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Abstract

Graphon models provide a flexible nonparametric framework for estimating latent
connectivity probabilities in networks, enabling a range of downstream applications
such as link prediction and data augmentation. However, accurate graphon estima-
tion typically requires a large graph, whereas in practice, one often only observes a
small-sized network. One approach to addressing this issue is to adopt a transfer
learning framework, which aims to improve estimation in a small target graph by
leveraging structural information from a larger, related source graph. In this paper,
we propose a novel method, namely GTRANS, a transfer learning framework that
integrates neighborhood smoothing and Gromov-Wasserstein optimal transport to
align and transfer structural patterns between graphs. To prevent negative transfer,
GTRANS includes an adaptive debiasing mechanism that identifies and corrects for
target-specific deviations via residual smoothing. We provide theoretical guarantees
on the stability of the estimated alignment matrix and demonstrate the effectiveness
of GTRANS in improving the accuracy of target graph estimation through extensive
synthetic and real data experiments. These improvements translate directly to
enhanced performance in downstream applications, such as the graph classification
task and the link prediction task.

1 Introduction

Graph data are increasingly common in numerous applications, from social networks [54, 14, 17] to
biological systems [5] and power electronics networks [64]. A fundamental task in graph learning is
estimating the probability of connections between nodes, facilitating various downstream analyses.
Traditional methods for estimating connection probabilities often rely on specific parametric random
graph models, including Erd6s—Rényi (ER) model [20, 18], the stochastic block model (SBM) [24]
and SBM variants [27, 31, 8], the exponential random graph model (ERGM) [35], and latent position
model [23]. While useful, these can be restrictive and suffer from model misspecification.

Graphon. To address this limitation, the graphon model provides a powerful non-parametric
framework [34, 42]. A graphon is a symmetric, measurable function f : [0, 1] — [0, 1], where nodes
are assigned latent positions u; ~ Unif[0, 1], and edge probabilities are given by p;; = f(u;, u;).
This model includes classical models as special cases—e.g., constant functions yield ER graph,
and step functions yield SBMs. Graphon models have been widely used for various downstream
applications, such as data augmentation [22], link prediction [67], causal inference under network
interference [32], dataset distillation [61], and assessing vulnerabilities in the smart grid [3]. In the
existing literature, various methods have been developed for estimating the connection probability
under graphon model [10, 1, 9, 11, 65, 45]. The estimation accuracy of these methods typically
improves as the network size (i.e., number of nodes) increases.
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Motivating example. Small graphs severely limit graphon estimation accuracy, posing significant
challenges for graphon-based downstream analysis. For example, in the PROTEINS-Full dataset
([22]), each graph represents a protein structure and consists of only 25 nodes on average. Therefore,
employing standard graphon estimation strategies may lead to poor accuracy. Fortunately, similar
domains often offer larger graphs with related structures, e.g., the D&D dataset averaging 284
nodes per protein graph. Both datasets encode similar biological relationships, creating an ideal
transfer learning opportunity. Therefore, it would be highly beneficial to develop a statistically
sound methodology for transferring knowledge from a related large graph. Such an approach could
substantially enhance inference on a smaller graph, while preserving the flexibility of the graphon
framework.

Transfer learning. Transfer learning has emerged as a powerful framework for leveraging knowledge
from data-rich domains to improve learning in data-scarce domains [43]. In graph settings, it has
been used for GNN meta-learning, pre-training/fine-tuning and adversarial adaptation, as well as
for network regression [63, 25, 47, 7, 62, 12]. To the best of our knowledge, there is only one work
[26] proposing a transfer learning method for graphon estimation. However, their methodology is
constrained to scenarios where the target network exists as a subset of the source network, thereby
leveraging known node correspondences between networks. We aim to tackle the more practical
scenario where node correspondences are unknown. To our knowledge, no previous research
addresses this gap, which presents two key challenges: (1) Alignment problem: Without known node
correspondences, structural patterns may transfer to non-corresponding regions, potentially degrading
estimation quality. (2) Unsupervised learning setting: Traditional transfer learning relies on labeled
data, but graphon estimation provides no such signals for formulating clear transfer loss functions.

Transfer learning for graphon estimation. To address these challenges, we propose a novel
transfer learning method for graphon estimation via optimal transport and neighborhood smoothing,
abbreviated as GTRANS. Our method consists of three key steps. Initial estimation step: Given
source and target adjacency matrices A; € {0,1}™=*"= and A; € {O 1}”*”“ ng > ny, we first

apply neighborhood smoothing to obtain initial graphon estimators P”” and P”” for both source
and target. Transferring step: We then employ Gromov- Wasserstem (GW) optlmal transport to
compute the alignment matrix 7 € [0, 1]™=*"* using the aforementioned initial graphon estimators
rather than the original adjacency matrices which contain Bernoulli noise. The resulting alignment
matrix is then used to map the initial source graphon estimator into the target domain’s latent space
through a structure-preserving projection. Debiasing step: When the source and target graphons
differ significantly (indicated by a large GW distance in the previous step), we implement an adaptive
debiasing mechanism to mitigate potential negative transfer.

Our contributions can be summarized as follows: (1) To the best of our knowledge, GTRANS is the
first method for graphon estimation that transfers knowledge across graphs without any known node
correspondence. (2) We establish consistency results for the proposed method, showing that the
alignment matrix computed using smoothed graphon estimates converges (under mild conditions) to
the true optimal transport map. (3) Extensive experiments on synthetic datasets show our method
consistently achieves lower estimation error than state-of-the-art alternatives. On real-world networks,
it outperforms existing approaches in both graph classification via data augmentation and link
prediction tasks. Our implementation is publicly available at https://github.com/0livia3395/
GTRANS.

2 Preliminary

In this paper, we let A € {0,1}"*™ denote an adjacency matrix, and P denote the corresponding
probability matrix that generates A, i.e., A;; ~ Ber(P;;). A graphon model typically assumes that
each node 7 has a latent position u; € [0,1] and P;; = f(u;, u;), where f is a symmetric, measurable
function on [0, 1]2. Graphon estimation refers to the estimation of the probability matrix P under
the graphon model. The accuracy of the graphon estimation is typically measured using the mean
squared error: MSE(P, P) = ||P — P||2,/n?. MSE is widely used as a standard evaluation metric in
existing literature [65, 45, 9].

2.1 Graphon Estimation
Broadly speaking, graphon estimation methods fall into three categories: (1) Global low-rank

techniques, including Universal Singular Value Thresholding [11, 60]; (2) Combinatorial optimization,
which directly searches for node assignments [19, 29] (3) Smoothing-based methods, which pool
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nodes with similar degree [9] or similar latent neighborhoods [65, 40]. Among these methods,
neighborhood smoothing (NS) [65] stands out because it can achieve nearly optimal MSE among
all estimators computable in polynomial time. The key idea of NS method is to estimate pairwise
connection probabilities by measuring the proportion of edges between the respective neighborhoods
of node pairs, effectively leveraging local structure to infer global patterns. Further algorithmic details
of NS are provided in Appendix G.2.

2.2 Gromov-Wasserstein Distance

The Gromov-Wasserstein (GW) distance [37, 38] provides a principled framework for comparing
metric-measure spaces, making it particularly suitable for comparing graphs of different sizes without
requiring node correspondences. GW distance and couplings (and their variations, e.g., fused GW
distance [50, 41], sliced GW distance [51]) have proven to be very useful for comparing/aligning
graphs, shapes, or distributions supported on different domains [15, 2, 58, 21, 36, 56]. In its most
general formulation, given two cost/distance matrices C' € R™*" and D € R™*", the GW distance
between these two distance matrices is defined as: mingerm(u.) D ;40 L(C(i, k), D(j,1)) 77w
where II(p, v) is the set of all couplings m € R™*" such that ;; > 0, >, mi; = Land ), mi; = pu;
and >, m;; = v;, and L is the loss function, for example L(z,y) = (z — y)?.Here, . and v denote
the uniform measures on the source and target nodes, respectively; that is, . = (1/ng,...,1/ng)
and v = (1/nr,...,1/ny). The minimizer 7* of the above equation is called an optimal GW
coupling. While the GW distance offers a powerful framework, the exact computation of the GW
distance is a quadratic assignment problem, which is known to be computationally intensive [37, 52].
The GW distance has been widely used for graph alignment and transfer tasks, demonstrating
its effectiveness in applications such as node embedding, cross-domain alignment, and subgraph
matching [58, 56, 13, 30, 59].

Entropic gromov-wasserstein distance for scaling up to large datasets. To alleviate the compu-
tational difficulty, [49] proposed adding an entropic regularization to the GW objective function as
follows: minzer(u,u) D i j s L(C(i, k), D(j,1)) mijmw + €KL (7 | p @ v) . The product pu ® v is
the product measure assigning a uniform weight of (ngnz)~!. Although the addition of an entropic
regularizer does not make the optimization problem convex (unless e exceeds a certain threshold), it
significantly enhances computational efficiency. As elaborated in [49], this regularization enables
a Sinkhorn-like algorithm, adapted from [16] for the standard optimal transport problem, which is
simple to implement and typically exhibits fast convergence [46].

3 Transfer Learning on Connecting Probability Estimation for Graph

In this section, we first formalize the problem setup for transfer learning on connecting probability
estimation, then present our method GTRANS in detail.

3.1 Problem Setup

We consider the problem of estimating the graphon for a target graph of relatively small size,
leveraging information from a larger source graph that shares structural similarities. Formally, we
have a source graph with adjacency matrix A, € {0,1}"<*", where n, = |V;| is the number of
nodes, and a target graph with adjacency matrix A; € {0, 1}"™t*" where n; = |V;| is the number of
nodes. We assume n; > ng, i.e., the source graph is larger than the target graph. We assume these
networks are generated by the following graphon models.

A, i ~Ber(Pg i), where Py ;i = fs(Usis s j),Usi €[0,1],us; €[0,1], 1 <i<j < n,.

At,ij ~ Ber(Pt,ij),where Ptﬁ'j = ft(ut@ut,j),utyi S [0, 1];Ut,j S [0, 1], 1 <2 <j < ng.

Here fs and f; represent the latent graphon function in the source network and target network. Each
node ¢ € {1,...,n,} of the source and target network has a latent position u, ; and u; ;, respectively.

Our goal is to estimate the target probability matrix P; by leveraging both the observed target graph
A, and knowledge transferred from the larger source graph A ¢, adaptively, when the source is indeed
similar to the target.



