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Abstract— We present a framework for learning a single
policy capable of producing all quadruped gaits and transitions.
The framework consists of a policy trained with deep reinforce-
ment learning (DRL) to modulate the parameters of a system of
abstract oscillators (i.e. Central Pattern Generator), whose out-
put is mapped to joint commands through a pattern formation
layer that sets the gait style, i.e. body height, swing foot ground
clearance height, and foot offset. Different gaits are formed by
changing the coupling between different oscillators, which can
be instantaneously selected at any velocity by a user. With this
framework, we systematically investigate which gait should be
used at which velocity, and when gait transitions should occur
from a Cost of Transport (COT), i.e. energy-efficiency, point of
view. Additionally, we note how gait style changes as a function
of locomotion speed for each gait to keep the most energy-
efficient locomotion. While the currently most popular gait
(trot) does not result in the lowest COT, we find that considering
different co-dependent metrics such as mean base angular
velocity and joint acceleration result in different ‘optimal’ gaits
than those that minimize COT. We deploy our controller in
various hardware experiments, focusing on 9 quadruped animal
gaits, and demonstrate generalizability to novel and unseen gaits
during training, and robustness to leg failures. Video results can
be found at https://youtu.be/OLoWSX_R868.

I. INTRODUCTION

Quadruped robots are displaying complex motor skills
with different gaits to locomote at varying speeds and across
challenging terrains, including combinations of discrete ca-
pabilities like running and jumping [1]–[9]. While several
works study transitions between such gaits (for example), the
optimal transition times, speeds, and between which discrete
gaits remains an open question. Additionally, for frameworks
that do learn, or transition between gaits, the parameters must
often be re-tuned for each (MPC) [10], may have heuristics
for transitioning [11], or may otherwise be non-optimal, as
the cyclic motions may affect the body and joints differently.
For example, in contrast with most robots (with some excep-
tions [12], [13]), animals do not bound with a rigid spine.

While several common quadrupedal gaits have been
successfully demonstrated on quadruped hardware, previous
work requires either explicit parameter tuning in MPC [10],
extensive reward function tuning [11], [14], specific training
schemes [15], or expert demonstrations from animals or
MPC to imitate [16]. In contrast, we show all quadruped
gaits (Fig. 1) and their transitions can be realized without
reward function tuning or any expert demonstrations. We
center our scientific investigation around three fundamental
biological and robotics locomotion questions:
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Fig. 1: AllGaits: snapshots from learning all quadruped gaits with Central
Pattern Generators and deep reinforcement learning.

1. Which gaits are most efficient at which speeds, and
when should gait transitions occur?

2. How should parameters like body height, posture, and
swing foot trajectories change for different gaits at
different speeds?

3. Can we produce novel gaits not seen during training,
and how robust is the policy to leg failures?

II. METHOD

In order to answer the questions above, we present a
hierarchical bio-inspired architecture (Figure 2) consisting
of a policy trained with deep reinforcement learning (higher
centers), a network of coupled oscillators mapped to task
space foot trajectories (rhythm generator and pattern forma-
tion layers of the spinal cord), and sensory feedback from
onboard sensors and internal CPG states (efference copy
of the spinal cord). Details are in Appendices A, B, C. We
explicitly enforce a gait through the coupling matrix, and the
locomotion style through the pattern formation parameters
(i.e. body height, swing foot ground clearance, foot offsets).
We leverage this architecture to produce all quadrupedal gaits
(Walk, Amble, Trot, Pace, Bound, Pronk, Canter, Transverse
Gallop, Rotary Gallop (Figure 4)), determine when the
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Fig. 2: AllGaits: Control architecture for learning central pattern generators to locomote at all gaits for quadruped robots. The observation consists of
velocity commands, proprioceptive measurements, and the current CPG states (efference copy of the spinal cord), which the policy network uses to select
CPG parameters µ and ω for each leg i (Front Right (FR), Front Left (FL), Hind Right (HR), Hind Left (HL)) to coordinate the Rhythm Generation.
A gait coupling matrix is input from the user to set a particular gait. The resulting CPG states are then mapped to desired foot positions in a Pattern
Formation layer, which the user can also directly modulate by setting body height h, swing foot ground clearance gc, and foot offset from the hip xoff .
This task-space mapping is converted to desired joint angles with inverse kinematics, and tracked with joint PD control to produce torques τ . The control
policy selects actions at 100 Hz, and all other blocks operate at 1 kHz.

optimal transitions between gaits should occur, and with
which locomotion style. Additionally, we are able to realize
novel gaits that were not seen during training, and have not
been previously shown, without any modifications directly
in hardware experiments. Furthermore, our framework is
robust to failures of either one or two disabled legs.

