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Abstract

We propose a neural network weight encoding method for network property pre-
diction that utilizes set-to-set and set-to-vector functions to efficiently encode
neural network parameters. Our approach is capable of encoding neural networks
in a model zoo of mixed architecture and different parameter sizes as opposed
to previous approaches that require custom encoding models for different archi-
tectures. Furthermore, our Set-based Neural network Encoder (SNE) takes into
consideration the hierarchical computational structure of neural networks. To
respect symmetries inherent in network weight space, we utilize Logit Invariance
to learn the required minimal invariance properties. Additionally, we introduce
a pad-chunk-encode pipeline to efficiently encode neural network layers that is
adjustable to computational and memory constraints. We also introduce two new
tasks for neural network property prediction: cross-dataset and cross-architecture.
In cross-dataset property prediction, we evaluate how well property predictors gen-
eralize across model zoos trained on different datasets but of the same architecture.
In cross-architecture property prediction, we evaluate how well property predictors
transfer to model zoos of different architecture not seen during training. We show
that SNE outperforms the relevant baselines on standard benchmarks.

1 Introduction

Recently, deep learning methods have been applied to a wide range of fields and problems. With
this broad range of applications, huge volumes of datasets are continually being made available in
the public domain together with neural networks trained on these datasets. Given this abundance
of trained neural network models, the following curiosity arises: what can we deduce about these
networks with access only to the parameter values? More generally, can we predict properties of
these networks such as generalization performance on a testset(without access to the test data), the
dataset on which the model was trained, the choice of optimizer and learning rate, the number of
training epochs, choice of model initialization etc. through an analysis of the model parameters?
The ability to infer such fundamental properties of trained neural networks using only the parameter
values has the potential to open up new application and research paradigms [De Luigi et al., 2023,
Zhou et al., 2023a,b, Navon et al., 2023] such as learning in the latent space of neural network
weights for tasks such as weight generation [Schürholt et al., 2021, Soro et al., 2024], latent space
transfer of weights across datasets allowing for transferring weights from one dataset to another as
was recently demonstrated in Soro et al. [2024] and latent space optimization using gradient descent
where optimization is performed on the weight embeddings [Rusu et al., 2018].

We tackle two specific versions of this problem: predicting a) frequencies of Implicit Neural Rep-
resentations [Sitzmann et al., 2020] (INRs), and b) the performance of CNNs and Transformers,
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Figure 1: Legend: : Padding, : Set-to-Set Function, : Set-to-Vector Function, : Layer-Level & :
Layer-Type Encoder. Concept: (left) Given layer weights, SNE begins by padding and chunking the weights
into chunksizes. Each chunk goes through a series of set-to-set and set-to-vector functions to obtain the chunk
representation vector. Layer level and type positional encodings are used to inject structural information of the
network at each stage of the chunk encoding process. All chunk encoding vectors are encoded together to obtain
the layer encoding. (right) All layer encodings in the neural network are encoded to obtain the neural network
encoding vector again using as series of set-to-set and set-to-vector functions. This vector is then used to predict
the neural network property of interest.

given access only to the network weights. The first approach to solving this problem, proposed by
Unterthiner et al. [2020], involves computing statistics such as the mean, standard deviation and
quantiles, of each layer in the network, concatenating them to a single vector that represents the neural
network encoding, and using this vector to predict the desired network property. Another approach,
also proposed as a baseline in Unterthiner et al. [2020], involves flattening all the parameter values
of the network into a single vector which is then fed as input to layers of multilayer perceptrons
(MLPs) to predict the property of interest. An immediate consequence of this approach is that it is
practical only for moderately sized neural network architectures. Additionally, this approach ignores
the hierarchical computational structure of neural networks through the weight vectorization process.
The second, and most recent approach to this problem, proposed by Zhou et al. [2023a,b], takes a
geometric approach to the problem by building neural network weight encoding functions, termed
neural functionals, that respect symmetric properties of permutation invariance and equivariance of
the hidden layers of MLPs under the action of an appropriately applied permutation group. While this
approach respect these fundamental properties in the parameter space, it’s application is restricted,
strictly, to MLPs. Also, even when relaxations are made to extend this method to convolutional
networks and combinations of convolutional layers and MLPs, these only work under strict conditions
of equivalence in the channel size in the last convolutional layer and the first linear layer. Hence it is
clear that while the methods of Zhou et al. [2023a,b] and Navon et al. [2023] enjoy nice theoretical
properties through weight tying, their application is limited to only a small subset of carefully chosen
architectures.

Moreover, these approaches [Unterthiner et al., 2020, Zhou et al., 2023a,b, Navon et al., 2023] have
a fundamental limitation: their encoding methods are applicable only to a single fixed, pre chosen
neural network architecture. Once the performance predictor is trained, in the case of Unterthiner
et al. [2020], and the neural network encoder of Zhou et al. [2023a] and Navon et al. [2023] are
defined, they cannot be used to predict the performance of neural networks of different architecture.
These issues are partly addressed by the graph based approaches of Kofinas et al. [2024] and Lim
et al. [2023]. Consequently, evaluating these models on diverse architectures is impossible without
training an new performance predictor for each architecture.

To this end, we propose a Set-based Neural Network Encoder (SNE) for property prediction of neural
networks given only the model parameters that is agnostic to the network architecture without weight
tying. Specifically, we treat the neural network encoding problem from a set encoding perspective
by utilizing compositions of set-to-set and set-to-vector functions. However, the parameters of
neural networks are ordered and hierarchical. To retain this order information, we utilize positional
encoding [Vaswani et al., 2017] at various stages in our model. Also, our model incorporates
the hierarchical computational structure of neural networks in the encoder design by encoding
independently, layer-wise, culminating in a final encoding stage that compresses all the layer-wise
information into a single encoding vector used to predict the network property of interest. To handle
the issue of large and variable parameter sizes efficiently, we incorporate a pad-chunk-encode pipeline
that is parallelizable and can be used to iteratively encode layer parameters. To learn the correct
permutations of MLP weights, we employ the Logit Invariance Regularizer of Moskalev et al. [2023]
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instead of weight tying. In terms of evaluation, we introduce two new tasks: cross-dataset neural
network property prediction and cross-architecture neural network property prediction. In cross-
dataset neural network performance prediction, we fix the network architecture used to generate the
training data and evaluate how well the performance predictors transfer to the same architecture
trained on different datasets. For cross-architecture neural network performance prediction, we fix
only the architecture for generating the training data and evaluate the performance of the predictor on
architectures unseen during training. These tasks are important since in the real setting, access to
model zoos is scare, making transferability desirable.

Our contributions are as follows:

• We develop a Set-based Neural Network Encoder (SNE, see Figure 1) for network property
prediction given access only to parameter values that can encode neural networks of arbitrary
architecture, taking into account the hierarchical computational structure of neural networks.

• We introduce the cross-dataset property prediction task where we evaluate how well predic-
tors transfer across neural networks trained on different datasets.

• We introduce the cross-architecture property prediction task where we evaluate how well
property predictors trained on a specific architecture transfer to unseen architectures.

• We benchmark SNE against the relevant baselines [Unterthiner et al., 2020, Navon et al.,
2023, Zhou et al., 2023a,b] on the cross-dataset task and show significant improvement over
the baselines.

• We provide the first set of results on the cross-architecture task, a task for which most of the
baselines, with the exception of Zaheer et al. [2017] and Kofinas et al. [2024] under special
conditions (see remark in Section 4.2), cannot be used.