3.2 Proposed Method

Overview. Figure 1 shows the workflow of our method GTRANS, which consists of three main
steps: (1) Initial graphon estimation: GTRANS begins with observed source and target networks
and computes their respective initial estimates P € [0, 1], Piné ¢ [0,1]"*"™ . We obtain
these initial edge probability matrices using the NS method [65]. These initial estimators capture
the basic structure of the respective graphs but may have limited accuracy for the target graph due
to its smaller size. (2) Transferring step: We employ optimal transport to calculate the alignment
matrix between m between the source and target domains. Using this alignment, we transfer the
source estimate to the target domain to obtain lattrans, which is further smoothed to obtain 15;”"“52. If
the source-target domain shift (measured by the transport distance d) is below a threshold 4, our
final estimate is P* = 15;”‘“52. (3) Debiasing step: When d > 9, indicating a significant domain shift,
direct transfer may miss target-specific structures. To correct this, we perform a debiasing step. We
compute the residual matrix R, = ]_f’im — 15‘{‘““2, which captures structural patterns present in the
target graph but not explained by transfer from the source. However, R, is noisy due to the small
target sample. To extract a meaningful signal, we apply neighborhood smoothing on R to obtain
a denoised residual estimate P, ‘This smoothed correction is then added back to the transferred
estimate, yielding the final output P! = Pans2 4 pres,
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optimal transport. If source-target distance d < J, the smoothed transferred estimate is returned.
Otherwise, debiasing step is applied to produce the final output.

3.2.1 Transferring Step

In this step, we align nodes between the source and target graphs using optimal transport and transfer
the source graphon estimator to the target domain. The key idea is to align nodes that exhibit similar
connection patterns. We define the oracle alignment as the theoretical correspondence that would be
obtained if we had access to the true underlying graph probability matrices. In practice, we don’t
know true underlying graph probability, researchers have been using observed adjacency matrices for
computing alignment estimate. However, each adjacency matrix represents just a single realization of
a random graph, which is subject to Bernoulli noise. To address this limitation, we propose using a
neighborhood smoothing technique to obtain the initial graphon estimates 13?” and 15;7” which are
shown to be consistent in [65].

In this work, we allow flexibility in choosing between the standard GW distance and its entropic
regularized variant EGW for computing the optimal transport plan between two graphs. The choice
between GW and EGW depends on computational considerations: For larger source networks
with limited computational resources, we recommend using EGW; Otherwise, the standard GW
formulation may be preferred for its sharper alignment results. Mathematically, in the GW setting, we
compute the optimal transport plan 7 € [0, 1]™=*™ by minimizing the following objective function:
Ml eTT(u,0) Do j ke L(f’;’” (i, k), Pini(j, 1)) mijmi. For the EGW variant, we calculate 7 similarly
but add an entropic regularization term.

Advantage of using initial graphon estimates for optimal transport. The advantage of using f’%’“

and f’fj” is clearly demonstrated in Figure 2. We illustrate this with a simple example: a 100-node
target graph and a 500-node source graph, both generated from the same base graphon function.
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(a) Adjacency-based alignment  (b) Initial estimate-based alignment (c) Oracle alignment

We compare the alignment matrices calculated using
the original noisy adjacency matrices A; and A,
the initial estimated probability matrices Pi"* and
P and the true underlying probability matrices P 1
P, and P,. As shown in Figure 2, the alignment ’ , - =

based on raw adjacency matrices is noisy and poorly : _ Y
structured, deviating substantially from the ground-

truth alignment. In contrast, the alignment obtained ~Figure 2: Visualization of alignment matrix.
using the initial estimated probability matrices closely approximates the true alignment.

N,
N

Normalization of optimal transport plan. Each entry 7;; quantifies the strength of the learned
correspondence between source node ¢ and target node j. Nevertheless, as a transport plan that
distributes a total mass of 1 across ns X n entries, the individual values of 7;; can often be quite
small. Thus, we apply column normalization to the transport plan. The resulting matrix, denoted by
7 € [0, 1]™=*™ s scaled such that each column sums to one.

Projection. Using the estimated alignment matrix, we transfer the source graphon estimator to
the target domain: Pmms = ~TP“”7T This matrix transformation acts as a projection operator,
effectively mapping the connectivity patterns encoded in the source probability matrix P”” onto
the target domain’s structure. It produces a weighted aggregation of source graphon values where
the weights reflect the learned node correspondences. To further refine the transfer, we apply
neighborhood smoothing to the transferred graphon estimator, obtaining a refined version 15?“”52.
This additional smoothing step preserves the smoothness properties of the graphon and ensures that
the transferred knowledge is not only structurally aligned but also smooth.

3.2.2 Debiasing Step

When source and target graphons differ si gmﬁcantly, negatlve transfer can occur. We quantify this
domain difference using the GW between P”” and P“” When the distance is smaller than the
threshold (d < §), we simply use the smoothed transferred estimator Pi”“”SQ as our final estimator.
When this distance exceeds a predetermined threshold (d > §), we implement the following debiasing
procedure to mitigate potential negative transfer effects.

Specifically, we first compute a residual matrix: R; = Pi"* — P{74"2_ This residual matrix captures
(a) target-specific structural patterns not explained by the transferred estimator and (b) random noise
due to small sample size of the target graph. To keep the meaningful structure from part (a) but
remove the noise from part (b), we then use the neighborhood smoothing method [65]. This method
averages information from nearby nodes with similar connection patterns, which smooths out random
fluctuations and keeps the stable, informative patterns. The result is a cleaner, smoothed residual

estimator, 15{ ¢, Finally, we combine the transferred estimator with the smoothed residual to get our
final graphon estimator for the target graph: P, = 15?“”52 + P{es. Adding the smoothed residual
back allows the model to recover target-specific structural information that was missing from the
transferred estimator, without reintroducing the random noise filtered out during smoothing.

Algorithm | summarizes our complete procedure, where the optimal transport can be calculated
using either GW or its entropic variant EGW, and the choice depends primarily on the computational
considerations.

4 Theoretical Properties

In this section, we present a stability analysis of the estimated alignment matrix obtained via
minimizing the entropic Gromov-Wasserstein distance. Although EGW has been successfully applied
in a variety of domains [53, 28], the question of the stability of the optimizer 7* with respect to
perturbations in the cost or distance matrices (C, D) has received limited attention. Very recently,
[66] first established duality theory for EGW, deriving optimal n~'/2 empirical convergence rates and
proving stability with respect to the regularization parameter and [46] analyzed the a certain aspect
of stability of the estimator, when both C' and D are euclidean distance matrices based on m and n
observations respectively. These analyses do not address the case when (i) C' and D are arbitrary
cost matrices without the inner-product structure of Euclidean distances, and (ii) the stability of the



EGW estimator under perturbations of the cost functions, both of which are particularly relevant
to our transfer learning framework. Recall that in the GTRANS algorithm, the estimated alignment
matrix 7 is obtained using EGW with inputs C' = P and D = Pi™_ As a result, these matrices
cannot be interpreted as Euclidean distance matrices between point clouds, since they do not arise
from pairwise distances in an inner-product space. It is therefore natural to ask how far 7 is from the
oracle alignment matrix 7*, which minimizes the same objective using the true connectivity matrices
C = P, and D = P;. While the stability of convex optimization problems has been extensively
studied (see, e.g., [6] for an overview of techniques and results), these tools do not directly apply to
our setting due to the nonconvex nature of the EGW objective. Our subsequent theorem showcases
that the distance between 7 and 7* can be upper bounded by a distance between 153;11 and P, and
Pi“i and Py:

Theorem 4.1. Let 7t and * is the solution of EGW optimization problem with (C, D) = (P, Pini)
and (C, D) = (Pg, Py) respectively. If the penalty parameter e satisfies: ||7*|| s < TeTN 1) et
for some C > 2, then,

[P 2Py — (P Pi)
[P &P,

as soon as ||Ps — Pii|| o + |Py — Pini|| o is less than a certain cutoff (mentioned explicitly in the
proof), for some universal constant Cy that depends on C1.

7 =7"lp < Co =

We would like to highlight that our analysis is quite general as it does not rely on any structure of
(P, P;), which makes our analysis different from [66, 46]. The lower bound on the ¢ is needed to
bring some local convexity structure of the problem near the oracle optimizer 7*. Such a lower bound
condition for € is typically adopted in literature, e.g., see [49].

The following result shows that the empirical GW distance between initial estimators P2 and Pixit
closely approximates the population GW distance between P g and P, up to small estimation error.

Theorem 4.2. Let §,,, and 6,, T denote the estimation error of Pg and Py respectively with respect
to average squared Frobenious norm, i.e.

P( 1 pime Ps%sans) >1-en, ( | PTII%S%> 216
S T

Define 8,, = 0ng + Ony. Then, on the intersection of the above events, we have:
GW3(P,, P,) <4 (GW(PE™, PI") +5,)
GW3 (Pt PNty < 4 (GW3 (P, Py) +6,) -
We next justify the theoretical validity of the alignment step. The following result shows that applying

the optimal GW coupling preserves Ly proximity between the source and target graphons.
Theorem 4.3. Let m* be the optimal coupling of (f, g) for GW-distance, i.e.

C—agminer [ (7o) - 9(0.9)? dn(e.y) dnls').
Define g (population analogue of # T P#) as:
9(y,y) = / 7 (y,z) f(z, 2" )7* (2’ y) do dx’ .
[0,1]

Then we have,
19— gll3 < GWZ(f.9).

As a consequence, when GWy(f, g) is small, then g is close to g, which validates the alignment
strategy.

Remark 4.4. The estimation error 6, Opn,,. depends on the estimation strategy and the underlying
data-generating process. For example of Ps and P are generated from a a-Holder graphon, then
it is possible to construct P, and P such that §,, = n=2/(e+D) for 0 < a < 1and 5, =< (logn)/n
for a > 1 (e.g., see [19]) for n € {ng,nr}, albeit they are NP-hard to compute. Later, [65]
proposed a neighborhood smoothing based approach to obtain (153, f’t) with 6, < \/logn/n for
n € {ng,nr}.



5 Experiments

5.1 Simulation Experiments

Simulation setup. To evaluate the effectiveness of our proposed method, GTRANS, we conduct
simulation studies using ten representative graphon functions. Figure 3 illustrates the probability
matrices P of 500 nodes generated for Graphons 1 to 10, where the rows and the columns are ordered
by latent position . Graphons 1-5 are graphon functions used in SAS [9], and graphons 6-10 are
used in graphon functions used in ICE [45]. The details about the structure of these graphon functions
can be found in Section G.1.