III. EXPERIMENTAL RESULTS AND DISCUSSION

Which Gaits and Styles are Most Energy-Efficient? As
described in Appendix D, after training we consider 100 gait
styles spanning the ranges of possible body heights h, swing
foot ground clearances gc, and foot offsets xoff for each of
the 9 gaits. Figure 3-A shows the best possible COT for every
gait at every velocity at top, and the corresponding gait style
parameters at bottom (Fig. 3-B). Between gaits, the walk gait
is most energy-efficient from 0.3-0.9 m/s, and then the pace
gait results in the lowest COT from 0.9-3.0 m/s, while the
amble gait is second most-efficient in this range.

Notably, as also seen in nature, as locomotion speed
changes, different gait styles are more optimal from an
energy-efficiency perspective. For all gaits, there does not
exist a single set of gait parameters that is optimal at all
velocities. However, there are certain important trends. The
most optimal parameters at all velocities all use the lowest
ground clearance, 0.02 m. For most gaits, especially at
higher speeds, the highest nominal body height 0.34 m gives
the most efficient locomotion. However, we see variability
in the hip offset, which changes most variably within each
gait as a function of speed to subtly improve the COT.
Is Energy-Efficiency the Most Important Gait Metric?
While energy-efficiency is often the most popular
explanation for different gait styles at different speeds, why
do walk and pace gaits not naturally emerge when training
locomotion policies with end-to-end deep reinforcement
learning for quadruped robots? Indeed, most recent results
showing robot locomotion on flat or rough terrain show
a trot gait both at high and low velocities [2], [17]–[19].
However, in addition to velocity tracking, typically the
reward function includes many terms related to base stability
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Fig. 3: Most optimal Cost of Transport (COT) for all quadruped gaits, and
corresponding gait style parameters for all velocities with our framework.
(A): minimum COT possible for each gait. Walk is most optimal for veloci-
ties below 0.9 m/s, and pace is most optimal for higher velocities. (B): cor-
responding gait style parameters for the minimum COTs in (A), with varying
body heights h and foot offsets xoff for all gaits. The lowest COTs here
were all achieved with the lowest swing foot ground clearance gc=0.02 m.

to keep smooth motions and encourage a “natural” gait.
In Figure 5, we evaluate our policy for each gait with all

possible styles with respect to two different metrics: mean
angular velocity, and mean joint acceleration. From the
plots, we can observe that a gait with the lowest COT at a
particular velocity may not be optimal with respect to other
metrics. For example, at low velocities, the trot gait has the
lowest mean angular velocity, indicating a stable base, while
having only a slightly higher COT with respect to the walk
gait. While the amble gait has the highest mean angular
velocity at high speeds, we see that it has the lowest mean
joint acceleration, and has the second best COT (Figure 3).
Therefore, depending on the importance a user gives to
different metrics, this directly changes the “optimal” gait.
Qualitative Evaluation Appendix F discusses simulation
and hardware results from deploying our single policy to
accomplish all gaits, including transitions between any gaits
at any velocity, as well as novel gaits not seen during training.



REFERENCES

[1] D. Hoeller, N. Rudin, D. Sako, and M. Hutter, “Anymal parkour:
Learning agile navigation for quadrupedal robots,” Science Robotics,
vol. 9, no. 88, p. eadi7566, 2024.

[2] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, 2022.

[3] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots,” in 2024 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2024, pp. 11 443–11 450.

[4] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and
H. Zhao, “Robot parkour learning,” in Conference on Robot Learning
(CoRL), 2023.

[5] I. M. A. Nahrendra, B. Yu, and H. Myung, “Dreamwaq: Learning
robust quadrupedal locomotion with implicit terrain imagination via
deep reinforcement learning,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2023, pp. 5078–5084.

[6] G. Bellegarda, C. Nguyen, and Q. Nguyen, “Robust quadruped
jumping via deep reinforcement learning,” Robotics and Autonomous
Systems, p. 104799, 2024.

