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ABSTRACT

The ubiquity and success of deep learning is primarily owed to large human
datasets; however, increasing interest in personal data raises questions of how
to satisfy privacy legislation in deep learning. Machine unlearning is a nascent
discipline centred on satisfying user privacy demands, by enabling data removal
requests on trained models. While machine unlearning has reached a good level
of maturity in the vision and language domains, applications in audio are largely
underexplored, despite it being a highly prevalent and widely used modality. We
address this modality gap by providing the first systematic analysis of machine
unlearning techniques covering multiple architectures trained on audio datasets.
Our analysis highlights that in audio, existing methods fail to remove data for
the most likely case of unlearning — Item Removal. We present a novel Prune
and Regrow Paradigm that bolsters sparsity unlearning through Cosine and Post
Optimal Pruning, achieving the best unlearning accuracy for 9/12 (75%) of Item
Removal experiments and best, or joint best, for for 50% (6/12) of Class Removal
Experiments. Furthermore, we run experiments showing performance as unlearn-
ing requests scale, and we shed light on the mechanisms underpinning the success
of our Prune and Regrow Paradigm.

1 INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable success across several applications and
modalities, such as disease classification (Bondareva et al.,2023;/Abbas et al., | 2024)), facial expres-
sion recognition (Canedo & Neves| 2019), and clinical advice (Singhal et al., 2023). Alongside
the success of DNNSs, several challenges have arisen, notably adherence to the Right To Be Forgot-
ten (RTBF) (a key principle General Data Protection Regulation (GDPR) (European Parliament &
Council of the European Union))) and other removal legislation that is gaining momentum world-
wide (APP, 2003} IND) 2023; BUKATY|[2019).

The machine unlearning domain has emerged in response to the RTBF in DNNs, providing a struc-
tured and auditable way of removing data from models, enabling organisations to comply with
GDPR. Naive Retraining, the approach of removing training instances and retraining a new model
from scratch, is a largely impractical (Xu et al., 2023; He et al., 2021), but verifiable exact machine
unlearning approach. While machine unlearning has verifiable implementations within statistical
querying (Cao & Yang|, 2015)), it is a challenge in deep learning due to the stochastic and incremen-
tal nature of training (Nguyen et al.,| 2022} [Bourtoule et al.,|2021). As a result, machine unlearning
focuses on developing unlearning mechanisms that can remove the influence of data in a computa-
tionally inexpensive and verifiable manner, overcoming the costs of Naive Retraining.

Despite the expanding use of audio DNNSs in applications such as voice recognition (Hughes &
Mierle, 2013)), event classification (Dong et al., 2020), and health monitoring (Bondareva et al.,
2023} [Srivastava et al.| 2021; |Aptekarev et al., 2023} |Barata et al.,|2019), there exist no studies that
address Item and Class Removal for machine unlearning in the audio domain, while there is a cumu-
lative total of over 100 studies in other domains (Shaik et al.| 2023 Zaman et al.| [2023)). Studying
machine unlearning in audio is vital for safeguarding and maintaining data privacy, upholding the
RTBF, and reducing the computational costs associated with Naive Retraining.
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Our work bridges this modality gap in unlearning literature and systematically studies the effective-
ness and adaptability of existing unlearning methods (previously applied to other domains) on audio
data — specifically, AudioMNIST, |Becker et al.| (2023); SpeechCommands V2, |Warden| (2017)) and
UrbanSounds8K [Salamon et al.|(2014) — and across different architectures. Our findings show that,
while current methods are effective for Class Removal, they are inadequate for Item Removal, re-
garded as the most important unlearning task Nguyen et al.|(2022). Our proposed Prune and Regrow
Paradigm fills this gap by leveraging dynamic sparsity unlearning for audio models that remove the
requirement for extensive empirical studies and, we also show the transferability of this dynamic
sparsity method on CIFAR10 Krizhevsky et al.| (2009)(Appendix [F) where it achieves the best Item
Removal for all architectures. Additionally, our study into unlearning scaling shows that our method
remains performant as Item Removal requests scale.

The contributions of this paper are threefold:

* An in-depth study and evaluation of five existing strong unlearning methods on three dif-
ferent audio datasets and core architecture classes under Item and Class Removal, revealing
that the majority of current approaches are ineffective on Item Removal requests, necessi-
tating the development of novel methods for audio data.

* A novel Prune and Regrow Paradigm that achieves the lowest unlearning accuracy gap 9/12
(75%) of the time for Item Removal across three audio datasets and three architectures and
transfers to CIFAR10.

* An investigation into the scaling laws of unlearning in audio that uncovers the ability of
existing and novel unlearning methods to scale for increased removal requests, showing
greater applicability of methods in audio.

2 EXISTING MACHINE UNLEARNING AND EVALUATION METHODS

In this section, we formalise machine unlearning, types of unlearning requests, existing machine
unlearning methods and evaluation metrics used in previous literature. M~ and MY represent the
Unlearned model and the Naive model respectively.

2.1 MACHINE UNLEARNING PRIMER

Strong machine unlearning represents a more practical version of unlearning that deviates from
creating an unlearnt (M ™) and retrained (Mf) model that is indistinguishable to creating an M~
that approximates M9 (Xu et al.,[2023). Strong unlearning can be represented as a mathematical
problem in equation [I] - equation @] Strong unlearning is described as a less strict formalisation of
machine unlearning that enables a broader array of unlearning methods.

Take a training dataset: Dirqin = {(1,91),- -, (Tn,yn)} (1)

Apply Learning Algorithm: M? <>~ M(A(Dyrain)) 2

Identify instances to be removed forming Dy,,¢c¢ and apply an unlearning mechanism I/ to remove
the influence of Dy, 4 from the parameter distribution of M?:

Apply Unlearning Mechanism: M~ = U(M?, Dyorger) 3)

Create a model with an internal distribution that strongly resembles the distribution of a model that
is an instance of a possible model retrained on Dy get.-

Strong Removal Goal: U (M (A(Dirain); Dforget) = M(A(Dremain)) 4

Item & Class Removal The most common unlearning request is identified in Item Re-
moval (Nguyen et al., [2022). A forget set (Dforget) is to be removed from the parameter distribu-
tion of a model (M?). The task is to remove the influence of D forget from M? with an unlearning
mechanism, U, to create M~ that is approximately or absolutely equal to a parameter distribution
of a retrained model (Mf) trained on the remaining dataset (D.,.¢maqin)- A challenging unlearning
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request emerges in the form of a Class Removal request (Nguyen et al., [2022); the task is to re-
move the impact of all instances included within the class to unlearn contained in M. Ultimately,
Class Removal requires the destruction of a decision boundary from M? ensuring M~ classifies
the instances within Dy;4¢¢ as the remaining classes in Dyeimain-

2.2 UNLEARNING METHODS

Numerous machine unlearning methods have been devised in other modalities; this section presents
the existing methods we use to evaluate current unlearning capacity for audio. In the Appendix, we
describe the benefits and drawbacks of these approaches in Table[6]of Section

* Gradient Ascent (GA): Gradient Ascent (Graves et al., 2021 |Thudi et al., |2022) is one of the
simplest strong unlearning methods. When an unlearning request is made, gradient ascent subverts
the training strategy and moves in gradient mini-batches in the opposing direction to make a gradient
ascent step on Dy,,.¢¢. Accuracy is then recovered through fine tuning on D¢ pqin -

* Fine Tuning (FT): Fine Tuning unlearning (Golatkar et al.} |2020a} Liu et al.} 2024} |Cho1 & Na
2023} [Wang et al., [2022) leverages catastrophic forgetting (McCloskey & Cohen, |1989) to fulfil re-
moval requests. The rudimentary approach employs fine-tuning on D, qin to get M ™ and remove
the influence of instances in Do get.

* Stochastic Teacher (ST): Stochastic Teacher unlearning (Zhang et al., 2023)), also known as
Incompetent Teacher unlearning (Chundawat et al.,[2023a)), leverages knowledge distillation (Hinton
et al.l2015) for unlearning. The competent teacher is the original M? and the stochastic teacher is a
randomly initialised MO, M;,..:. The student starts as MY trained on Dyyqin,. During the unlearning
process, for D,.¢imqin, the student receives the logits of M but on instances from D forget> ILTECEIVES
the logits from M;,,;¢.

* One-Shot Magnitude Prune (OMP): Sparsity unlearning via OMP at 95% sparsity can sig-
nificantly reduce the approximation gap between Mf and M~ fine-tuned on D,¢ynain (Liu et al.|
2024). OMP takes an MY and prunes weights and biases to 0 with a mask that prevents weight
updates when fine-tuning on D,.cpqin-

* Amnesiac (AM): Amnesiac unlearning (Graves et al., [2021; Golatkar et al., 2020b), seeks to
remove Doy ger from M?O by forcing a MY to learn random class relationships for Dtorget- The
operation is performed by taking D¢oygc: and modifying it to add a random incorrect, y,.;, label to
each instance. Following this, the M ™ is fine-tuned on D,¢pngin.

2.3 EVALUATION METRICS

Unlearning literature has devised several metrics to quantify the unlearning performed by an un-
learning mechanism. The metrics employed are described below and formalised in the Appendix in
Table[8] of Section

* Unlearning Accuracy (UA): The performance of M~ on Dyyge:. Compared to Mf.
* Remain Accuracy (RA): Performance of M~ the remain set D,.cyqin compared to MY.
* Test Accuracy (TA): Accuracy on Dy.s; of M~ compared to Mﬁ

* Membership Inference Attack Efficacy (MIA Efficacy): Membership Inference attacks (Shokri
et al.,[2017), established the goal of taking a machine learning model M? and an instance (i, i)
and deducing whether x;,y; € Dirgin OF i, Y; € Dirain (Shokri et all [2017). For machine un-
learning MIA Efficacy is the proportion of data points in D f,,.4¢; classified as non-training instances,
y1 (Graves et al., 2021} [Liu et al., [2024). If MIA Efficacy of M~ > Mf, the Streisand Effect is
induced, which can undermine the privacy.

* Disparity Average (D AVE): The disparity of M~ and M? on UA, RA, TA and MIA Efficacy.

* Activation distance (A DIST): The £, distance of softmax outputs of M? compared to M~ on
D torget- It is proxy for the amount D¢,y ge¢ removed from M ™.

X Jensen-Shannon Divergence (JS DIST): A weighted average of KL divergence (Lin, |1991) of
the loss of M ™ compared to Mf. on Dyorget-
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* Run-Time Efficiency (RTE): The compute efficiency increase of creating M~ compared to
retraining a model to create M.

3  PRUNE AND REGROW PARADIGM

We argue that an effective unlearning ap-
proach for audio is dynamic and sensitive
to both architecture and learned features.
To create a dynamic unlearning method that
can respond uniquely to features learned by
different architectures on different datasets,
we devise the Prune and Regrow Paradigm
that employs sparsity unlearning. Pruning
is an effective compression method across
modalities; literature has shown that its ef-
ficacy relates to the functional preservation
of the compressed model (Mason-Williams|,
2024). The sparsity unlearning paradigm has
emerged as a promising candidate for un- N
learning in computer vision (Liu et al.,[2024; .

