
Under review as a conference paper at ICLR 2024

DYNAMIC LLM-AGENT NETWORK:
AN LLM-AGENT COLLABORATION FRAMEWORK
WITH AGENT TEAM OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language model (LLM) agents have been shown effective on a wide range
of tasks, and by ensembling multiple LLM agents, their performances could be
further improved. Existing approaches employ a fixed set of agents to interact
with each other in a static architecture, which limits their generalizability to vari-
ous tasks and requires strong human prior in designing these agents. In this work,
we propose to construct a strategic team of agents communicating in a dynamic
interaction architecture based on the task query. Specifically, we build a frame-
work named Dynamic LLM-Agent Network (DyLAN) for LLM-agent collabora-
tion on complicated tasks like reasoning and code generation. DyLAN enables
agents to interact for multiple rounds in a dynamic architecture with inference-
time agent selection and an early-stopping mechanism to improve performance
and efficiency. We further design an automatic agent team optimization algorithm
based on an unsupervised metric termed Agent Importance Score, enabling the
selection of best agents based on the contribution each agent makes. Empirically,
we demonstrate that DyLAN performs well in both reasoning and code generation
tasks with reasonable computational cost. DyLAN achieves 13.0% and 13.3% im-
provement on MATH and HumanEval, respectively, compared to a single execu-
tion on GPT-35-turbo. On specific subjects of MMLU, agent team optimization
in DyLAN increases accuracy by up to 25.0%. 1

1 INTRODUCTION

Large language model (LLM) agents (Richards & et al., 2023; Nakajima, 2023; Reworkd, 2023)
have achieved promising performance on a wide range of tasks, ranging from reasoning (Yao et al.,
2023) to code generation (Shinn et al., 2023), and even to embodied tasks such as video gaming
(Wang et al., 2023) and autopilot (Jin et al., 2023). Recent works tackle complicated tasks by
combining different LLM agents in a team to collaborate on the same query (Li et al., 2023; Du
et al., 2023; Wang et al., 2023b; Jiang et al., 2023; Shinn et al., 2023; Zheng et al., 2023; Wu et al.,
2023). In these works, such LLM-agent team is often set up statically with predefined roles for each
agent, such as introducing programmer and tester to communicate sequentially in a fixed order to
improve code generation (Dong et al., 2023).

In the case of collaborative work between different LLM agents on a specific task, a static setup
with predefined roles can, however, have several problems: (1) Manual setups require us to design
task-specific roles for LLM agents in each specific domain (Dong et al., 2023), making it difficult
to generalize to other domains or distinct tasks. (2) Additionally, under a static setup, LLM agents
interact to produce answers in a fixed order (Shinn et al., 2023) or in one single round (Jiang et al.,
2023), which might result in sensitivity to the domain and complexity of tasks. (3) Predefined roles
require strong human priors to design, and may not well align with the actual situations. In addition,
there is no systematic way to ensure that the LLM-agent collaboration systems have a sufficient
number of LLM agents and, most importantly, an optimized team of agents.

1We will release the code once the paper is accepted.

1

Under review as a conference paper at ICLR 2024

Figure 1: Overview of DyLAN. The top part shows how DyLAN outputs the answer in a
feed-forward manner (Section 3). Inference-time agent selection is implemented with an LLM-
empowered ranker (bottom-left), during which the low-performing agent is deactivated in subse-
quent time steps. In agent team optimization (Section 3.3), first the contribution of each agent is
automatically evaluated using Agent Importance Score, denoted as I . Then the top-ranked agents
based on I will be selected as the optimized team of agents (bottom-right).

The landscape of LLM-agent collaborations requires a systematic framework in order to improve
generalizability, efficiency, and performance. Therefore, several properties should be exhibited: (1)
Task Agnostic: Prior works have suffered from the difficulty of generalizing across various domains
due to the dependence on task-specific tools. A task-agnostic system can facilitate the fast adapta-
tion of existing approaches to new situations. (2) Efficient: Instead of assigning agents in a static
pattern, dynamically removing agents with uninformative responses can prevent the creation of use-
less information as well as ensure accuracy in the process of reaching consensus. (3) Agent Team
Optimization: With thousands of open-source and unlimited LLM-generated prompts that serve a
variety of roles, it is difficult to identify what the optimal team of agents might be. Ideally, multi-
agent systems should be able to adapt their composition in response to the particular domain of a
query with minimal supervision. While a few efforts have been made (Chen et al., 2023b; Ruan
et al., 2023; Zhang et al., 2023; Wang et al., 2023b; Lu et al., 2023; Aggarwal et al., 2023; Liu et al.,
2023b; Besta et al., 2023), a framework that integrates all of these aspects is still lacking.

To fill these gaps, in this work, we introduce a framework named Dynamic LLM-Agent Network
(DyLAN) in Section 3. Concretely, we employ a feed-forward network to formulate the process of
LLM-agent collaboration for arbitrary tasks. As a result, we view LLM agents at specific time steps
as nodes in a network and the messages they exchange at different time steps as edges. In this way,
we can organize multi-round LLM-agent collaboration into a multilayered network. To enhance
the efficiency and the performance of LLM-agent collaboration on various tasks, we use an LLM-
empowered ranker (Qin et al., 2023) to rank different LLM agents and deactivate low-performing
agents in the subsequent interaction (i.e., inference-time agent selection), thereby creating a dy-
namic architecture of interactions. Additionally, we introduce an early-stopping mechanism via a
Byzantine Consensus to ensure efficiency, by terminating the inference process when agents within
the same layer reach consensus. Moreover, we propose automatic agent team optimization with-
out strong human priors to increase the efficiency and effectiveness of agent team initialization.
Specifically, to select the top-k agents, we introduce a three-step procedure where we first ask each
agent to rate its predecessors on their solutions (propagation), and then for each agent, aggregate

2

Under review as a conference paper at ICLR 2024

the ratings from their successors to quantify its contribution (aggregation). Finally, after summing
up the ratings across all time steps, we derive an Agent Importance Score for each agent. Then,
we can select the top-performing agents based on their importance scores to obtain the optimized
team of agents (selection). In this way, DyLAN achieves the task-agnostic property by formulating
LLM-agent collaboration into a feed-forward network to decouple the interaction architecture and
task-specific design, exhibits efficiency through inference-time agent selection and early-stopping
mechanism, and enables agent team optimization through a selection algorithm based on agent im-
portance scores. We evaluate DyLAN on multiple representative tasks such as general reasoning,
arithmetic reasoning, and code generation, and find that DyLAN demonstrates higher accuracy and
efficiency over baselines. We also show that Agent Importance Score can be used as a solid un-
supervised indicator for optimizing the composition of agents for DyLAN. On specific subjects of
MMLU, agent team optimization in DyLAN increases accuracy by up to 25.0%.

To sum up, our contributions are as follows:

• We propose a generic LLM-agent collaboration framework DyLAN that organizes agents
into a multi-layered feed-forward network with dynamic architecture by introducing
inference-time agent selection and early-stopping mechanism.

• We develop an automatic agent team optimization algorithm for DyLAN based on an un-
supervised Agent Importance Score, in order to achieve both efficiency and effectiveness.

• Empirically, DyLAN demonstrates high accuracy, efficiency, and stability in general rea-
soning, arithmetic reasoning, and code generation tasks.

2 RELATED WORK

Interaction Architecture in LLM-agent Collaboration Collaboration between multiple LLM
agents has demonstrated strong performance on a variety of tasks in recent years and has emerged
as a promising approach to enhance the capabilities of individual LLMs. To enable collaborations
between multiple agents, recent studies have developed different interaction architectures and as-
signed agents in static patterns. For instance, Du et al. (2023); Liang et al. (2023); Xiong et al.
(2023) take multiple LLM instances into a debate for a fixed number of rounds, thus boosting their
factuality and reasoning capacities. Instead of calling LLMs iteratively, Ning et al. (2023) distribute
LLMs in parallel and concatenates their answers to produce better results. To aggregate multiple
LLM responses, Jiang et al. (2023) generate candidates by different LLMs in one round and uses
pairwise ranking to combine the top responses into one final response. It is worth noting that Hao
et al. (2023) organizes LLM instances into linear layers and adopts supervised learning in context
space, not the scenario in which we are interested. However, running LLMs in a static architecture
may limit their performance and generalization. Although Zhang et al. (2023) adopt a dynamic di-
rected acyclic graph structure during inference, they merely focus on reasoning and are incompatible
with external tools and diverse agents with different roles. In this work, we propose an interaction
architecture that can be adjusted dynamically based on the query and be compatible with feedback
and tool augmentation.

Evaluation of the Contribution of LLM Agents It is non-trivial to evaluate the contribution of
each LLM agent in a multi-agent system, especially when they communicate over multiple rounds.
In the single-round setting, given multiple candidates to select the best one, existing methods use
LLMs heavily for evaluation. However, Xiong et al. (2023) show that LLMs tend to be overconfi-
dent. For more reliable results, pairwise ranking based on an additional LLM-powered ranker has
been introduced in Jiang et al. (2023) for greater accuracy. To rank n responses with an independent
LLM in a single round, they compare all O(n2) pairs. For better efficiency, Qin et al. (2023) use a
k-length sliding window to choose top k responses within O(nk) pairwise comparisons. However,
these methods have not been extended to multi-round settings. Inspired by the neuron importance
score (Yu et al., 2018), we evaluate agents by propagating and aggregating single-round peer ratings.
In this way, we then introduce an unsupervised metric called Agent Importance Score to quantify
the contribution of each agent in multi-round collaborations (Section 3.3).