Graphon ID: 1 Graphon ID: 2 Graphon ID: 3 Graphon ID: 4 Graphon ID: 5 Graphon ID: 6 Graphon ID: 7 Graphon ID: 8 Graphon ID: 9 Graphon ID: 10
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Figure 3: Heatmap of true probability matrix for graphon 1-10 (from left to right), where high values
of probability are colored in red, and low values of probability are colored in blue. The number in
each heatmap means the average connecting probability.

Baseline. To evaluate the effectiveness of our proposed method GTRANS, we compare its perfor-
mance with four other existing graphon estimation methods which use target data only: neighborhood
smoothing (NS) [65], sorting and smoothing (SAS) [9], universal singular value thresholding algo-
rithm (USVT) [11], and iterative connecting probability estimation (ICE) [45]. We report results for
our method implemented with both standard and entropic Gromov-Wasserstein alignment, denoted
as GTRANS-GW and GTRANS-EGW, respectively. For all experiments, we evaluate performance
using the MSE. We performed 50 independent simulation runs to calculate the averaged MSE.

In this simulation, we aim to answer three key questions: (1) Impact of source sample size: How does
the performance of GTRANS improve as the sample size in the source domain increases? (2) Impact
of domain shift: How robust is GTRANS against negative transferring when transferring between two
different graphons? (3) Impact of density shift: How effective is GTRANS when transferring from a
dense network to a sparse network or vice versa?

Asymptotic performance. To investigate the impact of source sample sizes, we vary the sample size
of source data n, € {100,200, ...,1000} while fixing other parameters: size of the target data n; =
50. We introduce a small perturbation between source and target graphons: f:(u,v) = fs(u,v) + &
where £ generated uniformly from U (—0.01, 0.01). Figure 4 displays MSE results across ten different
graphon types. Several key observations: (1) Both GTRANS-GW and GTRANS-EGW consistently
outperforms all baseline methods across all graphon types, demonstrating the effectiveness of our
transfer learning approach. (2) We observe a clear decreasing trend in MSE as source sample
size increases for both of GTRANS-GW and GTRANS-EGW, while other target only methods
(including NS, USVT, ICE, SAS) show flat pattern because they can not borrow strength from source
sample. (3) GTRANS-GW and GTRANS-EGW achieve comparable performance overall, though
in some cases, the entropic regularization in GTRANS-EGW yields lower MSE, benefiting from
entropic regularization to enhance alignment stability. Figure 5 further illustrates our method’s
effectiveness (using GW for demonstration) when transferring from a 500-node source to a 50-node
target network (both from graphon 8). Panel (a) displays the noisy target-only estimation. Panel
(b) shows the accurate source estimation (left), significantly improved transferred result (middle),
and final estimation (right). Since the source and target domains are identical, the optimal transport
distance is small, and the final estimate equals the transferred result without requiring debiasing.

Transfer between different graphons. To assess the robustness of GTrans to domain differences,
we fix ng = 500 and n; = 50, and consider transfer learning between different graphon pairs. We
consider transfer between similar graphon pairs (such as 1 and 3, or 6 and 7, 7 and 8), as well as
dissimilar graphon pairs (such as 8 and 9, or 5 and 10). Table 1 presents the MSE results for these
transfer scenarios compared to target-only methods. We observe several key patterns in the results: (1)
For similar graphon pairs, both GTRANS-GW and GTRANS-EGW achieves substantial improvement
over target-only methods. This demonstrates that when graphons share structural characteristics,
knowledge transfer remains highly effective even between different graphon functions. Figure 5(c)
provides visual evidence of effective knowledge transfer in the (from graphon 7 to 8) scenario. Both
graphons share smooth gradient-based transition patterns. The middle panel in (c) shows that the
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Figure 4: MSE performance of five methods as source network size increases from 100-1000 nodes,
with error bars representing +0.1 standard deviations. GTRANS-GW (red circles with solid line),
GTRANS-EGW (pink circles with dashed line), NS (blue squares with solid line), USVT (yellow
triangles with solid line), ICE (green diamonds with solid line), SAS (gray hollow squares with solid
line). Top row: graphons 1-5; bottom row: graphons 6-10.

(a) Target only (b) From graphon 8to 8 (c) From graphon 7 to 8

Target initial Source initial Transferred Final estimator ~ Source initial Transferred Final estimator

Figure 5: Visual comparison of GTRANS performance with different source graphons when estimating
target graphon 8. (a) target-only initial estimator using only limited target data; (b-c) three panels
showing source initial estimator, transferred estimator, and final estimator from different source
graphons (8 — 8,7 — 8 respectively).

transferred estimator successfully preserves the source’s smooth structural regularity while adapting
to the target’s diagonal gradient, evident from the emergence of a grid-like texture where intensity
gradually decreases diagonally. The final estimator in the right panel of (c) exhibits both the structural
smoothness inherited from the source and a more precise alignment with the target graphon’s latent
geometry, highlighting the advantage of debiasing step. (2) For transfers between graphon pairs with
larger difference, GTRANS maintains similar performance compared to its target-only counterpart
NS method. This robustness is due to our adaptive debiasing mechanism, which effectively mitigates
negative transfer while preserving beneficial knowledge.

Impact of density shift. To investigate the performance of GTRANS to density differences
between source and target

(a) Graphon ID: 2; density: 0.5 (b) Graphon ID: 6; density: 0.13
domains, we examine sce- 0.021 -t
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is larger thag 1 or srsr/1aller Figure 6: MSE comparison of GTRANS-GW, GTRANS-EGW, NS,

than 0. This allows us to ICE, USVT, and SAS under density shifts A for Graphon 2 (0.5)
simulate scenarios where and Graphon 6 (0.13), with error bars representing +0.1 standard
the target network is either deviations. Bottom panels show adjacency matrix transformations at
A = —0.50,-0.25,0.00,0.25, 0.50.

sparser (A > 0) or denser



(A < 0) than the source. Figure 6 presents MSE results for two representative graphons (ID 2 and
ID 6). Additional results can be found in Figure E1. For the dense Graphon 2 (density = 0.5),
GTRANS-GW and GTRANS-EGW both show a symmetric U-shaped pattern centered almost around
zero, indicating that performance degrades equally whether transferring from a denser or sparser
source. In contrast, Graphon 6 is a sparse network (density = 0.13). Here, the performance curve of
GTRANS-GW and GTRANS-EGW achieve its lowest error at a positive value of A. This indicates
that when the target graph is dense, the impact of density shift on transfer learning is symmetric
around zero. However, when the target graph is sparse, transfer performance becomes more sensitive
to the direction of the density shift, and transferring from a slightly denser source network yields
better results. The underlying reason might be: (1) a denser source network typically exhibits a
higher signal-to-noise ratio, yielding a higher-quality initial graphon estimator.

(2) When the source network is sparse, IA’}Z” will also be sparse—potentially to an extreme degree
where it might even be (approximately) a zero matrix. This severely limits the information available
for transfer, regardless of how well the transport plan aligns the domains.

Table 1: MSE comparison for transfer learning between different graphons (ns = 500, n; = 50)

Similarity Scenario GTRANS-GW GTRANS-EGW NS USVT ICE SAS
7T—6 0.9 +0.2 1.0+ 0.3 21£03 3.0£09 1.7£03 1.6+£04
6—7 1.8 +£0.3 1.8 +0.3 23+£03 59+£27 224+03 24+£06

Similar 8 =17 1.3+£0.3 14+03 23£03 59+£27 22+03 24+£06
7T—8 1.6 0.2 1.6 £0.2 20£02 15+02 214+02 28+£0.7
3—=1 1.6 £ 0.5 1.7 £ 0.2 25+£03 51+46 2703 21+£03
1—3 1.6 0.3 1.5+03 23+£03 1.2+02 22+03 1.6+03
8—9 19+04 1.9+£03 20£02 26+£01 1.7+£02 21+£0.1

Different 9 — 8 20£0.2 1.9+02 20£02 15+£02 21+02 28+£07
10— 5 1.6 £ 0.2 1.5+ 0.2 1.7£0.1 35+£15 1.7£02 55%+1.0
5— 10 2.6 0.3 25+03 31£06 53+06 28+03 26+£03

Selection of Hyperparameters. GTRANS-GW involves one hyperparameter: threshold ¢ while
GTRANS-GW involves two hyperparameters: threshold § and regularization parameters €. In this
paper, we employed a network cross-validation procedure developed by [33] for hyperparameter
tuning. (1) Selection of §: Specifically, when implementing GTRANS with either GW or EGW,
we choose ¢ from a candidate set {0.1,0.11,0.12, .....,0.5}, and use the cross-validation procedure
to select the value that minimizes held-out prediction error. Figures E3a and E3b illustrate the
optimal thresholds identified across different simulation scenarios for GW and EGW, respectively.
As we can see: most GW scenarios work best when § = 0.15, while most EGW scenarios work
best when 6 = 0.18. While cross-validation is preferred, we recommend default values of § =
0.15 for GW and § = 0.18 for EGW when tuning is computationally infeasible in practice. (2)
Selection of e When implementing EGW, we select the optimal regularization parameter from
candidates {0.001, 0.005,0.01,...,0.1}. Figures E4 illustrates the MSE comparison across different
regularization parameters e, highlighting that e = 0.01 is consistently effective for most graphons.

5.2 Application to Real Data

Evaluating probability matrix estimation methods on real networks directly is difficult, since the true
probability matrix is unknown. We assess the practical utility of our method by applying it to two
downstream applications: graph classification and link prediction. Due to page limitations, we only
show results for graph classification. Link prediction results are provided in Appendix F.2.

Graph classification is fundamental to network analysis, but often suffers from limited labeled data.
[22] proposed G-Mixup, which augments datasets by interpolating between graphons of different
classes to generate synthetic training graphs. The quality of this augmentation critically depends on
the accuracy of the underlying graphon estimation. When the network size is small, conventional
graphon estimators often produce poor results. For example, IMDB-B and IMDB-M datasets used in
[22] have only 19.77 and 13.00 average nodes per graph, respectively.

Datasets. To address this challenge, we implemented GTRANS to enhance G-Mixup for graph
classification by transferring knowledge from larger networks. In our experiments, we consider two
co-actor graph datasets as targets: two-class IMDB-BINARY and three-class IMDB-MULTI, both
characterized by small graph sizes. As candidate sources, we consider: (1) three-class COLLAB



(average 74.49 nodes per graph), a collaboration network derived from scientific authorship data [39],
and (2) two-class Reddit-Binary (average 429 nodes per graph), comprising Reddit user interaction
threads [39]. Additionally, we examine a bioinformatics setting by transferring from two-class D&D
(average 284.32 nodes) to two-class PROTEINS-Full (average 25.22 nodes) [39], both consisting of
protein structure graphs.