2 Related Work

Set Functions: Neural networks that operate on set (un)structured data have recently been used
in many applications ranging from point cloud classification to set generation [Kim et al., 2021].
Set functions are required to respect symmetric properties such as permutation invariance and
equivariance. In DeepSets [Zaheer et al., 2017], a set of sum-decomposable functions are introduced
that are equivariant in the Set-to-Set applications and invariant in the Set-to-Vector applications. In Set
Transformers [Lee et al., 2019], a class of attention based Set-to-Set and Set-to-Vector functions are
introduced that are more expressive and capable of modeling pairwise and higher order interactions
between set elements. Recent works such as Bruno et al. [2021] and Willette et al. [2023] deal with
the problem of processing sets of large cardinality in the the limited memory/computational budget
regime. In this work, we utilize the class of set functions developed in Lee et al. [2019] to develop a
neural network encoder for performance prediction that is agnostic to specific architectural choices.
Our set-based formulation allows us to build such an encoder, capable of handling neural networks
weights of arbitrary parameter sizes. This is a deviation from recent approaches to neural network
encoding for property prediction that can encode only parameters of a single fixed architecture.

Neural Network Property Prediction From Weights: Predicting the properties of neural networks
given access only to the trained parameters is a relatively new topic of research introduced by
Unterthiner et al. [2020]. In Unterthiner et al. [2020], two methods are proposed for predicting the
generalization performance of neural networks: the first involves flattening the weights of the network
into a single vector, processing it using multiple layers of MLPs to obtain an encoding vector which
is then used to predict the performance. The second involves computing the statistics of each layer in
the network, such as mean, variance, quantiles etc., concatenating them into a single vector that is
then used for predicting the performance of the network. The most recent approach that we are aware
of, Navon et al. [2023] and Zhou et al. [2023a,b], proposes a neural network weight encoder that is
invariant or equivariant, depending on the application, to an appropriately applied permutation group
to the hidden layers of MLPs. Two variants of their model is provided: one which operates only
on the hidden layers, and conforms strictly to the theory of permuting MLP hidden neurons [Hecht-
Nielsen, 1990], and a relaxation that assumes that the neurons of both the input and output layers of
MLPs are permutable. Additionally, extensions are provided for convolutional layers. Kofinas et al.
[2024] and Lim et al. [2023] represent weights using graph neural networks. Our approach, SNE,
is directly comparable to these methods on the neural network property prediction task. However,
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unlike the methods of Unterthiner et al. [2020], Navon et al. [2023] and Zhou et al. [2023a] which
operate only on neural networks of fixed architecture, and consequently fixed number of encodable
parameters, SNE is capable of encoding networks of arbitrary architecture. Moreover, SNE utilizes
the hierarchical computation structure of neural networks by encoding, iteratively or in parallel,
from the input to the output layers. Additionally, we go further than the experimental evaluation in
Unterthiner et al. [2020], Navon et al. [2023] and Zhou et al. [2023a,b] by introducing two new tasks:
cross-dataset and cross-architecture neural network property prediction. Unterthiner et al. [2020],
Navon et al. [2023] and Zhou et al. [2023a,b] can only be benchmarked on the cross-dataset task
where all networks in the model zoos are of the same architecture. Their restriction to a single fixed
architecture makes cross-architecture evaluation impossible. Our method SNE, and those of Kofinas
et al. [2024], Lim et al. [2023], on the other hand can be used for both tasks.

3 Set-based Neural Network Encoding Without Weight Tying

3.1 Preliminaries

We have access to a dataset D = {(x1, y2), . . . , (xn, yn)} where for each (xi, yi) pair, xi represents
the weights of a neural network architecture a, sampled from a set of architectures A and yi
corresponds to some property of xi after it has been trained on a specific dataset d. yi can be
properties such as generalization gap, training loss, the learning rate used to train xi, or even the
number of epochs, choice of weight initialization, and optimizer used to train xi. Henceforth, we
refer to D as a model zoo. For each xi ∈ D, xi = [w0

i , . . . , w
|xi|
i ] where wj

i represents the weights
(parameters) of the jth layer of the neural network xi, and |xi| is the total number of layers in xi.
Consequently, w0

i and w
|xi|
i are the input and output layers of xi respectively. Additionally, we

introduce the Flat : xi → Rdi operation, that takes as input the weights of a neural network and
returns the flattened weights and di is the total number of parameter is xi.

The neural network encoding problem is defined such that, we seek to compress xi ∈ Rdi to a
compact representation zxi

∈ Rh such that zxi
can be used to predict the properties yi of xi with

h ≪ di. In what follows, we present the details of our Set-based Neural Network Encoding (SNE)
method capable of encoding the weights of neural networks of arbitrary architecture that takes into
account the hierarchical computational structure of the given architecture and with efficient methods
for processing weights of high dimension.

3.2 Handling Large Layer Weights via Chunking

For a given layer wj
i ∈ xi, the dimension of wj

i , |wj
i | can be very large. For instance, when

considering linear layers, flattening the weights can results in a tensor that can require large compute
memory to be processable by another neural network. To resolve this issue, we resort to chunking.
Specifically, for all layers wj

i ∈ xi, we perform the following operations:

ŵj
i = Chunk(Pad(Flat(wj

i ), c), c) = {wj0
i , . . . , w

jq
i }, (1)

where for any wjt
i ∈ ŵj

i , |wjt
i | ∈ Rc. Here, c is the chunksize, fixed for all layer types in the neural

network and t ∈ [0, . . . , q]. The padding operation Pad(wj
i , c) appends zeros, if required, to extend

wj
i and make its dimension a multiple of the chunksize c. To distinguish padded values from actual

weight values, each element of ŵj
i has a corresponding set of masks m̂j

i = {mj0
i , . . . ,m

jq
i }. Note

that with this padding and subsequent chunking operation, each element in ŵj
i is now small enough,

for an appropriately chosen chunksize c, to be processed. Moreover, all the elements in ŵj
i can

be processed in parallel. Importantly, chunksizes are chosen to ensure that weights from the same
neurons are grouped together. This allows for principled learning of specific symmetries which we
discuss later in Section 3.6. An ablation on the effect of chunksize is provided in Appendix E.

The model zoos we consider in the experimental section are populated by neural networks with stacks
of convolutional and linear layers. For each such layer, we apply the padding and chunking operation
differently. For a linear layer wj

i ∈ Rout×in, where out and in are the input and output dimensions
respectively, we apply the flattening operation on both dimensions followed by padding and chunking.
However for a convolutional layer wj

i ∈ Rout×in×k×k, we do not apply the flattening, padding, and
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chunking operations to the kernel dimensions k and operate only on the input and output dimensions
since the kernels are small enough to be encoded together. Finally we note that for layers with bias
values, we apply the procedure detailed above independently to both the weights and biases.

3.3 Independent Chunk Encoding

The next stage in our Set-based Neural Network encoding pipeline is the individual encoding of each
chunk of weight in ŵj

i = {wj0
i , . . . , wjt

i }. For each wjt
i ∈ ŵj

i , we treat the c elements as members of
a set. However, it is clear that wjt

i has order in its sequence, i.e., an ordered set. We remedy this by
providing this order information via positional encoding. Concretely, for a given wjt

i ∈ Rc×1, we
first model the pairwise relations between all c elements using a set-to-set function Φθ1 to obtain:

ŵjt
i = Φθ1(w

jt
i ) ∈ Rc×h. (2)

That is, Φθ1 captures pair-wise correlations in wjt
i and projects all elements (weight values) to a new

dimension h.