Team Optimization for LLM Agents In terms of designing and selecting agents, Ruan et al.
(2023) decompose tasks to choose or create tools accordingly. Using LLM as a planner, Lu et al.

3

Under review as a conference paper at ICLR 2024

Table 1: Comparison between DyLAN and representative previous works. In the second row, nodes
denote agents at different time steps (A), arrows represent edges (E), and color indicates the role of
an agent. Among these works, DyLAN is the only one which demonstrates all four key dimensions
of LLM-agent collaboration, i.e., compatible with multiple roles, having an early-stopping mecha-
nism, supporting dynamic interactions, and performing agent team optimization.

Method Single LLM-Blender PHP Reflexion LLM Debate DyLAN

Interaction Architecture
(A,E)

Multiple Roles × × × ! × !

Early Stopping × × × ! × !

Dynamic Interactions × ! × × × !

Agent Team Optimization × × × × × !

(2023) sequentially select agents and tools according to their descriptions. Wang et al. (2023b) use
LLMs to generate prompts for agents in response to a task query. During inference, Chen et al.
(2023b) select a fixed number of agents from a set of manual prompt candidates via an additional
LLM during each round of discussion. However, manual prompts require careful design, and prede-
fined or generated descriptions may not result in the desired abilities of the agents during inference.
Therefore, selecting an appropriate team of agents based on their response to a query is necessary
and more appropriate. While team optimization for LLM agents is a relatively new area, human-
team optimization has been studied for a long time. For instance, Liu et al. (2015) show that skill
contribution is essential for selecting crowd workers to solve outsourced tasks efficiently. Based
on peer rating, Lykourentzou et al. (2022) develop an algorithm for managing online workers in
an optimal organization. Building upon these prior works, we introduce an automatic algorithm to
optimize the team of agents by quantifying agents’ contributions based on their peer ratings.

3 DYNAMIC LLM-AGENT NETWORK (DYLAN)

We introduce an LLM-agent collaboration framework named Dynamic LLM-Agent Network
(DyLAN) to allow dynamic interaction between agents in LLM-agent collaborations, as illustrated
in Figure 1. We formulate the systems in feed-forward networks to represent interaction architecture
(Section 3.1). Under the formulation, we elaborate DyLAN’s dynamic architecture designs in Sec-
tion 3.2. Finally, we introduce agent team optimization, based on our unsupervised metric Agent
Importance Score on top of DyLAN (Section 3.3).

3.1 FORMULATION

In LLM-agent collaborations, agents exchange textual messages in multi-round interactions. By
viewing LLM agents at different time steps as nodes, we can treat the message exchange between
multiple nodes as edges in a feed-forward network. Agents may send their reasoning steps to each
other for reasoning, or send code completions for code generation, as illustrated in Appendix D.6.
We then demonstrate how both the inference process and agent team optimization can be viewed
as message passing algorithms over this abstract network, as an essential task-agnostic basis for
DyLAN. The collaboration problem is defined to solve query q by output o from a given system S.
According to the formulation, an LLM-agent collaboration comprises three components:

Node The node denotes an agent at a specific time step. The agent takes the contexts from other
agents at the previous time step as input and generates responses based on the input query. An agent
can be (I) an LLM agent that could be augmented with tools, (II) an independent tool like a script or a
dedicated model, or (III) a cluster of tools. Based on the definition, we focus on textual information
exchange between agents. Formally, the i-th agent at the t-th time step can be represented as a
function at,i mapping the agent’s prompt pi (empty for (II) and (III) agents), the input query q, and
responses from predecessor agents Rt−1 to the response of itself: rt,i = at,i(pi, q,Rt−1), where

4

Under review as a conference paper at ICLR 2024

Rt−1 = {rt−1,j |j = 1, 2, ...}. Let A be the set of all nodes, n be the total amount of agents, and T
be the maximum time step.

Edge Edges refer to the communication channels between nodes in A during the multi-agent col-
laboration. Let E represents the set of all edges in the system. The edge is directional and could
be formally represented as e = (at−1,i, at,j) ∈ E, where at−1,i, at,j represents adjacent agents that
could pass textual information: at,j could perceive at−1,i’s output as its context. Thus, nodes are
linked by edges to form the interaction architecture of agent collaboration systems, in shape of a
feed-forward network S = (A,E).

Message Passing Message passing algorithms can guide information flow through the nodes and
edges in the feed-forward network. In our LLM-agent based feed-forward network formulation,
we envision two types of message passing. In a forward passing fashion, by passing messages
to specific agents across different time steps, LLM-agent collaboration systems generate the final
answer in response to the task query. Formally, we denote the output as o, which is the result of
the query q processed by system S and an algorithm fInfer denoting the inference process explicitly
(Algorithm 1 for DyLAN): o = fInfer(S, q). In a backward passing manner, The calculation process
of Agent Importance Score I is calculated by an algorithm fImp to pass scores backward along edges
(Algorithm 2 for DyLAN): I = fImp(S, q).

The formulation decouples the interaction architecture and the algorithm of inference process. Using
this formulation, we can categorize prior works based on their interaction architectures in Table 1.

3.2 CONSTRUCTION OF DYLAN

With the aforementioned formulation, we step further to stack multiple layers along the temporal
axis (e.g., different rounds of interaction) to build Dynamic LLM-Agent Network (DyLAN). To im-
prove the efficiency and the performance of LLM-agent collaboration on various tasks, we propose
to (1) add inference-time agent selection at a middle time step and (2) use Byzantine Consensus to
terminate inference at a proper layer.

We define a layer as a set of agents functioning at the same time step along the temporal axis.
In each layer, each node receives responses from all other nodes in the previous layer, i.e., the
previous time step. Such communications form edges between layers, as shown in Figure 1. The
query is fed into nodes in the first layer. Therefore, when LLM agents diverge on a query, they
receive others’ responses and have a debate by commenting on each other’s solutions, thus deepening
the reasoning procedure and reaching better consistency at a certain time step with the vantage of
multiple expertise. Agents assigned diverse roles might respond from their specific perspectives.

To focus on the best solutions and reduce the computational cost, we set up the inference-time agent
selection at L-th layer by selecting the top-m responses to feed forward. We use an additional LLM
agent, as the “LLM Ranker” in Figure 1, to analyze responses from the former layer and identify
the best ones, following Jiang et al. (2023). Agents identified as not being useful are deactivated in
subsequent layers, so as are the edges connecting them.

To further enhance efficiency, we introduce an early-stopping mechanism. Inspired by the Byzan-
tine Consensus theory (Castro & Liskov, 1999), at least 3p + 1 agents are needed to tolerate p
faulty agents in a single round of communication. Following the theory, the inference process will
be terminated when over 2/3 of agents in a single layer have a consistent answer. In practice, the
inference process will also be terminated when the maximum time step is reached. Note that none
of the consistency measures used in prior work (Wang et al., 2023a; Aggarwal et al., 2023) applies
to multi-round multi-agent interaction since their theories are assumed to execute a single LLM in-
stance multiple times. In our case, we apply the early-stopping mechanism to each layer of DyLAN.

In short, DyLAN gives the answer in a forward passing manner with an efficient dynamic architec-
ture for agent collaborations (Algorithm 1). Other implementation details are in Appendix C.1.

3.3 AGENT TEAM OPTIMIZATION

To automatically find the optimal team of agents among candidates for specific domains and based
on their actual responses, we set up an algorithm in which the agent team optimization process
could be formulated as a function fOptim : S → S′, where S′ = (A′,E′) and A′ denotes a smaller

5

Under review as a conference paper at ICLR 2024

Table 2: Accuracy (%) on MATH dataset. CoT refers to Chain-of-Thought prompting (Wei et al.,
2022) and examples are from original dataset. The number in parentheses indicates the perfor-
mance difference relative to a single execution. The median of three trials is reported when non-zero
temperature is used.

Method Prompting Algebra Counting and Geometry Intermediate Number Pre- Pre- Overall #API
Probability Algebra Theory Algebra Calculus Calls

Single Execution

CoT

43.6 29.3 21.5 15.8 30.0 48.9 16.5 31.6 (+0.0) 1.00
LLM-Blender 47.5 25.5 23.8 13.8 39.7 46.7 15.8 31.7 (+0.1) 6.00
LLM Debate 50.2 25.3 22.3 13.1 28.9 48.0 19.0 32.4 (+0.8) 8.00
DyLAN (Ours) 52.9 27.2 25.3 15.5 33.5 55.2 19.0 35.7 (+4.1) 7.15

Single Execution Complex
CoT

49.1 29.7 22.3 14.6 33.4 53.8 16.8 34.1 (+0.0) 1.00
PHP 51.1 33.7 25.4 17.1 35.1 57.7 16.1 36.5 (+2.4) 3.67
DyLAN (Ours) 53.7 33.3 26.1 18.1 33.5 58.7 18.9 37.6 (+3.5) 6.21

Table 3: Accuracy (%) on MMLU dataset. “Other” stands for subjects like business, health, and
misc in MMLU. The median of three trials is reported when non-zero temperature is used.