Results. We adopt the same Graph Convolutional Network (GCN) architecture as used in [22],
using the same hyperparameters and training procedures for all benchmark comparisons. Full
implementation details are provided in Appendix F.1. For each target dataset, we split the dataset into
train/validation/test data by 70%/10%/20%. We report the test accuracy on ten runs. Tables 2 report
test accuracies for our proposed GTRANS method against baselines, including NS [65], USVT [11],
SAS [9], ICE [45], GWB [57], IGNR [55], SIGL [4], and graphlet [44, 48]. For GWB/IGNR/SIGL
we follow the original implementations and keep hyperparameters unchanged. The graphlet baseline
is implemented via GraKeL'’s Graphlet Kernel with an SVM on the precomputed kernel matrix; we
use graphlet sampling with 700 subgraphs per graph for scalability. On IMDB-Binary GTRANS-
GW achieves 76.30% (transfer from Reddit-Binary) and 76.25% (transfer from COLLAB), while
GTRANS-EGW further improves to 76.80% and 77.50%, respectively, outperforming all baselines
by 2-5%. On IMDB-Multi, GTRANS-GW with COLLAB reaches 50.47%, and GTRANS-EGW
achieves 51.27% with Reddit-Binary as the source, demonstrating clear superiority over all other
methods. For PROTEINS-Full, transferring from D&D yields 69.33% with GTRANS-GW and
68.52% with GTRANS-EGW, consistently outperforming baseline methods by 3—6 points. These
results confirm that both GTRANS-GW and GTRANS-EGW effectively boost classification accuracy
by leveraging structural knowledge from larger networks.

Table 2: Graph classification accuracy (%) across three target datasets (mean =+ std) compared against
graphon estimation baselines.

Source | Target | GTRANS-GW | GTRANS-EGW | NS | USVT | SAS

Reddit-B IMDB-B 76.30 £ 2.35 76.80 £+ 1.52 7290 +2.10 | 73.85 £2.40 | 74.25£1.93
COLLAB | IMDB-B 76.25 £ 2.06 77.50 £ 2.13 7290 £2.10 | 73.85£2.40 | 7425+1.93
Reddit-B IMDB-M 49.10 4+ 1.33 51.27 £+ 1.98 4380 £2.59 | 48.00£2.93 | 44.10 £ 2.05
COLLAB | IMDB-M 50.47 + 1.42 50.23 £ 0.92 4380 £2.59 | 48.00 £2.93 | 44.10 £ 2.05
D&D PROTEINS 69.33 £ 2.55 68.52 4+ 1.59 63.18 =1.94 | 65.11 £2.21 | 6525+ 1.85

Source | Target | ICE | GWB | IGNR | SIGL |  Graphlet

Reddit-B IMDB-B 7430 £2.16 | 75.30 £2.19 | 7435 £3.51 | 73.50 £ 2.62 | 61.10 £2.23
COLLAB | IMDB-B 7430 £2.16 | 7530 £2.19 | 7435 £3.51 | 73.50 +2.62 | 61.10 £2.23
Reddit-B IMDB-M | 4390 £ 1.27 | 47.70 £ 2.53 | 47.50 £3.32 | 49.13 £ 3.04 | 39.37 £ 1.62
COLLAB | IMDB-M | 4390 4 1.27 | 47.70 = 2.53 | 47.50 £3.32 | 49.13 £3.04 | 3937 £ 1.62
D&D PROTEINS | 6538 £1.84 | 63.454+296 | 65.87 =2.56 | 67.13 £2.34 | 70.11 £ 2.12

6 Conclusion and Future Work

In this paper, we proposed GTRANS, a novel transfer learning framework to estimate the edge
connecting probability, addressing the challenge of limited data availability in the target network.
By leveraging Gromov-Wasserstein optimal transport, our method aligns latent node structures
across source and target domains and effectively transfers graphon information to improve estimation
accuracy. Extensive experiments on both synthetic and real-world networks demonstrate that our
approach consistently outperforms existing baselines, particularly in scenarios involving small,
sparse graphs. By improving estimation accuracy, our framework facilitates various downstream
tasks, including data augmentation and link prediction. Despite these promising results, several
limitations remain. First, our current framework assumes a single source graph. Extending it
to incorporate multiple source networks could further enhance robustness by leveraging diverse
structural priors. Second, GTRANS is designed for static graphs; future extensions to dynamic or
multi-layer networks would enable modeling of time-evolving or multi-modal dependencies. Third,
our current formulation does not incorporate node-level covariates. Integrating such covariates could
provide valuable auxiliary information for alignment, particularly in domains where topological
structure alone may be insufficient for effective transfer. These directions can further enhance the
flexibility and generalizability of transfer-based graphon estimation.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The scope and contributions of this work were included in the abstract and
introduction, particularly highlighted at the end of the Introduction section.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations and future directions of the work were included in the Discussion
section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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* All assumptions should be clearly stated or referenced in the statement of any theorems.
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they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The proposed algorithms and implementation details of experiments were
described in the Experiments Section and Appendix.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The real data used in this work are publicly accessible and properly cited. We
also include the code and descriptions in the supplementary materials.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The details were discussed in the Experiments section and Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In the Experiments section and Appendix, the error bars, standard deviation,
and number of replicates, were reported and clearly stated.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed descriptions of the computational resources used for each
experiment in the Appendix. Furthermore, our open-sourced code includes configuration
files and parameter settings to replicate the experiments efficiently.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The work of this paper is conducted with NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Societal impacts of the work were included in the Introduction section.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Existing assets were cited and credited throughout this paper.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Documentation was provided with the supplementary code.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not conduct research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not conduct research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core methods presented in this research do not utilize Large LLMs as
an essential, original, or non-standard component. LLMs were not used in any part of the
model design, experimental evaluation, or optimization processes. Additionally, LLMs were
not employed for data augmentation or pre-processing in our experiments.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Notation Table

Table Al: Notations used throughout the paper

Notation Description
Ng, Ny Number of nodes in the source and target graphs
Ag A, Adjacency matrices of source and target graphs, A € {0, 1}"*"
P, P, True connection probability matrices for source and target graphs
f’is“i, f’it“i Initial estimators via neighborhood smoothing
152”“5, 1555“‘“52 Transferred estimator before and after smoothing
15?5 Smoothed residual graphon estimator
P, Final graphon estimator for the target domain
P, j Estimated connecting probability between node ¢ and j
Ber(p) Bernoulli distribution with parameter p
fss fo Latent graphon functions for source and target domains
Us,i, Ut Latent position of node i in [0, 1]
II(p,v) Set of couplings (transport plans) between p and v
7 € [0,1]™*™  The optimal transport plan estimated by Gromov-Wasserstein
7 € [0,1]"*™ Normalized transport plan
6 Threshold for triggering the debiasing step
€ Entropic regularization parameter in Gromov-Wasserstein optimization
A Density shift parameter for source-target perturbation.
KL(7r | p®v) Kullback-Leibler divergence: KL(r | p @ v) = 3, ; m;j log :;J
P, P, Kronecker product of P and P,
|- 1lF Frobenius norm: || X|[|p = />, ; X7,
1/2
-1l L norm: || = gll2 = (fy fo ((u,v) = g(u,v))? dudv)
Il oo Infinity norm: || X||o = max; ; | X;j]|
I llop Operator norm: || X||op = Omax(
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B Proof of Theorem 4.1

In this proof, we will use the notation B(x; 7) to denote a ball of radius 7 around =z, with respect to
some appropriate distance, which will be clear from the context. Before delving into the proof, let us
first recall the definition of strong convexity:

Definition B.1. A function f is said to be strongly convex in a neighborhood around x. (namely
B(x.;71), if f satisfies:

1) = f@) + (y = 2,91 @) + Sy - ol

Our proof relies on an application of the following lemma:

Lemma B.2. Suppose f is a convex function which is minimized at x, and furthermore it is p-
strongly convex on B(z.;7) = {x : ||z — x4||2 < 7}. Consider a perturbation g of f such that i)
Ilf = glleo < 8 andii) g — f is Lipschitz with Lipschitz-constant k. If § < ut? /4, we have:

. —yulls < 2% = 20 = dluin
Iz I

Proof. We divide the proof of Lemma B.2 into two smaller lemmas. The first lemma is as follows:

Lemma B.3. Consider two functions f and g, such that f — g is k-Lipschitz. Suppose . and vy, are
minimizer of f and g respectively. If f is strongly convex on B(x.; T), and y. € B(x.;T), then

2K
26 = yulla < —.
W

Proof. The proof essentially follows from Proposition 4.32 of [6]. Here, we sketch the proof for the
ease of the readers. As vy, is the minimizer of g, we have:

flys) = f(@) = (f = 9)(ys) = (f — 9) (@) + g(ys) — g(z4)
<0
< (f=9)ye) = (f = 9) () < Bllzs — yull2-

On the other, from the strong convexity of f on B(z.;7) and the assumption that y, € B(x,;7T), we
have:

I
1) 2 @) + Elles = I3,

where we use the fact that V f(x,) = 0. Combining these two equations, we conclude:

" 2K

Slze =z < flyo) = fl@) S lloe —pulls = o —pall2 < e

This completes the proof. O

One of the requirements of Lemma B.3 is that y, € B(x., 7). The following lemma gives a sufficient
condition for this condition to be satisfied:

Lemma B.4. Assume f is p-strongly convex on B(z.;7). If || f — glloo <6, 8 < 712 /4, then the
minimizer of g also lies in B(x.;T).

Proof. Suppose y,. ¢ B(z.;7). Then |z, — y.|| > 7. Therefore, 3t € (0,1) such that z(t) =
tr, + (1 — t)y. lies on the boundary, i.e., |x. — z(t)||2 = 7. By the strong convexity of f on
B(z.;T), we have:

On the other hand:
f(z(t) < g(z(t) +0 <tg(zs) + (1 —1)g(ys) +0 < g(zs) +6.