Wang et al| 2022). One Shot Magnitude Figure 1 Prl}ﬂ@ ar}d Regrow Process: Pmne based
Pruning (OMP) at 95% sparsity (based on ©f cosine snmlanty,. remove mask weights and
empirical studies on CIFAR10) provides cur- reinitialize zeroed weight and fine-tune.

rent SOTA unlearning in vision (Liu et al.|

2024). However, we argue that a one-size-fits-all sparsity unlearning cannot be optimal due to
different learnt features across modalities. Additionally, network compression is not the aim of ma-
chine unlearning, and by imposing high sparsity, a machine unlearning budget is placed on M~ as
repeatedly pruning the compressed model to 95% will eventually lead to model degradation.

/ Trained Model Weights to Prune\

Inspired by sparsity unlearning, we devise a
novel unlearning method that is adaptive to . *
modality and architecture. Through Cosine 0o \

and Post Optimal Prune unlearning, we demon- o .
strate the Prune and Regrow Paradigm. The o
paradigm, Figure [I] prunes a model to a spar-
sity determined by cosine similarity (Mason-
Williams & Dabhlqvist, 2024), as seen in Fig-

Cosine Similarity
°

ure [2| and then removes the pruned masks and os
oo 4. . _ —— VGGish Pareto Front
reinitializes the pruned weights to create M bs  — CeTraon
which is fine-tuned on Dyorger. As a result, R
more weights are available during fine-tuning, ML
allowing for improved functional expression as 0 01 02 03 04 05 06 07 08 05 1

Percentage Pruned

more parameters are updated when M~ is fine-

tuned on Dyorger. The unlearning budget is  Figure 2: Cosine Similarity as Model is Pruned at
also increased, as this method can be performed 1% Intervals for SpeechCommands Models.
repeatedly without pruning to the same repre-

sentation each time. To address this we present

CS and POP unlearning methods that operate under the Prune and Regrow Paradigm.

Cosine Unlearning (CS): By preserving the Cosine Similarity, it is possible to maintain func-
tional similarity and maximally prune a model (Mason-Williams & Dahlqvist, [2024), by getting the
minimum distance from the theoretical utopia where Cosine Similarity is 1 and pruning amount is
1, as seen in Figure[2] To perform Cosine pruning, a DNN is converted into a vectorised form and
pruned at 1% intervals, computing the Cosine Similarity between the two vectorised DNNs (Mason-
Williams & Dahlqvist,2024). An optimisation preserves Cosine Similarity while pruning the model
as much as possible, the minimum distance from Uptopia [1,1]. We leverage this to produce CS
unlearning as it provides a principled way to identify the correct sparsity per architecture without
extensive empirical experiments.
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Post Optimal Prune (POP): For POP unlearning, we use the maximum polar point [0,-1] from
Utopia, Figure [2} to increase the percentage of pruning to reduce similarity without degrading per-
formance to an unacceptable standard. By taking a post-optimal pruning step the overall function is
preserved less than with CS. As a critical aspect of machine unlearning is to move away from the
M?’s original function towards M?, pruning more of the network increases the ability to remove
D forget-

We employ the Prune and Regrow Paradigm to reinitialize zeroed weights and biases to enable
better feature representation when fine tuning on D,.¢yqir, for both CS and POP unlearning.

4 EXPERIMENTAL SETUP

In this section we introduce our experimental setup. First the datasets we use: covering a range of
learning task complexities on which to evaluate unlearning. Then, we introduce the architectures
that are representative for audio tasks (Zaman et al.l |2023)). Unlearning experiments are conducted
for both Item: 10%, 20% and 30% and Class: 1, 2 and 3 Removal in audio.

Datasets Our results are collected by training models on AudioMNIST (Becker et al., [2023) (a
low-complexity dataset), SpeechCommands V2 (Warden, 2017) and UrbanSounds8K (Salamon
et al.l [2014) (high-complexity datasets), presented in Table All audio was converted to Mel
Spectrograms as is standard practice for audio data due to reduced training time and improved gen-
eralisation (Wyse, [2017). To show the applicability of the Prune and Regrow Paradigm we also
present results on CIFAR10 in Appendix [F

Table 1: Dataset features from strong machine unlearning experiments.

Dataset Hours of Recorded Audio | Training Instances | Testing Instances | Number of Classes
SpeechCommands V2 294 84,843 11,005 35
UrbanSounds8K 18.5 6,985 1,747 10
AudioMNIST 9.5 24,000 6,000 10
CIFAR10 N/A 50,000 10,000 10

Architectures: The architectures explored cover a range of capacities (Appendix Table [/)) and
core architecture differences with a model that only contain convolutions, a model that employs both
convolutions and attention, to a model that only uses attention mechanisms via the VGGish (Hershey
et al.| [2017; |Simonyan & Zisserman, |2014), Compact Convolutional Transformer (Hassani et al.,
2021) (CCT) and Vision Transformer (Dosovitskiy et al.,[2020) (ViT). The architectures are trained
for 50 epochs (AudioMNIST and SpeechCommands) or 80 epochs (UrbanSounds8k and CIFAR10),
optimising cross-entropy loss on the train set, using SGD as the optimiser with momentum=0.9,
learning rate=0.01 and batch size of 256.

Settings:  All results provided for Item and Class Removal are averaged across 10 experiments.
To conduct a fair comparison of unlearning methods, each unlearning method requiring an impair
step is provided one epoch to maximise the loss on Dy,,4e¢, and each method is provided with 10%
of the orignial train epochs for repair/fine tuning on D,.cpqin to recover accuracy. All unlearning
methods are compared with Naive Retraining (Mf) on Dy.emain. Further details on the unlearning
setup are presented in Section[B|of the Appendix alongside implementation details of the evaluation
metrics.

5 RESULTS AND DISCUSSION

In the main body we present SpeechCommands and UrbanSounds8K. For Item Removal the Prune
and Regrow Paradigm, via POP, is the best unlearning method on UA for both datasets and for Class
Removal ST is the best for SpeechCommands and POP is the best for Urbansounds8K. AudioM-
NIST results are presented in Appendix |E|and show that the Prune and Regrow Paradigm, via CS,
is the best for Item Removal and ST is the best for class removal. Finally, the results on CIFAR10
in Appendix [F|show the transferability of the Prune and Regrow Paradigm to other domains as it is
the best for Item Removal.
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5.1 ITEM REMOVAL

The results in Tables [2] and [3] provide exciting insights into how the mechanisms of unlearning
manifest for SpeechCommands and UrbanSounds8K. From the results, it can be understood that the
Prune and Regrow Paradigm performs the best (4/6) for UA overall across the architectures, with
OMP being the second best. When considering the non-pruning methods (GA, FT, ST, AM), they
mostly fail to remove Dyorger from M~ when comparing the UA to the Naive Retraining /\/lf as
they have an unacceptable deviation of circa 7, 20 and 12 on SpeechCommands and 10, 25 and 23
on UrbanSounds8K for the VGGish, CCT and ViT respectively. While these non-pruning-based
unlearning methods retain RA given the failure of GA, FT, ST, AM of them to remove Dy, gc¢ they
are excluded from further analysis on Item removal.

Table 2: 10% Item Removal results for SpeechCommands. Numbers in blue represent disparity
from M. C represents the objective to have the least disparity with M. Otherwise arrows dictate
the direction of best performance compared to M.

Model ‘ Method UA % (C) MIA Efficacy % (C) RA % (C) TA % (C) D AVE (C) ‘? :i?fl‘)) "(SXDIISE%) RTE % (1)
10 % Item Removal
Naive 12.091 0 50(0.00) 17.061 2 57(0.00) 97.841 1 52(0.00) 87.61 10 20(0.00) 0.00 0.00:0.00  0.0010.00 0.00
GA 4.7441.70(-735) 9.7343.95(-1.33) 97.7140.92(-0.13) 87.2610.32(-0.35) 3.79 1.6040.11 3.0910.51 85.67
FT 4.7711.45(-732) 9.921 5 6o(-7.14) 97.6210.90(-0.22) 87.2710.44(-0.34) 3.76 1.594011 3.0810.46 86.11
VGGish ST 67.69134.79(55.60)  81.31109 g9(6425)  33.16435 o7(-64.68)  32.27434 g7(-55.34) 59.97 7.0612.90  21.26412.51 79.59
AM 4.7841 52(-7.31) 9.97 2.76(-7.09) 97.90.40.93(0.06) 87.5240.31(-0.09) 3.64 1.56 1008 2.9710.43 85.87
OomMP 8.411 1 29(-3.68) 18.31.3 g0(1.25) 94.631 1. 62(-321) 87.56.10 62(-0.05) 205 1.5940.07 2.3310.14 85.27
cs 7.8310.g7(-4.26) 14.8747 g1(-2.19) 96.5410.95(-1.30) 87.4430.70(-0.17) 1.98 1.5740.11 2.5010.30 84.73
POP 8.07+1.00(-4.02) 15.6340 18(-1.43) 96.424 1 o7(-1.42) 87.67+0.38(0.06) 173 1.5810.05 2.4840.22 84.83
Naive 20.9240. 320000  38.69.10.620.00) 99.94 ¢ 02(0.00) 77191 0.16(000) 0.00 0.0010.00 _ 0.0040.00 0.00
GA 0.7441.73(-20.18) 7.0517.37(-31.64) 99.46.11.39(-0.48) 771511 19(-0.04) 13.08 2.8910.04 7.3310.47 87.64
FT 0.497 0.99(-20.43) 6.241 ¢ 54(-3245) 99.831¢.33(-0.11) 77.3710.82(0.18) 13.29 2.8830.05 7.3610 42 87.88
cer ST 4.7211 62(-1620)  38.2715 26(-0.42) 98.6741.17(-127) 75.9010.69(-1.29) 4.80 2.7010.07 5.3010.34 83.41
AM 0.3710.09(-20.55) 14.78 15 75(2391)  99.9271 9 02(-0.02) 77.6210.22(0.43) 11.23 2.8340.04 7.04%0.16 87.6
omMP 13.5310.30(-7.39) 65.7441.05(27.05) 93.78.10.33(-6.16) 74.3610.43(-2.83) 10.86 2.8010.04 3.6610.10 86.25
cs 15.7210.93(-5.20) 54.96 5. 97(16.27) 95.241 _g9(-4.70) 74.4310.71(-2.76) 723 2.5610.13 3.2910. 10 86.82
POP 18.927 9.78(-200)  63.3911 45(24.70) 92.5240.90(-7:42) 74.3140.60(-2.88) 925 2.6710.08 3.1440.14 86.89
Naive 14.2311 070000 29.07+0.80(0.00) 99.82 .05 (0-00) 84.9110.30(0.00) 0.00 0.0010.00 _ 0.0040.00 0.00
GA 0.6941.26(-13.54) 7.3915.75(-21.68) 99.461 1 27(-0.36) 84.9241 15(0.01) 8.90 1.9040.05 4.7140.22 84.67
FT 0.8411.25(-1339) 9.0917.53(-19.98) 99.591¢.72(-0.23) 84.851.86(-0.06) 8.42 1.8740.04 4.5610. 44 85.03
viT ST 1.66 £0.45(-12.57) 23.3811.40(-5.69) 99.8210.06(0.00) 85.2710.33(0.36) 4.66 1.7310.04 3.7130.20 79.38
AM 0.6010.16(-13.63) 13.8741 76(-15.20) 99.87 4 0.03(0.05) 85.294 0.24(0.38) 732 1.8240 04 4.35410.16 84.69
omP 13.9910.38(-0.24) 70.2141.09(41.14)  88.75.40.36(-11.07) 82.60.10.26(-231) 13.69 2.0610.05 2.2900 07 83.94
cs 12,1239 37(2.11) 48.851 1 52(19.78) 94.821¢.40(-3.00) 83.241 . 44(-1.67) 7.14 1.691007 1961013 8338
POP 14.0710.38(-0.16)  57.584; 69(2851) 91.8540.39(-7.97) 83.0910.39(-1.82) 9.62 1.8420. 06 2.1010.08 8347

Table 3: 10% Item Removal results for UrbanSounds8K. Numbers in blue represent disparity
from M. C represents the objective to have the least disparity with M. Otherwise arrows dictate
the direction of best performance compared to M.

