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Abstract

Causal representation learning aims at identify-
ing high-level causal variables from perceptual
data. Most methods assume that all latent causal
variables are captured in the high-dimensional ob-
servations. We instead consider a partially ob-
served setting, in which each measurement only
provides information about a subset of the underly-
ing causal state. Prior work has studied this setting
with multiple domains or views, each depending
on a fixed subset of latents. Here we focus on learn-
ing from unpaired observations from a dataset with
an instance-dependent partial observability pattern.
Our main contribution is to establish two identifia-
bility results for this setting: one for linear mixing
functions without parametric assumptions on the
underlying causal model, and one for piecewise lin-
ear mixing functions with Gaussian latent causal
variables. Based on these insights, we estimate the
underlying causal variables by enforcing sparsity
in the inferred representation. Based on these in-
sights, we propose two methods for estimating the
underlying causal variables by enforcing sparsity
in the inferred representation.

1 INTRODUCTION

Traditional causal inference methods assume that the causal
variables are given a priori, but in many real-world settings,
we only have unstructured, high-dimensional observations
of a causal system. Motivated by this shortcoming, causal
representation learning [CRL; Schölkopf et al., 2021] aims
to infer high-level causal variables from low-level data such
as images. A popular approach to identify (i.e., provably re-
cover) high-level latent variables is (nonlinear) independent
component analysis (ICA) [Hyvarinen and Morioka, 2016,
2017, Hyvarinen et al., 2019, Khemakhem et al., 2020],

which aims to recover independent latent factors from en-
tangled measurements. Several works generalize this setting
to the case in which the latent variables can have causal
relations [Yao et al., 2022, Brehmer et al., 2022, Lippe et al.,
2022, 2023, Ahuja et al., 2023a,b, Lachapelle et al., 2022,
2023, 2024, von Kügelgen et al., 2021, 2023, Wendong et al.,
2023, Squires et al., 2023, Buchholz et al., 2023, Zhang
et al., 2023], establishing various identifiability results under
different assumptions on the available data and the gener-
ative process. However, most existing works assume that
all causal variables are captured in the high-dimensional ob-
servations. Notable exceptions include Sturma et al. [2023]
and Yao et al. [2023] who study partially observed settings
with multiple domains (datasets) or views (tuples of obser-
vations), respectively, each depending on a fixed subset of
the latent variables.

In this work, we also focus on learning causal representa-
tions in such a partially observed setting, where not neces-
sarily all causal variables are captured in any given observa-
tion. Our setting differs from prior work in two key aspects:
(i) we consider learning from a dataset of unpaired partial
observations; and (ii) we allow for instance-dependent par-
tial observability patterns, meaning that each measurement
depends on an unknown, varying (rather than fixed) subset
of the underlying causal state.

This setting is motivated by real-world applications in which
we cannot at all times observe the complete state of the
environment, e.g., because some objects are moving in and
out of frame, or are occluded. As a motivating example,
consider a stationary camera that takes pictures of a parking
lot on different days as shown in Fig. 1a. On different days,
different cars are present in the parking lot, and the same car
can be parked in different spots. Our task is to recover the
position for each car that is present in a certain image. In this
setting, we only have one observation for a given state of the
system (i.e., one image per day), and the subsets of causal
variables that are measured in the observation (the parked
cars), change dynamically across images. In particular, we
formalize the Unpaired Partial Observations setting for
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Figure 1: (a) Motivating example for the Unpaired Partial Observation setting: a stationary camera taking pictures of a
car park. We consider x1 the image on day 1 and x2 the image on day 2. The latent causal variables c1 and c2 represent
the positions of four cars on each day. In x1 only Car2 and Car3 are visible, while in x2 all cars except Car3 are visible.
This is represented by the ones in the binary mask variables y1 and y2. The combination of the values of the latent causal
variables c and the masks y are the masked causal variables z, which used by the mixing function f to generate the images x.
(b) Causal model of the setting, the dotted line variables are not directly observed, but they are measured only through the
observation X. Our goal is to learn a representation Ẑ that identifies Z up to permutation and element-wise transformation.

CRL, where each partial observation captures only a subset
of causal variables and the observations are unpaired, i.e., we
do not have simultaneous partial observations of the same
state of the system. We introduce two theoretical results for
identifying causal variables up to permutation and element-
wise transformation under partial observability. Both results
leverage a sparsity constraint. The full version of this work
[Xu et al., 2024] was accepted at ICML 2024.

2 IDENTIFIABILITY VIA SPARSITY

In this section, we briefly introduce the two theoretical re-
sults of how a simple sparsity constraint on the learned rep-
resentations allows us to identify the ground truth variables
up to permutation and element-wise linear transformation.

The first theorem proves identifiability for linear mixing
function and without parametric assumptions on the under-
lying causal model. We show that, with some mild assump-
tions, for linear mixing functions under a perfect reconstruc-
tion, a simple sparsity constraint on the learned representa-
tion allows us to learn a disentangled representation of the
ground truth latent variables.

