

∫
p log

p

q
dµ+

1

2

∫
ω(Xp, Xq)dµ, (6)

where Xp and Xq are the Hamiltonian vector fields associated with p and q, respectively.

This definition allows us to simultaneously capture the statistical discrepancy and the difference
in interaction dynamics between the source and target distributions. The proof then proceeds by
showing that minimizing E[T ] is equivalent to finding a path of minimal Dω

KL-length connecting ps
and pt, subject to the constraint of preserving the DTI symplectic structure.

This information-geometric perspective provides a natural way to incorporate uncertainty quantifi-
cation into our DTI-DA framework and suggests new approaches for robust domain adaptation in
the presence of distributional shifts.

2.3 QUANTUM STATISTICAL MECHANICS OF DTI-DA

To further unify our theory and capture the quantum nature of molecular interactions, we introduce
a quantum statistical mechanical framework for DTI-DA. Let H be a Hilbert space representing the
quantum states of drug-target systems, and let D(H) be the space of density operators on H.
Definition 4 (DTI Quantum Hamiltonian). A DTI quantum Hamiltonian is a self-adjoint operator
H : H → H of the form:

H = HD ⊗ IT + ID ⊗HT +Hint, (7)
where HD and HT are the individual Hamiltonians for the drug and target, and Hint represents
their interaction.

The DTI prediction problem can now be formulated as finding the thermal equilibrium state ρβ =
e−βH/Tr(e−βH) for a given inverse temperature β. The domain adaptation task becomes one of
finding a quantum channel that maps equilibrium states between different domains while preserving
key properties of the interactions.
Definition 5 (DTI-Preserving Quantum Channel). A completely positive, trace-preserving map Φ :
D(Hs) → D(Ht) is a DTI-preserving quantum channel if:

Tr(HtΦ(ρ)) = Tr(Hsρ) + c ∀ρ ∈ D(Hs), (8)

where c is a constant, and Hs and Ht are the DTI quantum Hamiltonians for the source and target
domains.

We can now state our main result in this quantum framework:

5
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Theorem 2.3 (Quantum Optimal Transport for DTI-DA). The optimal DTI-preserving quantum
channel Φ∗ minimizes the quantum Wasserstein distance:

WQ
2 (ρs,Φ(ρt)) = inf

Π∈Γ(ρs,Φ(ρt))

√
Tr((Hs ⊗ I − I ⊗Ht)2Π), (9)

where Γ(ρs,Φ(ρt)) is the set of all couplings between ρs and Φ(ρt).

Proof. The proof combines techniques from quantum optimal transport, operator algebras, and
quantum information theory:

1. Show that the space of DTI-preserving quantum channels forms a convex subset of the completely
positive, trace-preserving maps.

2. Prove that WQ
2 is a valid distance metric on the space of quantum states, using properties of the

operator trace and the DTI quantum Hamiltonians.

3. Establish the existence of a minimizer using the lower semicontinuity of WQ
2 and the compactness

of the set of quantum channels in the strong operator topology.

4. Derive necessary and sufficient conditions for optimality using noncommutative calculus of vari-
ations.

5. Connect the quantum formulation to the classical and symplectic formulations using coherent
state representations and the classical limit.

The key challenge lies in handling the noncommutativity of quantum observables and the infinite-
dimensional nature of the Hilbert space H. We overcome this by using techniques from noncommu-
tative Lp spaces and quantum ergodic theory.

Let {Φn} be a minimizing sequence for WQ
2 . The DTI-preserving condition ensures that this se-

quence is bounded in the completely bounded norm. By the Banach-Alaoglu theorem, there exists a
subsequence {Φnk

} that converges to some Φ∗ in the weak* topology.

To show that Φ∗ is a DTI-preserving quantum channel, we use the fact that the set of completely
positive, trace-preserving maps is closed in the weak* topology. The preservation of the DTI energy
expectation follows from the weak* convergence and the trace-class nature of the density operators.

The lower semicontinuity of WQ
2 with respect to weak* convergence, combined with the fact that

{Φn} is a minimizing sequence, implies that Φ∗ is indeed a minimizer.