ADIST (1) JSDIST (1)

Model ‘ Method UA % (C) MIA Efficacy % (C) RA % (C) TA % (C) DAVEQ) (o1 (x10~9) RTE % (1)
10% Item Removal
Niave 26.18 5 52(0.00) 34.28 15 50(0.00) 95.24 1 1 56(0.00) 78.37 10 58(0.00) 0.00 0.0010.00 0.00:0.00 0.00
GA 15.7445.41(-1044)  82.831110.11(-197)  89.9515 62(-5.29) 74.28 1 3.70(-4.09) 545 3.1310.32 7.9010.82 87.64
FT 10.0413 73¢-16.14)  22.524g 45(-11.76) 95.6319.43(0.39) 78.1011 83(-0.27) 7.14 2.8110.16 7814136 88.27
VGGish ST 28.94111.27(276)  61.96116.64(27.68)  T6.12413.30(-19.12)  68.0019 59(-10.37) 14.98 3.8511. 23 8.541 4 96 77.97
s AM 9.83 15 93(-16.35) 20.6346.05(-13.65) 95.33 42 44(0.09) 77.8041.75(-057) 7.66 2.8140.13 7.9211.08 88.11
OomMP 21.76 15 52(-4.42) 55.144 5 35(20.86) 80.454 5 31(-14.79) 71.441 1. 42(-6.93) 11.75 3.4610.31 7.0611.05 85.74
cs 20.414 5 66(-5.77) 40.741 15 48(6.46) 86.41110.01(-883)  73.5147 3(-486) 6.48 3.13%9.91 7.2042 01 86.05
POP 20.52 1 6_06(-3.66) 42.704 12 93(8.42) 85.80 4 7.45(-9.44) 73.644 5.02(-4.73) 7.06 3114065  6.6411 62 86.37
Niave 29.84 5 01(0.00) 55.7111.80(0.00) 99.39 0.18(0.00) 72.481.00(0.00) 0.00 0.00+0.00 0.00+0.00 0.00
GA 1.224 1 44(-28.62) 11.214 17 64(-44.50) 99.424 .24(0.03) 71.9940.94(-0.49) 18.41 3.9940.22 15.7741.69 84.34
FT 0.491.27(-29.35) 6.241 3.64(-49.47) 99.514¢.15(0.12) 72.3510.68(-0.13) 19.77 4.054013  16.3810.70 84.59
cer ST 45511 96(-2 45.0513 gg(-10.66)  99.3710 14(-0.02)  71.2711 16(-1.21) 9.30 3443017 11171107 79.03
- AM 23911 47 26.08 1 12.65(-29.63) 99.444 (. 12(0.05) 72.26 10 81(-0.22) 14.34 3.734024  13.7811.79 84.34
OoMP 16.5741.42(-1 75.2012.10(19.49) 97.39.0.40(-2.00) 68.80.10.78(-3.68) 9.61 31240 14 6.2440.45 8241
cs 24.5641 8¢ 70.511 3 12(14.80) 97.6310.91(-1.76) 690911 25(-3.39) 631 2461020 3.77+0s52 83.30
POP 29.54 1 97(-0.30) T7.6844.15(2197) 93.6943.16(-3.70) 67.37 41 18(-5.11) 827 2.8910.19 4.4940 54 83.37
Niave 24.89 .97 (0:00) 465311 65(0.00) 99.88.1.23(0.00) 76.2540.72(0.00) 0.00 0.0010.00  0.00+0.00 0.00
GA 0.0440.09(-24.85) 4.43 13 96(-42.10) 99.9710.06(0.09) 76.6240.77(0.37) 16.85 3.5310.10  14.4640.52 86.84
FT 0.104¢.26(-24.79) 4.46 3 45(-42.07) 99.984 . 02(0.10) 76.6340.75(0.38) 16.83 3524010 144010 56 87.04
wr ST 2.1610.81(-2273)  83.8041g 75(-1273)  99.8710.25(-0.01)  76.191¢ g5(-0.06) 8.88 3143011  11.1710.71 82.35
AM 0.111¢.34(-24.78) 5.3944 54(-41.14) 99.96 1 .05 (0.08) 76.6210.76(037) 16.59 3.5140.10  14.3440.62 86.86
OoMP 33.80.41 41(9.00) 99.494 .22(52.96) 69.1341.23(-30.75)  62.1241 09(-14.13) 2671 5.0840.16  10.7810 56 86.59
cs 24.191 1 02(-0.70) 83.36 12 07(36.83) 883111 06(-11.57)  71.9511.10(-430) 13.35 2921016 4.78+0.42 85.90
POP 28.4841.80(3.59) 92.7741.40(46.24) 79.1741.09(-20.71) 69.63+1.30(-6.62) 19.29 3.6640.14 6.6210.57 85.97

For MIA Efficacy, CS is often the closest out of the pruning methods to Naive Retraining, followed
by POP and OMP. When considering MIA Efficacy, no methods on the VGGish architecture induce
the Streisand Effect for SpeechCommands. Whereas, for the CCT and ViT, the Streisand Effect
could be identified with the pruning methods on both SpeechCommands and UrbanSounds8K, as
they largely exceed the MIA Efficacy reached by M?. However, it is important to note that overall
OMP causes the most marked Streisand Effect. An interesting relationship exists between UA, TA
and RA for the pruning methods, while they consistently reduce the UA disparity gap and have the
lowest A DIST and JS DIST, their application can come at a cost to generalisation. Further, this
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highlights that OMP may be too-aggressive a pruning strategy, which leads to a severe reduction
in accuracy for transformer models. The distance metrics, A DIST and JS DIST, also reveal a
concurrent story as they are low for POP and CS across all architectures. Moreover, for the task of
10% Item Removal, POP is the best for UA and second for MIA with low JS DIST values. However,
its application comes at a slight cost to RA and TA which could be resolved with further fine tuning.

These results highlight the virtues of the Prune and Regrow Paradigm for Item Removal. When
considering RTE reduction, all models are essentially equal. However, due to the knowledge dis-
tillation setup, unlearning with ST comes at a more substantial computational cost, which can be
aligned with the inference required at both the impair and repair stages. In Appendix [C.1]and [D.]
we present radar plots that emphasises the failure of the non-pruning based methods to reach the UA
and MIA of MY with a nuanced relatlonshlp emerging between retention of TA and RA combined
with the ability to remove Dyopger in M?. Moreover, when considering the radar plots, POP and
CS emerge as the most holistic unlearning mechanisms for Item Removal in audio, showing that our
Prune and Regrow Paradigm represents state-of-the-art unlearning capacity in audio.

5.2 CLASS REMOVAL

Table 4: 1 Class Removal results for SpeechCommands. Numbers in blue represent disparity from
MY, C represents the objective to have the least disparity with M. Otherwise arrows dictate the
direction of best performance compared to M.

Model ‘ Method UA % (C) MIA Efficacy % (C) RA % (C) TA % (C) D AVE (C) ’?Ei‘]ﬁ; J(SXDlIgT Y R )
1 Class Removal
Niave 100.0010 00(0.00)  100.001 ¢ 0o(0.00) 98.481 ¢ 55(0.00) 88.0910.20(0.00) 0.00 0.001000 0.0010.00 0.00
GA 47.38422 59(-52.62)  62.16419.80(-37.84)  88.22495.15(-1026)  79.07425.03(-9.02) 27.44 9.9811 12 18.1148 47 87.79
FT 40.25114.82(-59.75)  56.5816.13(-4342) 97.48 4 1.30(-1.00) 87.45.10.57(-0.64) 26.20 10.1341.14  20.6446.25 87.90
VGGish ST 96.4147.29(-3.59) 99.95 10.15(-0.05) 58.88.136.17(-39.60)  56.824 34 77(-31.27) 18.63 7.5440.75 0.4941.00 83.62
AM 98.7540.83(-1.25) 99.8940.14(-0.11) 97.78 1 9.95(-0.70) 87.58 10.41(-0.51) 0.64 7.0740.60 0.2230.15 87.85
OMP 100.0049.00(0.00)  100.00_tg.00(0.00) 94.7311.64(-3.75) 87.93 1 ¢.57(-0.16) 0.98 7.0319.a7 0.0019.00 87.42
cs 92.35 4 4.59(-7.65) 98.14 4 1.71(-1.86) 96.52 1.14(-1.96) 87.691.56(-0.40) 297 7.2110.48 1.8111 22 87.00
POP 97.8349.74(-2.17) 99.7910.38(-021) 96.3041.06(-2.18) 87.8210.40(-027) 1.21 7.0410.52 0.441¢.57 87.02
Niave 100.00+0.00(0.00)  100.00¢.00(0.00) 99.93 1 9.02(0.00) 77.84 1 0.32(0.00) 0.00 0.00.0.00 0.0040.00 0.00
GA 3.8847.29(-96.12) 34.30415.69(-65.70) 99.7040.56(-0.23) 77.3240.67(-0.52) 40.64 12.7340.74  36.87414.19 87.63
FT 6.31112.16(-93.69)  38.75116.73(-61.25) 99.5741.02( 77.30£0.64(-0.54) 38.96 12.5311.03  35.6715.01 87.78
ccr ST 99.99 1 g.g2(-0.01) 100.0049.00(0.00) 99.6110.32(-0.32) 76.9210.52(-0.92) 031 6.0210.30 0.0040.00 83.45
AM 85.03.+5.69(-14.97) 98.9140.78(-1.09) 99.8910.06(-0.04) 77.57+0.35(-0.27) 4.09 6.3110.08 3.8311 62 87.67
OoMP 78.6743.57(-21.33) 99.6040.33(-0.40) 93.8340.33(-6.10) T4.77 £0.41(-3.07) 772 6.8510.26 4.78 11,06 86.45
cs 84.404.5.29(-15.60) 99.6110.39(-0.39) 94.9140.80(-5.02) 74.75 1 0.25(-3.09) 6.02 6.3240.29 3.6441.44 86.73
POP 92.8049.30(-7.20) 99.9740.04(-0.03) 93.0240.67(-6.91) 74.8740.39(-2.97) 4.28 5.8110.17 1.4310.52 86.81
Niave 100.0010.00(0.00)  100.001 ¢ 0o(0.00) 99.85 ¢.05(0.00) 85.404 .21 (0.00) 0.00 0.0010.00 0.0010.00 0.00
GA 4.6448 20(-95.36) 30.42414.89(-69.58) 99.66.+0.57(-0.19) 84.92.10.91(-0.48) 414 12.624+0.80  37.00+4.40 85.69
FT 7.27410.69(-9273)  34.54415.60(-65.46) 99.0541.57(-0.80) 84.6141.36(-0.79) 39.94 12.4140.95 35.7145.58 8579
viT ST 100.0040.00(0.00)  100.00.¢.00(0.00) 99.85 1.9.05(0.00) 85.43.0.26(0.03) 0.01 5.6610.3a 0.0040.00 80.76
AM 99.9540.05(-0.05) 100.001¢.00(0.00) 99.851¢.06(0.00) 85.29 1 0.38(-0.11) 0.04 5.7440.35 0.0140.01 85.74
OMP 92.28 4 3 56(-7.72) 100.0040.00(0.00)  88.914.45(-10.94) 82.874.34(-2.53) 530 6.0340.27 1.2040.67 85.28
cs 89.6644.46(-10.34) 99.98 1 0.05(-0.02) 94.7940.46(-5.06) 83.6210.60(-1.78) 430 6.1130.38 2.1511 06 84.69
POP 95.0241.82(-4.98) 100.00_t¢.00(0-00) 91.8610.82(-7.99) 83.244.55(-2.16) 378 5.8110.24 0.8610.38 84.82

Table 5: 1 Class Removal results for UrbanSounds8K. Numbers in blue represent disparity from
MY, C represents the objective to have the least disparity with M. Otherwise arrows dictate the
direction of best performance compared to M.