[7] G. Bellegarda, M. Shafiee, M. E. Özberk, and A. Ijspeert, “Quadruped-
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APPENDIX

A. Rhythm Generation and Pattern Formation

We use CPG-RL [20] as a basis, where the abstract oscilla-
tors which form our Rhythm Generation layer are defined as:

r̈i=a
(a
4
(µi−ri)−ṙi

)
(1)

θ̇i=ωi+
∑
j

rjwijsin(θj−θi−ϕij) (2)

where ri is the current amplitude of the oscillator, θi is the
phase of the oscillator, µi and ωi are the intrinsic amplitude
and frequency, a is a positive constant representing the
convergence factor. Couplings between oscillators are
defined by the weights wij and phase biases ϕij . For a
quadruped robot with a single oscillator corresponding
to each leg, the coupling matrices Φ can be defined by
following the timings from Figure 4. These matrices define
the offsets between different oscillators to converge to the
desired gaits. For example, in the trot gait, 0.5 represents a π
offset between the sets of diagonal limbs. With appropriately
high (strong) coupling weights, i.e. wij=10, these coupling
matrices enforce the gait.

To map from the oscillator states to joint commands, we
first compute corresponding desired foot positions, and then
calculate the desired joint positions with inverse kinematics.
The desired foot position coordinates are given as follows:

xi,foot=xoff−dstep(ri−1)cos(θi) (3)

zi,foot=

{
−h+gcsin(θi) if sin(θi)>0

−h+gpsin(θi) otherwise
(4)

where dstep is the maximum step length, xoff is the foot
offset with respect to the hip, h is the robot height, gc is
the max ground clearance during swing, and gp is the max
ground penetration during stance. A visualization of the
foot trajectory for a set of these parameters is shown in the
Pattern Formation block of Figure 2.

We re-sample h, xoff , gc, and gp during training so the
agent can learn to locomote with varying base heights, foot
offsets, swing foot ground clearances, and stance foot ground
penetrations. We use the following ranges during training:
h ∈ [0.18, 0.35], xoff ∈ [−0.08, 0.03], gc ∈ [0.02, 0.12],
gp∈ [0,0.015]. This is important to vary in order to find the
optimal combination, which is unlikely to be the same for
each different gait. The agent does not receive any explicit
observation of these parameters, and the user can specify
each of these parameters during deployment.

B. Markov Decision Process

1) Action Space: Our action space provides an interface
for the agent to directly modulate the intrinsic oscillator
amplitudes and phases, by learning to modulate µi and ωi for
each leg. This allows the agent to adapt each of these states
online in real-time depending on sensory inputs. However,
in contrast with our previous work [20], the strong coupling
enforces the relative offsets between different oscillators,
meaning the agent is forced to learn parameters to locomote

https://www.unitree.com/products/go1/
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Fig. 5: Minimum mean angular velocity of the base (left), and joint
acceleration (right), across all gaits and gait style parameters for all
velocities. The residuals with respect to the mean joint acceleration for
all gaits at that same velocity is shown for clarity purposes, with negative
values indicating gaits with lower joint acceleration.

TABLE I: Reward function terms. (·)∗ represents a desired command, and
f(x) :=exp(− ||x||2

0.25
). dt=0.01 is the control policy time step.

Name Formula Weight
Linear velocity tracking v∗b,x f(v∗b,x−vb,x) 3dt

Linear velocity penalty vb,yz −||vb,yz ||2 2dt
Angular velocity penalty ωb,xyz −||ωb,xyz ||2 0.1dt

Power −|τ ·q̇| 0.001dt

with each particular gait. During training, we resample the
coupling matrices randomly among each of the 9 gaits so
the agent can learn to locomote with all gaits, as well as
transition between different gaits without falling. Our action
space can be summarized as a = [µ,ω] ∈ R8. The agent
selects these parameters at 100 Hz, and we use the following
action space ranges during training: µ∈ [1,2], ω∈ [0,8] Hz.

2) Observation Space: Our observation space includes
velocity commands, the body state (orientation, linear and
angular velocities), joint state (positions, velocities), and
foot contact booleans. We also include the last action
chosen by the policy network and CPG states (i.e. efference
copy of the spinal cord) {r, ṙ, θ, θ̇} as feedback to the
policy (i.e. higher centers). Notably, the agent is not directly
aware of any coupling matrices (i.e. gaits), nor mapping
parameters h, xoff , gc, gp.