Given ŵjt
i ∈ Rc×h, we inject two kinds of positionally encoded information. The first encodes the

layer type in a list of layers, i.e., linear or convolution for the model zoos we experiment with, to
obtain:

ŵjt
i = PosEncType

Layer(ŵ
jt
i ) ∈ Rc×h. (3)

Here we abuse notation and assign the output of PosEnc(·) to ŵit
i to convey the fact that ŵjt

i ’s are
modified in place and to simplify the notation. Also, all PosEnc(·)s are variants of the positional
encoding method introduced in Vaswani et al. [2017]. Next we inject the layer level information.
Since neural networks are computationally hierarchical, starting from the input to the output layer, we
include this information to distinguish chunks, wjt

i s from different layers. Specifically, we compute:

ŵjt
i = PosEncLevel

Layer(ŵ
jt
i ) ∈ Rc×h, (4)

where the input to PosEncLevel
Layer(·) is the output of Equation 3. We note that this approach is different

from previous neural network encoding methods [Unterthiner et al., 2020] that loose the layer/type
information by directly encoding the entire flattened weights hence disregarding the hierarchical
computational structure of neural networks. Experimentally, we find that injecting such positionally
encoded information improves the models performance (Ablation E).

We further model pairwise correlations in ŵjt
i , now infused with layer/type information, using another

set-to-set function Φθ2 :
ŵjt

i = Φθ2(w
jt
i ) ∈ Rc×h. (5)

The final step in the chunk encoding pipeline involves compressing all c elements in ŵjt
i to a compact

representation. For this, we use a set-to-vector function Γθα : Rc×h → Rh. In summary, the chunk
encoding layer computes the following function:

w̃jt
i = Γθα [Φθ2(PosEncLevel

Layer(PosEncType
Layer(Φθ1(w

jt
i ))))], (6)

where w̃jt
i ∈ R1×H . Note that for each chunked layer ŵj

i = {wj0
i , . . . , w

jq
i }, the chunk encoder,

Equation 6, produces a new set w̃j
i = Concatenate[{w̃j0

i , . . . , w̃
jq
i }] ∈ Rq×h, which represents all

the encodings of all chunks in a layer.

Remark Our usage of set functions Φθ1 ,Φθ2 and Γθα allows us to process layers of arbitrary sizes,
which allows us to process neural networks of arbitrary architecture using a single model, a property
lacking in previous approaches to neural network encoding [Zhou et al., 2023a,b, Unterthiner et al.,
2020, Navon et al., 2023].

3.4 Layer Encoding

At this point, we have encoded all the chunked parameters of a given layer to obtain w̃j
i . Encoding a

layer, wj
i , then involves defining a function Γθβ : Rq×h → R1×h for arbitrary q. In practice, this is

done by computing:
wj

i = Γθβ [PosEncLevel
Layer(Φθ3(w̃

j
i ))] ∈ R1×h. (7)
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Again we have injected the layer level information, via positional encoding, into the encoding
processed by the set-to-set function Φθ3 . We then collect all the layer level encodings of the neural
network xi:

w̃i = Concatenate[w0
i , . . . ,w|xi|

i ] ∈ R|xi|×h. (8)

3.5 Neural Network Encoding

With all layers in xi encoded, we compute the neural network encoding vector zxi as follows:

zxi = Γθγ [Φθ4(PosEncLevel
Layer(w̃i))] ∈ Rh. (9)

zxi
compresses all the layer-wise information into a compact representation for the downstream task.

Since Γθγ is agnostic to the number of layers |xi| of network xi, the encoding mechanism can handle
networks of arbitrary layers and by extension architecture. Similar to the layer encoding pipeline, we
again re-inject the layer-level information through positional encoding before compressing with Γθγ .

Henceforth, we refer to the entire encoding pipeline detailed so far as SNEΘ(xi) for a network xi,
where Θ encapsulates the encoder parameters, Φθ1−4 ,Γα,Γβ and Γγ .

3.6 On Minimal Equivariance Without Weight Tying

Given an MLP, there exists permutations of the weights such that the two networks are functionally
equivalent [Hecht-Nielsen, 1990]. Since not all permutations are functionally correct, the encoder
needs to learn the correct functional equivalence. To achieve this, we utilize the concept of Logit
Invariance Regularization [Moskalev et al., 2023] where we constrain the output of the non-equivariant
SNEΘ (due to the positional encoding of input and output vectors) to respect the restricted functionally
correct permutation group. This results in the following optimization problem:

minimize
θ

ℓf (D) + vℓf (D,G), (10)

where G is the group of functionally equivariant permutations in the weight space, D is the training
dataset and v balances the task loss ℓf (D) and the Logit Invariance Regularization term ℓf(D,G).
Proposition 3.1 of Moskalev et al. [2023] guarantees that the resulting SNE model will have low
sensitivity to functionally incorrect permutations of the weights. In practice, ℓf (D,G) is the L2

distance between functionally equivalent permutations of the same weight. This approach differs
from previous works [Zhou et al., 2023a,b, Navon et al., 2023] which instead result to weight tying to
achieve minimal equivariance.

Remark While we use a regularization approach to achieve the required approximate minimal
equivariance in weight-space, our usage of the Logit Invariance Regularizer [Moskalev et al., 2023]
theoretically guarantees that we indeed learn the correct invariance property similar to the weight-
typing approaches. Additionally, our formulation is what allows us to deal with arbitrary architectures
using a single model (see Section 4), as opposed to previous works, since strict enforcement of
weight-space equivariance by design requires crafting a new model for different architectures. In this
sense, our approach provides a general encoder which in principle is applicable to any architecture,
resolving the limitations of purely weight-tying approaches.

Theoretical discussions on the adopted regularization based approach to minimal equivariance versus
weight tying is provided in Appendix C.

3.7 Choice of Set-to-Set and Set-to-Vector Functions

We specify the choice of Set-to-Set and Set-to-Vector functions encapsulated by Φθ1−4 ,Γα,Γβ and
Γγ used to implement SNE. Let X ∈ RnX×d and Y ∈ RnY ×d be arbitrary sets where nX = |X|,
nY = |Y | and d (note the abuse of notation from Section 3.1 where d is a dataset) is the dimension of
an element in both X and Y . The MultiHead Attention Block (MAB) with parameter ω is given by:

MAB(X,Y ;ω) = LayerNorm(H + rFF(H)),where (11)

H = LayerNorm(X + MultiHead(X,Y, Y ;ω). (12)
Here, LayerNorm and rFF are Layer Normalization [Ba et al., 2016] and row-wise feedforward layers
respectively. MultiHead(X,Y, Y ;ω) is the multihead attention layer of Vaswani et al. [2017].
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The Set Attention Block [Lee et al., 2019], SAB, is given by:

SAB(X) := MAB(X,X). (13)

That is, SAB computes attention between set elements and models pairwise interactions and hence is
a Set-to-Set function. Finally, the Pooling MultiHead Attention Block [Lee et al., 2019], PMAk, is
given by:

PMAk(X) = MAB(S, rFF(X)), where (14)

S ∈ Rk×d and X ∈ RnX×d. The k elements of S are termed seed vectors and when k = 1, as is
in all our experiments, PMAk pools a set of size nX to a single vector making it a Set-to-Vector
function.