ADIST (1) JSDIST (1)

Model ‘ Method UA % (C) MIA Efficacy % (C) RA % (C) TA % (C) D AVE (C) (x10-1) (x10-3) RTE % (1)
1 Class Removal
Niave 100.0020 000000  100.00:0 000000  96.651 0 9a(0.00) 80.221 0 57(0:00) 0.00 0.00:000 000:000 000
GA 62.46404.47(-3754)  T4.54499 08(-2546)  91.6916.66(-4.96) 76.36+£4.33(-3.86) 17.95 8834148  19.7411406 8883
FT 5811404 24(-41.89)  70.661023 22(-2934)  95.1013 gg(-1.55)  78.3311 5a(-1.89) 18.67 89611 64  22.1841400 8936
VGGish ST 97.9644.51(-204)  89.97429 99(-10.03)  78.64406.17(-1801)  67.804027 25(-1242) 10.62 6.7140 64 0.7841 17 79.79
* AM 78.55413.23(:2145)  90.1249 22(-9.88) 94.921 5 01(-1.73) 781941 42(-2.03) 8.77 7.5410.89 9.6446 63 89.26
omp 100.0040.00(0.000  100.0010.00(0.00)  81.7414 9o(-14.91) 72.4013 58(-7.82) 5.68 6.7540 39 0.041001 8691
cs 99.824.53(-0.18) 99.85.4.44(-0.15) 89.14110.17(-75) 75.8817 01 (-4.34) 3.04 6.6710 60 0.2210 49 87.66
POP 100.0040.00(0.00)  100.00.+0.00(0.00) (-9.29) 75.0615 92(-5.16) 361 6.7910.65 0.041003 8787
Niave 100.00+0.00(0:00)  100.00+0. ﬂom 00) 74.001 .71 (0:00) 0.00 0.00:0.00 000000 000
GA 0.6241.35(-99.38) 36.62414.63(-633 72.1147 43(-1.89) 41.22 12.9740.27 61243543 8488
FT 8.58418 42(9142)  45.43104 o 5 - 71.6140 14(-2.39) 3738 12.2841.60 549911448 8507
cer ST 90.50413.54(-9.50) 99.621 90 (-0. zx; 994010 15(0.09)  72.2911 00(-171) 291 4.97 4078 3.5745.79 79.60
AM 17.60417.01(-8240)  80.87411.73(-19.13)  99.171¢. 90(-027) 71.9217 41(-2.08) 25.97 1078411 56  43.65112.08  84.88
omp 89.97 12 47(-1003)  100.00.+0.00(0.00) 97.51 10 43(-1.93) 69.811( 77(-4.19) 4.04 5.5310.28 3.1040.92 83.13
cs 99.29 19 65(-0.71) 100.001¢.00(0.00) 97.1641 56(-2.28) 70.07+1 01(-3.93) 173 41510 23 0.3240 25 83.89
POP 99.851¢.15(-0.15  100.001¢.0g(0.00) 94.76 12 45(-4.68) 69.511; 19(-4.49) 233 4.3610.33 0.101006 8389
Niave 100.0010.00(000)  100.000.00000)  99.84_ ¢ 16(0.00) 77.0410.99(0.00) 0.00 0.00.0.00 000000 000
GA 0.3040.42(-99.70) 28.8049.97(-71.20) 99.9810.01(0.14) 76.47 1. 74(-0.57) 429 13244017  62.3017.21 8681
FT 0.6811 67(-99.32) 28.451 17 28(-71.55) 99.971.03(0.13) 76.441 g3(-0.60) 429 13184039  61.961265 8691
viT ST 99.20 1. 46(-0.71) 100.0010.00(0.00)  99.901¢.16(0.06) 76.7810.93(-0.26) 0.26 3.6810.28 0.374£0.20 82.07
AM 51.541.03(-48.46) 91.16.41 g0(-8.84) 99.921 . 16(0.08) 76.5310.77(-0.51) 14.47 7.5110.58 23.6613 37 86381
omp 100.0040.00(0.000  100.0010.00(0.00)  69.9111 57(-29.93) 62.93 17 18(-14.11) 11.01 6.0710.28 0.0740.01 86.62
cs 99.97£0.09(-0.03) 100.0010.00(0.00)  87.2315 10(-12.61) 71.2741 96(-5.77) 4.60 4.3940 44 0.0740.02 85.91
POP 100.0040.00(0.00)  100.0010.00(0-00)  79.811; 15(-20.03) 70.541 1 49(-6.50) 6.63 4.8740.23 0.05:001 8596

When considering Class Removal results displayed in Table’s f]and[3], we observe that GA and FT
perform poorly on UA, suggesting that they cannot unlearn in the Class regime; therefore, they are
excluded from further analysis.
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Contrary to the results for Item Removal, ST and AM have an increased capacity to unlearn Doy get
and often perform well across all metrics. For SpeechCommands it can be noted that ST performs
the best for UA (2/3) and for UrbanSounds8K POP performs the best for UA (3/3).

While it does not perfrom the best, OMP is a competetive unlearning method for Class Removal
but is ultimately superseded by ST and POP for SpeechCommands and UrbanSounds8K. While
OMP also attains strong results, it degrades the TA more than POP, reiterating that the one-size-fits-
all approach of OMP is inadequate. However, when considering the transformers, ST is the best
method for unlearning across most accuracy and distance metrics in tandem with an increase in the
effectiveness of AM.

The divergence in UA for Class Removal highlights the dichotomy between CS and POP. POP
removes Dyorger from M ™, and alludes to the fact that a less functionally similar prune strategy
is more effective for these requests, but pruning too much and not regrowing, as with OMP, is
detrimental for accuracy. The Prune and Regrow notion is further strengthened and validated as
POP almost always outperforms OMP for Class Removal. Overall, the radar plots in Appendix
and shows ST constantly reaches the boundaries of M? for the CCT and ViT with AM for
SpeechCommands. The radar plots especially highlight that there does not appear to be such a
nuanced relationship between Class Removal and accuracy degradation as there is for Item Removal.

5.3 UNLEARNING REQUEST SCALING
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Figure 3: Unlearning efficacy scaling on SpeechCommands when considering disparity from the
M© for the CCT. Item Removal: 10%, 20% and 30% (left) and Class Removal: 1, 2 and 3 (right)
the figures for the VGGish and ViT are presented in Appendix Section@

Understanding the efficacy of current and novel unlearning methods as unlearning requests scale is
essential. Figures [3]and 4] shows that each unlearning method’s impacts are largely stable for Item
Removal at 10%, 20% and 30%. Overall for both datasets the transformer architectures are the most
robust to increased Item Removal requests compared to the VGGish. When observing the Class
Removal scaling of 1, 2, and 3 classes, a similar trend is witnessed concerning the stability of the
unlearning methods at scale. The stability of unlearning at scale in the transformer architectures
could be linked to the fact that they are more over-parameterised than the VGGish architecture.
However, further study would be necessary to make any conclusions on this. For Item Removal on
the CCT, POP is the most robust to unlearning request scaling for both datasets; for Class Removal,
ST is the best for SpeechCommands and POP is the best for UrbanSounds8K in Figures [3] and 4]
Therefore, these results underscore the ability to comply with increased unlearning demands in the
audio domain.



Under review as a conference paper at ICLR 2025

MIA Efficay

RA
d i oup
cs - s
a0 -
10 d ——pop 0 poP
-3
20 -
s 60 40
-4
-30
o 50
a0 B -80 i s
60 /\
-50 2 -6
10 15 25 30 30 15 2 15 3 11 53
14

s 20 0 1 20 2
ADIST JS DIST

|

B

Metric Disparity

A g

4 — 16

————
»\/ 7}
1 4

Metric Disparity

0
0 15 20 25 30 0015 20 25 3 0 15 20 25 30 115 2 25 3 115 2 25 3 115 2 25 3

Percentage of Items Removed Number of Classes Removed

Figure 4: Unlearning efficacy scaling on UrbanSounds8K when considering disparity from the MY
for the CCT. Item Removal: 10%, 20% and 30% (left) and Class Removal: 1, 2 and 3 (right) the
figures for the VGGish and ViT are presented in the Appendix in Section

5.4 LoSS DISTRIBUTION ANALYSIS
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Figure 5: Dyorget loss distribution on SpeechCommands, for unlearning methods averaged across
all seeds for the CCT. 10% Item Removal (left) and 1 Class Removal (right). For each plot the
unlearning method is compared to the loss distribution of Dyy.gc¢ ON MP?and M?. The results for
the VGG and ViT are presented in the Appendix

To gain a nuanced insight into the dynamics of unlearning for audio, we probe the change of be-
haviours of M? to M~ compared to M?. The loss distribution on D toyger for M?, M~, and M?
is leveraged to provide this. To produce this analysis, Dq.ge¢ is passed through M M~ and
M?, and the loss for each is plotted as a histogram, allowing for a direct comparison of the loss
distribution for each unlearning method. An effective unlearning method should be able to match a
loss distribution of Mf and, therefore, would be dissimilar to M? on D Forget-

Figures and@ show that, for Item Removal requests, POP shifts the loss distribution so that M~
resembles the loss distribution of M?. The visual depiction reaffirms the understanding that POP is
the best Item Removal unlearning method and offers deeper insights into why it performs so well.
The loss distributions reveal similar insights when considering the Class Removal loss distribution
shift for Dorger in Figure [5] and [6] explains why some of the non-pruning methods excel. The
non-pruning methods separate the loss values to shift them to a separated distribution, resulting in
a low UA gap. However, this could show that they enforce incorrect memorisation over removal,
as a similar trend is not witnessed for Item Removal. Tracking the loss this way highlights the
nuances between OMP, CS and POP. In every loss distribution plot for OMP, it can be observed
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that it has a more dense frequency of towards M. An explanation could be that it is harder to
increase loss on samples without employing the regrowth strategy when the function is restricted
to a smaller portion of the network. The Prune and Regrow strategy for POP manifests as a loss
distribution that fits within a possible distribution of M. The loss plot figures show that none of
the unlearning methods exceed the loss of Mf on Dyypger. It could be argued that any point which
exceeds the loss of Mf on Dyorget would induce the Streisand Effect. Therefore, by this definition,
the Streisand Effect is not induced by these methods and could instead be an artifact of the black-
box MIA. Subsequently, this prompts further inquiry into the existence of the Streisand Effect in
machine unlearning.