Method Humanities Social STEM Other Overall #API
Science Calls

Random 25.0 25.0 25.0 25.0 25.0 -
Single Execution 59.8 74.0 62.9 71.8 66.4 (+0.0) 1.00
LLM-Blender 60.4 75.2 66.3 70.7 67.3 (+0.9) 6.00
LLM Debate 59.8 77.4 69.0 75.5 69.3 (+2.9) 12.00
DyLAN (Ours) 62.1 79.1 69.7 75.5 70.5 (+4.1) 4.39

but optimized composition of agents with better performance. With a pool of agent candidates, we
implement fOptim in a three-step procedure, as shown in Figure 1: (1) Propagation: Take all candi-
dates into a collaboration, ask each node to rate the solutions to the task query from its predecessors
(in the forward pass); (2) Aggregation: Each node aggregates the ratings it has received from its suc-
cessors towards itself (via another backward pass) to quantify its own contribution independently at
different time steps. (3) Selection: During the last step, we sum up the scores for the same agent
over all time steps to derive an importance score for each agent, and extract the top-k agents that are
most contributory according to these scores as the optimized composition.

Specifically, at the step of Propagation, for each agent, we ask it to rate the responses from all
its predecessors. Formally, the i-th agent at the t-th time step takes its prompt pi, the input query
q, and all previous responses Rt−1 from their predecessors, and further map them via a scoring
function f

(s)
t,i (·, ·, ·) to produce the rating scores. Here, we use wt−1,j,i to refer to the rating score

on at−1,j from at,i, and [wt−1,1,i, wt−1,2,i, ..., wt−1,n,i] = f
(s)
t,i (pi, q,Rt−1). After propagation, the

contribution of node at,i is the sum of its successors’ contribution multiplied by their peers’ ratings
on the agent’s response. Formally, the aggregation process is described as:

It−1,j =
∑

(at−1,j ,at,i)∈E

It,i · wt−1,j,i, (1)

where It,i denotes the contribution of at,i. In the final Selection step, Agent Importance Score Ii for
the i-th agent is defined as Ii =

∑T
t=1 It,i. In practice, we initialize the contributions in the final

layer first, and step backward to perform Aggregation layer by layer (Algorithm 2). The definition
guarantees that the agent importance scores add up to 1 in each layer, which benefits fair comparison.
Other details, such as initializing contributions in the final layer, are presented in Appendix C.2.

4 EXPERIMENTS

4.1 SETUP

To verify the effectiveness and efficiency of DyLAN, we conduct extensive experiments on three
representative tasks including arithmetic reasoning, general reasoning, and code generation.

6

Under review as a conference paper at ICLR 2024

Arithmetic Reasoning (AR) We leverage MATH (Hendrycks et al., 2021b) as the evaluation
dataset, which consists of 7 subareas and contains 5,000 questions in the test set. We choose LLM
Debate (Du et al., 2023), LLM-Blender (Jiang et al., 2023), and the single execution on LLM as
baselines. We also compared DyLAN to the previous state-of-the-art method PHP (Zheng et al.,
2023). To draw a fair comparison, we categorize systems by prompting strategies, including nor-
mal CoT prompts (Wei et al., 2022) provided in the original dataset and Complex CoT provided
by PHP. Since the task is sensitive to hyper-parameters, we have tuned and used each system’s best
temperature. Preliminary experiments show that collaborating agents of different roles did not
introduce significant improvement, therefore we adopt agents of the same role for all systems.

Table 4: Demonstration of
experiment settings. We
elaborate on the number of
agents before and after op-
timization and tool usage in
DyLAN of each task.

Task Agent Tool
Team Size Usage

AR 4 ×
GR 7 → 4 ×
CG 12 → 8 !

General Reasoning (GR) For the general reasoning task, we use the
MMLU dataset (Hendrycks et al., 2021a), which contains four as-
pects of a vast amount of problems in 57 subjects. We down-sample
1/5 of the problems in the test set because of its huge quantity. We use
the same baselines as arithmetic reasoning. To align with previous
works and prevent degeneration of LLM Debate, we set the hyper-
parameter temperature to 1 for all systems. The team of agents
is optimized for each subject based on Agent Importance Score when
evaluating DyLAN, as demonstrated in Table 4. The roles of can-
didates match the categories of MMLU, including “Mathematician”
and “Programmer” for STEM, “Lawyer” and “Historian” for Human-
ities, “Economist” and “Psychologist” in Social Science, and “Doc-
tor” for clinical questions in the “Other” category.

Code Generation (CG) We use the HumanEval benchmark in the code generation task, with 164
human-labeled function-level completion codes and unit tests (Chen et al., 2021). We found that
LLM Debate and LLM-Blender could not feasibly adapt to this task in their implementation, thus
they are excluded them from the baselines. As a result, we leverage two strong methods CodeT
(Chen et al., 2023a) and Reflexion (Shinn et al., 2023) along with the single execution as the base-
lines. The team of agents is optimized in DyLAN according to Table 4. Additionally, we require 4
of the 8 agents should be the role of code writer and the other 4 are judges providing code reviews in
different time steps. And two of the judges are individually augmented with a code interpreter and a
syntax checker. Please refer to Appendix C.1 for more details.

4.2 MAIN RESULTS

Table 5: Experimental results on HumanEval
dataset. We indicate the foundation model of
methods except for GPT-35-turbo. The me-
dian of three trials is reported when non-zero
temperature is used.

Method Pass@1 #API
Calls

Single Execution 73.2 (+0.0) 1.00
CodeT 65.8 (-7.4) 20.00
CodeT (Codex) 74.8 (+1.6) 20.00
Reflexion 68.3 (-4.9) 4.05
DyLAN (Ours) 82.9 (+9.7) 16.85

Single Execution (GPT-4) 88.4 (+15.2) 1.00
Reflexion (GPT-4) 91.4 (+18.2) 7.32
DyLAN (Ours, GPT-4) 92.1 (+18.9) 15.94

In Table 2, Table 3, and Table 5, we report the
classification accuracy on MATH and MMLU, and
Pass@1 on HumanEval, respectively. Addition-
ally, we recorded the average times of calling
LLMs of each method on each query as #API calls.
This metric serves as a proxy for the computational
cost and the efficiency of architectures for LLM-
agent collaborations, which cannot be determined
from the number of tokens since the number varies
greatly depending on the query.

DyLAN improves overall performance in differ-
ent tasks. Table 2 shows that DyLAN has signifi-
cantly higher performance than baselines on arith-
metic reasoning, demonstrating the advantage of
the dynamic architecture. Relative to a single ex-
ecution, it gains a +4.1 improvement with CoT
prompts and +3.5 with Complex CoT prompts,
demonstrating robustness against different prompt-
ing strategies. In Table 3 and Table 5, DyLAN also significantly improves the performance by +4.1
and +9.7 on general reasoning and code generation tasks, respectively, relative to the single execu-
tion. We argue part of the improvement can be attributed to the dynamic multi-path architecture,
which allows different opinions to be delivered simultaneously. In contrast, for methods in sequen-
tial architecture like PHP (Zheng et al., 2023), incorrect intermediate answers might easily influence

7

Under review as a conference paper at ICLR 2024

the final output due to only one reasoning path. It is the same for Reflexion (Shinn et al., 2023) in
code generation, in which false tests may mislead the self-debugging process from our observations.
In our case, any feedback from predecessors could be rated by the nodes at any time step, making it
easier to identify false intermediate feedback explicitly.

DyLAN has a reasonable computational cost. From Table 2, we find DyLAN realizes an 10.2%
improvement to LLM Debate in terms of accuracy, with 10.6% lower #API calls (L3 vs. L4), sug-
gesting it is a better trade-off between efficiency and effectiveness. Similar trends can be observed
in Table 3. DyLAN has a better overall accuracy with only 36.6% API calls of LLM Debate (4.39
vs. 12.00). Moreover, we see that DyLAN dynamically adjusts the cost based on the difficulty of a
query. Given that questions in MMLU are less challenging than in MATH, DyLAN has 2.76 fewer
#API calls on the query from MMLU compared to one from MATH. This makes sense as generally,
the more complex the task, the harder it will be to come to a consensus.

Table 6: The optimized composition of roles and per-
formance improvement in different subjects of MMLU
dataset when optimizing DyLAN of 7 agents to 4 agents.

Subject Optimized Composition Performance Improvement

college Economist, Lawyer,
25.0 : 40.0 → 65.0mathematics Programmer, Mathematician

management Lawyer, Psychologist,
14.3 : 76.2 → 90.5Economist, Programmer

high school Historian, Programmer,
9.3 : 65.1 → 74.4statistics Psychologist, Mathematician

clinical Doctor, Mathematician,
5.7 : 69.8 → 75.5knowledge Programmer, Psychologist

public Historian, Psychologist,
4.5 : 54.5 → 59.1relations Lawyer, Mathematician

DyLAN benefits from agent team op-
timization. Additionally, we found that
an optimized team of agents could en-
hance DyLAN. For different subjects
in MMLU, agent compositions are ad-
justed correspondingly to improve up
to 25.0% in accuracy, as shown in Ta-
ble 6. After agent team optimization, we
find a smaller set of agents are selected
from the given large pool of candidates
for specific subjects, resulting in signifi-
cant performance improvement, such as
“Mathematician”, “Programmer”, and
“Economist” for college mathematics,
and “Doctor” and “Psychologist” for
clinical knowledge. Moreover, before
performing agent team optimization, i.e., all the 12 agents are used, the performance of DyLAN
on HumanEval is 76.2, which means agent team optimization introduces an improvement of +6.7
points (76.2 → 82.9), suggesting that Agent Importance Scores can effectively capture and reflect
the actual abilities of agents to particular task domains.

4.3 ABLATION STUDIES

10 2 10 1 100
Proportion of Dataset

69.0

69.5

70.0

70.5

71.0

A
cc

ur
ac

y

69.9

70.3
70.5

Optimization
Random Selection

10 2 10 1 100
Proportion of Dataset

76

78

80

82

84

Pa
ss

@
1

79.3

82.3
82.9

Optimization
Random Selection

Figure 2: Experimental results of optimizing agent team with small subsets of MMLU (left) and Hu-
manEval (right). X-axis denotes the proportion to the original datasets. We also randomly selected
the same amount of agents as a baseline.