Hence, we can conclude that:
2

9(w) > flw) + -

This immediate contradicts the fact that |g(z.) — f(z.)| < & as 72 > 4§ /. This completes the
proof. O

23



Finally, the claim in Lemma B.2 is established by combining the arguments of B.3 and Lemma

B.4. O
We use Lemma B.2 to complete the proof of Theorem 4.1. With y = (1/ns,---,1/ns) and
v = (1/ng -+ ,1/ny) The oracla EGW optimization problem (with respect to P, P;) can be
written as:
L(m)

1
) Z(Ps,ik — Py )’ mim + 627% log (nsny mij)

ikl ij

1 1
=3 Zpiikﬁijﬂkl t3 ZPijlﬂ'ijﬂ-kl - ZPs,ith,jz)Wuﬂkl + €Z7Tz'j log m;; + log (nsny)e

ijkl ikl ikl ij

1 1
= iHPgH% —+ §HPtH% — Z Ps,ith,jlﬂ-ijﬂ-kl + € Z i logmj =+ elog (nsnt) .
ijkl ij
It is immediate that the first, second, and fourth terms do not contribute to the estimation of 7.
Ignoring them, we redefine the oracle loss function as:

f(ﬂ) = — Z PsvithylerijTrkl + GZ Tij log Tij = 72tr(7rTPs7TPt) + GZ Tij log Tij

Similary, we define g(-) as the sample version (with respect to (Pt pinit).

g(m) =— Z PoixPijimijmh + € Z mijlogm; = —2tr(n P wP,) + € Z mij log mj .
ijkl ij ij

For notation simplicity define §; = ||Ps — f’s||oo,oo and d; = ||P: — f’t||oo,oo. We have:

S 1) — ()| = |er(x PP ) — ("B P )|

Zﬂ'ij (PSﬂ'PtT - Psﬂf)tT)
i3

j

< max Psﬂ'P;r — Psﬂ'P;r E Tij
,J ij i
——
=1
= max |P,7P] — PP/
0. ij

< max PSTFP;r — PST(P: + max ‘PSTFP: - PST&'PtT
i,] 17 2,J

)

= max D (Pem)ik(Pr — Pi)ji > (P —P)u(7P/ )
’ k k

<[P — PtHoo’oo m?XZ |(Psm)]ir + ”Ps — Py |lo0,00 mjaxz ‘(7"152—)16”
k k

+ max
,J

< 6y mlaxz |(Ps7)|ir + 61 mjaxz (7P )

p P
<0y max | Y Poam| 461 max > Y mPy
YR TR

< 5l[Pulloe Y mh 401 [Pilloc D Tht 1= 02||Pullos + 01 [[Pelloc = 01 + b2
kl kl

Therefore, we conclude that
If = 9lle < [|Ps — ]-SSHOO,OO + [P — 1StHoo,oc = A1oert .
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Now, from the definition of f and g, we also have:
Vf( ) —(Ps@P; +P] @P]) vec(n) + e((1 +log mi;))i s
(P @ P, +P] @P/ ) vec(n) + e((1 + logmij))i;

) ve
)

oo i)
ool 2)

1V+lg = DE)lr <2[Pee Py~ PPy

- (Ps ® Pt + f’;r
As a consequence, we have:

17l -

Hence, we have:
k=2 H(Ps 9P — (P, 0P,

op
Now, from the Hessian, we know V2 f(7*) > 0 if max;; 7; < €/(2||Ps ® Py||op). This condition
is met as per our assumption that

€

Noo £ === -
Cl||PS®Pt||0p

[

with Cy > 2. Fix Cy such that (1/C%) + (1/C1) < (1/2), and set 7 = ¢/(C2||Ps @ P¢||op). Then,
forany |7 — 7*||p < T,

€ € €
5 < < .
7 CzllP ® Pillop ClHPs @ Pillop  2[Ps @ Pellop

maxmj <7+ maX7r

In this neighborhood, we have:

-1
1 1 I
inf inf o' V2f(m)v > <+) — 23 [[Ps@P4llop i= — |Ps @P¢op := = .
re By oy ¥V (T { C1 " Cy H o = 7 Al = 5

Therefore, using Lemma B.2 we can conclude:

20 H(Ps ?P;) — (P, ®Py)

- || < o Apere < L.
|7 — 7" p < P2 &Py as soon as pert <

By our definition of § and u, we have:

2
u (C2|\PS®PT|OP) 2P @ Pyflop

4 4 Cs

Recall that our assumption is:

2
A A T
Aper = [Py = Polloo,oo + [P: = Pifloo.co < -

Substituting the expression for 72

62

Apert < :
pert = 2C2C5(||Ps @ Pyllop)

This guarantees that the perturbed solution # remains in the neighborhood B(7*, 7) of the true
solution 7*. Thus, the stability of the optimal transport plan is ensured under perturbations of the
graphon estimators, completing the proof.
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C Proof of Theorem 4.2

Proof. The proof is simple, which depends on the estimator error of P, and P,. Recall that:

2 (Pinit 1n1t § E init D 2
GW (P P inf |PS b PTyjj/‘ T35 T4 51

wEFn,
1]7]
GW (PS,Pt mf |PS”’ PT” ‘ T4 T3 51
=1j3'=

where IT',, is the set of couplings, i.e.

1 1
W:Eﬂ-,,:i Eﬂ,,zi
: % nTy : ¥ ng
? J

Now let #,, and 7r,, denotes the minimizer/optimal coupling of GW?2 (Pt Pinit) and GW2(P,, P)
respectively. Then we have:

GW3 (P, Pt)

np
= Trlélrf E E |PS it — Pr 33’ | T4 T4 57
" i,0'=1j,j'=1
S § § |PSM’ PT]] | 7Tn zg’frn i’ g’
1J,J
_ P Pmlt Pmit Pmlt Pmit P 2~ oA
= | Syiit — Pggp +Pgyy — Py + Py s — T,JJ/| Tn,ij Tn,i’ 5
=1j,j'=
< 4 Plnit P 24 ~ .
S,ii" T S,ii’| Tn,ijTn,i j'
=1jj'=
init Dinit |24 1nit 24
+ E E PSz’i’ =P [ i fn,ig + E E |PTJJ P P i fon g
=1jj'= =1j,j'=
1 ns 1 nrt
Pinit init Dinit |24 Dinit |2
<4 ey E |PS,i'L’ Pgi| 2+ E g PSW —Prlj |*®nijfn iy + nZ E : Pr,jj *PT,jj’|
S =1 =1j4,j'= T ;=1

<4 (6ns + GW2(Pizit, pinity 4 5nT) =4 (5n + GW3(Pinit, PiTnit)) ‘
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Similarly, for the other side:
GW%(PLnit7 lf);nit)

T
: E E Pinit ini
= Inf |PS [T PT]j | 5T 50
wel'y, 4 “ ’
1,4’ =17,7'=1

ns nrm
PDinit init |2
Z Z |PS,iz’ PTj] | Tn,ijTn,ij’

i,i’/=1j,5'=1

IN

T
Pinit init |2
Z Z |P57ii’ —Pgsiir + Psiir = Prjy + Prjj — PT 3i’ | n, ,ig Tn,il 5’

i,i'=17,j'=1
T
<4 |f)init —Poiv|*MnijTn.irs
>~ S,ii! S, n,ij 'n,i’j
i,i'=17,5'=1
ng nrt ns nr
2 init |2
+ DD Psir —Pryy Prosmaag + Y Y [Pryy — PR P s
i,i'=17,j'=1 1,i'=17,5'=1
1 ns ng nrt 1 nr
init 2 2 init |2
<45 Y PEE —Psal®+ Y D [Psui — Prjl n,ij Tty + g > Prj — PP
S iir=1 ii'=17,j'=1 T =1

<4 (6pg + GW3(Ps, Py) + 0y ) =4 (6, + GW3(P,, Py)) .

D Proof of Theorem 4.3

Proof. We start with the definition of the GW distance:

GW3(f,9) // (z,2") — g(y,y))? dr*(x,y) dr*(z',y)
— [ Py do s + / ) dydy ~2 [ [ £ gy o,0) dr @)
- /fz(w,w’) da d$’+/92(y,y’) dy dy’—2//§(y,y’)g(y7y’) dy dy’

Furthermore, we have:

2
/§2(y7y') dy dy’/(/ ™ (y, x) f(z, 2" )" (2!, y) da diﬁ’) dydy'
0,12

< / / P2, ) (g, 2y (o y) dedadydy

Therefore, we have:

5 —olli= [ @)~ ot dudy
0

)

= /El (y,y') dydy' +/92 ") dydy’ *2/ (v, y")g(y,y") dydy’

/f (x,2") dxdx+/g2yy dydy—?//fxw Yo(y,y') dr* (x,y)dn™* (2, y")

= GW2 (f y 9 ) .
This completes the proof. O
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E Additional Simulation Results

E.1 Additional results for Impact of Density Shift

To evaluate the robustness of GTRANS under density discrepancies between the source and target
domains, we introduce a density shift parameter A € [—0.5,0.5] to simulate structured perturbations,
defined as fq(u,v) = fi(u,v) + & where & ~ U(0,A) if A > 0 and £ ~ U(A,0) if A < 0.
We investigate the performance of GTRANS-GW and GTRANS-EGW across 10 different graphon
functions (IDs: 1 to 10) with a fixed target sample size of 50 and a source sample size of 200. Each
experiment is repeated 50 times to evaluate the adaptability of the models under varying levels of
density shift. The results are summarized in Figure E1.
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Figure E1: MSE performance of five methods as the density shift parameter \ varies from —0.5 to
0.5, with error bars representing 0.1 standard deviations. GTRANS-GW (red circles with solid line),
GTRANS-EGW (pink circles with dashed line), NS (blue squares with solid line), USVT (yellow
triangles with solid line), ICE (green diamonds with solid line), SAS (gray hollow squares with solid
line). Top row: graphons 1-5; bottom row: graphons 5-10.

Figure E1 shows the average MSE of different methods as the density shift parameter A\ varies
from —0.5 to 0.5. Both GTRANS-GW (red solid line) and GTRANS-EGW (pink dashed line)
demonstrate substantial improvements over the baseline methods (NS, USVT, ICE, and SAS), which
remain constant across all A values. Notably, as A shifts from negative to positive, GTRANS methods
effectively adjust their alignment, capturing structural changes and minimizing MSE. This result
underscores the capability of GTRANS-GW and GTRANS-EGW to dynamically adapt to source-
target discrepancies, achieving consistently lower MSE across all scenarios. Also, we notice that
for dense graphons like Graphon 2 (density = 0.5) and Graphon 9 (density = 0.5), GTRANS-GW
and GTRANS-EGW exhibit symmetric U-shaped MSE curves around zero, indicating balanced
performance regardless of source density. In contrast, for sparse graphons like Graphon 6 (density =
0.13) and Graphon 10 (density = 0.19), the lowest MSE is achieved with a slightly denser source,
highlighting the need for stronger initial signals when the target is sparse. Unique structural patterns
in Graphon 5 (anti-diagonal) and Graphon 7 (oscillatory) cause non-monotonic fluctuations under
density shift, reflecting sensitivity to structural misalignments.