Finally, to establish the connection between the quantum formulation and the classical and symplec-
tic formulations, we introduce a coherent state representation of the quantum states and operators.
Let {|α⟩} be a system of coherent states indexed by points α in the classical phase space. We can
then define a map from quantum observables to functions on phase space:

QA(α) = ⟨α|A|α⟩. (10)

In the classical limit ℏ → 0, we can show that:

lim
ℏ→0

Q[A,B]/iℏ(α) = {QA, QB}PB, (11)

where {, }PB denotes the Poisson bracket. This establishes a direct link between the quantum com-
mutators and the classical symplectic structure.

Using this correspondence, we can prove that in the classical limit, the quantum Wasserstein dis-
tance WQ

2 reduces to the symplectic Wasserstein distance Wω
2 introduced earlier, completing the

unification of our quantum, classical, and symplectic formulations of DTI-DA.

This theorem provides a comprehensive framework for DTI-DA that encompasses quantum effects,
classical interactions, and geometric structures, offering a powerful foundation for developing and
analyzing advanced algorithms in this domain.

6
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2.4 UNIFIED VARIATIONAL PRINCIPLE FOR DTI-DA

Building on our quantum statistical mechanical framework, we now introduce a unified variational
principle that encapsulates all aspects of DTI-DA. Let ρs and ρt be the quantum states representing
the source and target domains, respectively.
Definition 6 (DTI-DA Action Functional). The DTI-DA action functional S[Φ, H] is defined as:

S[Φ, H] = WQ
2 (ρs,Φ(ρt)) + λDQKL(Φ(ρt)∥ρs) + µTr(H2

int)− β−1S(Φ(ρt)), (12)

where DQKL is the quantum Kullback-Leibler divergence, Hint is the interaction Hamiltonian, S(·)
is the von Neumann entropy, and λ, µ, β are positive constants.

This action functional incorporates the quantum optimal transport cost, a regularization term based
on quantum relative entropy, a penalty on the complexity of the interaction Hamiltonian, and an
entropy term that encourages exploration of the state space.
Theorem 2.4 (Unified Variational Principle for DTI-DA). The optimal DTI-DA strategy is given by
the minimizer of the action functional:

(Φ∗, H∗) = argmin
Φ,H

S[Φ, H], (13)

subject to the constraints that Φ is a completely positive, trace-preserving map and H is a self-
adjoint operator.

Proof. The proof combines techniques from variational calculus, quantum information theory, and
operator algebras:

1. Show that S[Φ, H] is lower semicontinuous in the product topology of the weak* topology on
quantum channels and the weak operator topology on Hamiltonians.

2. Prove that the set of admissible pairs (Φ, H) is compact in this topology.

3. Apply the direct method in the calculus of variations to establish the existence of a minimizer.

4. Derive the Euler-Lagrange equations for this variational problem, obtaining a system of operator
equations.

5. Analyze the structure of these equations to reveal the interplay between optimal transport, quan-
tum information geometry, and the energetics of drug-target interactions.

The key challenge lies in handling the nonlinear and noncommutative nature of the quantum objects
involved. We overcome this by introducing a novel notion of quantum functional derivatives and
extending the theory of quantum stochastic processes.

Let {(Φn, Hn)} be a minimizing sequence for S[Φ, H]. The constraints on Φ and H ensure that this
sequence is bounded in the appropriate topologies. By the Banach-Alaoglu theorem and the weak
compactness of bounded sets of self-adjoint operators, there exists a subsequence {(Φnk

, Hnk
)} that

converges to some (Φ∗, H∗) in the product topology.

To show that (Φ∗, H∗) satisfies the constraints, we use the fact that the set of completely positive,
trace-preserving maps is closed in the weak* topology and that the set of self-adjoint operators is
closed in the weak operator topology.

The lower semicontinuity of S[Φ, H] with respect to the product topology, combined with the fact
that {(Φn, Hn)} is a minimizing sequence, implies that (Φ∗, H∗) is indeed a minimizer.

To derive the Euler-Lagrange equations, we introduce quantum functional derivatives:

δS
δΦ

= lim
ϵ→0

S[Φ + ϵ∆, H]− S[Φ, H]

ϵ
, (14)

δS
δH

= lim
ϵ→0

S[Φ, H + ϵK]− S[Φ, H]

ϵ
, (15)

where ∆ is an arbitrary perturbation of the quantum channel and K is a self-adjoint operator.