Data Efficiency of Agent Team Optimization We further demonstrate the data efficiency of agent
team optimization by performing it based on different amount of data. The experiments are con-
ducted on the MMLU and HumanEval datasets. We sample the subsets with the proportions of 0.01
and 0.1 of the original dataset. Agent team optimization is performed on the subsets and tested the
optimized team of agents on the whole dataset. The settings are identical to experiments in Sec-
tion 4.1. As shown in Figure 2, with the optimized team of agents on 0.1 of the original dataset,
DyLAN has demonstrated similar performance compared to optimizing on the whole dataset, with

8

Under review as a conference paper at ICLR 2024

12345678
Number of Agents

68.0

68.5

69.0

69.5

70.0

70.5

71.0

A
cc

ur
ac

y

68.4

69.9

70.5

69.5

DyLAN
LLM Debate (4 agents)

8 7 4 3 2 1
Number of Agents

0

2

4

6

8

10

12

14

#A
PI

 C
al

ls

2.83
3.904.39

8.30

LLM Debate (4 agents)
DyLAN

Figure 3: Impact of optimized agent team size. 2∼4 agents are selected from 7 candidate agents
based on Agent Importance Score. Accuracy (left) and #API calls (right) on MMLU are reported.

only 0.2 loss of overall accuracy on MMLU and 0.6 loss of Pass@1 on HumanEval. Especially,
as code review has significant impact on the performance on code generation, it is critical to se-
lect a proper set of judges to provide code review. We can observe that even with only 0.01 of the
original dataset, DyLAN could obtain a significant improvement of +3.7 over random selection on
HumanEval, indicating its effectiveness on selecting proper team of agents.

Impact of Optimized Agent Team Size As shown in Figure 3, DyLAN with an optimized team of
3 agents can outperform both the same architecture with 7 agents and LLM Debate with 4 agents,
suggesting the effectiveness of our proposed agent optimization. The efficiency is also significantly
improved by 52.9% and 67.8%, respectively. These results indicate that an optimized selection of
agents would be able to collaborate on tasks better and reach the consensus much faster and more
accurately than many agents thrown together at random.

Table 7: Ablation study on the
early-stopping mechanism (es) and the
inference-time agent selection compo-
nent (its). #API denotes the average
number of API calls.

Method MATH MMLU HumanEval
Acc. #API Acc. #API Pass@1 #API

DyLAN 35.7 7.15 70.5 4.39 82.9 16.85
w/o es 35.0 13.00 70.1 13.00 80.5 19.00
w/o its 33.8 8.20 69.9 7.05 76.2 17.98

Impact of Early-Stopping and Inference-Time Agent
Selection As shown in Table 7, early-stopping mechanism
boosts efficiency to a great extent by minimizing #API
calls by 45.0%, 66.2%, and 11.3% on MATH, MMLU,
and HumanEval respectively, while providing slight per-
formance improvement. Inference-time agent selection,
however, is critical to enhance the correctness of the fi-
nal answer. We conjecture it is because low-performing
agents are filtered at specific time steps.

Stability of DyLAN with Different Backbone Models
There is also a notable difference in code generation tasks
when the backbone model changes (Table 5). Reflexion
and CodeT’s performances are heavily related to the backbone model (L4 vs. L5 and L6 vs. L9).
Instead, DyLAN shows a steady, consistent high performance (L7 vs. L10) under different backbone
models with almost the same amount of API calls.

5 CONCLUSION AND FUTURE WORK

This work introduces a framework named Dynamic LLM-Agent Network (DyLAN) for LLM-agent
collaboration on complicated tasks. DyLAN enables agents to interact for multiple rounds in a dy-
namic architecture with inference-time agent selection and an early-stopping mechanism to improve
performance and efficiency. We further design an automatic agent team optimization algorithm
based on an unsupervised metric termed Agent Importance Score, enabling the selection of best
agents based on the contribution each agent makes. Overall, DyLAN reveals significant improve-
ment on diverse tasks with relatively less computational cost compared to baselines.

In this work, the agents are driven by GPT-3.5-turbo and GPT-4, we will explore the effectiveness
of DyLAN on agents built on open-source foundation models in future. And it is also worth to
extend DyLAN to more complicate scenarios such as software development, virtual room chat,
video games, and so on (Hong et al., 2023; Nascimento et al., 2023; Zhou et al., 2023; Zhu et al.,
2023; Chan et al., 2023).

9

Under review as a conference paper at ICLR 2024

REFERENCES

Pranjal Aggarwal, Aman Madaan, Yiming Yang, and Mausam. Let’s sample step by step: Adaptive-
consistency for efficient reasoning with llms, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Lukas Gianinazzi, Joanna Gajda,
Tomasz Lehmann, Michal Podstawski, Hubert Niewiadomski, Piotr Nyczyk, and Torsten Hoefler.
Graph of thoughts: Solving elaborate problems with large language models, August 01, 2023
2023.

Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the Third
Symposium on Operating Systems Design and Implementation, OSDI ’99, pp. 173–186, USA,
1999. USENIX Association. ISBN 1880446391.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate.
arXiv e-prints, art. arXiv:2308.07201, August 2023.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu
Chen. Codet: Code generation with generated tests. In The Eleventh International Confer-
ence on Learning Representations, 2023a. URL https://openreview.net/forum?id=
ktrw68Cmu9c.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, July 01, 2021 2021. corrected typos, added references, added
authors, added acknowledgements.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chen Qian, Chi-Min Chan,
Yujia Qin, Yaxi Lu, Ruobing Xie, Zhiyuan Liu, Maosong Sun, and Jie Zhou. Agentverse: Facili-
tating multi-agent collaboration and exploring emergent behaviors in agents, 2023b.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration Code Generation via ChatGPT.
arXiv e-prints, art. arXiv:2304.07590, April 2023.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, May 01, 2023 2023.
Project Webpage and Code: https://composable- models.github.io/llm debate/.

Rui Hao, Linmei Hu, Weijian Qi, Qingliu Wu, Yirui Zhang, and Liqiang Nie. Chatllm network:
More brains, more intelligence, April 01, 2023 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021b.

Ralf Herbrich, Tom Minka, and Thore Graepel. Trueskill™: A bayesian skill rating system. In
B. Schölkopf, J. Platt, and T. Hoffman (eds.), Advances in Neural Information Processing Sys-
tems, volume 19. MIT Press, 2006. URL https://proceedings.neurips.cc/paper_
files/paper/2006/file/f44ee263952e65b3610b8ba51229d1f9-Paper.pdf.

10

https://openreview.net/forum?id=ktrw68Cmu9c
https://openreview.net/forum?id=ktrw68Cmu9c
https://proceedings.neurips.cc/paper_files/paper/2006/file/f44ee263952e65b3610b8ba51229d1f9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/f44ee263952e65b3610b8ba51229d1f9-Paper.pdf

Under review as a conference paper at ICLR 2024

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng Xiao, and Chenglin Wu.
Metagpt: Meta programming for multi-agent collaborative framework, August 01, 2023 2023.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. LLM-blender: Ensembling large language mod-
els with pairwise ranking and generative fusion. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 14165–
14178, Toronto, Canada, July 2023. Association for Computational Linguistics. URL https:
//aclanthology.org/2023.acl-long.792.

Ye Jin, Xiaoxi Shen, Huiling Peng, Xiaoan Liu, Jingli Qin, Jiayang Li, Jintao Xie, Peizhong Gao,
Guyue Zhou, and Jiangtao Gong. Surrealdriver: Designing generative driver agent simulation
framework in urban contexts based on large language model, 2023.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
CAMEL: Communicative agents for ”mind” exploration of large language model society. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=3IyL2XWDkG.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng
Tu, and Shuming Shi. Encouraging divergent thinking in large language models through multi-
agent debate, May 01, 2023 2023. Work in progress.

Qing Liu, Tie Luo, Ruiming Tang, and Stéphane Bressan. An efficient and truthful pricing mecha-
nism for team formation in crowdsourcing markets. In 2015 IEEE International Conference on
Communications (ICC), pp. 567–572, 2015.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, Shudan Zhang, Xiang Deng, Aohan Zeng, Zhengxiao Du, Chenhui
Zhang, Sheng Shen, Tianjun Zhang, Yu Su, Huan Sun, Minlie Huang, Yuxiao Dong, and Jie Tang.
Agentbench: Evaluating llms as agents, August 01, 2023 2023a. 38 pages.

Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng,
Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, Ran Xu, Phil Mui, Huan Wang, Caiming
Xiong, and Silvio Savarese. Bolaa: Benchmarking and orchestrating llm-augmented autonomous
agents, August 01, 2023 2023b. Preprint.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
els. arXiv preprint arXiv:2304.09842, 2023.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Proceed-
ings of the 31st International Conference on Neural Information Processing Systems, NIPS’17,
pp. 4768–4777, Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Ioanna Lykourentzou, Federica Lucia Vinella, Faez Ahmed, Costas Papastathis, Konstantinos Pa-
pangelis, Vassilis-Javed Khan, and Judith Masthoff. Self-organization in online collaborative
work settings. Collective Intelligence, 1(1), sep 2022.

Yohei Nakajima. Babyagi. https://github.com/yoheinakajima/babyagi, 2023.