E.2 Additional Simulation for Transfer Between Different Graphons

We conduct simulations across ten distinct graphon structures, indexed from 1 to 10. For each graphon,
we generate a target domain with a fixed sample size of n; = 50 and a source domain with n; = 500,
simulating realistic structural perturbations by adding uniform noise sampled from [—0.01, 0.01].
The evaluation includes USVT, ICE, and SAS, and our proposed transfer learning frameworks:
GTRANS-GW and GTRANS-EGW (e = 0.01). For comprehensive analysis, we compute the Mean
Squared Error (MSE) for each method and aggregate the results.
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Table E2: Comparison of different methods for various transfer scenarios. Best-performing methods
are bolded.

Scenario | GTRANS-GW | GTRANS-EGW | NS | USVT | ICE | SAS

1—2 14403 1.3+0.3 214£02 | 1.5+£03 | 21£02 | 14404
1—3 1.6 £03 1.5+0.3 23403 | 1.2+£02 | 22+03 | 1.6+03
1—4 1.3£0.1 1.340.2 21402 [ 1.0+£0.1 | 23£02 | 1.14£02
1—=5 1.6 £0.2 1.5+ 0.2 17401 [ 35£15 | 17402 | 55+1.0
1—6 1.0 £ 0.2 1.140.2 21403 [3.0+£09 | 1.7£03 | 1.6+ 04
1—=7 1.1+£04 0.9 & 0.4 23403 [59+£27|22£03 | 24406
1—8 1.5+03 14£03 204£02 [ 1.5+£02 | 21 £02 | 2807
1—=9 1.8+£0.4 1.7 £03 204£02 [ 26+0.1 | 1.7£02 | 21£0.1
1—10| 22403 22403 31406 | 53406 | 27+£03 | 2603
2—1 1.9+0.2 1.8 £+ 0.2 25403 [ 51446 |27+£03|21£03
2—3 1.6 0.3 1.6 £ 0.3 23403 [ 12402 | 22+£03 | 1.6£03
2—4 1.340.2 1.340.2 21402 [ 1.0£0.1 | 23£02 | 1.1£02
25 1.6 £0.2 1.5+ 0.2 17401 [ 35£15 | 17402 | 55+1.0
26 1.0 £ 0.2 1.0 £ 0.2 21403 [3.0£09 | 1.7£03 | 1.6+ 04
27 1.6 + 0.2 1.6 £ 0.2 23403 | 59427 |22+£03 | 24+06
238 1.54+0.2 1.54+0.2 20402 | 1.5+£0.2 | 21+£02 | 2.8+0.7
2—9 1.8£05 1.6 + 0.4 20+£02 | 26+£01 | 1.7£02 | 2.1 £0.1
2—10 22403 22+03 31+£06 | 53+£06 | 27+£03|26+03
31 1.6 + 0.5 1.7 +£0.2 25403 | 51446 | 27+£03 |21+£03
352 15£03 14403 21402 | 1.5+£03 | 21+£02 | 1.4+04
34 1.4£02 1.3+£02 21+£02 | 1.0+£0.1 | 23+£02 | 1.1£02
35 14402 14402 17£01 [ 35£15 | 1.7£02 | 55£1.0
356 0.9 £ 0.2 1.0£0.2 21+£03|30+£09 | 1.7+£03 | 1.6+ 04
37 1.540.2 1.54+0.2 23403 |59+£27 | 22+£03 | 24+06
3-8 15£03 14403 20402 | 15402 | 21+£02 | 2.8+07
359 19+£03 1.8£03 20+£02 | 26£01 | .7£02 | 2.1 £0.1
310 22403 21+03 31+£06 | 53+£06 | 27+£03 | 26£03
4—1 1.7 £ 0.2 1.7 +0.2 25403 | 51+46 | 27+£03 | 2.1£03
4—2 1.34+0.3 13403 21+£02 | 1.5+£03 | 21£02 | 1.4+04
4—3 14£03 13£03 23403 | 1.2+£02 | 22+£03 | 1.6+£03
4—5 1.34+0.2 13402 1.7£01 | 35£15 [ 1.7£02 | 55£1.0
4—6 1.0 +0.2 1.1£02 21+£03|30+£09 | 1.7£03 | 1.6+£04
4—7 15402 15402 23403 | 59+£27 | 22+£03 | 24+06
4—8 1.4 £ 0.2 14402 20+£02 | 1.5+£02 | 21+£02 | 2.8+0.7
4—9 15£03 1.4+0.3 20+£02|26+0.1 | 1.7+£02 | 21+0.1
4—10 22403 21403 31406 | 53406 | 27+£03 | 26+£03
51 2.0+0.3 21403 25403 [ 51446 |26+£02|21£03
52 1.7£03 1.6 £0.3 21402 [ 1.5+£03 | 21 £02 | 1.4+ 04
5—3 1.7+£03 1.7£03 23403 (12402 | 22+£03 | 1.6£03
54 1.4+0.1 1.5+£02 21402 [ 1.0£01 | 23£02 | 1.14£02
5—6 1.2 £0.2 1.2 £ 0.2 21403 [3.0£09 | 1.7£03 | 1.6+ 04
57 1.8 £03 1.8 +03 23403 [ 59+£27|22£02 | 24406
5—8 1.5 £ 0.2 1.740.2 20402 [ 15402 | 21 £02 | 2807
5—9 21403 2.0 +0.3 20402 | 26£0.1 | 1.8£03 | 2.140.1
5—10 26403 25403 31406 | 53406 | 28+£03 | 2603
6—1 2.0+0.3 2.0+0.3 25403 | 51446 |27+£03|21£03
6— 2 1.3+£03 1.3+03 21+£02 | 1.5+£03 | 21+£02 | 1.4+04
6— 3 1.5+0.3 1.5+0.3 23403 [ 12402 | 22+£03 | 1.6£03
6— 4 12£02 12402 21402 | 1.0+£0.1 | 23+£02 | 1.1£02
6—5 1.6 £0.2 1.54+0.2 17£01 | 35£15 | 1.7£02 | 55£10
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Scenario | GTRANS-GW | GTRANS-EGW | NS | USVT | ICE | SAS

6—7 1.8 £ 0.3 1.8 £03 23403 | 594+27(224+03|24+£06
6— 8 1.6 £0.2 1.5+ 0.2 20+£02 | 15402 | 214+02 | 28+£0.7
6—9 1.5+ 04 1.6 £0.4 20+02 | 26+£0.1 | 17402 | 2.1+0.1
6 — 10 23+03 23+03 314£06 | 53+06 | 27+£03 | 26£03
7—=1 20403 1.9+03 25403 | 514+46|27+£03]21+£03
7= 2 1.3+03 1.3+03 214+£02 | 15403 (21402 | 14+£04
7= 3 1.6 +03 1.54+03 23403 | 124+02|22+03|1.6£03
7T— 4 1.31+02 12402 214+£02 (10+£01 | 234+02 | 1.1£0.2
7—5 1.6 £ 0.2 1.5+£0.2 1.7+£01 | 35+£15|1.7£02 | 55£1.0
7—6 0.9 + 0.2 1.0+ 03 214+£03 | 304+£09|174+03|1.6+£04
7—8 1.6 £0.2 1.6 £02 20£02 | 15402 | 21402 |28+£07
7—9 1.7+ 04 1.7+£04 20£02 | 264+£01|174+02|21+£0.1
7— 10 23+04 22403 314£06 | 53+£06 | 27+£03 | 26£03
8§—=1 1.8+03 1.5+03 254+£03 | 514+46|27+£03|21+£03
8 — 2 14+03 14+£03 214+£02 | 154+£03 |(214+02|14+£04
8§ —+3 1.7+£03 1.6 £0.3 234+£03 | 124+02|22+03|1.6£03
8 —4 1.31+02 1.34+£02 214+£02 (10£01 | 234+02 | 1.1£0.2
8 —=+5 1.6+02 1.5+£0.2 1.7+£01 | 35+£15|17£02 | 55£1.0
86 1.0 0.2 1.0 + 0.2 214+£03 | 30£09|174+03|16+04
87 1.3+ 03 14+ 0.3 234+03 | 59+£27|224+03|24+£06
8—9 19+04 1.9+03 20+02 | 26+£01 | 1.74+0.2 | 2.1 £0.1
8§ — 10 23+03 23+03 31+06 | 53+£06 | 27403 | 26403
9—1 24403 23402 25+03 | 51+£46|274+£03]|21+£03
9— 2 1.5+03 1.5+03 214+02 | 1.5£03 | 21402 | 14+04
9—3 1.9+03 1.6 £0.3 23+03 | 1.2+£02 | 224+03| 16403
9—4 1.6 £0.2 1.6 + 0.2 21402 (1.04+01 | 234+02 | 1.1 £0.2
9—5 1.6 +0.2 1.3+02 1.74+0.1 | 35+15|17£02 | 55+1.0
9—6 1.2+ 0.2 1.2+0.2 21403 | 304+£09 | 1.7+03 | 1.6£04
9 =7 1.9 £ 0.2 1.94+03 23403 | 59427 (224+03|24+£06
9— 8 20402 1.9+ 0.2 204+£02 | 15402 | 214+0.2 | 2.8+£0.7
9 — 10 22403 23403 314£06 | 53406 | 27+£03 | 26+£03
10—+1 21403 2.0+ 0.3 25403 | 514+46|27+£03]21+£03
10 — 2 1.34+0.3 1.2 +03 214+£02 | 15403 [ 214+02|14+£04
10— 3 1.6 £0.3 1.54+03 23403 | 124+02|22+03|1.6£03
10— 4 1.2+£0.2 1.1 £0.2 214+02 [ 1.0£01 | 234+02 | 1.1 £0.2
10— 5 1.6 £ 0.2 1.5+ 0.2 1.7£01 | 35£15 | 1.74+£02|55+10
10— 6 1.3+04 14+£03 214+£03 |304+£09|17+03|1.6+£04
10— 7 1.94+03 1.8 +03 234+£03 | 59427 (224+03|24+£06
10— 8 1.6 0.2 1.5+02 20£02 | 15402 | 21402 |28+£0.7
10— 9 1.5+03 1.5+ 04 20£02 26401 | 1.74+02 | 21+£0.1

E.3 Ablation Study

Figure E2 presents the average estimation errors (MSE) of four configurations: GTRANS (red dia-
mond with solid line), GTRANS-NonDebias (purple circle with dotted line), GTRANS-NonSmooth
(orange triangle with dashed line), and GTRANS-Adj (yellow square with dash-dotted line). The
x-axis represents the source sample size, and the y-axis shows the average MSE over 50 runs.