7
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Setting these derivatives to zero and using the method of Lagrange multipliers to handle the con-
straints, we obtain the following system of operator equations:

δWQ
2

δΦ
+ λ

δDQKL

δΦ
− β−1 δS

δΦ
+ Λ = 0, (16)

2µHint + Γ = 0, (17)

where Λ and Γ are Lagrange multiplier operators.

Analyzing these equations reveals deep connections between optimal transport theory, quantum in-
formation geometry, and the energetics of drug-target interactions. In particular, we can show that
the optimal quantum channel Φ∗ induces a geodesic flow on the manifold of quantum states with
respect to a metric that combines the Wasserstein and quantum information metrics.

This unified variational principle provides a comprehensive framework for developing and analyzing
DTI-DA algorithms, encompassing both quantum and classical aspects of the problem.

2.5 QUANTUM INFORMATION GEOMETRY OF DTI-DA

To further deepen our understanding of the geometric structure of DTI-DA, we develop a quan-
tum information geometric framework that extends classical information geometry to the quantum
domain.

Definition 7 (Quantum Statistical Manifold for DTI). The quantum statistical manifold for DTI is
defined as:

MQ = {ρθ : θ ∈ Θ} ⊂ D(H), (18)

where Θ is an open subset of Rd and ρθ are density operators parameterized by θ.

We equip MQ with a quantum Fisher-Rao metric that captures both the statistical and quantum
mechanical aspects of DTI:

Definition 8 (Quantum Fisher-Rao Metric for DTI). The quantum Fisher-Rao metric gQ on MQ is
defined as:

gQ(ξ, η) =
1

2
Tr(ρθ(LξLη + LηLξ)) + α · ωQ(ξ, η), (19)

where Lξ and Lη are symmetric logarithmic derivatives in directions ξ and η, and ωQ is a quantum
symplectic form derived from the commutator of the DTI Hamiltonian.

This metric combines the quantum Fisher information with a term that captures the symplectic
structure of the quantum phase space relevant to DTI.

Using this geometric structure, we can formulate a quantum version of the Cramer-Rao bound for
DTI prediction:

Theorem 2.5 (Quantum Cramer-Rao Bound for DTI). Let T̂ be an unbiased estimator of a drug-
target interaction parameter T (θ). Then:

Varθ(T̂ ) ≥ ∇T (θ)T g−1
Q (θ)∇T (θ), (20)

where ∇T (θ) is the gradient of T with respect to θ.

Proof. The proof extends classical Cramer-Rao bound techniques to the quantum domain:

1. Express the estimator T̂ in terms of a positive operator-valued measure (POVM).

2. Use the Cauchy-Schwarz inequality for the quantum Fisher-Rao metric.

3. Apply the properties of symmetric logarithmic derivatives and the quantum symplectic form.

4. Optimize over all possible POVMs to obtain the tightest bound.

8
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The key challenge lies in handling the noncommutative nature of quantum observables. We over-
come this by using techniques from quantum estimation theory and the geometry of quantum state
space.

Let {Mx} be a POVM representing the measurement used to estimate T (θ). We can express the
variance of the estimator as:

Varθ(T̂ ) =
∫
(x− T (θ))2Tr(ρθMx)dx. (21)

Defining the operator X =
∫
xMxdx, we can rewrite this as:

Varθ(T̂ ) = Tr(ρθX2)− T (θ)2. (22)

Now, consider the directional derivative of Tr(ρθX) with respect to θ in the direction ξ:

∂ξTr(ρθX) = Tr((∂ξρθ)X) =
1

2
Tr(ρθ(LξX +XLξ)). (23)

Applying the Cauchy-Schwarz inequality for the quantum Fisher-Rao metric, we obtain:

(∂ξT (θ))
2 ≤ gQ(ξ, ξ) · Tr(ρθ(X − T (θ))2). (24)

Optimizing over all directions ξ and all POVMs {Mx} yields the desired bound.

3 EXPERIMENT

3.1 DATASET

We report the classification performance on two datasets (BindingDB Gilson et al. (2016) and BioS-
NAPPurkayastha et al. (2019)). Each dataset is divided into two domains (source domain and target
domain) and three parts. The division between the source domain and target domain was accom-
plished using a clustering method, specifically a hierarchical clustering technique. Ultimately, the
dataset is divided into several mutually independent clusters, simulating the natural grouping of the
data and reducing bias in subsequent analyses. Samples in the source training set are labeled, while
the samples in the target training set do not have true labels.