All parameters encapsulated by Φθ1−4
are implemented as a stack of two SAB modules:

SAB(SAB(X)). Stacking SAB modules enables us not only to model pairwise interactions but
also higher order interactions between set elements. Finally, all of Γα,Γβ and Γγ are implemented as
a single PMA module with k = 1.

3.8 Downstream Task

Given (zxi
, yi), we train a predictor fθ(zxi

) to estimate properties of interest of the network xi. In
this work, we focus solely on the task of predicting the generalization performance of xi, where yi is
the performance on the test set of the dataset used to train xi for CNNs and frequencies for INRs.
The parameters of the predictor fθ and all the parameters in the neural network encoding pipeline, Θ,
are jointly optimized. In particular, we minimize the error between fθ(zxi

) and yi. For a model zoo,
the objective is given as:

minimize
Θ,θ

d∑
i=1

ℓ[fθ(SNEΘ(xi)), yi], (15)

for an appropriately chosen loss function ℓ(·). In our experiments, ℓ(·) is the binary cross entropy or
mean squared error loss. The entire SNE pipeline is shown in Figure 1.

4 Experiments

We present experimental results on INRs, and the standard CNN benchmark model zoos used in Un-
terthiner et al. [2020],Zhou et al. [2023a],Zhou et al. [2023b], and Navon et al. [2023]. Experimental
settings, hyperparameters, model specification, ablation of SNE and discussions on applying SNE to
architectures with branches (e.g. ResNets) in Appendix D.

Baselines: We compare SNE with the following baselines: a) MLP: This model flattens the entire
weight of the network and encodes it using a stack of MLP layers. b) DeepSets: [Zaheer et al., 2017]
This model treats the weights as a set with no ordering. c) HyperRep: [Schürholt et al., 2021] This
model learns a generative model of the flattened weight vector. d) STATNN [Unterthiner et al.,
2020]: This model computes the statistics of each layer such as the mean, variance and quantiles, and
concatenates them to obtain the neural network encoding vector. e) DWSNet [Navon et al., 2023]:
is a minimally equivariant model using weight tying developed mainly for MLPs. Various modules
are provided for encoding biases, weights and combinations of these two. f) NFNHNP, NFNNP and
NFT [Zhou et al., 2023a,b]: These models, termed Neural Functionals(NF), are developed mainly
for MLPs and utilize weight tying to achieve minimal equivariance. HNP, hidden neural permutation,
is applied only to the hidden layers of each network since the output and input layers of MLPs are
not invariant/equivariant to the action of a permutation group on the neurons. NP, neural permutation,
makes a strong assumption that both the input and output layers are also invariant/equivariant under
the action of a permutation group. NFT is similar to both models and utilizes attention layers. g)
NeuralGraph: [Kofinas et al., 2024] This method represents the weights of a network as a graph
and uses graph pooling techniques to obtain the network representation vector. We note that we are
unable to benchmark against Graph Metanetworks [Lim et al., 2023], which uses a graph approach
similar to NeuralGraph, since no code or data is publicly available.
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In all Tables, the best methods are shown in red and the second in blue. Additionally an extensive
ablation of all the components of SNE is provided in Appendix E. All experiments are performed
with a single GeForce GTX 1080 TI GPU with 11GB of memory.

4.1 Encoding Implicit Neural Representations
Table 1: Predicting Frequencies of Im-
plicit Neural Representations (INRs).

Model #Params MSE

MLP 14K 1.917±0.241

Deepsets 99K 2.674±0.740

STATNN 44K 0.937±0.276

NFNNP 2.0M 0.911±0.218

NFNHNP 2.8M 0.998±0.382

NFT 6M 0.401±0.109

DWSNet 1.5M 0.209±0.026

SNE(Ours) 358K 0.098±0.002

Dataset and Network Architecture: We utilize the model
zoo of Navon et al. [2023] consisting of INRs [Sitzmann et al.,
2020] fit to sine waves on [−π, π] with frequencies sampled
from U(0.5, 10). INRs are neural parameterizations of signals
such as images using multi-layer perceptrons.

Task: The goal is to predict the frequency of a given INR. Each
INR is encoded to a 32 dimensional vector which is then fed
to a classifier with two linear layers of dimension 512.

Results: As can be seen in Table 1, SNE significantly outperforms the baselines on this task. Given
that INRs are MLPs, minimal equivariance is particularly important for this task and shows that SNE
learns the correct minimal equivariance required to solve the task using the logit invariance approach.
Additionally, compared to the minimal equivariance constrained models [Zhou et al., 2023a,b, Navon
et al., 2023], SNE is parameter efficient as show in Table 1. We note that increasing the parameter
counts of the MLP, DeepSets and STATNN baselines results in overfitting and poor performance.

4.2 Cross-Architecture Performance Prediction

Table 2: Cross-Architecture Performance Prediction.

Arch1 → Arch2 DeepSets NeuralGraph SNE(Ours)

MNIST→ MNIST 0.460±0.001 0.473 ±0.079 0.490±0.027

MNIST→ CIFAR10 0.508±0.001 0.528 ±0.065 0.586±0.036

MNIST→ SVHN 0.546±0.001 0.502±0.119 0.535±0.004

CIFAR10→CIFAR10 0.507±0.000 0.463±0.131 0.660±0.016

CIFAR10→MNIST 0.459±0.000 0.352±0.104 0.558±0.037

CIFAR10→SVHN 0.545±0.000 0.534±0.123 0.581±0.024

SVHN→SVHN 0.553±0.000 0.573±0.067 0.609±0.039

SVHN→MNIST 0.480±0.001 0.448±0.044 0.531±0.039

SVHN→CIFAR10 0.529±0.000 0.539±0.057 0.622±0.057

For this task, we train the encoder on 3 ho-
mogeneous model zoos of the same architec-
ture and test on 3 homogeneous model zoos of
a different architecture unseen during training.
The cross-architecture task demonstrates the en-
coder’s agnosticism to particular architectural
choices since training and testing are done on
model zoos of different architectures, i.e., we
perform out-of-distribution evaluation.

Datasets and Neural Network Architectures:
We utilize model zoos trained on MNIST, CIFAR10 and SVHN datasets. We generate a model zoo
for these dataset with an architecture consisting of 3 convolutional layers followed by two linear
layers and term the resulting model zoo Arch1. Exact architectural specifications are detailed in
Appendix G. We generate the model zoos of Arch2 following the routine described in Appendix A.2
of Unterthiner et al. [2020]. We refer to the model zoos of Unterthiner et al. [2020] as Arch2. All
model zoos of Arch1 are used for training and those of Arch2 are used for testing and are not seen
during training.

Task: Here, we seek to explore the following question: Do neural network performance predictors
trained on model zoos of Arch1 transfer or generalize to the out-of-distribution model zoos of Arch2?
Additionally, we perform cross-dataset evaluation on this task where cross evaluation is with respect
to model zoos of Arch2, i.e., we also check for out-of-distribution transfer across datasets.

Baselines: We compare SNE with DeepSets [Zaheer et al., 2017] and NeuralGraph [Kofinas
et al., 2024] for this task. None of the other baselines, MLP, STATNN [Unterthiner et al., 2020],
NFNNP [Zhou et al., 2023a], NFNHNP [Zhou et al., 2023a], NFT [Zhou et al., 2023b] and DWS-
Net [Navon et al., 2023] can be used for this task since they impose architectural homogeneity and
hence cannot be used for out-of-distribution architectures by design.