Naive

Frequency
3

Frequency
3

Loss Loss

Figure 6: Dyorger loss distribution on UrbanSounds8K, for unlearning methods averaged across
all seeds for the CCT. 10% Item Removal (left) and 1 Class Removal (right). For each plot the
unlearning method is compared to the loss distribution of Dyy.get ON MP?and Mﬁ. The results for
the VGG and ViT are presented in the Appendix

6 CONCLUSION

Our paper is the first to comprehensively analyse the current state-of-the-art, strong machine un-
learning techniques to lay the foundations and advance privacy endeavours within the audio domain
for Item and Class Removal. Given that no other such studies exist for audio, our work represents the
first of its kind. Our results show that current unlearning methods are partially effective for the most
likely request, Item Removal, on lower complexity learning tasks such as AudioMNIST but struggle
to transfer to higher-complexity tasks such as SpeechCommands and UrbanSounds8K. Our study
introduces Cosine and Post Optimal Prune unlearning, using our novel Prune and Regrow Paradigm
to address this. Post Optimal Prune was identified as a superior method for Item Removal across
all datasets and architectures, regardless of request scaling, signifying an important step towards up-
holding privacy in the audio domain. Additionally it provides very competitive and consistent class
unlearning capabilities. Through the Prune and Regrow Pardigm we champion unlearning methods
that are dynamic to architecture; modality and enable repeated unlearning.

Despite the lack of consistent performance of current methods for Item Removal, Stochastic Teacher
and Amnesiac unlearning successfully fulfill Class Removal requests on higher task complexity.
However, these results may be related to memorising incorrect representations rather than causing
direct unlearning. The results mandate further development of existing and novel methods to re-
alise unlearning capabilities in audio. Our unique analysis of the scaling of machine unlearning
methods uncovered that, for Item Removal, the most important unlearning case, dynamic unlearn-
ing approaches scale the best, while, for Class removal, scaling properties are often shared between
effective methods. Furthermore, loss distribution analysis for Item and Class Removal revealed that
the Streisand Effect may be a red herring caused by the reliance on black-box evaluation metrics,
which requires further exploration.

In summary, this paper contributes a nuanced and novel understanding of machine unlearning within
audio and provides two new state-of-the-art methods for unlearning via the Prune and Regrow
Paradigm, improving privacy through removal fulfilment for Item Removal, enabling synergy be-
tween privacy and the application of deep learning in the audio domain and beyond.

10
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Table 6: Evaluation of existing strong machine unlearning methods.
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B FURTHER TRAINING DETAILS

Architecture details: Table|7|shows the varying parameter scales that were employed to achieve
similar baseline accuracy for each of the architectures on the respective datasets.

Table 7: Architectures used for machine unlearning exploration.

Architecture Trainable Parameters
VGGish 4,839,075
Compact Convolutional Transformers (CCT) 10,531,625
Vision Transformer (ViT) 11,659,875

Unlearning details: SGD optimises all impair step optimisations with momentum=0.9, learn-
ing rate=0.01 and batch size=256. However, for GA the learning rate is reduced to Ir =
(0.01/(|Dforget|/256)). Preliminary experiments showed that once GA exceeded one mini-batch
update with a learning rate of 0.01, it became impossible to recover accuracy on D,.emqin, SO this
intervention was made to stabilise the impact of GA. While in the image domain, a learning rate of
0.01 (Golatkar et al., 2020b)) - 0.0001 (Liu et al., |2024) has shown to be successful for GA when
using SGD; this was not the case during experimental analysis across all audio datasets. For the
experiment of CIFAR10 we use the standard learning rate of 0.01.

For all repair step optimisations, SGD is the optimiser with momentum=0.9, learning rate=0.01,
and batch size=256 - in line with experiments conducted in the vision domain (Liu et al.| [2024).
The unlearning methods are applied to each M? and compared to the corresponding MY and are
averaged across five independent experiments.

The experiments are conducted across three scales for Item and Class Removal requests to assess
the capabilities of current and novel unlearning methods comprehensively. For Item Removal, 10%,
20%, and 30% of random data from D¢,.4in, 1s removed, and for Class Removal, 1, 2, and 3 random
classes are removed. For Class Removal, it is noted that the classes to be removed are also removed
from the test set. Understanding how each method scales to a more complex unlearning request
provides better insights into the robustness of each method and confirms the efficacy of current and
novel unlearning methods in the audio domain.

Evaluation metric details: For all accuracy-based metrics, the accuracy of M~ is reported, as
well as the disparity between M~ and M? on D rorget (UA), Dremain (RA) and Dy (TA). It is
important to highlight that UA represents 1-M ™ (Dyorgct). Disparity Average (D AVE) is the aver-
age disparity across UA, RA, TA and MIA. For Activation Distance (A DIST) and Jensen Shannon
Divergence (JS DIST), the distance is compared between the /\/lﬁ and M~ outputs for Dy,pge; ON
the respective softmax and loss outputs for each respective metric. RTE is reported as the reduction
of time as a percentage of creating M~ against the time required to train M? as it is more intuitive
than providing the raw time duration; as a result a higher RTE percentage is preferable.

To perform the membership inference attack, in line with other literature (Liu et al., |2024; |Graves
et al.| 2021), the attack method introduced by [Shokri et al.| (2017), described in Section@ is used.
Following the implementation of (Liu et al.,2024), the training datasets for the attack model, Mﬁ,
were composed of a balanced dataset of the baseline models outputs on D, and Dy, for each of
the five baseline models for each architecture and dataset. Three independent M? are trained based
on the loss outputs for each architecture and dataset. The attack models are trained for 50 epochs
with early stopping.
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Table 8: Machine unlearning evaluation metrics employed for strong machine unlearning experi-
ments

Evaluation Metric Formula/Description Category Refated Literature

Unleaming Accuracy ; Evaluating predictive
A 1~ ace(D,

Remainng Accuracy

{Chundawat et al. 2023afTarun et al. 122023 }Golatkar et al. 122020bfLiu et al. 12024 {Chundawat et al. £2023b|

Evaluating predictive UNERGS USRS NN — il
distribution
Evaluating predictive

ace(Dyemain {Chundawat et al. [2023af{ Tarun et al. 12023 Golatkar et al. {2020b{Liu et al. 12024/ Chundawat et al. {2023b;

Testing Accuracy {Golatkar et al.£2020bfLiu et al. 2024 \Chundawat et

ace(Dicar)

MIA Efficacy Evaluating attack {Graves et al. 2021 [ Liu et al. 12024
(MIA) success al
Disparity Average MI(UA) — M (UA) + MU(RA) — M (RA) Evaluating predictive o et ot bod
(D AVE) S MUTA) — M= (TA) + MIMIA) — M~ (MIA))/4 distribution ]
‘Activation Distance 07 N Similarity S 1
(ADIST) Lo(M®(Dsorget); M™ (Dyorger)) of unlearn distribution (Chundawat et al. 12023
Tensen-Shannon vy o N
. 0.5+ KL(MY(D, )s (MJ(Dyorget) = M~ (Dyorget)))+ Similarity S
I(’;;cif)zlcs";)c 0.5- KL(M-(D S (MO(Dyorger) — M- (Dgupger))) | of unlearn distribution {Chundawat et al. 20233
Run- l'u(rl\{chl-_';)rwlL‘r\Cy M (Toraie 4\,4\‘4{ AT - D) % 100 Comparative unlearning time (Tarun et al. {2023 Liu et al. 12024

C SPEECHCOMMANDS

In this section we present the radar plots for both Item and Class Removal for the SpeechCommands
dataset, the plots highlight the interactions between UA, MIA Efficacy, TA and RA. Overall it can be
noted that for Item Removal there is a distinction between methods that perform well at unlearning
and a reduction in TA and RA compared to methods that perform worst on UA. However, this
distinction is not apparent for Class Removal; there is little generalisation cost for methods that
perform well on UA.

Additionally, we present the scaling results for the VGGish and ViT architectures, they show how
the unlearning methods perform as the amount of Item’s and Classes to remove increases. We see
that most methods retain their performance as Item and Class Removal requests scale.

Finally, the loss distributions are presented for the VGGish and ViT architectures for both Item and
Class Removal.

C.1 RADAR PLOTS

For the radar plots on the VGGish, CCT and ViT architectures there is generally a trend that methods
that match the Naive model on UA result in a trade off in generalization. For the CCT and ViT
this is most apparent for example POP which performs best of UA for the CCT and ViT it often
has a higher MIA Efficacy and lower ability to retain RA and TA. The same is true for both POP
and OMP. This emphasises that unlearning sometimes results in a degradation in performance. It
would be of interest in future work to explore how many epochs of fine tuning would be required
to completely restore accuracy that is degraded. It is important to note that the Prune and Regrow
methods perform better overall at recovering RA and TA which speaks to the success of the regrow
phase of the paradigm.

MIA Efficay MIA Efficay MIA Efficay —GA

Figure 7: 10% Item Removal radar plots on unlearning metrics based on min-max normalisation
for SpeeechCommands: VGGish (left), CCT (middle), and ViT (right).
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Figure 8: 1 Class Removal radar plots on unlearning metrics based on min-max normalisation for
SpeeechCommands: VGGish (left), CCT (middle), and ViT (right).

For Class Removal there is less of a trade-off between UA, MIA Efficacy, RA and TA. The non-
pruning methods appear to balance all of the factor equally in application. For the pruning methods
it can still be observed that the trade off is in place so while they perform well for UA they would
require more training to be truly competitive to the non-pruning based methods for Class Removal
overall on SpeechCommands. However, it should be noted that CS and POP usually recover better
than POP on RA and TA compared to POP which yet again speaks to the ability to recover accuracy
given the regrow phase of the Prune and Regrow Paradigm.

C.2 REQUEST SCALLING

As the proportion of unlearning requests scale it can be observed that most of the methods have a
stable impact across key metrics such as UA, MIA Efficacy and RA for Item Removal and Class
Removal. Therefore the analysis matches that presented in the main body.

UA . MIA Efficay RA UA MIA Efficay RA

Naive
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Figure 9: Unlearning efficacy scaling on SpeechCommands when considering disparity from the
/\/l,(f (dotted line) for the VGGish. With Item Removal: 10%, 20% and 30% (left) and Class Re-
moval: 1, 2 and 3 (right).
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Figure 10: Unlearning efficacy scaling on SpeechCommands when considering disparity from the
Mﬁ (dotted line) for the ViT. With Item Removal: 10%, 20% and 30% (left) and Class Removal: 1,
2 and 3 (right).

C.3 LoSS DISTRIBTUIONS

For SpeechCommands we see that for both Item and Class removal across the VGGish and ViT
architectures that the methods which have the lowest UA disparity gap often have a close loss dis-
tribution to that of the Naive model on the forget set. For the VGGish on Item Removal the best
method for matching the loss distribution appears to be OMP and for the ViT it is POP. For Class
removal the best method appears to be OMP for the VGGish and ST joint with AM for the ViT.
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Figure 11: Doy get loss distribution on SpeechCommands, for unlearning methods averaged across
all seeds for VGGish. 10% Item Removal (left) and 1 Class Removal (right). For each plot the
unlearning method is compared to the loss distribution of D ;.get ON MP?and /\/lf
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Figure 12: Doy get loss distribution on SpeechCommands, for unlearning methods averaged across
all seeds for the ViT. 10% Item Removal (left) and 1 Class Removal (right). For each plot the
unlearning method is compared to the loss distribution of D4;.ge¢ ON MP?and /\/lf.
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D URBANSOUNDS8K

In this section, we present the radar plots for both Item and Class Removal for the UrbanSounds8K
dataset; the plots highlight the interactions between UA, MIA Efficacy, TA and RA. Overall, for Item
Removal, there is a distinction between methods that perform well at unlearning and a reduction in
TA and RA compared to methods that perform worst on UA. However, this distinction is not apparent
for Class Removal; there is little generalisation cost for methods that perform well on UA.