3) Reward Function: Our reward function primarily
rewards tracking body linear and angular velocity in the
base frame. In addition to forward velocity tracking, we
add terms to minimize other undesired base velocities
(lateral/vertical oscillations in the base y and z directions,
and base roll, pitch, and yaw rates). To minimize energy
consumption, we penalize the total power. The terms and
respective weights are summarized in Table I. We emphasize
that we do not need to add any reward terms beyond those
fully specifying the base motion behavior. Notably, we do
not need to specify any ‘style’ rewards to try to enforce any
particular gait, base height, foot ground clearance, etc.

TABLE II: Randomized parameters during training and their ranges.

Parameter Lower Bound Upper Bound Units
v∗b,x 0.2 3 m/s

Joint Gain Kp 30 100 -
Joint Gain Kd 0.5 2 -

Mass (each body link) 70 130 %
Added base mass 0 5 kg

Coefficient of friction 0.3 1 -

C. Training Details

We use Isaac Gym and PhysX as our training environment
and physics engine [19], [21], and the Unitree Go1
quadruped [22]. This framework enables us to simulate
4096 Go1s in parallel on a single NVIDIA RTX 3090 GPU,
which allows us to learn control policies within minutes
with Proximal Policy Optimization [23]. We use the same
hyperparameters and neural network architecture as in [20].

We train on flat terrain, and we reset the environment
for an agent if the base or a thigh comes in contact with
the ground, or if the episode length reaches 20 seconds.
With each reset, we sample new parameters h, gc, gp, and
xoff for mapping the oscillator states to motor commands,
allowing the agent to learn continuous locomotion behavior
at varying body heights, step heights, and postures. New
velocity commands v∗b,x are sampled every 5 seconds, and
the gait coupling matrix Φ is re-sampled every 3 seconds.
As in our previous work, we apply domain randomization
on the physical mass properties and coefficient of friction
(Table II). Finally, an external push of up to 0.5 m/s is
applied in a random direction to the base every 15 seconds.

The policy network outputs modulation signals at 100
Hz, and the torques computed from the mapped desired
joint positions are updated at 1 kHz. The equations for each
of the oscillators (Equations 1-2) are thus also integrated
at 1 kHz. During training we re-sample joint PD controller
gains at each environment reset as described in Table II.

D. Gait Style Parameter Efficiency

We investigate the effects of different gaits and style pa-
rameters on the Cost of Transport (COT= |P |

m.g.v , where P is
the average power, m is the mass of the system, g is gravita-
tional acceleration, and v is the average velocity). After train-
ing, we consider the following style parameters (body height
h, foot ground clearance gc, foot offset xoff ) for each gait:

h={0.18, 0.22, 0.26, 0.30, 0.34}
gc={0.02, 0.05, 0.08, 0.12}

xoff ={−0.075, −0.05, −0.025, 0.0, 0.025}
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Fig. 6: Effects on the Cost of Transport for all gaits from modulating nominal (A) body height, and (B) foot offset relative to the hip around which
oscillations occur. While the policy is capable of locomotion with all of these gait styles (with notable difficulty for the pronk gait with foot offset
0.025 m in front of the hip above 2 m/s), each of these parameters significantly affects the COT, and different combinations of these result in better
energy-efficiency at different velocities, most obviously with respect to the foot offset in (B).

For each of the possible 100 combinations of these three
parameters, we command the robot to locomote at 0.3 m/s
to 3.0 m/s, in increments of 0.1 m/s. For each of these
28 velocities, we run the policy for 5 seconds across 100
robots in parallel, and compute the mean Cost of Transport.
For the purpose of this data collection, we do not include
any noise in the simulation environment.