Results: We report the quantitative evaluation on the cross-architecture task in Table 2 and report
Kendall’s τ [Kendall, 1938]. The first column, Arch1 → Arch2 shows the direction of transfer,
where we train using model zoos of Arch1 and test on model zoos of Arch2. Additionally, A→B,
e.g. MNIST→CIFAR10 shows the cross-dataset transfer. From Table 2, it can be seen that SNE
transfers best across out-of-distribution architectures and datasets outperforming the DeepSets and
NeuralGraph baselines significantly. Interestingly, the DeepSets model, which treats the entire weight
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Table 3: Cross-Architecture Performance Predic-
tion on Schürholt et al. [2022]’s model zoo.

Dataset HyperRep SNE(Ours)

SVHN → SVHN 0.45 0.67
SVHN → MNIST 0.15 0.61
SVHN → CIFAR10 0.10 0.68

as set with no ordering performs better than the Neu-
ralGraph model on average for this task. In conclu-
sion, SNE shows strong transfer across architecture
and datasets in the out-of-distribution benchmark.

Remark: In Table 2, we performed Arch1 → Arch2
evaluation specifically to allow benchmarking against
NeuralGraph [Kofinas et al., 2024]. Specifically, the
convolutional filters of Arch1 are larger than those of Arch2. NeuralGraph requires specifying this
maximum filter size before training and can only be used to transfer across architectures with filter
sizes equal or smaller than the predefined filter size (this can be verified from the official source
code1), i.e., NeuralGraph is not truely agnostic to architectural choices. SNE on the other hand does
not have this limitation. To demonstrate this, we use the SNE model trained in Table 2 and test it on
the SVHN model zoo of Schürholt et al. [2022] which is a much larger architecture with larger filter
sizes than those of Arch1. We compare with HyperRep [Schürholt et al., 2021] which is trained fully
on the testing model zoo. We emphasize that SNE is not trained on the training set of this model zoo.
Results for HyperRep are taken from Schürholt et al. [2022] and a single SNE model is evaluated to
match the setting of Schürholt et al. [2022]. From Table 3, SNE significantly outperforms HyperRep
by very large margins without being trained on the training set of Schürholt et al. [2022] as HyperRep
and demonstrates true agnosticism to architectural choices compared to NeuralGraph. We report
Kendall’s τ [Kendall, 1938] in Table 3.

Table 4: Cross-Architecture Performance on Trans-
formers. We report Kendall’s τ .

Arch1 → Transformer DeepSets SNE(Ours)

MNIST → MNIST 0.1975 ± 0.000 0.4625 ± 0.006

CIFAR10 → MNIST 0.1970 ± 0.000 0.3278 ± 0.029

SVHN → MNIST 0.1906 ± 0.000 0.3735 ± 0.009

Evaluation on Transformers: We generate a model
zoo of transformer using PytorchViT [2024] and test
the transfer from Arch1 to the transformer model zoo.
For this task, we are unable to benchmark against
NeuralGraph as was done in Table 2, since the model
cannot process transformer weights when trained on
Arch1. Hence we benchmark against the DeepSets
baseline as in Table 2. From Table 4 SNE generalizes better to the unseen transformer architecture
at test time than the baselines showing strong architectural transfer. Additionally, here, the model
encodes an architecture with about 5 times the number of parameters in Arch1 demonstrating the
scalability of our approach. The DeepSets baseline fails to generalize on this task.

4.3 Cross-Dataset Performance Prediction

Table 5: Cross-Dataset Prediction. We report Kendall’s τ .

Dataset MLP STATNN NFNNP NFNHNP SNE(Ours)

MNIST 0.618±0.177 0.788±0.097 0.780±0.107 0.775±0.115 0.807±0.094

FashionMNIST 0.613±0.176 0.696±0.170 0.768±0.110 0.727±0.142 0.765±0.114

CIFAR10 0.576±0.062 0.743±0.117 0.731±0.131 0.680±0.177 0.743±0.133

SVHN 0.604±0.137 0.709±0.107 0.705±0.120 0.638±0.163 0.730±0.100

For this task, we train neural network
performance predictors on 4 homo-
geneous model zoos, of the same ar-
chitecture, with each model zoo re-
stricted to a single dataset.

Datasets and Network Architecture: Each model zoo is trained on one of the following datasets:
MNIST [Deng, 2012], FashionMNIST [Xiao et al., 2017], CIFAR10 [Krizhevsky, 2009] and
SVHN [Netzer et al., 2018]. We use the model zoos of Unterthiner et al. [2020].

A thorough description of the model zoo generation process can be found in Appendix A.2 of Un-
terthiner et al. [2020].

Task: We train network encoders on a single model zoo, e.g. MNIST, and evaluate it on the test set
of all four datasets and report the averaged performance. This results in in-distribution testing with
respect to the dataset used for training and out-of-distrution testing with respect to the other three
datasets, e.g. a model trained on MNIST is tested on MNIST, FashionMNIST, CIFAR10 and SVHN.

Baselines: We benchmark against MLP, STATNN [Unterthiner et al., 2020], NFNHP [Zhou et al.,
2023a], and the NFNHNP [Zhou et al., 2023a].

Results: We present the results for this task in Table 5. Here we see that SNE again performs better
than the competing methods significantly demonstrating strong transfer across different datasets for
the same architecture.

1https://github.com/mkofinas/neural-graphs
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MNIST FashionMNIST CIFAR10 SVHN

(a) MLP (b) STATNN (c) NFNNP (d) NFNHNP

(e)
SNE(Ours)

Figure 2: TSNE Visualization of Neural Network Encodings. We train neural network performance prediction
methods on a combination of the MNIST, FashionMNIST, CIFAR10 and SVHN modelzoos of Unterthiner et al.
[2020]. We present 3 views of the resulting 3-D plots showing how neural networks from each modelzoo are
embedded/encoded by the corresponding models. Larger versions of these figures are provided in Appendix K.
Zoom in for better viewing.

Qualitative Analysis: To understand how SNE transfers well across model zoos, we generate
TSNE [Van der Maaten and Hinton, 2008] plots for the neural network encodings of all benchmarked
methods on all four homogeneous model zoos in Figure 2. We provide 3 different views of each
models embeddings to better illustrate the encoding pattern. In Figures 2c and 2d, we observe
that NFNNP and NFNHNP have very clear separation boundaries between the networks from each
model zoo. In Figures 2a and 2b, MLP and STATNN, respectively show similar patterns with small
continuous strings of model zoo specific groupings. However, these separations are not as defined
as those of NFNNP and NFNHNP. The embedding pattern of SNE on the other hand is completely
different. In Figure 2e, all networks from all the model zoos are embedded almost uniformly close
to each other. This may suggest why SNE performs much better on the cross-dataset performance
prediction task since it is much easier to interpolate between the neural network encodings generated
by SNE across model zoos.