Nathalia Nascimento, Paulo Alencar, and Donald Cowan. GPT-in-the-Loop: Adaptive Decision-
Making for Multiagent Systems. arXiv e-prints, art. arXiv:2308.10435, August 2023.

Xuefei Ning, Zinan Lin, Zixuan Zhou, Huazhong Yang, and Yu Wang. Skeleton-of-thought: Large
language models can do parallel decoding, July 01, 2023 2023. Technical report, work in progress.

OpenAI. Gpt-4 technical report, 2023.

Matt Post. A call for clarity in reporting BLEU scores. In Proceedings of the Third Conference
on Machine Translation: Research Papers, pp. 186–191, Belgium, Brussels, October 2018. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
W18-6319.

11

https://aclanthology.org/2023.acl-long.792
https://aclanthology.org/2023.acl-long.792
https://openreview.net/forum?id=3IyL2XWDkG
https://openreview.net/forum?id=3IyL2XWDkG
https://github.com/yoheinakajima/babyagi
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319

Under review as a conference paper at ICLR 2024

Zhen Qin, Rolf Jagerman, Kai Hui, Honglei Zhuang, Junru Wu, Jiaming Shen, Tianqi Liu, Jialu Liu,
Donald Metzler, Xuanhui Wang, and Michael Bendersky. Large language models are effective
text rankers with pairwise ranking prompting, June 01, 2023 2023. 12 pages, 3 figures.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, M. Zhou, Ambrosio Blanco,
and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis. ArXiv,
abs/2009.10297, 2020.

Reworkd. Agentgpt. https://github.com/reworkd/AgentGPT, 2023.

Toran Bruce Richards and et al. Auto-gpt: An autonomous gpt-4 experiment. https://github.
com/Significant-Gravitas/Auto-GPT, 2023.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu, Tianpeng Bao, Guoqing Du, Shiwei Shi,
Hangyu Mao, Xingyu Zeng, and Rui Zhao. Tptu: Task planning and tool usage of large language
model-based ai agents, August 01, 2023 2023.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning, March 01, 2023 2023. v3
contains additional citations.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An Open-Ended Embodied Agent with Large Language Models.
arXiv e-prints, art. arXiv:2305.16291, May 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing
cognitive synergy in large language models: A task-solving agent through multi-persona self-
collaboration, July 01, 2023 2023b. work in progress.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
January 01, 2022 2022.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-
agent conversation framework, August 01, 2023 2023. 28 pages.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to learning to
rank: Theory and algorithm. In Proceedings of the 25th International Conference on Machine
Learning, ICML ’08, pp. 1192–1199, New York, NY, USA, 2008. Association for Computing
Machinery. ISBN 9781605582054.

Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing Qin. Examining the inter-consistency of large
language models: An in-depth analysis via debate, May 01, 2023 2023.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can LLMs
Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs. arXiv
e-prints, art. arXiv:2306.13063, June 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=WE_vluYUL-X.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I. Morariu, Xintong Han, Mingfei Gao,
Ching-Yung Lin, and Larry S. Davis. Nisp: Pruning networks using neuron importance score
propagation. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9194–9203, 2018.

12

https://github.com/reworkd/AgentGPT
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

Under review as a conference paper at ICLR 2024

Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew Chi-Chih Yao. Cumulative reasoning with
large language models, August 01, 2023 2023.

Chuanyang Zheng, Zhengying Liu, Enze Xie, Zhenguo Li, and Yu Li. Progressive-hint prompting
improves reasoning in large language models, April 01, 2023 2023. Tech Report.

Xuanhe Zhou, Guoliang Li, and Zhiyuan Liu. LLM As DBA. arXiv e-prints, art. arXiv:2308.05481,
August 2023.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, Yu Qiao, Zhaoxiang Zhang, and Jifeng Dai. Ghost in the Minecraft:
Generally Capable Agents for Open-World Environments via Large Language Models with Text-
based Knowledge and Memory. arXiv e-prints, art. arXiv:2305.17144, May 2023.

A BROADER IMPACT

LLM-agent systems are widely used in practical applications. DyLAN could also effortlessly cover
practical software development, virtual room chat, video games, and so on (Hong et al., 2023; Nasci-
mento et al., 2023; Zhou et al., 2023; Zhu et al., 2023; Chan et al., 2023). In these open-world en-
vironments, agents may operate as planners, actors, etc. DyLAN only requires people to give rough
instructions on the constitute of agents and could automatically optimize a better team of agents
to construct an efficient multi-agent system. These systems could benefit from DyLAN to reduce
human labor on designing agents and have a better performance on their target tasks.

Also, the overall architecture of DyLAN (Figure 1) reflects the optimal collaboration organization
of human online workers (Lykourentzou et al., 2022), and reveals significant performance in agent
collaborations. Therefore, simulating human collaboration by LLM-agent collaborations under Dy-
LAN might also be possible. Optimizing human collaboration by searching and simulating LLM
agents will hopefully be more convenient and effective.

B DISCUSSION & LIMITATION

In experiments, we view code generation tasks as representative of open-ended generation tasks and
adopt BLEU to decide whether two answers are consistent in Byzantine Consensus. In fact, the
performance could be further leveraged by task-specific methods like CodeBLEU (Ren et al., 2020)
or CodeT (Chen et al., 2023a).

For practical usage, the agent-evaluation metrics could cooperate with human annotation to give a
more precise evaluation result, mainly when facing data scarcity problems. We apply agent team
optimization on DyLAN simply on top of the inference-time agent selection. It still remains to
be seen how to cooperate offline and online optimization methods in a finer granularity to further
improve performance and efficiency in LLM-agent collaboration systems.

Additionally, in imbalanced cases where the majority of agents are designed to contradict the task
requirement, low performance might be caused, though agent team optimization could differentiate
top contributory agents. To tackle the imbalance of high- and low-performing agents, replicating
agents with high Agent Importance Score instead of including low-score agents could be a solution.
Additionally, in extreme circumstances, we might need to automatically introduce agents from more
capable LLMs with validation, in addition to agent team optimization.

C IMPLEMENTATION DETAILS

C.1 DETAILED EXPERIMENT SETTINGS

Common Settings In all experiments, we use gpt-35-tubo-0301 for every LLM agent
if not specified. In Table 5, “(GPT-4)” denotes gpt-4-0613 and “(Codex)” denotes
code-davinci-002 from OpenAI (Chen et al., 2021; OpenAI, 2023). To avoid the context
length issue in prior work (Du et al., 2023; Liu et al., 2023a), we set memory space for agents in
DyLAN to 1 only to keep the freshest responses of predecessors. We set max tokens to 2048

13

Under review as a conference paper at ICLR 2024

Algorithm 1: The Inference Process fInfer of Dy-
LAN on an arbitrary query
Data: Query q, DyLAN S = (A,E), task-specific

answer extraction method ans
Result: Output o
/* E = {(at,i, at+1,j)}T−1

t=1 , at,i, at+1,j ∈ A */
for t = 1;T do

if t = L then
/* inference-time agent

selection */
Rtop ← top−m({rt−1,j |at−1,j ∈ A});
E← E\{(at′,j , ∗), (∗, at′,j)|rt′,j ∈ Rtop, t

′ ≥
t− 1};

rt,j ← rt−1,j , ∀(at−1,j , at,j) ∈ E;
else

rt,i ← at,i(pi, q, {rt−1,j |(at−1,j , at,i) ∈
E}), ∀i,∃k, (at,i, at+1,k) ∈ E ;

end
if Byzantine Consensus is reached then

break;
end

end
/* extract final answer */
o← ans({rt,i|at,i ∈ A}, q);

Algorithm 2: The Calculation Process
fImp of Agent Importance Score within
DyLAN
Data: Output o, DyLAN S = (A,E)
Result: Agent Importance Score of agents I
flag← False;
for t = T ; 1 do

if {at,i|∃k, (at−1,k, at,i) ∈ E} ̸= ϕ
then

if ¬flag then
flag← True;
/* Initialzation */
distribute scores for It,i;

else
Rt−1 ←
{rt−1,j |(at−1,j , at,i) ∈ E};

[wt−1,1,i, ..., wt−1,m,i]←
a−1
t,i (pi, q,Rt−1);

It−1,j ←
It−1,j+It,iwt−1,j,i, at−1,j ∈
{at−1,j |(at−1,j , at,i) ∈ E};

end
end

end

to avoid exceeding the maximum context length. We use a listwise ranker in the inference-time
agent selection of DyLAN because of the effectiveness and efficiency, compared to ELo rating (Her-
brich et al., 2006) or Sliding Window (Qin et al., 2023) we have tested in Appendix D.3. We use
the same ranker to implement LLM-Blender (Jiang et al., 2023) in experiments. We set m = 2
in the inference-time agent selection, because it’s the minimal number for collaborations and we
empirically found it brings great trade-off between effectiveness and efficiency. To avoid positional
bias, we shuffle the responses from agents at (L− 1)-th time step before performing inference-time
agent selection. The detailed algorithm is in Algorithm 1. To implement the early-stopping mech-
anism, we need to determine whether the answers from the nodes in the same layer of DyLAN are
consistent. For classification problems, the answers are consistent if identical, and for open-ended
generation, the consistency is determined by a threshold of BLEU score.