Since linearity of mixing function is a strong assumption
that may not hold in many applications, we consider explor-
ing more for nonlinear cases. As a first step, we consider a
piecewise linear mixing function and assume that masks are
independent from the causal variables. Then the second the-
orem proves identifiability for the piecewise linear mixing
function when the causal variables are Gaussian, and we can
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Figure 2: Linear Gaussian causal model with 10 latents.
First row: linear f , second row: piecewise linear f .

group observations by their partial observability patterns.

3 EXPERIMENTAL RESULTS

We validate the theorems with experiments on simulated
data. Here we provide a representative result for each the-
orem in Figure 2, where the first row is for linear f and
second row is for piecewise linear f . The heatmaps on the
left are the correlation matrices of ground truth latents and
the heatmaps on the right are the correlation matrices of
learned representations and ground truth latents. Intuitively,
the more similar the right heatmap is with the left one, the
learned representations are closer to the ground truth.



References

Kartik Ahuja, Divyat Mahajan, Yixin Wang, and Yoshua
Bengio. Interventional causal representation learning. In
International Conference on Machine Learning, pages
372–407. PMLR, 2023a.

Kartik Ahuja, Amin Mansouri, and Yixin Wang. Multi-
domain causal representation learning via weak distribu-
tional invariances. In Causal Representation Learning
Workshop at NeurIPS 2023, 2023b.

Johann Brehmer, Pim De Haan, Phillip Lippe, and Taco S
Cohen. Weakly supervised causal representation learning.
Advances in Neural Information Processing Systems, 35:
38319–38331, 2022.

Simon Buchholz, Goutham Rajendran, Elan Rosenfeld,
Bryon Aragam, Bernhard Schölkopf, and Pradeep Raviku-
mar. Learning linear causal representations from inter-
ventions under general nonlinear mixing. In Advances in
Neural Information Processing Systems, 2023.

Aapo Hyvarinen and Hiroshi Morioka. Unsupervised fea-
ture extraction by time-contrastive learning and nonlinear
ica. Advances in neural information processing systems,
29, 2016.

Aapo Hyvarinen and Hiroshi Morioka. Nonlinear ica of
temporally dependent stationary sources. In Artificial
Intelligence and Statistics, pages 460–469. PMLR, 2017.

Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Non-
linear ica using auxiliary variables and generalized con-
trastive learning. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 859–868.
PMLR, 2019.

Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and
Aapo Hyvarinen. Variational autoencoders and nonlinear
ica: A unifying framework. In International Conference
on Artificial Intelligence and Statistics, pages 2207–2217.
PMLR, 2020.

Sébastien Lachapelle, Pau Rodriguez, Yash Sharma, Katie E
Everett, Rémi Le Priol, Alexandre Lacoste, and Simon
Lacoste-Julien. Disentanglement via mechanism sparsity
regularization: A new principle for nonlinear ica. In
Conference on Causal Learning and Reasoning, pages
428–484. PMLR, 2022.

Sébastien Lachapelle, Tristan Deleu, Divyat Mahajan, Ioan-
nis Mitliagkas, Yoshua Bengio, Simon Lacoste-Julien,
and Quentin Bertrand. Synergies between disentangle-
ment and sparsity: Generalization and identifiability in
multi-task learning. In International Conference on Ma-
chine Learning, pages 18171–18206. PMLR, 2023.

Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma,
Katie Everett, Rémi Le Priol, Alexandre Lacoste, and
Simon Lacoste-Julien. Nonparametric partial disentan-
glement via mechanism sparsity: Sparse actions, interven-
tions and sparse temporal dependencies, 2024.

Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano,
Taco Cohen, and Stratis Gavves. Citris: Causal identifi-
ability from temporal intervened sequences. In Interna-
tional Conference on Machine Learning, pages 13557–
13603. PMLR, 2022.

Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M Asano,
Taco Cohen, and Efstratios Gavves. Biscuit: Causal repre-
sentation learning from binary interactions. Proceedings
of the Thirty-Ninth Conference on Uncertainty in Artifi-
cial Intelligence, 2023.

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer,
Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal,
and Yoshua Bengio. Toward causal representation learn-
ing. Proceedings of the IEEE, 109(5):612–634, 2021.

Chandler Squires, Anna Seigal, Salil Bhate, and Caroline
Uhler. Linear causal disentanglement via interventions.
In 40th International Conference on Machine Learning,
2023.

Nils Sturma, Chandler Squires, Mathias Drton, and Caro-
line Uhler. Unpaired multi-domain causal representation
learning. Thirty-seventh Conference on Neural Informa-
tion Processing Systems, 2023.

Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland
Brendel, Bernhard Schölkopf, Michel Besserve, and
Francesco Locatello. Self-supervised learning with data
augmentations provably isolates content from style. Ad-
vances in neural information processing systems, 34:
16451–16467, 2021.

Julius von Kügelgen, Michel Besserve, Wendong Liang,
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