5 Conclusion

In this work, we tackled the problem of encoding neural networks for property prediction given
access only to trained parameter values. We presented a Set-based Neural Network Encoder (SNE)
that reformulates the neural network encoding problem as a set encoding problem. Using a sequence
of set-to-set and set-to-vector functions, SNE utilizes a pad-chunk-encode pipeline to encode each
network layer independently; a sequence of operations that is parallelizable across chunked layer
parameter values. SNE also utilizes the computational structure of neural networks by injecting
positionally encoder layer type/level information in the encoding pipeline. As a result, SNE is
capable of encoding neural networks of different architectures as opposed to previous methods
that only work on a fixed architecture. To learn the correct minimal equivariance for MLP weight
permutations, we utilized Logit Invariance Regularization as opposed to weight tying used in previous
methods. Experimentally, we introduced the cross-dataset and cross-architecture neural network
property prediction tasks. We demonstrated SNE’s ability to transfer well across model zoos of the
same architecture but with networks trained on different datasets on the cross-dataset task. On the
cross-architecture task, we demonstrated SNE’s agnosticism to architectural choices and provided the
first set of experimental results for this task that demonstrates transferability across architectures.
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A Organization

In Section B we provide some limitations and future directions for the neural network encoding
task. In Section C, we discuss weight tying versus regularization approaches to achieving minimal
equivariance for MLPs together with some theoretical considerations. In Section D, we discuss
how SNE can be applied to architectures with branches, specifically ResNets [He et al., 2016]. In
Section E, we provide an ablation on the various components of the proposed method. In Section F,
we provide additional experimental results on the cross-dataset and cross-architecture tasks. In
Section G, we specify all the model architectures used for generating the model zoos of Arch1 and
Arch2 used for the cross-dataset and cross-architecture tasks. In Section H we provide details of the
train/validation/test splits. In Section I, we detail all the hyperparameters used for all experiments. We
provide implementation details for SNE in Section J and enlarged versions of Figure 2 in Section K.

B Limitations & Future Work

In this work, we focused solely on the task of predicting the properties, specifically generalization
performance, of neural networks given access only to the model parameters. While the task of
encoding neural network weights is a relatively new topic of research with very few baselines, we
anticipate new applications/research directions where the neural network encoding vector is used
for tasks such as neural network generation or neural network retrieval. These tasks, potential
applications, and consideration of more complicated neural network architectures (see discussion in
Section D) are out of the scope of this paper and we leave it for future works.

Additionally, we have not included results on larger architectures such as Transformers for the
following reasons: Firstly, we are unaware of any such extensive model zoos for such architectures.
In Lim et al. [2023], such a model zoo is evaluated, however, this is not publicly available hence we
are unable to benchmark against such architectures. Lastly, given that all experiments in this paper
were carried out on a single GPU with 11GB of memory, we are unable to generate the extensive
Transformer model zoos used in Lim et al. [2023]. However in Section D, we discuss how these
architectures can be encoded with our method when such model zoos become available.

C Weight Tying vs Regularization and Theoretical Considerations

With regards to achieving minimal equivariance: respecting only a subset of permutations in the
weight space that are functionally equivalent, there are two approaches to satisfying this property.

Weight Tying: This approach is adopted by Zhou et al. [2023a,b], Navon et al. [2023] where minimal
equivariance is baked into the neural network encoder, i.e., weight tying. However, this has a couple
of drawbacks:

• It requires a specification of the neural network to be encoded beforehand. This results in
encoders that cannot be applied to different architectures as we demonstrated in Section 4.2
where at test time, we evaluate SNE on architectures not seen during training.

• It requires processing all layers of the network together as opposed to the layer-wise encoding
scheme that we adopt. Note that for large networks, Zhou et al. [2023a,b], Navon et al.
[2023] will require correspondingly large memory but the memory requirements of SNE
remains constant since we share the same encoder across all layers, allowing our model to
process arbitrary network architectures efficiently.

Regularization: Recent works [Moskalev et al., 2023, Cohen-Karlik et al., 2020, Kim et al., 2023,
Miyato et al., 2022, Otto et al., 2023] have shown that symmetric constraints such as permutation
invariance/equivariance of a non-symmetric model can be achieved through regularization during
training. In this work, we take this approach since it offers the following useful properties:

• The level of symmetric constraints, i.e., minimal equivariance, can be learned directly from
data without architectural constraints.

• It allows us to process layers independently, resulting in a model that is general and disen-
tangled from architectural choices as we demonstrated in the cross architecture experiments.
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In the Ablation study E, we show that the regularization approach indeed helps to learn a model that
generalizes well and without it, the model struggles to learn the correct minimal equivariance.

Theoretical Considerations A natural question that arises is how well the regularization approach
learns the correct symmetric properties of interest. We first define the Logit Invariance, from which
we obtain the Logit Invariance Regularization loss of Moskalev et al. [2023].

Definition C.1 (Logit Invariance) [Moskalev et al., 2023] For a given group G, dataset D and
non-symmetric(with respect to G) model f , the Logit Invariance Loss of f is given by:

L(D,G) =
∑
x∼D

∑
g∼G

1

2
||f(x)− f(gx)||22. (16)

Logit Invariance measures the sensitivity of f to the action of G on data samples in D.

The following proposition of Moskalev et al. [2023] characterizes the performance decay of the Logit
Invariance Regularizer under some linearity assumptions.

Proposition C.1 (Invariance-Induced by Spectra Decay) [Moskalev et al., 2023] Logit invari-
ance error minimization implies σmax(W (t)) ≤ σ(W (0)) when t → ∞.

proof: See Section 3.3 of Moskalev et al. [2023].

Here, W are model parameters, t optimization steps and σmax(W ) = ||W ||2. Proposition C.1,
through an analysis of the training dynamics of f asserts that f will be insensitive to actions of G on
data instances thereby learning the correct invariance property when the Logit Invariance Regularizer
is minimized.

In summary, the SNE model constrained by the Logit Invariance Regularizer, learns the correct
minimal equivariance required for processing MLP weights without having to resort to weight tying
as the methods of Navon et al. [2023] and Zhou et al. [2023a,b].

D Considering Architectures with Branches

Here, we outline how SNE may be applied to a model zoo of architectures such as ResNets where
branches exist in the computational graph. Given that residual blocks are composed of convolutional
and linear layers, each of these can be encoded independently as we already do. To account for
residual connections, we propose to introduce special tokens (just as was done for layer types) when
we encode the entire block. Additionally, any symmetries inherent in such blocks can be enforced
using the invariance regularization term introduced. Given that Transformers are composed of linear
layers, the same pipeline can be applied to encode transformers and logit invariance regularization
can be used to respect their inherent symmetries.

While we do not see any impediment to applying SNE to such architectures, the unavailability of
such model zoos makes it impossible to experimentally verify these and hence we leave it as future
work when such model zoos become publicly available.

E Ablation

Table 6: Ablation on SNE Components

Model MSE

W/O Layer Level Encoder 2.216±1.303
W/O Layer Type Encoder 0.128±0.007
W/O Set Functions 1.931±0.108
W/O Positional & Hierarchical Encoding 7.452±0.799
W/O Invariance Regularization 0.156±0.015
SNE 0.098±0.002
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Figure 3: Ablation: We compare the performance of models in a limited training data setting using the
experiments of Table 1. As shown, SNE is more data efficient than the baseline models when the amount of
training data is constrained.

E.1 Components of SNE

We investigate the impact of the invariant regularization loss, the hierarchical and positional encoding
modules, the usage of set functions, layer level and layer type encoders on the performance of SNE
using the INR dataset. In Table 6, it can be seen that the hierarchical and positional encoding modules
play an important role in the performance of SNE. Removing this module results in significant
performance degradation from 0.098 to 7.452. Without positional encoding, SNE is fully permutation
equivariant even to functionally incorrect permutations of the weights, making it difficult for the model
to learn the correct restricted set of permutations. Secondly, removing the invariance regularization
term results in a degradation in performance, from 0.098 to 0.160, as it also makes the task learning
the correct minimal equivariance subgroup difficult. We find this only to have a huge impact for
MLPs such as INRs where weight permutations are well defined. Additionally, removing the set
functions and the layer level and type encoders from the model results in performance drop.