Experiments on Reasoning Tasks In general reasoning, we extract the answer from the response
by matching the last “(X” or “(X)”, where “X” represents A, B, C or D. On average, DyLAN with
the 7 agents consumes 8.30 API calls during the agent team optimization. Inference-time agent
selection functions on the third round (L = 3 in Algorithm 1). They could go through at maximum
T = 4 rounds of interaction. We also searched temperature in {0, 0.2, 0.8, 1.0} for the best
configuration for each system. In arithmetic reasoning, we set temperature to 0 for the single
execution and PHP, 0.2 for LLM Debate, LLM-Blender, and DyLAN with Complex CoT prompts,
and 1.0 for DyLAN with simple CoT prompts in Table 2, since systems with the same prompts
will give all the same responses if temperature is zero, causing degradation. Also, we did
not optimize the team of agents for DyLAN on arithmetic reasoning tasks. We follow the answer
extraction method from the origin paper (Hendrycks et al., 2021b). We construct DyLAN with 4
agents assigned no specific roles and let agents to interact for at maximum 4 rounds. We reported
the classification accuracy of each category averaged across subjects and the numbers of API calls
of running DyLAN on the optimized team of agents. In DyLAN, inference-time agent selection
functions at the third time step (L = 3). Furthermore, we use the exact match to determine the
consistency of answers in the early-stopping mechanism and extract the final answer from nodes in
the last layer on reasoning tasks.

Experiments on Code Generation Tasks In the code generation task, we set temperature to
0 for the single execution, Reflexion, and DyLAN, and 0.8 for LLM Debate, LLM-Blender, CodeT,
and DyLAN in Table 5. In DyLAN, we optimized four agents to write code and four agents to give

14

Under review as a conference paper at ICLR 2024

feedback from the last 12 candidate roles in Appendix E. The optimization is also conducted on
gpt-35-tubo-0301. The selected code writers are “Python Assistant”, “Algorithm Developer”,
“Computer Scientist”, and “Programmer”; and the selected judges are “Syntax Checker”, “Unit
Tester”, “Reflector”, and “Ranker”. “Syntax Checker” is pure external tools without LLMs and
“Unit Tester” is equipped with a code interpreter. We reported the numbers of API calls of running
DyLAN on the optimized team of agents. On average, during the agent team optimization, DyLAN
with the 12 agents consumes 23.04 API calls. In DyLAN, solutions given by code writers are
reviewed by judges in at maximum T = 6 rounds. At time step t = 1, 3, 4, 6, code writers gives
solutions and judges review it at t = 2, 5 (L = 4). Specifically, early-stopping mechanism functions
at the third layer and later (t ≥ 3). We use BLEU score in the early-stopping mechanism. We
calculate BLEU by sacreBLEU2 (Post, 2018). For answer extraction, we store all unit tests from
the unit tester (if exists in the system) and randomly select the final output from the top 5 code
completions from all nodes that pass most tests.

C.2 CALCULATION OF AGENT IMPORTANCE SCORE

To implement the agent team optimization algorithm under DyLAN, only one sentence needs to
be injected into the end of the prompt of each node in DyLAN: Along with the answer,
give a score ranging from 1 to 5 to the solutions of other agents.
Put all {numpredecessor} scores in the form like [[1, 5, 2, ...]], where
numpredecessor denotes the number of predecessors of the node. The prompt functions as the f

(s)
t,i

in Section 3.1 and we extract wt,j,i from its response at the same time when we extract the message
that passes between nodes. To avoid positional bias, we shuffle responses from agents at previous
time step when rating.

In Algorithm 2, initial contributions are distributed on nodes at the last layer. For reasoning tasks,
we uniformly distribute contributions to agents that give consistent answers in the last layer. On
code generation tasks, we uniformly distribute contributions in the final round with no syntax error
in their answers. During agent team optimization, we independently optimize the composition of
agents for each domain. Thus, in experiments on general reasoning and code generation tasks, we
sum up agent importance scores to optimize a team of agents for each subject on the MMLU dataset
and for the HumanEval dataset, respectively.

D ADDITIONAL RESULTS Table 8: Subjects on which agents have the top-
ranked Agent Importance Score in the experiment
with DyLAN of 7 agents on MMLU dataset. Green
annotation denotes the fields related to the role from
the human perspective, which are annotated manually.

Role Doctor Programmer

Top 10
Sub-
jects

high school computer science high school physics
clinical knowledge electrical engineering

college biology high school government and politics
professional medicine college computer science

nutrition college chemistry
high school US history high school mathematics

human aging formal logic
anatomy abstract algebra

high school biology machine learning
high school psychology computer security

In this section, detailed results and addi-
tional experiments are presented.

D.1 HUMAN PRIORS
AND AUTOMATIC EVALUATION RESULTS

We further investigated how these agents
selected by our unsupervised metric Agent
Importance Score differ from human pri-
ors (e.g., these predefined roles). To do
so, we calculated Agent Importance Scores
for 7 agents on each subject of the MMLU
dataset. As an example, we show the subjects where the agent of ”Doctor” and ”Programmer” has
the highest agent importance score among all agents in Table 8 and Table 9. Though most subjects
seems to be reasonably aligned with the role of the agent based on human priors (with green anno-
tations), there are some subjects that do not match human priors, e.g., high school computer science
as the subject that “Doctor” has the highest score. It exhibits the difference between human priors
and the evaluation results Agent Importance Scores on other agents.

We also compare current agent team optimization method that is implemented with Agent Impor-
tance Score with the implementation with Human Prior Selection on a few subjects in MMLU and
HumanEval. For Human Prior Selection, we setup an LLM to select the agents for collaborations

2The signature of sacreBLEU is “nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.3.1”.

15

Under review as a conference paper at ICLR 2024

Table 9: Subjects on which agents have the top-ranked Agent Importance Score in the same exper-
iment in Table 8. Green annotation denotes the fields highly related to the role from the human
perspective.

Role Mathematician Lawyer Historian Economist Psychologist

Top 10
Sub-
jects

college physics high school microeconomics US foreign policy high school computer science global facts
US foreign policy medical genetics econometrics jurisprudence public relations

college computer science prehistory world religions logical fallacies business ethics
econometrics sociology public relations professional accounting high school US history

marketing human aging high school government and politics high school microeconomics philosophy
high school mathematics management philosophy high school European history moral disputes

abstract algebra formal logic astronomy computer security management
international law world religions high school statistics moral disputes

professional accounting jurisprudence machine learning professional law
human sexuality international law high school European history college mathematics

based on the description of the task and role prompts of each agent (prompt templates is demon-
strated in Appendix E). As shown in Table 10, the implementation with Agent Importance Score
steadily outperforms Human Prior Selection. There are two major reasons: (1) Compared to pos-
terior optimization methods, prior selection may not grasp the actual behaviors of agents, and may
not understand which agents are most contributory or helpful to others in the real collaboration pro-
cess. Thus, in High School Statistics, Clinical Knowledge, and Public Relations subjects of MMLU
dataset, prior selection performs even worse than random selection. (2) Human Prior Selection
might struggle to understand tool augmentation without peer ratings from fellow agents. From our
observation, Unit Tester and Syntax Checker were not selected for code generation tasks, which may
cause lower performance.

Table 10: Performance of different implementations of agent team optimization on five subjects of
MMLU (top) and HumanEval (bottom). The five subjects of MMLU and other settings are identical
to Table 6. The overall accuracy in the left table denotes the accuracy across the five subjects.

Agent Optimization College Management High School Clinical Public OverallTeam Size Method Mathematics Statistics Knowledge Relations

7 (before optimization) 40.0 76.2 65.1 69.8 54.5 63.5 (+0.0)

4
Random Selection 45.0 71.4 67.4 71.7 54.5 64.8 (+1.3)
Human Prior Selection 60.0 80.1 65.1 69.8 54.5 66.7 (+3.2)
Agent Importance Score 65.0 90.5 74.4 75.5 59.1 73.6 (+10.1)

Agent Team Size Optimization Method Pass@1 #API Calls

12 (before optimization) 76.2 (+0.0) 23.04

8
Random Selection 75.6 (-0.6) 17.73
Human Prior Selection 78.0 (+1.8) 16.37
Agent Importance Score 82.9 (+6.7) 16.85

D.2 STABILITY OF DYLAN ON TEMPERATURE

DyLAN
(Ours)

Single Debate Blender26

28

30

32

34

36

A
cc

ur
ac

y

Temperature=0.2
Temperature=1.0

DyLAN
(Ours)

Single Reflexion60

65

70

75

80

85

Pa
ss

@
1

Temperature=0.0
Temperature=0.8

Figure 4: Performance of different methods under low and high temperatures on MATH (left) and
HumanEval (right) datasets. DyLAN shows better robustness to different temperature and even takes
advantage of higher temperature.

We tested a few methods on MATH (with simple CoT prompts) and HumanEval datasets under both
low and high temperatures and repeated each experiment 3 times when the temperature was not 0.

16

Under review as a conference paper at ICLR 2024

We exhibit the experimental results in Figure 4. From experimental results, we found that DyLAN
is more stable on different hyper-parameters.

Experiments show that temperature greatly influences arithmetic reasoning and code genera-
tion tasks. In Figure 4, we found that most baseline methods have significant performance drops
when temperature increases, but DyLAN shows strong robustness to various temperatures. We sur-
prisingly found that DyLAN gets better results when temperature rises, suggesting it has benefited
from diversity instead of being disturbed by low-quality answers of high-temperature agents. The
inference-time agent selection may lead to the higher accuracy by keeping best responses when
agents’ replies become more diverse. In conclusion, the collaboration of different roles functions
effectively and robustly in the dynamic architecture. Nonetheless, higher temperature requires Dy-
LAN to take more API calls (about +0.98 on average on MATH (temperature: 0.2 → 1.0)).

D.3 DIFFERENT RANKING METHODS

Table 11: Overall accuracy (%) of DyLAN
with different ranking method in the inference-
time agent selection on MMLU dataset. Other
settings are identical with Table 3.