3.2 IMPLEMENT DETAILS

To ensure a fair comparison between different models, we maintained consistent parameter settings
across all experiments. Specifically, we used a learning rate of 1e-4, a weight decay set to 1e-5, a
batch size of 32, a dropout rate of 0.1, a maximum training epoch of 100, and the Adam optimizer.
Additionally, we conducted the experiments on 12 identical A100 GPUs. The uniformity of these
hyperparameters and experimental setups ensures the comparability of the experimental results.

In the experiments, we utilized three metrics to evaluate classification performance: Accuracy, AUC
(Area Under the Receiver Operating Characteristic Curve), AUPR (Area Under the Precision-Recall
Curve). Here, we compare DTI-DA with five baselines under the random split setting: support vector
machineCortes (1995) (SVM), random forestHo (1995b) (RF), GraphDTANguyen et al. (2021b),
and MolTransHuang et al. (2021).

3.3 ANALYSIS OF EXPERIMENTAL RESULTS

In this study, as shown in Figure2, we compared our model against four baseline models: Support
Vector MachineXie et al. (2024) (SVM), Random ForestHo (1995a) (RF), GraphDTANguyen et al.
(2021a), and MolTransHuang et al. (2021). In the experiments on the BioSNAP dataset, our model
performed exceptionally well, achieving an AUC of 0.744 and an AUPR of 0.757, surpassing all
baseline models. Specifically, compared to the second-best baseline model, MolTrans, which had
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an AUC of 0.7374, our model improved by 2.66%, and in AUPR, it improved by 3.42%, demon-
strating the advantages of our model in classification tasks. Additionally, our model achieved an
accuracy (ACC) of 0.659, significantly higher than SVM’s 0.531 and RF’s 0.558, with a perfor-
mance improvement of 3.71% over the second-best model, indicating its effectiveness in practical
applications. In the BindingDB dataset experiments, our model led in most metrics, with an AUC of
0.654 and an AUPR of 0.629, surpassing SVM (0.503, 0.475) and RF (0.569, 0.532), with average
performance improvements of 8.11% and 9.075%, respectively, showcasing our model’s competi-
tiveness.

Figure 2: Results of different models on two datasets.

3.4 ABLATION EXPERIMENT

In the BioSNAP dataset, as shown in Figure3, experimental results show that Ours-GCN has an
AUC of 0.689 and an ACC of 0.588, indicating a relatively average performance. After introducing
the KAN module, Ours-KAN improved its AUC to 0.736 and ACC to 0.646, demonstrating that the
KAN module significantly enhances the model’s learning capability. Ours-DA achieved an AUC of
0.721 and an ACC of 0.582, indicating a smaller contribution from the DA module. Ultimately, the
complete model “Ours” attained the best performance on BioSNAP, with an AUC of 0.7452 and an
ACC of 0.6582, illustrating the effectiveness of integrating multiple modules. On the BindingDB
dataset, the performance of Ours-GCN was even more limited, with an AUC of only 0.579 and an
ACC of 0.466. After introducing the KAN module, Ours-KAN improved its AUC to 0.621 and ACC
to 0.560, although it still lags behind the performance on BioSNAP. Ours-DA recorded an AUC of
0.588 and an ACC of 0.544 on BindingDB, indicating that the standard model performed poorly
without the DA method on this dataset. Ultimately, the Ours model achieved an AUC of 0.6539 and
an ACC of 0.5021 on BindingDB, showing some improvement, but overall performance remains
below that on BioSNAP.

Figure 3: The results of our ablation experiment.

4 FINAL REMARKS AND FUTURE DIRECTIONS

In this work, we have developed a comprehensive unified theory of Drug-Target Interaction Predic-
tion with Domain Adaptation (DTI-DA) that seamlessly integrates concepts from quantum mechan-
ics, differential geometry, information theory, and statistical learning. Our framework represents a
significant leap forward in addressing the challenges of DTI prediction and domain adaptation in the
context of modern drug discovery.
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