Figure 6 shows the effects of varying the three parameters
on the Cost of Transport, with respect to baseline parameters
seen in previous works such as [20]: h = 0.3, gc = 0.05,
xoff = 0, shown by the black line. Figure 6-A shows the
effects of different nominal body heights, from 0.34 m to
0.18 m, on the Cost of Transport. As can be expected,
a more upright posture generally leads to more efficient
locomotion, with lower COT, as less power is needed at
the thigh and knee joints to maintain the body height.
While almost all gaits have the lowest COT throughout
all velocities for the highest, most upright posture, the
pronk gait is a notable exception, with the most efficient
locomotion for a slightly lower nominal base height
parameter, 0.3 m. However, many gaits have an almost
identical COT curve when locomoting with body height 0.3
m or 0.34 m. In the video, we also investigate the effects
on the COT of changing the nominal swing foot ground
clearance from 0.02 m to 0.12 m. As can be expected, a
lower swing foot ground clearance results in a more efficient
gait, as it requires more energy to bring the foot higher off
the ground, and this trend is consistent across all gaits.

Figure 6-B shows the effects of changing the nominal
center point around which the oscillations take place with
respect to the hip in the x direction range from −0.075 m
behind the hip, to 0.025 m in front of the hip. Due to the
configuration of the legs and body, the overall Center of Mass
(COM) of the robot lies behind the geometric center of the
body. Therefore, an offset behind the hips helps to keep the

COM more at the center of the foot contacts, thereby (gen-
erally) decreasing energy required to remain upright during
locomotion. While there is more variability among gaits, and
even within a single gait as the locomotion velocity changes,
a general observation is that it is more energy-efficient to
locomote with the oscillation x center point behind the hips.

E. CPG Parameter Modulation Across Different Gaits

One interesting observation for the pronk gait is the reverse
curvature with respect to nominal COT plots, which typically
have positive parabola-like shapes, with a minimal COT
at a particular velocity. For the pronk gait, at low speeds,
the policy has learned to modulate the CPG parameters to
slowly lean forward, then take a short and fast hop, to more
efficiently track the mean desired velocity. This is further
shown in Figure 7 by the mean CPG amplitude and frequency
selected by the policy to locomote as a function of speed,
which changes for each gait and style. The amplitude and
frequency of the oscillators directly correspond to mean step
length and mean step frequency. Interestingly, we see several
inflection points for several gaits, where the strategy changes
for increasing locomotion speed. This is most obvious for
the pace and amble gaits, which actually decrease the step
frequency at higher speeds, while instead locomoting faster
by increasing the step length. The policy has learned this
different coordination among gaits in order to maximize the
returns from our reward function, and without explicit knowl-
edge of the coupling parameters or gait style, but which it can
indirectly deduce through observing the CPG and joint states.
Thus, our framework can also be used as a tool to evaluate
different locomotion strategies given a particular gait.

F. Hardware Qualitative Evaluation

1) All Gaits and Transitions: In the video, we show
both simulation and hardware results from deploying our
single policy to accomplish all 9 gaits, with a variety of
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Fig. 7: Mean oscillator amplitudes and frequencies for style parameters
h = 0.34, gc = 0.02, xoff = −0.075, which is optimal for many gaits
and at many velocities. Notably, the policy coordinates the amplitudes and
frequencies differently for different gaits.

styles (i.e. varying body height, swing foot height, and
foot offsets). Notably, we are able to transition between
any gaits at any velocity, just by re-sampling the coupling
matrix, without any explicit input to the policy network. We
can also modulate the gait style parameters within the same
gait, or switch these along with the gait, by changing the
pattern formation parameters.

2) Novel Gaits: We test the robustness and ability of
the policy to produce and transition between novel gaits
not seen during training. Since we had already trained for

all quadruped gaits, we develop several artificial gaits (not
found in nature) by creating new coupling matrices. For
example, we test new gaits where three limbs are coupled
in phase, and one is out of phase with a π offset. The
out of phase leg can be either a front or rear leg, and the
video shows that although these gaits and observations were
never seen during training, we can still effectively locomote
with such new gaits at test time in hardware experiments.
We also test different timing patterns for several gaits, for
example modifying the trot or bound with different timing
to create more uneven gaits, which still result in successful
locomotion and velocity tracking.

3) Leg Failure Robustness: Lastly, we show that our
single policy is robust among different gaits to disabling
either one or two legs. We design an experiment where we
transition from trot, to pace, to bound, to pronk; and then
repeat the experiment with disabling (locking) one or two
rear legs, so that they stay fixed in a nominal extension
position. The robot does not fall down and continues to
locomote during these experiments, despite never having
encountered any of these situations during training.
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