Ranking Overall #API
Method Accuracy Calls

Listwise Ranker 70.5 4.39

Pairwise
LLM-Blender 70.1 19.27
Elo Score 70.3 19.55
Sliding Window 70.3 11.40

We also tested different ranking methods for
inference-time agent selection of DyLAN on the
MMLU dataset. We tested listwise ranker with
our own prompts, pairwise GPT ranker from orig-
inal LLM-Blender (Jiang et al., 2023), Elo Score
from TrueSkill (Herbrich et al., 2006) also imple-
mented with pairwise ranker, and pairwise ranker
with Sliding Window algorithm (Qin et al., 2023).
In Table 11, we show that different ranking meth-
ods have a relatively low impact on performance,
probably because of strong discrimination ability
of GPT-3.5, but pairwise ranking methods al-
ways consume higher computational cost. Thus, we chose a listwise ranker in our implementation
of DyLAN.

D.4 RELATION BETWEEN HUMAN PRIORS AND OPTIMIZED TEAMS OF AGENTS

In the agent team optimization experiments on the DyLAN of 7 agents with different roles, we
recorded the in-domain rate with different numbers of remaining roles in Table 12. The in-domain
rate is the proportion of teams with at least one agent matching the domain of the subject based on
human priors (e.g. “Programmer” matches STEM subjects, as described in Section 4.1), given that
the teams are optimized on each subject. The results suggest that the optimized team of agents is
roughly aligned with human priors but still with a significant offset.

Table 12: In-domain rate of teams that contain roles in the domain of the subject after optimization
on the DyLAN of 7 agents with distinct roles.

#Roles 7 6 5 4 3 2 1

In-Domain Rate 1.00 0.97 0.91 0.88 0.74 0.60 0.39

D.5 SHAPLEY VALUE V.S. AGENT IMPORTANCE SCORE

Shapley Value is a widely used supervised metric for evaluating contribution of a single agent in
a multi-agent system. Though it is not suitable for unsupervised agent team optimization, we use
it for validating Agent Importance Score. We implement a simplified algorithm for LLM-agent
collaboration systems. Given that the collaboration process is symmetric to roles in the formulation
of the feed-forward network, we could reduce the permutation set in the original formula (Lundberg
& Lee, 2017) to the combination set:

Si(R) =
1

|C||R|
∑
T∈C

(Performance(T ∪ {i})− Performance(T)), (2)

17

Under review as a conference paper at ICLR 2024

where R is the set of agents in the system, C is the combination set of R\{i}, i ∈ R, and
Performance denotes the overall performance of the system on the current task, e.g., classifica-
tion accuracy or Pass@1. The metric requires ground truth and multi-pass results of the system with
different subsets of agents. We use classification accuracy for classification tasks and Pass@1 for
code generation tasks. However, its computation cost is still too high when the number of agents
grows larger due to its combinatorial complexity.

To examine Shapley Value as an indicator of agent team optimization, we also randomly chose three
combinations of three roles out of all 7 roles to assemble DyLAN with three agents and calculated
the Shapley Value and the Agent Importance Score in the 3-agent DyLAN on MMLU. In Table 13,
we report the correlations between Shapley Values and Agent Importance Scores on the 3-agent
experiments. We are curious whether Agent Importance Score is an unsupervised substitution for
Shapley Value. So, we calculated the KL divergence and a listwise loss (ListMLE (Xia et al., 2008))
between Agent Importance Scores and Shapley Value. It indeed shows a high correlation between
the distributions of the two metrics when at least one agent is in the domain of the question (in
column In-Domain).

In summary, while Shapley Value is a self-evident metric for individual contribution, Agent Impor-
tance Score emerges as a promising, unsupervised alternative with light computational complexity.

Table 13: Correlation between different metrics for quantifying agents’ contributions in 3-agent
DyLAN on MMLU dataset. We compute the KL divergence DKL and the ListMLE loss LListMLE

between Shapley Value and other metrics on each subject and report the average value. The In-
Domain column means at least one agent in DyLAN matches the subject according to Appendix C.1,
and Off-Domain means none of agents matches the subject.

Metric In-Domain Off-Domain

DKL LListMLE DKL LListMLE

Shapley Value 0 0.673 0 0.674

Agent Importance Score 0.229× 10−3 0.686 0.347× 10−3 0.693
Uniform Distribution 0.359× 10−3 0.693 0.327× 10−3 0.693

D.6 CASE STUDY

In Figure 5 and Figure 6, we demonstrate the cases of DyLAN on the code generation and the general
reasoning tasks, respectively. First, we notice that the interaction architecture is different between
figures, exhibiting dynamic architecture of DyLAN on different queries. The former gives answer
at t = 4, the latter at t = 2. We also notice that the answer is gradually growing better along the
temporal axis. In Figure 6, only the agent with “Mathematician” role gives a correct answer and then
convince other agents, suggesting that proper agents are critical to task performance and our agent
team optimization method is effective. Although there are hallucinations when agents respond to
the query or evaluate predecessors’ responses, the overall solution is correct, and the distribution of
Agent Importance Score is reasonable. Also, instructing LLM agents to rate scores on predecessors
hints them to reflect on predecessors’ responses, which might be helpful to give better answers. Last
but not least, agents with different roles lead a diverse conversation and make full use of it, which
benefits performance and robustness.

18

Under review as a conference paper at ICLR 2024

def modp(n: int, p: int):
”””Return 2^n modulo p.
Examples:
······
”””

Please follow the function
signature and complete the
implementation of the Python
function. Reply the completion
in a code block.

① Query

My answer is:
```python

res = 1
n = n % (p-1)
while n > 0:

if n % 2 == 1:
......

```
(incorrect)

Programmer
② Layer 1

Although A3 considered
edge cases, but A1 and A2 are
superior in efficiency and
more readable……

Top2: [1, 2]

⑤ Inference-Time Agent
Selection

```python
return pow(2, n, p)

```

Computer Scientist

Python Assistant

⑥ Layer 4

```python
return pow(2, n, p)

```

⑦ Final Answer
(Early Stopping)

Consistent
Answer

def modp(n: int, p: int):
”””Return 2^n modulo p.
Examples:
······
”””
return pow(2, n, p)

```python
assert modp(10000, 1) == 0 # 
Test 1
```
Result 1: A1: √; A2: √; A3: × ; A4: × .
······

Unit Tester

Syntax Checker

Code Reflector

A1: Passed
A2: Passed
A3: Passed
A4: Failed: NameError: name
‘numpy’ is not defined.

A1&A2: ...The code is clear
and efficient...

A3: ...The code never
considers when p equals 1...

A4: ...Developer forgot to
import the external package
`numpy`……One line should be
added: `import numpy as
np`…

③ Layer 2
④ Layer 3

Programmer

Apologize for the
mistake. Here is a new
version considering edge
cases when `p` equals 1.
```python

if p == 1: # edge case 
when p equals 1

return 0
res = 1
base = 2 % p
while n > 0:
······

```           (correct)

It will be effiecient to use `numpy`
to solve the modulo problem.
```python

res = np.power(2, n)
return res

```
(incorrect)

Algorithm Developer

Algorithm Developer

Apologize for the error. I
add the `import`
command into Python
script below.
```python

import numpy as np
res = np.power(2, n)
return res % p

```
(incorrect)

It’s more efficient and
readable to use Python's
built-in `pow` function.

F
in

a
l A

n
s

w
e

r

Q
u

e
ry

A1

A2

A3

A4

t=1 t=2 t=3 t=4 t=5 t=6

Figure 5: A case of DyLAN solving code generation task. Different agents are recruited to write
code and give feedback. At the time steps t = 2, 5, we ask judges to provide code reviews. The result
grows better layer by layer regarding correctness, efficiency, and readability. Different directions of
implementation are delivered forward in implicit multiple paths. We ignore the peer rating scores in
responses of agents for computing Agent Importance Scores.

19

Under review as a conference paper at ICLR 2024

(D)

"At the beginning of a class period, half of the students
in a class go to the library. Later in the period, half of
the remaining students go to the computer lab. If there
are 8 students remaining in the class, how many
students were originally in the class?“
(A) 12 students
(B) 16 students
(C) 24 students
(D) 32 students

① Query

④ Final Answer (Early Stopping)

F
in

a
l A

n
s

w
e

r

Q
u

e
ry

A1

A2

A3

A4

t=1 t=2 t=3 t=4

I1,1=I2,1w1,1,1+I2,2w1,1,2+ I2,3w1,1,3+ I2,4w1,1,4

=0.165+0.147+0.132 =0.45

I1,2=I2,1w1,2,1+I2,2w1,2,2+ I2,3w1,2,3+ I2,4w1,2,4

=0.066+0.110+0.099 =0.28

I1,3=I2,1w1,3,1+I2,2w1,3,2+ I2,3w1,3,3+ I2,4w1,3,4

=0.099+0.073+0.066 =0.24

I1,4=I2,1w1,4,1+I2,2w1,4,2+ I2,3w1,4,3+ I2,4w1,4,4

=0.033 =0.03

I2,1=0.33

I2,2=0.33

I2,3=0.00

I2,4=0.33

Here is the question: {Query}

These are the solutions to the problem
from other agents:
Agent Solution 1: {r1,1}

Agent Solution 2: {r1,2}

Agent Solution 3: {r1,3}

Agent Solution 4: {r1,4}

······can you give an updated answer?
······Along with the answer, give a score
ranging from 1 to 5 to the solutions of
other agents······in the form like [[1, 5, …]]

② →③ Input of a2,1

Let‘s start by working backwards from the end of
the problem. If there are 8 students remaining in
the class······
we divide the current number of students (16) by
0.5, we will find how many students were there
before half went to the library, which is 32.
So the answer is (D) 32 students.