Additionally, we present the scaling results for the VGGish and ViT architectures; they show how
the unlearning methods perform as the number of Items and Classes to remove increases. We see
that most methods apart from ST retain their performance as Item and Class Removal requests scale.

Finally, the loss distributions are presented for the VGGish and ViT architectures for both Item and
Class Removal.

D.1 RADAR PLOTS

When examining the radar plots on UrbanSounds8k, it becomes clear that a trade-off similar to the
one observed for Item Removal on SpeechCommands exists. The trade-off indicates that methods
that perform well on UA often exceed the MIA Efficacy while also experiencing a reduction for
RA and TA. In the context of Item Removal on the CCT and ViT architecture, CS emerges as the
most comprehensive unlearning method. It is capable of recovering more accuracy than POP when
considering RA and RA, while still maintaining a high performance on UA.

MIA Efficay MIA Efficay MIA Efficay —GA

;UA RA

T~ TA T

Figure 13: 10% Item Removal radar plots on unlearning metrics based on min-max normalisation
for UrbanSounds8K: VGGish (left), CCT (middle), and ViT (right).

When we consider Class removal, a distinct trend on UrbanSounds8K emerges. Methods that per-
form well also incur a slight trade-off in generalization, a unique characteristic of UrbanSounds8K.
This finding suggests that there are instances where more fine-tuning is required to recover accu-
racy for Class Removal. However, the lack of consensus on the best method for Class Removal on
UrbanSounds8K is evident. For the transformer architectures, ST appears to be the most effective,
while for VGGish, CS has the most substantial holistic impact, despite not achieving the best UA
disparity.
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Figure 14: 1 Class Removal radar plots on unlearning metrics based on min-max normalisation for
UrbanSounds8K: VGGish (left), CCT (middle), and ViT (right).

D.2 SCALING RESULTS

As unlearning requests scale for both Item and Class removal, it can be observed for both the VG-
Gish that most methods remain stable apart from ST and GA. For the ViT architecture, all methods
are stable as requests grow, and there’s a good trends of most methods becoming slightly more ef-
fective as unlearning requirements increase. This growing effectiveness for the ViT architecture is
a promising sign of the unlearning methods potential. The stability between the VGGish and ViT
broadly speaks to the ability of most methods to have a consistent unlearning impact.
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Figure 15: Dfopge: loss distribution on UrbanSounds8K, for unlearning methods averaged across
all seeds for the VGG. 10% Item Removal (left) and 1 Class Removal (right). For each plot the
unlearning method is compared to the loss distribution of D;.ge¢ ON MP?and /\/lf.
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Figure 16: Dyopget loss distribution on UrbanSounds8K, for unlearning methods averaged across
all seeds for the ViT. 10% Item Removal (left) and 1 Class Removal (right). For each plot the
unlearning method is compared to the loss distribution of D 4;.ge¢ ON MP?and /\/lf.

D.3 Loss DISTRIBUTIONS
Similarly to the results on SpeechCommands it can be observed for the VGGish and ViT for Item

and Class Removal methods that approximate the distribution of the Naive model on the forget set
also perform well at on UA disparity.
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Figure 17: Dyorges loss distribution on UrbanSounds8K, for unlearning methods averaged across
all seeds for the VGG. 10% Item Removal (left) and 1 Class Removal (right). For each plot the
unlearning method is compared to the loss distribution of D44 ON MP?and /\/l?
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Figure 18: Dyopge: loss distribution on UrbanSounds8K, for unlearning methods averaged across
all seeds for the ViT. 10% Item Removal (left) and 1 Class Removal (right). For each plot the
unlearning method is compared to the loss distribution of D;.ge¢ ON MP?and /\/lf.
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E AUDIOMNIST RESULTS
E.1 ITEM REMOVAL

Table 9: 10% Item Removal results for AudioMNIST. Numbers in blue represent disparity from
M?Y. C represents the objective to have the least disparity with M. Otherwise arrows dictate the
direction of best performance compared to M.

Model ‘ Method UA % (C) MIA Efficacy % (C) RA % (C) TA % (C) D AVE (C) ?:i?f}; J(S;’llg'fgl)) RTE % (1)
10% Item Removal
Niave 1.47 1 9.30(0.00) 3.021.24(0.00) 99.741 006 (0.00) 98.97 1 9.10(0.00) 0.00 0.0010.00 0.00:0.00 0.00
GA 0.7940.31(-0.68) 1.9340.44(-1.09) 99.78.40.15(0.04) 98.92 ¢.15(-0.05) 046 0.1710.08 0.3510.08 89.26
FT 1.2511.34(-0.22) 3.05.12 89 (0.03) 99.3141,24(-0.43) 98.524 1. 24(-0.45) 0.28 0243018 0.5410.49 89.62
VGGish ST 2008123 78(1861)  43.50151.33(4048)  80.17.103 70(-19.57)  79.734 03 78(-19.24) 2448 2951005  10.07412.49 8431
* AM 4.044 4 45(257) 9.124g11(6.10) 96.77 1 4.77(-2.97) 96.104 4 45(-287) 3.63 0.6110 67 1.6219 34 89.47
OomP 2.8510.63(1.38) 10.6015.39(7.58) 97.731 0.58(-201) 97.0310.53(-1.94) 323 0.5540.14 1.0140.35 88.74
cs 1.487 ¢ 55(0.01) 4.1641 00(1.14) 99.24.4+0.41(-0.50) 98.527 0.34(-0.45) 052 0.23}0.05 0.4130.15 88.16
POP 1.3910.35(-0.08) 4.041 0 52(1.02) 99.35 ¢.15(-0.39) 98.56 1 .05 (-0.41) 048 0.223 .03 0.3740.06 88.27
Niave 2.82.40.51(0:00) 10.3810.800-00) 99.96.+0.04(0:00) 97.990.11(0:00) 0.00 0.00-0.00 _ 0.0020.00 0.00
GA 0.1040.10(-2.72) 3.1541.29(-7.23) 99.96 10.04(0.00) 98.01 ¢ 25(0.02) 249 0.3940.04 1.2240.16 88.01
FT 0.2140.32(-2.61) 4.47 15 95(-5.91) 99.8710.22(-0.09) 97.904.0.41(-0.09) 217 0.3910.04 1.1940.19 88.28
cer ST 1.6910.73(1.13) 19.341 3 60(8.96) 99.10 0. 55(-0.86) 96.841 0.51(-1.15) 3.02 0.4510.08 1.0210 23 83.91
- AM 1.014¢.93(-181) 11.204 5 45(0.82) 99.521 . 73(-0.44) 97.2310.85(-0.76) 096 0.4130.11 1.0710.34 88.00
omP 1.38.40.37(-144) 27.76 11.06(17.38) 99.287 (. 24(-0.68) 96.801 0. 25(-1.19 517 0.4610.04 0.8210.00 86.76
cs 3.8210.56(1.00) 27.541 1 8g(17.16) 97.7910.66(-2.17) 95.6140.62(-2 5.68 0.63%0.10 1.2810.29 87.11
POP 4.29 9.82(1.47) 32.3812.50(22.00) 97.7140.78(-2.25) 95.7110.72(-2.28) 7.00 0.6640.12 1.2540.38 87.13
Niave 0.6210.12(0.00) 3.92 10 52(0.00) 99.99 4 .01 (0.00) 99.24 ¢ 06(0-00) 0.00 0.00:0.00 _ 0.00:0.00 0.00
GA 0.0040.01(-0.62) 1.1940.74(-273) 99.99 4 ¢ 03(0.00) 99.23 . 12(-0.01) 084 0.111¢9.02 0.3130.07 8733
FT 0.0210.03(-0.60) 1.5241 07(-240) 99.994 ¢ 01(0.00) 99.251 ¢ 11(0.01) 075 0.11%9.01 0.3130.06 87.63
Vit ST 0.57+0.16(-0.05) 9.2111.19(5.29) 99.7610.13(-0.23) 98.8040.19(-0.44) 1.50 0.1610.03 0.2840.07 83.03
AM 0.3040.11(-0.32) 5.7710.70(1.85) 99.9540.03(-0.04) 99.034.0.10(-021) 0.60 0.1240.01 0.2219.06 87.34
omMP 1.44 40 27(082) 31.223 5 37(27.30) 98.621 ¢.19(-1.37) 98.131 0. 20(-1.11) 765 0.43}0.04 0.6210.07 8730
cs 1.224 ¢ 45(0.60) 12.7941 38(8.87) 99.25 . 29/(-0.74) 98.35 0. 34(-0.89) 278 0.2439.06 0403017 8631
POP 1.7840.28(1.11) 17.5341.99(13.61) 98.7740.32(-1.22) 98.0310.27(-1.21) 4.29 0.3330.05 0.6210.14 86.34

When analysing the results for 10% Item Removal on AudioMNIST in Table [9] it is evident that
for VGGish, all unlearning methods are competitive on UA. However, CS is best, with POP as the
second best and ST performs well but is inconsistent. Surprisingly, all methods perform equally
well on RA and TA and the distance based metrics, but there is a divergence when considering MIA
Efficacy. While CS and POP are competitive for RA and TA, there is a decrease in performance,
which suggests that the best unlearning methods may result in worse generalisation. The same is
true when observing the results for the CCT architecture. CS, OMP and POP perform best on UA
but lead to a reduction in RA and TA compared to other less effective unlearning methods. Further
suggesting that unlearning methods that successfully remove the influence of Dsoyger from M™
may cause a slight reduction in generalisation capabilities. In this case for the CCT ST performs
well and does not lead to a major deviation on RA and TA but due is hindered by its large divergence
from the VVGish.
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Figure 19: 10% Item Removal radar plots on unlearning metrics based on min-max normalisation
for AudioMNIST: VGGish (left), CCT (middle) and ViT (right).

For the ViT results, it can be observed that ST emerges as an effective unlearning method when
considering UA. There is a notable divergence in MIA Efficacy for CCT and ViT when using ST,
OMP, CS and POP. The increased MIA Efficacy means that the application of ST, OMP, CS and
POP may trigger the Streisand Effect as they exceed the MIA Efficacy achieved by MY. Tt is worth
noting that overall OMP triggers the most significant divergence for MIA Efficacy. Consequently,
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when considering the unlearning methods for Item Removal for AudioMNIST, most methods appear
promising. The radar plot in Figure [I9] provides a more intuitive sense of this and highlights the
potential Streisand Effect emerging for the CCT and ViT when using some unlearning methods.

E.2 CLASS REMOVAL

Table 10: 1 Class Removal results for AudioMNIST. Numbers in blue represent disparity from
M©Y. C represents the objective to have the least disparity with M. Otherwise arrows dictate the
direction of best performance compared to M.

