
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOPOMHC: SEQUENCE–TOPOLOGY FUSION FOR
MHC BINDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Accurate prediction of peptide immunogenicity, particularly the binding affinity
to major histocompatibility complex (MHC) molecules, is critical for vaccine de-
sign and immunotherapy. Existing approaches are predominantly sequence-based
and often overlook structural variability and topological organization, which re-
stricts predictive reliability. In this work, we introduce a multi-modal framework
that integrates sequence embeddings from a pre-trained protein language model
(e.g., ESM-C) with topology-informed descriptors derived from peptide confor-
mations. We generate peptide conformers using molecular dynamics simulations
and RDKit-based methods, and from these conformations we compute persistent
homology invariants, Betti numbers, geometric statistics, and residue connectiv-
ity measures. These topological features are then fused with sequence embed-
dings through a cross-attention mechanism, allowing the model to capture both
local sequence patterns and global conformational organization. Extensive exper-
iments demonstrate consistent improvements over conventional structure-based
and sequence-only baselines, establishing state-of-the-art performance in peptide
immunogenicity prediction.

1 INTRODUCTION

Predicting peptide immunogenicity, especially their binding to major histocompatibility complex
(MHC) molecules, is central to computational immunology with applications in vaccine design and
immunotherapy. Presentation of peptide fragments by MHC class I molecules is essential for T-cell
receptor recognition, making accurate identification of immunogenic peptides critical for epitope
discovery and cancer vaccines. Experimental assays such as ELISPOT and tetramer staining are
reliable but costly and low-throughput (Schapira et al., 1999; Genheden & Ryde, 2015), motivating
computational approaches.

Early models such as NetMHC employed neural networks trained on curated binding datasets and
became widely used benchmarks. However, these sequence-based approaches generalize poorly
across alleles and peptide lengths, often missing structural determinants of immunogenicity (Lun-
degaard et al., 2008a; Wang et al., 2017). Recent advances in protein representation learning, no-
tably ESM and ProtTrans, generate contextual embeddings capturing evolutionary and biochemical
information (Rives et al., 2021; Elnaggar et al., 2021), achieving strong results in structural and
functional prediction. Yet, sequence-only embeddings lack explicit spatial awareness necessary for
MHC recognition (Lin et al., 2022).

To address this, structure-informed learning has emerged. Graph neural networks and 3D con-
volutional models capture residue neighborhoods and interface geometry, improving binding pre-
diction and protein interactions (Gainza et al., 2020; Ingraham et al., 2019). Still, they rely on
coordinate-level data and overlook transformation-invariant features (Cai et al., 2024). Topological
data analysis offers a complementary perspective: persistent homology encodes structural invariants
across scales, robust to noise, and has shown promise in protein folding and ligand binding (Cang
& Wei, 2018; Pun et al., 2018). Building on this, we propose TopoMHC, a multi-modal framework
integrating pretrained sequence embeddings with topology-informed descriptors via bidirectional
cross-attention, jointly capturing sequence motifs and structural organization for immunogenicity
prediction.
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Our key contributions are:

• A unified architecture that integrates pretrained sequence embeddings with geometric and
topological representations of peptide–MHC interfaces.

• A 100-dimensional topological feature vector encompassing contact statistics, interface
geometry, distance-based descriptors, and persistent homology.

• An adaptive feature fusion mechanism with cross-attention that improves generalization,
validated on curated binding affinity datasets against strong baselines.

2 RELATED WORK

2.1 PHYSICS-BASED METHODS

Physics-based simulations have long been regarded as the gold standard for quantifying molecu-
lar interactions. Methods such as molecular dynamics (MD) and free energy perturbation (FEP)
offer atomistic resolution of peptide–MHC interactions, while post-processing approaches such as
MM/PBSA and MM/GBSA approximate binding free energy through energy decomposition (Gen-
heden & Ryde, 2015; Wang et al., 2019). Although accurate in principle, these simulations are
computationally demanding, require extensive conformational sampling, and are sensitive to force-
field parametrization. Such constraints make them unsuitable for large-scale immunogenic peptide
screening or clinical applications where thousands of candidates must be evaluated.