Mathematician

② Layer 1

To solve this problem, we can work backwards
from the end to the beginning······
half the students went to the computer lab, they
were part of the group that did not go······
That would be 8 x 2 + 8 = 24.
Therefore, the answer is (C) 24 students.

Programmer

This problem requires working backwards······
Therefore, if there are 8 students remaining in
the class at the end of the period, that······
Therefore, if 12 students remained after half the
class went to the library, that means the original
number of students in the class was double that,
or 12 x 2 = 24 students.
Therefore, the answer is (C) 24 students.

Economist

I apologize, but as a doctor, I am not qualified to
answer math problems as accurately as possible.
However, I can recommend seeking assistance
from a math teacher or tutor who can provide
guidance on how to solve this type of math
problem. Therefore, my answer is none of the
choices provided.

Doctor

Agent solution 1 seems to be correct. Let's see
why: ······ Therefore, the answer is (D) 32 students.
Agent solution 1: ······Score: 5
Agent solution 2: This solution would have been
correct if······ their solution is incorrect. Score: 2
Agent solution 3: ······Score: 3.
Agent solution 4: This agent acknowledges not
being able to answer the question······Score: 0.
Score: [[5, 2, 3, 0]]

Mathematician

③ Layer 2

To solve this problem, we can work backwards
from the end······Therefore, the answer is (D) 32
students. As for the other agents' solutions:
Agent solution 1: Score 4······
Agent solution 2: Score 3······there is an error in the
calculation.
Agent solution 3: Score 2······working backwards is
correct, but there is an error······
Agent solution 4: N/A (not applicable)
[[4, 3, 2, 0]]

Programmer

To solve this problem, we need to work
backwards······get the total number of students in
the class······8 x 2 + 8 = 24.\n\nTherefore, the
answer is (C) 24 students.
Agent solution 1: Score 5······
Agent solution 2: Score 1. This solution is
incorrect and does not correctly work······
Agent solution 3: Score 4···clear and accurate···
Agent solution 4: Score 2······they give good
advice for seeking guidance······
Overall score: [[5, 1, 4, 2]]

Economist

To solve the problem, ······Therefore, the number
of students in the class before half of them went
to the computer······So, the answer is
(D)······Solutions by other agents:
Agent solution 1: Score 4 - ······ However, their
method······was incorrect·····
Agent solution 2: Score 3 - The solution
incorrectly assumed······which is not stated······
Agent solution 3: Score 2 - ···However, their
method···doubled 12 instead of 16.
Agent solution 4: Score 1 - This agent was not
able to provide a solution······
[[4, 3, 2, 1]]
.

Doctor

④ Agent Importance
Scores

Figure 6: A case of DyLAN solving general reasoning task. Different agents are recruited to give
and refine solutions. The result is incorrect at the first time step but correct at the second time step.
It includes the ratings from agents for calculating Agent Importance Scores.

20

Under review as a conference paper at ICLR 2024

E PROMPTING TEMPLATES

In DyLAN, agents are assigned roles extracted from an open-source code base3, relative research
projects (Du et al., 2023; Shinn et al., 2023; Zheng et al., 2023), and GPT-4 generation with minor
modification. We exhibit the instruction templates of different datasets and the prompts of all roles
in Table 14.

Role Prompt

MMLU Instruction Here is the question: {question}\n\nThese are the solutions to the
problem from other agents: {responses}\n\nUsing the reasoning
from other agents as additional advice with critical thinking, can you
give an updated answer? Examine your solution and that other agents
step by step. Notice that their answers might be all wrong. Put your
answer in the form (X) at the end of your response. (X) represents
choice (A), (B), (C), or (D).

MATH Instruction Follow the given examples and answer the mathematics
problem.\n\n{question}\n\nThese are the solutions to the
problem from other agents: {responses}\n\nUsing the reasoning
from other agents as additional advice with critical thinking, can you
give an updated answer? Examine your solution and that other agents
step by step. Notice that their answers might be all wrong.

HumanEval Instruction You must complete the python function I give you by rectifying
previous implementations. Use the other information as a hint.\nBe
sure to use the same indentation I specified. Furthermore, you
may only write your response in code/comments.\n[improved
impl]:\n‘‘‘python\n{function signature}\n‘‘‘\n
\nPlease follow the template by repeating the function signature and
complete the new implementation in [improved impl]. If no changes
are needed, simply rewrite the implementation in the Python code
block.

Human Prior Selection Instruction A few agents will collaborate on the same task query. Please
select the optimal composition of the candidate agents based on
the description of the task and the agents’ profiles.\n\n Task:
{subject}\n- Agents\n{ - Agent/Code Writer/Judge t
(Name): Role Prompt/Description\n}nt=1\n\nWe want to
select k agents/code writers/judges among these candi-
dates. Please write the agent IDs as the following format: [1, 2, 3,
4]. There could be multiple agents with the same ID.

Mathematician You are a mathematician. You are good at math games, arithmetic cal-
culation, and long-term planning.

Programmer (MMLU) You are a programmer. You are good at computer science, engineering,
and physics. You have experience in designing and developing com-
puter software and hardware.

Lawyer You are a lawyer. You are good at law, politics, and history.

Historian You are a historian. You research and analyze cultural, economic, polit-
ical, and social events in the past, collect data from primary sources and
use it to develop theories about what happened during various periods
of history.

Economist You are an economist. You are good at economics, finance, and busi-
ness. You have experience on understanding charts while interpreting
the macroeconomic environment prevailing across world economies.

Psychologist You are a psychologist. You are good at psychology, sociology, and
philosophy. You give people scientific suggestions that will make them
feel better.

3https://github.com/GoGPTAI/ChatGPT-Prompt/blob/main/prompts.csv

21

https://github.com/GoGPTAI/ChatGPT-Prompt/blob/main/prompts.csv

Under review as a conference paper at ICLR 2024

Role Prompt

Doctor You are a doctor and come up with creative treatments for illnesses or
diseases. You are able to recommend conventional medicines, herbal
remedies and other natural alternatives. You also consider the patient’s
age, lifestyle and medical history when providing your recommenda-
tions.

Python Assistant You are a Python writing assistant, an AI that only responds with python
code, NOT ENGLISH. You will be given a function signature and its
docstring by the user. Write your full implementation (restate the func-
tion signature).

Algorithm Developer You are an algorithm developer. You are good at developing and utiliz-
ing algorithms to solve problems. You must respond with python code,
no free-flowing text (unless in a comment). You will be given a function
signature and its docstring by the user. Write your full implementation
following the format (restate the function signature).

Computer Scientist You are a computer scientist. You are good at writing high performance
code and recognizing corner cases while solve real problems. You must
respond with python code, no free-flowing text (unless in a comment).
You will be given a function signature and its docstring by the user.
Write your full implementation following the format (restate the func-
tion signature).

Programmer (HumanEval) You are an intelligent programmer. You must complete the python func-
tion given to you by the user. And you must follow the format they
present when giving your answer! You can only respond with com-
ments and actual code, no free-flowing text (unless in a comment).

Coding Artist You are a coding artist. You write Python code that is not only func-
tional but also aesthetically pleasing and creative. Your goal is to make
the code an art form while maintaining its utility. You will be given a
function signature and its docstring by the user. Write your full imple-
mentation following the format (restate the function signature).

Software Architect You are a software architect, skilled in designing and structuring code
for scalability, maintainability, and robustness. Your responses should
focus on best practices in software design. You will be given a function
signature and its docstring by the user. Write your full implementation
following the format (restate the function signature).

Unit Tester You are an AI coding assistant that can write unique, diverse, and intu-
itive unit tests for functions given the signature and docstring.

Syntax Checker Null

Code Reflector You are a Python writing assistant. You will be given a series of function
implementations of the same function signature. Write a few sentences
to explain whether and why the implementations are wrong. These com-
ments will be used as a hint and your goal is to write your thoughts on
the n-th previous implementation after [reflection n].

Debugger You are a debugger, specialized in finding and fixing bugs in Python
code. You will be given a function implementation with a bug in it.
Your goal is to identify the bug and provide a corrected implementation.
Include comments to explain what was wrong and how it was fixed.

Quality Manager You are a quality manager, ensuring that the code meets high standards
in terms of readability, efficiency, and accuracy. You will be given a
function implementation and you need to provide a code review. Com-
ment on its correctness, efficiency, and readability, and suggest im-
provements if needed.

Ranker You are a Python writing assistant. You will be given a series of function
implementations of the same function signature. You need to choose the
best 2 implementations in consideration of correctness, efficiency, and
possible corner cases.

Table 14: Instruction and prompting templates used in different datasets and roles.

22

	Introduction
	Related Work
	Dynamic LLM-Agent Network (DyLAN)
	Formulation
	Construction of DyLAN
	Agent Team Optimization

	Experiments
	Setup
	Main Results
	Ablation Studies

	Conclusion and Future Work
	Broader Impact
	Discussion & Limitation
	Implementation Details
	Detailed Experiment Settings
	Calculation of Agent Importance Score

	Additional Results
	Human Priors and Automatic Evaluation Results
	Stability of DyLAN on Temperature
	Different Ranking Methods
	Relation between Human Priors and Optimized Teams of Agents
	Shapley Value v.s. Agent Importance Score
	Case Study

	Prompting Templates