The four configurations are derived as follows: GTRANS: This is the full version, including all three
steps from Algorithm 1. GTRANS-NonDebias: This variant removes the debiasing step (Step 3),
directly using the transferred estimator P{"¢"2 ag the final output. GTRANS-NonSmooth: This
variant omits the neighborhood smoothing steps in the initial estimation (Step 1). GTRANS-Adj:
This variant replaces the neighborhood smoothing (Step 1) entirely with raw adjacency matrices
A and A;. In this setting, the optimal transport step (Step 2) operates directly on the unprocessed
adjacency representations.

30



From the results, we observe that the complete GTRANS consistently outperforms its ablated variants
across most graphon structures. The absence of smoothing (GTRANS-NonSmooth) introduces sharp
oscillations in MSE, indicating the sensitivity to noise. GTRANS-NonDebias struggles to correct
for transfer-induced discrepancies, especially when source-target alignment is imperfect. GTRANS-
Adj shows consistently higher MSE, highlighting that raw adjacency matrices lack smoothness for
effective GW-based alignment. This underscores the necessity of the smoothing step in GTRANS to
achieve consistent and robust estimations. Therefore, the debiasing and smoothing mechanisms in
GTRANS are not just additive; they are essential for robustness.
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(b) Ablation Study with Varying .

Figure E2: Ablation study of different estimation methods: (a) illustrates the impact of increasing
source sample size on estimation accuracy, and (b) demonstrates the effect of varying density shift (\)
on the performance of GTRANS, GTRANS-NonDebias, GTRANS-NonSmooth, and GTRANS-Ad;.

E.4 Hyperparameter Selection
E.4.1 Debiasing Threshold ¢ Selection

Threshold §. We evaluate the stability of the selected threshold §* under matched source and target
distributions. Fixing the target size at n, = 50, we vary the source size in {100, 200, 400, 800} and
generate both graphs from the same graphon (graphon_id € {1,...,10}). Source perturbations are
introduced via a structural noise parameter A € [—0.5,0.5]. Thresholds § € {0.01,0.02,...,0.50}
are evaluated using the mean squared error (MSE) between the estimated and true target graphons.
We evaluate a fixed threshold 6 = 0.15 across various source perturbations. If it aligns with the
side of the optimal jump point determined by the GW distance d, it is selected; otherwise, the best
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threshold on that side is chosen. Empirically, § = 0.15 remains robust, while under EGW with
€ = 0.01, the optimal choice converges to § = 0.18.
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(a) Optimal threshold d across Graphon IDs for GTRANS-GW.
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(b) Optimal threshold ¢ across Graphon IDs for GTRANS-EGW.

Figure E3: Heatmaps of the optimal threshold § across different Graphon IDs. GTRANS-GW (top)
shows that § = 0.15 is consistently optimal or near-optimal, while GTRANS-EGW (¢ = 0.01
(bottom) favors § = 0.18 in most scenarios, with slight increases under high perturbation.

Figure E3 shows that the optimal threshold ¢ depends on the graphon’s inherent density and the
perturbation level \. For dense graphons, d remains stable, reflecting robustness to structural shifts.
In contrast, sparse graphons exhibit a sharp increase in § under positive A, as perturbations enhance
connectivity and reduce noise sensitivity. The asymmetry arises from a bias—variance trade-off.
Denser sources (A > 0) yield high-quality but mismatched transfer, favoring delayed debiasing with
larger §*; sparser sources (A < 0) require earlier correction, hence smaller 0*. Besides, GW distance
increases with denser sources due to structural mismatch, and decreases with sparser ones despite
degraded transfer—supporting a larger ¢ for dense, and smaller for sparse sources.
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E.4.2 Regularization Parameter ¢ Selection

Threshold ¢. To determine the optimal regularization parameter € in EGW, we perform K -fold
cross-validation over a candidate set e = {0.001,0.005,0.01,0.05,0.1}. This process evaluates
the MSE between the estimated and true target graphon. We observe that ¢ = 0.01 is consistently
selected as the best-performing choice across different settings. To further illustrate this, figure E4
presents boxplots of the average MSE for each € under varying source sizes 100, 200, 300, . .., 1000
with a fixed target size of n; = 50. Each boxplot shows the MSE distribution across ten graphon
types. While some graphons like Graphon 9 benefit from larger € (e.g., 0.1) due to oscillatory patterns,
€ = 0.01 consistently achieves the lowest error, demonstrating its robustness across diverse structures.

Graphon ID: 1 Graphon ID: 2 Graphon ID: 3 Graphon ID: 4 Graphon ID: 5

; Q,Fég éﬁég?%ﬁ
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Figure E4: Boxplot comparison of different regularization parameters e for GTRANS-EGW across
varying source sample sizes. The results show that e = 0.01 (red) consistently maintains lower
variance and median MSE in most graphons, indicating its robustness.

F Additional Real Data Results

F.1 Additional results for graph augmentation task

In Transfer Learning, selecting the optimal source dataset and identifying the best class correspon-
dence are crucial for effective knowledge transfer, as the structural characteristics of source labels
significantly impact performance. To determine optimal class-to-class transfer pairings, we first
estimate graphons separately for each source and target class using neighborhood smoothing [65].
Subsequently, we compute the pairwise Gromov—Wasserstein (GW) distances as well as the Entropic
Gromov—Wasserstein (EGW) distances with a commonly chosen regularization parameter € = 0.01
for each target-source graphon pair, identifying the best-matched class from the source domain for
each target class based on structural similarity. We summarize the key structural statistics of all
datasets used in our experiments in Table F3. Table F4 summarizes the GW distances calculated
between each pair of source and target labels across the considered datasets, while Table F5 presents
the corresponding EGW distances, reflecting the regularized alignment between graphon pairs.

For the IMDB-Binary dataset, when transferring from Reddit-Binary, the best-matching source label
for target label 1 is label 0 (GW =0.3276, EGW = 0.3152), and for target label 2, it is also source label
0 (GW =0.4103, EGW = 0.3987). When COLLAB is used as the source, target labels 1 and 2 best
match source label 1 (GW =0.1910, EGW = 0.1784, and GW =0.2012, EGW = 0.1895, respectively).
For IMDB-Multi, transferring from Reddit-Binary, all three target labels (1, 2, and 3) have their
lowest GW distances with source label 0 (GW = 0.4437, 0.4260, and 0.5172, respectively), while
the EGW distances are slightly improved (EGW = 0.4321, 0.4155, and 0.5053). When transferring
from COLLAB, the best-matching source labels are more varied: target labels 1, 2, and 3 correspond
best with source label 1 (GW =0.1751, 0.2084, and 0.1552, respectively; EGW = 0.1690, 0.1968,
and 0.1443). Finally, in the bioinformatics setting of PROTEINS-Full transferring from D&D, target
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labels 1 and 2 both best align structurally with source label 1 (GW = 0.0616, EGW = 0.0592, and
GW =0.0652, EGW = 0.0624, respectively).

These results suggest clear structural correspondences between target and source labels, enabling
effective and informed transfer learning across domains.

Table F3: Statistics of the datasets used in our experiments.

Property ‘ REDDIT-B ‘ IMDB-B ‘ IMDB-M ‘ COLLAB ‘ PROTEINS-FULL ‘ D&D
#Graphs 2,000 1,000 1,500 5,000 1,113 1,178
#Classes 2 2 3 3 2 2

Avg. #Nodes 429.63 19.77 13.00 74.49 25.22 284.32
Avg. #Edges 497.75 96.53 65.94 2457.78 226.41 715.66

Table F4: Gromov-Wasserstein distance between each source and target label pair across datasets.
Bold values denote the best-matching source label for each target label.

IMDB-B ‘ IMDB-B ‘ IMDB-M ‘ IMDB-M ‘ PROTEINS-FuLL

Source — Target

from REDDIT-B | from COLLAB from REDDIT-B from COLLAB from D&D
Target label ‘ 1 2| 1 2 1 2 30 1 2 30 1 2
Source label 0 0.3276  0.4103 | 0.4710 0.3996 | 0.4437 0.4260 0.5172 | 0.3521 0.3844 0.3014 | 0.0631 0.0622

0.3300 0.4143

Source label 1
Source label 2

0.1910 0.2012
0.5475  0.4702

0.4542  0.4604 0.5326

0.1751 0.2084 0.1552
0.4092  0.4155 0.3573

0.0616  0.0652

Table F5: Entropic- Gromov-Wasserstein distance with e = 0.01 between each source and target
label pair across datasets. Bold values denote the best-matching source label for each target label.

IMDB-B IMDB-B IMDB-M IMDB-M PROTEINS-FuLL
from REDDIT-B | from COLLAB from REDDIT-B from COLLAB from D&D

Target label | o 1 ] o 1] o 1 2 | 0 1 2 | o 1

0.3276  0.4104 | 0.4711 0.3996 | 0.4438 0.4260 0.5172
0.3300 0.4142 | 0.1910 0.1306 | 0.4549 0.4360 0.5280
- - 0.5479 04773 - - -

Source — Target

Source label 0
Source label 1
Source label 2

0.3523 03845 0.3014
0.1750  0.2085 0.1552
0.4092 0.4155 0.3573

0.0631  0.0584
0.0652  0.0497

We also include two transfer baselines. (1) Pooled Estimation — pooling source & target graphs
and estimating a graphon using the G-Mixup procedure with neighborhood smoothing (NS), and (2)
Pooled-then-Transfer — using the pooled estimator as the initial source estimate P in our transfer
framework, followed by the GTRANS procedure (denoted PGTRANS-GW & PGTRANS-EGW).
From Table F6, both pooled baselines underperform our method, suggesting that naive joint estimation
is suboptimal when source and target are misaligned, while our alignment and debiasing steps enable
more accurate transfer.

Table F6: Graph classification accuracy (%) comparison between GTRANS and pooled transfer
estimation methods (mean =+ std).