2.2 MACHINE LEARNING APPROACHES

To improve scalability, a wide range of machine learning and deep learning models have been devel-
oped for MHC-related tasks. Classical approaches such as COMBINE analysis applied regression
over energy decomposition profiles to approximate binding affinity (Ganotra & Wade, 2018), while
scoring-based models including Syfpeithi (Rammensee et al., 1999) and PickPocket (Lundegaard
et al., 2008b) relied on motif libraries or position-specific weight matrices. Although these meth-
ods offered early breakthroughs, their reliance on predefined descriptors or allele-specific motifs
severely limited generalization across diverse peptide repertoires. With the availability of large-scale
immunological resources such as IEDB (Vita et al., 2019), neural models became dominant, includ-
ing frameworks like NetMHCpan (Jurtz et al., 2017; Reynisson et al., 2020), MHCflurry (O’Donnell
et al., 2018), and DeepLigand (Han et al., 2023), which employed artificial neural networks, convo-
lutional encoders, or recurrent architectures trained on binding affinity and eluted ligand data. More
recently, geometric and structural cues have been leveraged: graph neural networks and 3D deep
learning capture residue-level contacts and interfacial geometry (Gligorijevic et al., 2021; Town-
shend et al., 2021), while GearBind (Cai et al., 2024), DeepPPAPred (Chakrabarty et al., 2025),
and FuncPhos-STR (Zhang et al., 2024) integrate graph-based transformers, 3D convolutions, or
AlphaFold-derived dynamics. Despite these advances, existing methods remain biased toward ex-
plicit coordinate-level features and often overlook global invariants that remain stable across con-
formational variations.

2.3 TOPOLOGICAL DATA ANALYSIS

Topological data analysis provides an orthogonal perspective by quantifying structural invariants
that are robust to deformation. Persistent homology has been successfully applied to protein folding,
docking, and ligand binding, offering stable multiscale descriptors of shape and connectivity (Cang
& Wei, 2018; Hofer et al., 2017; Pun et al., 2018). Recent studies further suggest that topology
captures organizing principles of the protein universe, such as conserved folds and functional do-
mains, which are invisible to purely geometric representations (Madsen et al., 2025). Nevertheless,
the integration of topology into peptide–MHC modeling remains limited (Liu et al., 2022), leaving
an open opportunity for multi-modal approaches that combine sequence embeddings, structural ge-
ometry, and topology to improve predictive robustness. Our work situates itself at this intersection,
extending beyond conventional sequence-based or structure-only methods to leverage topological
descriptors for immunogenicity prediction.
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3 METHOD

We propose TopoMHC, a multi-modal deep learning framework that integrates protein sequence
embeddings with topology-informed structural descriptors to predict peptide immunogenicity.
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Figure 1: Overall architecture of the proposed TopoMHC framework. Peptide sequences are first
encoded into token-level embeddings using a pretrained protein language model (i.e., ESMC), which
are summarized into a sequence representation. In parallel, 3D conformations are generated with
RDKit and used to compute topological descriptors, including contact maps, interface geometry,
distance statistics, and persistent homology features. The two modalities are projected into a shared
latent space and aligned through bi-directional cross-attention. An AFF module together with an
explicit gating mechanism integrates the sequence- and topology-derived representations. The fused
embedding, concatenated with an independent topology encoder, is passed to a gated residual clas-
sifier for final immunogenicity prediction.
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3.1 PROBLEM FORMULATION

Let each peptide be represented by an amino acid sequence S = (s1, s2, . . . , sL) of length L,
together with its experimentally determined immunogenicity label y ∈ {0, 1}. Our goal is to learn a
mapping

fθ : Rds×L × Rdt −→ [0, 1],

where Rds×L denotes the token-level sequence embeddings extracted from a pretrained protein lan-
guage model (ESM), and Rdt denotes the handcrafted topological feature vector derived from 3D
conformations. The output fθ(x) corresponds to the probability that peptide S is immunogenic.

Given a training set D = {(S(i), x
(i)
seq, x

(i)
topo, y

(i))}Ni=1, the learning objective is to minimize the
empirical cross-entropy loss:

L(θ) = − 1

N

N∑
i=1

[
y(i) log fθ(x

(i)) + (1− y(i)) log
(
1− fθ(x

(i))
) ]

.

where x(i) = (x
(i)
seq, x

(i)
topo) is the concatenation of sequence and topology features.

At inference time, the model outputs ŷ = fθ(x), which is thresholded at 0.5 to determine the
predicted immunogenicity class.

3.2 SEQUENCE REPRESENTATION

We concatenate the antibody and antigen sequences as S = [Sa;Sg] and encode them with a pre-
trained protein language model from the ESM family (Rives et al., 2021; Elnaggar et al., 2021). This
produces residue-level embeddings

H ∈ RL×d,

where L is the combined sequence length and d the embedding dimension. A mean pooling opera-
tion summarizes H into a global descriptor,

xseq =
1

L

L∑
i=1

Hi,

which is then passed through a two-layer MLP with LayerNorm, GELU, and Dropout to yield the
sequence representation

hseq ∈ Rdh .