Model ‘ Method UA % (C) MIA Efficacy % (C) RA % (C) TA % (C) D AVE () ‘? f{z—{(f; J(SXDIISI (f)) RTE % (1)
1 Class Removal
Niave 100.00:0 00(0.00)  100.000 00(0:00)  99.731 ¢ 09(0.00) 99.09- 0 11(0.00) 0.00 0.001000  0.0010.00 0.00
GA 25.61434.49(-7439)  31.81133.93(-68.19)  99.2517 45(-048) 98.4911 53(-0.60) 3591 11.2213 00 46.46491 97 88.71
FT 12.07112.30(-87.93)  19.46115 39(-80.54)  99.761¢ 13(0.03) 99.045 ¢ 13(-0.05) 42.14 12.2947 47 54.87ig.97 89.04
VGGish ST 100.00+0.00(0.00)  100.00-0.0o(0.00)  79.731024 26(-20.00)  79.704£04. 18(-19.39) 9.85 5.1217 57 0.0440.04 8435
* AM 99.86.£0.19(-0.14) 99.991.03(-0.01) 99.11 1 50(-0.62) 98.46 1 (. 43(-0.63) 035 3.3430.90 0.07+0.07 88.91
omp 100.00+0.00(0.00)  100.00+g.00(0.00) 97.991 0 ¢5(-1.74) 97 2310.70(-1.86) 0.90 2195953  0.011¢ 00 88.18
cs 91.84 5 93(-8 97.3045.14(-2.70) 99.5310.17(-0.20) g 2.84 3.0410. 47 3.7112 50 87.87
POP 99.6710.51(-0. 99.9610.09(-0.04) 3+0.29(-0.50) 5 0.34 3.0410.87 0.141¢ 20 88.00
Niave 100.000.00(0:00)  100.00+0.00(0-00) 610.03(0.00) 98.20 . ¢ 160.00) 0.00 0.0010.00  0-0010.00 0.00
GA 0.7340.84(-99.27) 13.7845 g6(-86.22)  99.8210.37(-0.14)  97.861¢ 5a(-0.34) 46.49 13.4610.13  63.1040.84 88.73
FT 0.524 (. 9g(-99.48) 12.03 3.46(-87.97) 99.7710.44(-0.19) 97.841 . 46(-0.36) 47.0 13.5130.16  63.5011.08 89.00
cor ST 100.0040.00(0.00)  100.00 .00 (0.00) 99.47 1 30(-049) 97.3110.31(-0.89) 0.34 3.05:0.6a 0.0119.00 84.76
- AM 99.65 4 .57(-0.35) 100.00+0.00(0.00) 99.377 1.22(-0.59) 97.4211 25(-0.78) 043 3.9210.66 0.1610.36 88.76
oMP 37.6314.95(-62.37) 88.9613.60(-11.04) 99.221 0 29(-0.74) 96.9150.39(1 w; 18.86 8.7510.62 31.2743.34 88.00
cs 85.34 6.25(-14.66) 99.921.14(-0.08) 98.05 0. 79(-1.91) 469 3.7510.76 5.7512.68 87.87
POP 96.734£9 42(-327) 100.00 4 9.90(0.00) 97.1910.74(-277) : 2.19 3.2910.68 1.1900 82 87.88
Niave 100.0040.00000)  100.0010.00(0.00)  99.99 .00 (0.00) 9984 0,07 000) 0.00 0.0010.00  0.0010.00 0.00
GA 0.444.66(-99.56) 7.74 4 24(-92.26) 99.9540.07(-0.04) 99.2610.15(-0.08) 47.98 13.7410.13  64.2610.96 89.07
FT 0.8011.04(-99.20) 8.751 4 45(-91.25) 99.99 ¢.01(0.00) 99.2871 ¢.15(-0.06) 47.63 13.691016  63.9311.13 89.32
T ST 100.0040.00(0.00)  100.00+9.00(0.00) 99.601 0. 26(-0.39) 98.80 0. 23(-0.54) 023 3.0410.83 0.0249.00 85.57
AM 100.005¢.00(0.00)  100.00 1 ¢.00(0.00) 99.98 0. 02(-0.01) 99.234 0. 14(-0.11) 0.03 6.4811 26 0.0210.00 89.09
OoMP 99.8340.28(-0.17) 100.004 9.0 (0.00) 98.82 ¢.15(-1.17) 98.38 0. 15(-0.96) 057 2481051 0151014 89.17
cs 98.631.81(-1.37) 100.004 9.0 (0.00) 99.48 0. 19(-0.51) 98.80 0. 17(-0.54) 0.60 2.8311 33 0.5010 57 88.33
POP 100.004 9.00(0.00)  100.00 1 g.00(0.00) 98.89 ¢.35(-1.10) 98.344 ¢.32(-1.00) 052 2411096 _ 0.0130.01 8834

Conversely, when considering Class Removal requests on AudioMNIST in Table [I0] there is a
much clearer perspective on the most efficacious methods. For the VGGish, The best method is
found when using OMP and ST. AM and POP are competitive on UA and MIA and result in small
accuracy fluctuations for RA and TA, making them more effective than OMP and ST. GA and FT be-
come ineffective on the VGGish when considering the Class Removal request as they are incapable
of removing Dfopger from M ~; this remains the case across all architectures. The inability to re-
move Dy ger in UA highlights their lack of suitability for harsher unlearning requests that demand
increased weight perturbation. For the transformer architectures, the best methods in order are ST,
AM and POP for the CCT and AM, ST and POP for the ViT across accuracy and distance metrics
as highlighted in Figure 20| However, it is essential to note that ST has the highest computational
cost (lowest RTE) for unlearning on all architectures. Additionally, AM, under its application, could
negatively impact decision boundaries and downstream tasks.
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Figure 20: 1 Class Removal radar plots on unlearning metrics based on min-max normalisation for
AudioMNIST: VGGish (left), CCT (middle) and ViT (right).
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E.3 MACHINE UNLEARNING REQUEST SCALING

Due to the close performance of various unlearning methods in Item Removal across different archi-
tectures, it is crucial to investigate the scaling laws of these methods. The objective is to identify any
fluctuations that occur as the size of removal requests increases for both Item and Class Removal.
An effective unlearning method should maintain consistent performance as the scale of unlearning
requests grows, thereby ensuring the protection of privacy.

Figures andpresent the scaling relationships for VGGish, CCT, and ViT, respectively. In
the context of Item Removal, most unlearning methods demonstrate reasonable scalability. However,
across all examined architectures, the ST method performs inadequately and deteriorates compared
to the baseline across nearly all metrics. Conversely, the methods POP, CS, and OMP exhibit the
best performance, as they remain close to the baseline in terms of Unlearning Accuracy (UA), while
maintaining stable impacts on the other metrics as the number of Item Removal requests increases.

In the scenario of Class Removal, the stability of the various unlearning methods is evident across
the board. Notably, the OMP, CS, and POP pruning methods display similar scaling trends, high-
lighting the overall reliability of pruning strategies in unlearning and the subtle nuances among each
approach. When considering the scaling of Class Removal requests for the CCT and ViT, method
AM emerges as the most effective unlearning strategy in this context.

An unlearning method designed for the audio domain should ideally possess qualities of universality
and demonstrate consistent performance as the complexity of tasks increases. Any methodology that
fails to achieve this would undermine the universal requirement of an effective unlearning technique.
As shown in the results for SpeechCommands and UrbanSounds8K presented in the main body of
the study, there is a slight variation in the efficacy of the unlearning methods when task complexity
is heightened.
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Figure 21: Dyopget loss distribution on AudioMNIST, for unlearning methods averaged across all
seeds for the VGGish. 10% Item Removal (left) and 1 Class Removal (right). For each plot the
unlearning method is compared to the loss distribution of Dyyget o0n M%and M.
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Figure 22: Dyorger loss distribution on AudioMNIST, for unlearning methods averaged across
all seeds for the CCT. 10% Item Removal (left) and 1 Class Removal (right). For each plot the
unlearning method is compared to the loss distribution of D4;.ge¢ ON MP?and /\/lf.
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Figure 23: Dyorget loss distribution on AudioMNIST, for unlearning methods averaged across all
seeds for the ViT. 10% Item Removal (left) and 1 Class Removal (right). For each plot the unlearning
method is compared to the loss distribution of Dy y.ge¢ on M%and M.

E.4 Loss DISTRIBUTION

For the loss distributions, we can see that for Item Removal, most methods can force the distribution
for the forget set into a distribution of the Naive Retraining for the VGGish; however, for the ST
method, it is clear that it has a higher density of increased loss values which exceeds that of the
Naive models. However, when we consider the transformer architectures the best methods in order
are POP and CS as they best match the loss distribution created by the Naive model consistently.
However, when we consider class removal, it is evident that the best methods for matching the loss
distribution of the Naive models in order are AM, ST and POP, and they manage to separate the
loss sufficiently from the baseline. In conclusion, the loss distributions largely match the results
witnessed for UA divergence, providing a strong indication that the loss perspective is a reliable
proxy for identifying efficacious unlearning methods.

25



Under review as a conference paper at ICLR 2025

Frequency
Frequency

100} 100, 100 100, 100 100 m” 100 100

M i 3 f 1 i “

o 2 4 5 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0o 50 10 150 o0 50

Figure 24: Dyopger loss distribution on AudioMNIST, for unlearning methods averaged across all
seeds for the VGGish. 10% Item Removal (left) and 1 Class Removal (right). For each plot the
unlearning method is compared to the loss distribution of D44 ON MP?and /\/lf)
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Figure 25: Dyorget loss distribution on AudioMNIST, for unlearning methods averaged across
all seeds for the CCT. 10% Item Removal (left) and 1 Class Removal (right). For each plot the
unlearning method is compared to the loss distribution of D44 ON MP?and /\/l(,’
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Figure 26: Dyopger loss distribution on AudioMNIST, for unlearning methods averaged across all
seeds for the ViT. 10% Item Removal (left) and 1 Class Removal (right). For each plot the unlearning
method is compared to the loss distribution of Dyger ON Mand M?.

F CIFAR10 RESULTS

We present the results for networks trained on CIFAR10 to show the method’s viability across do-
mains. To match the experimental setup in the paper’s main body, we use the same optimizer and
loss, with the only difference being the use of 80 epochs for training, 1 impair step for unlearning
and 8 repair steps for retraining. Additionally the architectures have been modified to take in the
correct input and have increased their capacity to improve performance on the dataset. Overall, from
the results presented in Table[TT} it can be noted that the dynamic sparsity unlearning methods vastly
outperform all other unlearning methods for Item Removal across architectures. When considering
Class Removal, Table [I2] this gap between the methods is less pronounced, but both the Prune and
Regrow methods perform well, with POP performing the best.
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Table 11: 10% Item Removal results for CIFAR10. Numbers in blue represent disparity from
M?Y. C represents the objective to have the least disparity with M. Otherwise arrows dictate the
direction of best performance compared to M.