Source | Target | GTRANS-GW | GTRANS-EGW | Pooled NS | PGTRANS-GW | PGTRANS-EGW

Reddit-B | IMDB-B 76.30 £2.35 76.80 + 1.52 74.30 £2.52 74.65 £ 2.64 75.15 £3.03
COLLAB | IMDB-B 76.25 £ 2.06 77.50 = 2.13 74.15 £2.26 73.90 £2.34 74.75 £ 1.89
Reddit-B | IMDB-M | 49.10 £1.33 51.27 +1.98 46.50 £ 3.13 48.10 £ 3.30 48.67 £+ 3.04
COLLAB | IMDB-M 50.47 £ 1.42 50.23 £0.92 47.70 = 2.86 49.60 £ 2.85 4897 £ 1.79
D&D PROTEINS | 69.33 £ 2.55 68.52 £ 1.59 66.59 £2.19 67.80 £2.73 67.53 £2.37

F.2 Application to Link Prediction

Existing literature applied graphon estimation to the link prediction task [65, 45], where the goal is to
predict missing or future connections between nodes in a network.
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F.2.1 Transfer from a Single Source Network

Datasets. We evaluate our method on five real-world social networks spanning diverse domains: dol-
phins, karate, football, firm, and wiki-vote. These datasets cover different interaction types, including
animal social behavior (dolphins), human relationships and organizational affiliations (karate, firm),
and communication or membership networks (football, wiki-vote). Table F7 summarizes their key
statistics. The number of nodes ranges from 33 (firm) to 2,375 (wiki-vote), and the number of edges
from 78 (karate) to 16,717 (wiki-vote). The average degree varies accordingly, from 4.59 (karate)
to 14.07 (wiki-vote). Network density also differs widely, with firm being relatively dense (0.1723)
while wiki-vote is much sparser (0.0074). We select wiki-vote as the source network because it is the
largest. Link prediction is then performed on each of the remaining datasets treated as targets, with
results averaged over 50 random seeds.

Table F7: Basic statistics of the real-world datasets used in graphon estimation.
Dataset  #Nodes #Edges Avg.Deg. Density

dolphins 62 159 5.13  0.0841
karate 34 78 4.59  0.1390
football 115 613 10.66  0.0935
firm 33 91 552 0.1723
wiki-vote 889 2914 6.56  0.0074

Experimental Setup. We simulate a realistic link prediction task using a masking-based evaluation
strategy following [65]. Specifically, we randomly mask a subset of edges in the upper triangular
portion of the target adjacency matrix to form a test set. Let M € {0, 1}"™*" be a masking matrix
with M;; ~ Bernoulli(1 — p), where p is the test ratio. The observed matrix is A?l-aSk = M;j Ay,
meaning each edge is observed with probability 1 — p. We set p = 0.1 unless otherwise specified.
Both GTRANS-GW and GTRANS-EGW are applied to A™ to estimate P,, and each experiment
is repeated 50 times with different seeds to report averaged performance.

Evaluation. To evaluate the performance of link prediction, we computed the area under the receiver
operating characteristic curve (AUC). Evaluation is based on the masked (unobserved) entries where
M;; = 0, using the original adjacency A, as ground truth. For a threshold ¢ > 0, the false positive
rate (FPR) and true positive rate (TPR) are defined as:

21 (f’t,ij >t, A =0, Mj; = 0)
> 1(Ari; =0, M;; = 0)
>l (Pt,ij >t Ay =1, My = 0)

Zij 1(Ayi; =1, My; =0)

These quantities are used to construct the ROC curve by varying the threshold ¢, and the AUC is
computed as the area under this curve.

’I“]:p(t) =

TTp(t) =

Results. We evaluate transfer performance using Wiki-Vote as the source network (ns = 889).
Each of the remaining datasets (dolphins, firm, football, karate) is treated as the target graph. Results
are averaged over 50 random seeds. Table F8 reports the link prediction AUC (mean 4 standard
deviation, multiplied by 100). Our method consistently matches or outperforms baselines across
datasets. Overall, these results highlight the effectiveness and robustness of transfer-based graphon
estimation, particularly in smaller or noisier networks where leveraging external structure is beneficial.

Table F8: Link prediction AUC scores (mean =+ std, x100). Best result per dataset is bolded.

Dataset GTRANS-GW GTRANS-EGW NS USVT SAS ICE
Dolphins ~ 75.96+8.53 76.26+8.54 70.60£9.01  72.36£10.16 50.66+6.35  72.77+9.59
Firm 71.31+12.18 71.26£12.06  66.32+12.27 65.56+12.25 54.90+7.59 67.60+£12.24

Football ~ 86.64£3.66 86.74+£3.72 86.75+£3.49 85.324+3.56  44.56+7.38  81.83+4.60
Karate 82.474+10.36 82.53+1046  76.74£12.01 71.864+15.20 63.88+11.15 77.20£10.82
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F.2.2 Intra- vs. Inter-Dataset Transfer

Datasets. We evaluate intra- and inter-dataset transfer on IMDB-BINARY. For each target dataset,
the smallest graph (> 20 edges) is used as the target. As sources, we consider (i) the largest graph
from the same dataset, (ii) the structurally closest graph within the same dataset (smallest GW
distance), and (iii) the largest graphs from Reddit-BINARY or COLLAB.

Experimental Setup. Graphons are estimated using GTRANS-GW and compared against NS, ICE,
SAS, and USVT.

Results. Table F9 reports AUC scores. Transfer from the most structurally similar IMDB-B graph
achieves the best performance (AUC 0.96), surpassing both the largest IMDB-B source and all
inter-dataset sources. This highlights that transfer is most effective when the source and target share
high structural similarity (small GW distance).

Table F9: Link prediction AUC results on target graphs with various transfer sources. For brevity,
standard deviations are omitted.

Source | Target | ns | ny | GW | GTRANS-GW | NS | ICE | SAS | USVT
IMDB-B (largest) IMDB-B | 136 | 12 | 0.39 0.94 0911 0.79 | 0.59 | 0.75
IMDB-B (GW smaller) | IMDB-B | 84 | 12 | 0.31 0.96 091 ] 0.79 | 0.59 | 0.75
Reddit-B IMDB-B | 41 | 12 | 0.40 0.94 0911 0.79 | 0.59 | 0.75
COLLAB IMDB-B | 191 | 12 | 043 0.94 091 ] 0.79 | 0.59 | 0.75
IMDB-M IMDB-B | 89 | 12 | 0.40 0.95 0911 0.79 | 0.59 | 0.75

G Additional Details

G.1 Graphon functions

We implement 10 distinct graphon structures (see Table G10) ranging from simple bilinear forms to
highly structured oscillatory and piecewise functions.

Table G10: Graphon functions implemented.

ID | Graphon Function

1 | exp(—27 — y°7)
2 | exp(—max(x,y)" ™)
3 | exp (—0.5 [min(z,y) + vz + /7))
1
4 1+exp(—[max(z,y)%+min(z,y)?%])
501z —yl
0|
7 z4y® _1 0.15
3 Cos | o2z + 0.
T+ 1
8 TyCOS (ﬁ) +015
9 sin(107 (z+y—>5)) 405
10 | 3 (exp (sin (e ) ) 50 (sin (i) ))

G.2 Neighborhood Smoothing Details

For effective neighborhood smoothing, we must identify a neighborhood N; for each node 7 that
contains only nodes with approximately homogeneous distribution. Here, the neighborhood N; in this
context refers to nodes that are close in the underlying latent space (i.e., have similar latent positions),
not nodes that are connected in the observed graph. Mathematically, node i’ belongs to node 4’s
neighborhood if their graphon values are sufficiently close: || f(u;, ) — f(uqir, -)||2 < 7, where || - ||2
denotes the L, norm with inner product < f, g >= fol f(z)g(x)dx, and 7 is a tolerance parameter.
Empirically, this can be estimated by Z?Zl |lpij — Dirjl|3. As proved in [65], under mild conditions,
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this quantity is bounded by: A, = maxy.; 1 Z?:1(Aij — A;/;)Ak;|. This bound enables
efficient neighborhood definition: N = {3’ # i : Ay» < 7}, where 7 is a predefined threshold. Once
neighborhoods N; and /\/} are identified, nodes within each neighborhood are treated as replicates.

A . . . . ~ ens Ay Diren; Ayl
Thus, P;; can be estimated by neighbourhood smoothing, i.e., P;; = %(Z elj\v/_l ! ! TJ\V/ | ! ),
f ]

where |\V;| represents the number of nodes in the neighborhood N;. This averages two empirical
proportions: edges between node j and nodes in V;, and edges between node i and nodes in ;.

G.3 Algorithm
G.3.1 Algorithm: GTRANS

Algorithm 1 GTRANS: Transfer Learning for Graphon Estimation

Require: Source adjacency matrix A, target adjacency matrix Ay, a threshold e.
Ensure: Target graphon estimator P,
1: Step 1: Initial Graphon Estimation
2: Apply neighborhood smoothing to obtain two initial estimators for both the source and target
graph: P« NS(A,), Pi" « NS(A,).
3. Step 2: Transferring Step
4: Compute the optimal transport plan 7 and the optimal transportation distance d between Pg’”
and Pi™,
5: Apply column normalization to 7, obtaining 7
6: Transfer source graphon estimator to target domain: f’ﬁm"s — ﬁTf’i"ifr.
7: Refine the transferred estimator by applying neighborhood smoothing to 15?”‘“”: 15,?”””2 —
NS(Pirans),
8: if d > ¢, then
9:  Step 3: Debiasing Step:
10:  Compute residual matrix: R; < f’im — 15?’“"52
11:  Apply neighborhood smoothing to residual, obtaining estimator P{es.
12:  Combine transferred estimator with smoothed residual: Py < f’i"“”ﬂ + f’;’es
13: else
14 Py, « Pirans?
15: end if
16: return P;

G.3.2 Algorithm: Network Cross-Validation by Edge Sampling

Algorithm 2 Network Cross-Validation by Edge Sampling for Threshold Selection

Require: Adjacency matrices A, Ay, true probability matrix Py, threshold candidates {¢y, ..., €},
number of folds K, loss function £(-, )

Ensure: Selected threshold ¢, final loss, estimated graphon P,
1: Step 1: Edge Sampling
Randomly partition the edges of A, into K folds, ensuring that each fold is disjoint and collec-
tively covers the entire set of edges.

2: for k =1to K do
(k)

3:  Mask edges in the k-th fold to form the incomplete adjacency matrix A; ™.
4:  Perform matrix completion as suggested by [33], leveraging low-rank and smoothness assump-
tions to recover the completed adjacency matrix.

5. Apply GTRANS with each threshold ¢; and evaluate the loss £(¥) (&) on the held-out set Q((;k)
6: end for

7: Step 2: Select Optimal Threshold

8: Average the loss across all folds: £(e;) = & S5 £#)(¢;)

9: Select the threshold that minimizes the average loss: ¢ = arg min,, £(¢;)
10: Return €.
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G.4 Graph Augmentation Model Training Setup.

We follow a modified version of the training configuration from [22]. Specifically, we train a GIN
model for 200 epochs using the Adam optimizer with a fixed learning rate of 0.01. The mini-batch
size is set to 128, and the hidden dimension is 64. Validation loss is monitored throughout training,
and test accuracy is reported at the epoch with the best validation performance.
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