E.2 Effect of Chunksize

Table 7: Effect of Chunksize.

Chunksize MSE

4 0.095 ±0.012
8 0.090 ±0.023

16 0.118 ±0.019
32 0.056 ±0.020

We provide ablation on the effect of chunksize in the table below for the INR experiment presented in
Table 1 of the main paper. From Table 7 we see that performance stays almost the same until the
largest chunksize. Hence the chunksize is selected to suit the memory requirements.

E.3 How Well Is The Logit Invariance Regularization Term Minimized?

We compute the logit invariance loss for the experiments for 5 functionally equivalent permutations
of INR weights and obtain a loss of approximately 10−15. This low loss implies that the SNE learns
the correct level of invariance which is the desired property of the non-weight tying approach that we
take.
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Table 8: Cross-Dataset Neural Network Performance Prediction. We benchmark how well each method transfers
across multiple datasets. In the first column, A → B implies that a model trained on a homogeneous model zoo
of dataset A is evaluated on a homogeneous model zoo of dataset B. In the last row, we report the averaged
performance of all methods across the cross-dataset task. For each row, the best model is shown in red and the
second best in blue. Models are evaluated in terms of Kendall’s τ , a rank correlation measure.

MLP STATNN NFNNP NFNHNP SNE(ours)

MNIST→ MNIST 0.878±0.001 0.926±0.000 0.937±0.000 0.942±0.001 0.941±0.000
MNIST→ FashionMNIST 0.486±0.019 0.756±0.006 0.726±0.005 0.690±0.008 0.773±0.009
MNIST→ CIFAR10 0.562±0.024 0.773±0.005 0.756±0.010 0.758±0.000 0.792±0.008
MNIST→ SVHN 0.544±0.005 0.698±0.005 0.702±0.005 0.710±0.010 0.721±0.001

FashionMNIST→ FashionMNIST 0.874±0.001 0.915±0.000 0.922±0.001 0.935±0.000 0.928±0.001
FashionMNIST→ MNIST 0.507±0.007 0.667±0.010 0.755±0.018 0.617±0.012 0.722±0.005
FashionMNIST→ CIFAR10 0.515±0.007 0.698±0.029 0.733±0.007 0.695±0.032 0.745±0.008
FashionMNIST→ SVHN 0.554±0.006 0.502±0.043 0.663±0.014 0.662±0.003 0.664±0.003

CIFAR10→ CIFAR10 0.880±0.000 0.912±0.001 0.924±0.002 0.931±0.000 0.927±0.000
CIFAR10→ MNIST 0.552±0.003 0.656±0.005 0.674±0.018 0.600±0.025 0.648±0.006
CIFAR10→ FashionMNIST 0.514±0.005 0.677±0.004 0.629±0.031 0.526±0.038 0.643±0.006
CIFAR10→ SVHN 0.578±0.005 0.728±0.004 0.697±0.006 0.662±0.004 0.753±0.007

SVHN→ SVHN 0.809±0.003 0.844±0.000 0.855±0.001 0.862±0.002 0.858±0.003
SVHN→ MNIST 0.545±0.025 0.630±0.009 0.674±0.008 0.647±0.016 0.647±0.001
SVHN→ FashionMNIST 0.523±0.026 0.616±0.007 0.567±0.014 0.494±0.023 0.655±0.003
SVHN→ CIFAR10 0.540±0.027 0.746±0.002 0.725±0.007 0.547±0.039 0.760±0.006

Cross-Dataset Task 0.616±0.143 0.734±0.115 0.746±0.106 0.705±0.140 0.761±0.101

E.4 Measuring the Importance of Training Set Size

We provide a plot of training set size versus error in Figure 3 using the INR experiment presented in
Table 1. From this it can be seen that SNE is more data efficient compared to the baselines [Navon
et al., 2023, Zhou et al., 2023b] across all percentages of the full training data demonstrating that the
proposed method learns a good embedding even in the limited data setting.

F Additional Experimental Results

In this section we provide additional experimental results on the cross-dataset and cross-architecture
tasks.

F.1 Cross-Dataset Evaluation

For this task, we train neural network performance predictors on 4 homogeneous model zoos, of the
same architecture, with each model zoo restricted to a single dataset.

Datasets and Network Architecture: Each model zoo is trained on one of the following datasets:
MNIST [Deng, 2012], FashionMNIST [Xiao et al., 2017], CIFAR10 [Krizhevsky, 2009] and
SVHN [Netzer et al., 2018]. We use the model zoos provided by Unterthiner et al. [2020]. To
create each model zoo, 30K different hyperparameter configurations were sampled. The hyperpa-
rameters include the learning rate, regularization coefficient, dropout rate, the variance and choice of
initialization, activation functions etc. A thorough description of the model zoo generation process
can be found in Appendix A.2 of Unterthiner et al. [2020]. Architectural descriptions for the model
zoos are outlined in Appendix G. Each model zoo is split into a training, testing and validation splits.

Task: In this task, we consider cross-dataset neural network performance prediction where we
evaluate the prediction performance on the testset of the model zoo on which the predictors were
trained on. Additionally, we evaluate how well each predictor transfers to the other model zoos. We
evaluate all models using Kendall’s τ [Kendall, 1938].

Results: We present the results of the cross-dataset performance prediction task in Table 8. For
each row in Table 8, the first column shows the cross-dataset evaluation direction. For instance,
MNIST→CIFAR10 implies that a model trained on an MNIST model zoo is cross evaluated on a
model zoo populated by neural networks trained on CIFAR10. We note that the A→A setting, e.g.
MNIST→MNIST, corresponds to the evaluation settings of Unterthiner et al. [2020] and Zhou et al.
[2023a]. Also in Table 8 we show the best model in red and the second best model in blue.
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Table 9: Cross-Architecture NN Performance Prediction. We show how SNE transfers across architectures and
report Kendall’s τ .

Arch2 → Arch1 SNE

MNIST→ MNIST 0.452±0.021
MNIST→ CIFAR10 0.478±0.010
MNIST→ SVHN 0.582±0.016

CIFAR10→ CIFAR10 0.511±0.020
CIFAR10→ MNIST 0.467±0.020
CIFAR10→ SVHN 0.594±0.029

SVHN→ SVHN 0.621±0.013
SVHN→ MNIST 0.418±0.096
SVHN→ CIFAR10 0.481±0.055

Table 10: Arch1 for MNIST, FashionMNIST, CIFAR10 and SVHN.

Output Size Layers

1× 32× 32 Input Image
16× 30× 30 Conv2d(in_channels=1 , out_channels=16, kernel_size=3), ReLU
16× 28× 28 Conv2d(in_channels=16, out_channels=16, kernel_size=3), ReLU
16× 26× 26 Conv2d(in_channels=16, out_channels=16, kernel_size=3), ReLU
16× 1× 1 AdaptiveAvgPool2d(output_size=(1, 1))
16 Flatten
10 Linear(in_features=16, out_features=10)

As show in Table 8, SNE is always either the best model or the second best model in the cross-dataset
task. SNE is particularly good in the A→B performance prediction task compared to the next
competitive baselines, NFNNP and NFNHNP. The MLP baseline, as expected, performs the worse
since concatenating all weight values in a single vector looses information such as the network
structure. STATNN [Unterthiner et al., 2020] performs relatively better than the MLP baseline
suggesting that the statistics of each layer indeed captures enough information to do moderately well
on the neural network performance prediction task. NFNNP and NFNHNP perform much better than
STATNN and MLP and NFNHNP in particular shows good results in the A→A setting. Interestingly,
NFNNP is a much better cross-dataset performance prediction model than NFNHNP. However, across
the entire cross-dataset neural network performance prediction task, SNE outperforms all the baselines
as shown in the last row of Table 8.