Model ‘ Method UA % (C) MIA Efficacy % (C) RA % (C) TA % (C) D AVE (C) ?fiiljit)) J(le’llgf (3)) RTE % (1)
10% Ttem Removal
Niave 14.121 9 28(0:00) 405111 0g(0.00)  100.0010 00(000)  85.491 ¢ 29(0.00) 0.00 0.00:000 0.0020.00 0.00
GA 0.0040.00(-14.12) 2.1440.67(-3837) 100.001¢.00(0.00)  86.0510.30(0.56) 13.26 2.0010.03 8.2540 15 87.36
FT 0.0040.00(-14.12) 2.0710.69(-38.44) 100.001¢.00(0.00)  86.020 31(0.53) 13.27 2.0010.03 8.2540 15 87.55
VGGI6 ST 1.043 0. 14(-13.08) 47.161 2. 97(6.65) 100.001 ¢ 00(0.00)  85.614¢ 28(0.12) 4.96 2.0110.03 7.81%0.16 82.77
AM 0.0040.01(-14.12) 27.2741 41¢1324)  100.001¢ 00(0.00)  85.811( 27(0.32) 692 2.0010.03 8.2140 15 87.40
OMP 4.3510.50(-9.77) 41.5210.90(101)  100.0040.00(0.00)  84.7210 19(-0.77) 2.89 1.8510.0a 6.1010.20 87.15
cs 132941 60(-0.83)  56.3810.09(15.87) 97.8541 04(-2.15) 571 2161016  5.94+0.53 86.36
POP 17.7341.48(3.61) 64.49 1 5 18(23.98) 96.4711 49 9.04 2.411 .22 6.50 40 78 86.36
Niave 27.0210.47(0.00) 52.241 1 99(0.00) 100.0040.00(0.000 72.85.¢ 46<0 00) 0.00 0.0040.00 0.0050.00 0.00
GA 0.00-40.00(-27.02) 2.0141.70(-50.23) 100.000.00(0.00) 73.34.40.29(0.49) 19.43 3.8040.05  15.9710.98 81.79
FT 0.004.00(-27.02) 1.9311.57(-5031) 100.001 ¢.00(0.00) 73.35 1 0.29(0.50) 19.46 3.8040.05 15.9710.28 82.06
cor ST 71041 67(-1992)  A47.80414 92(-4.44) 98.7940.93(-1.21) 70.80-10.64(-2.05) 691 3574005 12171054 75.79
- AM 0.124.19(-26.90) 19.5313.07(-32.71) 100.004¢.00(0.00) 73.2740.24(042) 15.01 3.7710.06  15.6440.40 81.83
OMP 8.0940. 75(-18.93) T1.67+1.04(19.43) 99.6310.18(-0.37)  70.891¢ 40( 196| 10.17 3414005 10.1810.96 80.07
cs 17.6542.45(-9.37) 67.8744.14(15.63) 95.97 12 05(-4.03) 69.471(.74(-338 8.10 3.295016  85510.34 80.27
POP 22.2711.09(-475)  79.401; 69(27.16) 93.821 1 57(-6.18) 69.1241 03 3; 10.46 3.304013  7-3410.37 80.23
Niave 31.1110.87(0.00) 56.7411 680000  100.0010.00(000)  68.2810.55(0-00) 0.00 0.0020.00 0.00-0.00 0.00
GA 0.00.40.00(-31.11) 2.154 5 43(-54.59) 100.001¢.00(0.00)  69.0040 36(0.72) 21.60 4374011 18.5510.51 86.21
FT 0.0040.00(-31.11) 2,091 5 38(-54.63) 100.001¢ 00(0.00)  68.98:¢ Mm 70) 21.62 4374011 18551051 86.40
wir ST 1.8810.23(-29.23)  44.1111 70(-1263)  100.001g. 0o(0.00) 10.54 4.27T4011  16.8510 54 81.69
AM 0.1540.10(-30.96) 29.6610 22(-27.08)  100.001 ¢ 00 (0.00) 14.60 4334011 18.0210 52 86.22
OMP 32.6611.30(1.55) 99.524 0 31(42.78) 70.35.47 43(-29.65) 19.72 4514015 8.35.40.44 86.35
cs 24.5911 15(-6.52) 821017 g5(25.36) 92.941 1 92(-7.06) 1046 3721017 8491060 85.60
POP 30.191 1 07(-092)  95.601; 31(38.86) 82.9741 35(-17.03) 14.84 3.9140.00  7-3410.35 85.60

Table 12: 1 Class Removal results for CIFAR10. Numbers in blue represent disparity from M7, C
represents the objective to have the least disparity with M. Otherwise arrows dictate the direction
of best performance compared to M.

Model ‘ Method UA % (C) MIA Efficacy % (C) RA % (C) TA % (C) D AVE (C) ’?fg‘;‘}; J(SXDIISI ‘3¢)’ RTE % (1)
1 Class Removal
Niave 100.001 0 00(0.00)  100.00. 0 00(0.00)  100.00+ 0 00(0.00) 85.5610.24(0.00) 0.00 0.0010 00 0.0010.00 0.00
GA 100.0010.00(0.00)  100.00+g g (0.00) 97.574£5.19(-243) 81.3041.19(-4.26) 1.67 3.7910.60 0.0119 00 87.98
FT 0.114(.25(-99.89) 7.67410.75(-9233)  100.000.00(0.00) 85.3810.32(-0.18) 48.1 13.8210.06  65.0310.42 88.16
VGGG ST 100.0040.00(0.00)  100.00+0.00(0.00)  100.001¢ g (0.00) 85.6210.30(0.06) 0.02 3.0340.19 0.0240.00 83.64
AM 100.0010.00(0.00)  100.001g go(0.00)  100.001¢ go(0.00)  85.581¢ 31(0.02) 0.00 2.9740.19 0.021¢ 00 88.03
omP 100.0010.00(0.00)  100.00%g go(0.00)  100.001¢ g0 (0.00) 84.5210.25(-1.04) 0.26 2.931¢ 23 0.0119 00 87.50
cs 100.0010.00(0.00)  100.00%g g (0.00) 98.344 0 55(-1.66) 82.1111 5(-3.45) 128 2.9810 59 0.011¢ 00 8736
POP 100.0010.00(0:00)  100.00%¢ g (0.00) 95.901 .11 (-4.10) 801247 21(544) 238 3.5410.74 0.011¢ .00 8738
Niave 100.00-g.00(0.00) 100.00-g.00(0.00) 100.00- .00 (0.00) 41 0.32(0.00) 0.00 0.0040.00 0.0040 00 0.00
GA 79.75439.48(-2025)  85.09430.14(-1491)  81.24435 0g(-18.76)  59.504 04 23(-14.04) 16.99 6.7913 94  12.93425 30 85.65
FT 0.000.00(-100.00) 17.9616.10(-82.04) 100.00-g.00(0.00) 72.8010.25(-0.74) 457 13.76+£0.04 64.8810.20 85.89
cer ST 100.00¢. 00(0 00) 100.00-¢.00(0.00) 93.224 5 46(-6.78) 69.48 1. 75(-4.06) 271 4.3840.64 0.0210.01 81.15
AM 99.7540.45(-025) 99.5011.00(-0.50) 72.4741 06(-1.07) 175 4.4910 40 2.4343 03 85.67
omp 99.9219.06(-0.08) 99.6410.17(-036) 71.18 1 32(-2.36) 6.20 5.7210.20 9.374 84.07
cs 100.00+0.00(0.00) 94.721 5 9g(-5.28) 68.9211 29(-4.62) 3.01 4.3610 49 0.85+0 64 85.08
POP 99.6310.40(-0.37) 100.0010.00(0.00) 92.6012.65(-7.40) 69.441 1 76(-4.10) 297 4.0710.50 0.1610.14 85.04
Niave 100.00-g.00(0.00) 100.00- .00 (0.00) 100.00- .00 (0.00) 68.55+0.54(0.00) 0.00 0.0040.00 0.0040 .00 0.00
GA 10.02429.99(-89.98)  24.46 4 96.95(-75.54) 95.144 14.59(-4.86) 66.3145.61(-2.24) 43.16 12974226  58.29419.41 84.84
FT 0.00-0.00(-100.00) 15.15 1 . 29(-84.85) 100.00- .00 (0.00) 68.23 1 .54(-0.32) 46.29 13.7340.03 64.8610.18 85.05
ViT ST 100.0040.00(0.00)  100.00+¢.oo(0.00) 97.07458.51(-2.93) 67.9211.58(-0.63) 0.89 4.8540.12 0.0210.01 79.73
AM 98.96.4 1 56(-1.04) 99.96 1 0.05(-0.04) 100.00 4+ 9.00(0.00) 69.0240.56(0.47) 039 5.1210.18 0.4730 82 84.84
OMP 99.98 1 .03(-0.02) 100.000.00(0.00) 70.6841.33(-29.32) 63.8710.61(-4.68) 8.50 4.7340.21 0.0740.01 85.02
cs 99.82 1 27(-0.18) 100.00+.00(0.00) 93.8741.15(-6.13) 66.1710 66(-238) 217 4.7210.45 0.10+0 09 8421
POP 100.00 19.00(0:00)  100.0019.90(0.00)  82.851; 51(-17.15) 66.6340.76(-1.92) 477 4.3740.25 0.0340.01 8421
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Figure 27: 10% Item Removal radar plots on unlearning metrics based on min-max normalisation
for CIFAR 10: VGG 16 (left), CCT (middle), and ViT (right).
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Figure 28: 1 Class Removal radar plots on unlearning metrics based on min-max normalisation for
CIFAR 10: VGG 16 (left), CCT (middle), and ViT (right).

F.2 Loss DISTRIBUTION PLOTS

The loss distribution plot clearly shows why POP and CS perform far more than the other methods
for Item Removal. They can sufficiently move the forget set into a feasible distribution for Naive
training when the other methods fail to. As a result, this shows that the Prune and Regrow Paradigm
represents the best method for Item removal in different domains and speaks to its broader applica-
bility. When we consider the class removal for CIFAR10, it can be observed that all methods bar FT
do an excellent job at shifting the distribution, with AM, ST and POP performing the best.

1 1 1 1
o 2 4 5 8 0 2 4 6 8 0 2 4 5 B 0 2 4 6 8 s

Frequency
3

Frequency
3

1 1 1 1
0o 2 4 65 8 0 2 4 6 8 0 2 4 5 8B 0 2 4 6 8

Figure 29: D ¢4y get loss distribution on CIFAR10, for unlearning methods averaged across all seeds
for the VGG16. 10% Item Removal (left) and 1 Class Removal (right). For each plot the unlearning
method is compared to the loss distribution of D t,y4er on M%and MY.
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Figure 30: Doy get loss distribution on CIFAR10, for unlearning methods averaged across all seeds
for the CCT. 10% Item Removal (left) and 1 Class Removal (right). For each plot the unlearning
method is compared to the loss distribution of D t,y4er on M%and MY.
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Figure 31: Doy get loss distribution on CIFAR10, for unlearning methods averaged across all seeds
for the ViT. 10% Item Removal (left) and 1 Class Removal (right). For each plot the unlearning
method is compared to the loss distribution of D;.ge¢ on M%and M.

F.3 SCALLING RESULTS

When considering scaling, it can be observed that all methods for both Item and Class removal
scale well across architectures apart from GA, which experience a large deviation and the amount
of requests increases. Overall, this speaks to the stability of existing unlearning methods and the
novel unlearning methods presented in the paper and the results align with what is observed for
AudioMNIST, SpeechCommands and UrbanSounds8K.

Figure 32: Doy get loss distribution on CIFAR10, for unlearning methods averaged across all seeds
for the VGG16. 10% Item Removal (left) and 1 Class Removal (right). For each plot the unlearning
method is compared to the loss distribution of D,y 4er on M%and MY.

Figure 33: Doy get loss distribution on CIFAR10, for unlearning methods averaged across all seeds
for the CCT. 10% Item Removal (left) and 1 Class Removal (right). For each plot the unlearning
method is compared to the loss distribution of D t,y4er on M%and MY.
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Figure 34: D4y get loss distribution on CIFAR10, for unlearning methods averaged across all seeds
for the ViT. 10% Item Removal (left) and 1 Class Removal (right). For each plot the unlearning
method is compared to the loss distribution of D t,y4er on M%and MY.

F.4 TRANSFERABILITY OF THE PRUNE AND REGROW PARADIGM

The results we present on the audio datasets and CIFAR10 demonstrate the potential of the Prune
and Regrows dynamic sparsity and regrow process in improving unlearning capacity, particularly for
Item Removal, a key unlearning challenge. While our study is primarily focused on the unlearning
modality gap, we believe that our approach could be applied to other domains such as language
and multi modal domains. This potential for broader application is an exciting avenue for future
research.
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