F.2 Cross-Architecture Evaluation

Next we reverse the transfer direction from Arch2 to Arch1 in Section 4.2 and provide the results for
SNE in Table 9. Note that for this task NeuralGraph [Kofinas et al., 2024] cannot be used since we
transfer from a smaller architecture to a larger one. As can be seen from Table 9, SNE transfers well
across architectures further validating the results in Section 4.2.

G Architectures for Generating model zoos

We specify the architectures for generating the model zoos of Arch1 and Arch2. For the model zoos
of Arch1 in Table 10, all datasets with with 3 channel images (CIFAR10 and SVHN) are converted
to grayscale. This is in accordance with the setups of Unterthiner et al. [2020], Navon et al. [2023]
and Zhou et al. [2023a,b] and allows us to evaluate both methods in the cross-dataset task for this
set of homogeneous model zoos. For model zoos of Arch2 in Tables 11 & 12, we maintain the
original channels of the datasets. The cross-architecture transfer task is from Arch1 to Arch2. Note
also that for the same dataset, i.e., CIFAR10, the cross-architecture evaluation is also from models
trained grayscale to RGB images. All model zoos were generated using the procedure outlined in
the Appendix of Unterthiner et al. [2020]. The architecture for the INR experiments is outlined in
Table 16.
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Table 11: Arch2 for MNIST.

Output Size Layers

1× 28× 28 Input Image
8× 24× 24 Conv2d(in_channels=1 , out_channels=8, kernel_size=5)
8× 12× 12 MaxPool2d(kernel_size=2, stride=2), ReLU
6× 8× 8 Conv2d(in_channels=8 , out_channels=6, kernel_size=5)
6× 4× 4 MaxPool2d(kernel_size=2, stride=2), ReLU
4× 3× 3 Conv2d(in_channels=6 , out_channels=4, kernel_size=2), ReLU
36 Flatten
20 Linear(in_features=36, out_features=20), ReLU
10 Linear(in_features=20, out_features=10)

Table 12: Arch2 for CIFAR10 and SVHN.

Output Size Layers

3× 28× 28 Input Image
8× 24× 24 Conv2d(in_channels=3 , out_channels=8, kernel_size=5)
8× 12× 12 MaxPool2d(kernel_size=2, stride=2), ReLU
6× 8× 8 Conv2d(in_channels=8 , out_channels=6, kernel_size=5)
6× 4× 4 MaxPool2d(kernel_size=2, stride=2), ReLU
4× 3× 3 Conv2d(in_channels=6 , out_channels=4, kernel_size=2), ReLU
36 Flatten
20 Linear(in_features=36, out_features=20), ReLU
10 Linear(in_features=20, out_features=10)

H Dataset Details

Dataset splits for model zoos of Arch1 is given in Table 13. For the cross-architecture task, we
generate model zoos of with 750 neural networks of Arch2 for testing.

Table 13: Dataset splits for model zoos of Arch1.

Model zoo Train set Validation set Test set

MNIST 11998 3000 14999
FashionMNIST 12000 3000 15000
CIFAR10 12000 3000 15000
SVHN 11995 2999 14994

I Hyperparameters

We elaborate all the hyperparameters used for all experiments in Table 14.

Table 14: Hyperparameters for CNN experiments.

Hyperparameter Value

LR 1e− 4
Optimizer Adam
Scheduler Multistep
Batchsize 64
Epochs 300
Metric Binary Cross Entropy
SAB Hidden Size 64
PMA Seed Size 64
# SAB Blocks 2
chunksize 32
SAB LayerNorm False
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Table 15: Generalization Performance Predictor.

Output Size Layers

1000 Linear(in_features=1024, out_features=1000), ReLU
1000 Linear(in_features=1000, out_features=1000), ReLU
1 Linear(in_features=1000, out_features=1), Sigmoid

Table 16: INR Architecture. Activations are Sinusoidal

Output Size Layers

32 Linear(in_features=1, out_features=32), Sine
32 Linear(in_features=32, out_features=32), Sine
1 Linear(in_features=32, out_features=1)

J Implementation Details

SNE is implemented using Pytorch [Paszke et al., 2019]. The SNE model consists of 4 sub-modules:

• Layer Chunk Encoder: This consists of two SAB modules where each SAB module is as
stack of two SAB layers, followed by a single PMA layer. The layer chunk encoder encodes
all the chunks of a given layer independently.

• Layer Encoder: This module encodes all the encoded chunks of a layer and consists of two
SAB modules and a single PMA layer.

• Separated Layer Encoder: This module encodes all the encodings of a layer, for instance
the weights and biases, into a single layer encoding vector. It also consists of two SAB
modules and a single PMA layer.

• NN Encoding Layer: This module takes as input all the layer encodings and compresses
them to obtain the neural network encoding which is used for the downstream task of
predicting the neural network generalization performance. It also consists of two SAB
modules and a single PMA layer.

In addition to the sub-modules above, the layer/level positional encoders are applied to each sub-
module when required (see Section 3). The neural network performance predictor, which takes as
input the neural network encoding vector from SNE and predicts the performance is detailed in
Table 15.

K Miscellanea

In Figures 4, 5 and 6 we provide enlarged versions of the figures in Figure 2 for better viewing.
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MNIST FashionMNIST CIFAR10 SVHN

(a) MLP (b) STATNN

(c) NFNNP (d) NFNHNP

(e) SNE(Ours)

Figure 4: TSNE Visualization of Neural Network Encoding. We train neural network performance prediction
methods on a combination of the MNIST, FashionMNIST, CIFAR10 and SVHN modelzoos of Unterthiner et al.
[2020]. Zoom in for better viewing.
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MNIST FashionMNIST CIFAR10 SVHN

(a) MLP (b) STATNN

(c) NFNNP (d) NFNHNP

(e) SNE(Ours)

Figure 5: TSNE Visualization of Neural Network Encoding. We train neural network performance prediction
methods on a combination of the MNIST, FashionMNIST, CIFAR10 and SVHN modelzoos of Unterthiner et al.
[2020]. Zoom in for better viewing.
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MNIST FashionMNIST CIFAR10 SVHN

(a) MLP (b) STATNN

(c) NFNNP (d) NFNHNP

(e) SNE(Ours)

Figure 6: TSNE Visualization of Neural Network Encoding. We train neural network performance prediction
methods on a combination of the MNIST, FashionMNIST, CIFAR10 and SVHN modelzoos of Unterthiner et al.
[2020]. Zoom in for better viewing.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We experimentally demonstrate strong empirical results on various benchmarks
to back the claims made in the abstract and introduction. Additionally, we provide theoretical
backing for our method in Appendix C.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations of our method in Appendix B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Theoretical considerations are provided in Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all experimental settings as well as descriptions of model zoos
used in this paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The appendix provides details on generating the model zoos used for ex-
periments in this paper. Additionally, a reference implementation will be made publicly
available.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All such details are provided in the experimental section and the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results have error bars with the exception of Table 3 where a single model
is evaluated in accordance with the experimental setting described.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Computational resources used of all experiments is stated in Section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All NeurIPS code of Ethics are observed.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Potential impact and extensions of our method is provided in Appendix B.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets, code, etc are appropriately cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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