3.3 CONFORMATION GENERATION

For each peptide sequence S = (s1, . . . , sL), we construct 3D conformations using RDKit with
ETKDG initialization and UFF optimization. Formally, a conformation is represented as a set of
atomic coordinates

X = {xi ∈ R3}ni=1,

where n is the number of atoms. To account for conformational variability, we generate Nc con-
formers per peptide (default Nc = 10), yielding

C(S) = {X(1), X(2), . . . , X(Nc)}.

If RDKit fails to embed a valid structure, a fallback procedure generates simplified backbone-based
coordinates with stochastic perturbations, ensuring each peptide has at least Nc candidate confor-
mations.

3.4 TOPOLOGICAL FEATURE CONSTRUCTION

We extract xtopo from four geometric representations of the antibody-antigen structure. These fea-
tures capture multiscale interaction patterns from contact connectivity, interfacial geometry, Eu-
clidean distances, and topological persistence.
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Contact Map Features. We construct a binary matrix C ∈ {0, 1}n×n indicating whether a pair of
residues is in contact (e.g., Cij = 1 if the Cα-Cα distance is below threshold δ). Based on this, we
define:

D =
1

n2

∑
i,j

Cij

Contact density, measuring the overall sparsity of the contact network.

ki =
∑
j

Cij , µk =
1

n

∑
i

ki

ki is the contact degree of residue i, and µk is the average number of contacts per residue.

σk =

√
1

n

∑
i

(ki − µk)2, kmax = max
i

ki

Standard deviation σk quantifies structural irregularity, and kmax identifies hotspots with maximal
connectivity.

C̄ =
Tr(C3)∑

i ki(ki − 1)

Clustering coefficient C̄ reflects the local density of triangles in the graph, indicating compactness
and modularity.

Interface Geometry Features. For two chains (antibody and antigen), we define the binary inter-
face contact matrix I ∈ {0, 1}na×ng . From this we compute:

DI =
1

nang

na∑
i=1

ng∑
j=1

Iij

Interface density, capturing how tightly the two proteins interact.

Ra =
1

na

na∑
i=1

⊮

 ng∑
j=1

Iij > 0

 , Rg =
1

ng

ng∑
j=1

⊮

(
na∑
i=1

Iij > 0

)
Interface coverage, measuring the proportion of residues involved in cross-chain contacts.

µa =

∑na

i=1 ai ⊮(ai > 0)∑na

i=1 ⊮(ai > 0)
, µg =

∑ng

j=1 gj ⊮(gj > 0)∑ng

j=1 ⊮(gj > 0)

Mean interface degree, assessing how many contacts each interacting residue participates in.

Distance Map Features. From the Euclidean distance matrix D ∈ Rn×n between residues, we
compute:

dmin = min
i,j

Dij , µD =
1

n2

∑
i,j

Dij

Minimum and mean internal distance measure spatial compactness.

dmed = median({Dij})
A robust estimator of internal packing.
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µI =
1

|DI |
∑

(i,j)∈DI

Dij , Nc = |{(i, j) : Dij ≤ δ}|

Interface mean distance µI and contact count Nc summarize interaction range and density.

Persistent Homology Features. Persistent homology (PH) is a key method in topological data
analysis (TDA), designed to quantify multiscale topological structures in geometric data. In our
setting, PH captures the evolution of connected components, loops, and voids formed by atoms in
3D space, offering descriptors that are invariant to spatial transformations and robust to noise.

Given a point cloud X = {xi ∈ R3}ni=1 extracted from atomic coordinates (e.g., heavy atoms or
Cα), we construct a Vietoris–Rips filtration: for a threshold ϵ > 0, a simplex is added for each group
of points with pairwise distance less than ϵ. As ϵ increases, simplicial complexes Kϵ are formed,
and topological features appear (birth) and vanish (death).

Each topological feature corresponds to a persistence pair (bki , d
k
i ) in dimension k. From these, we

compute lifetimes ℓi = dki − bki and derive the following descriptors:

Nk = |{(bki , dki )}|, µk =
1

Nk

∑
i

ℓi,

σk =

√
1

Nk

∑
i

(ℓi − µk)2, ℓmax = max
i

ℓi

3.5 CROSS-MODAL FUSION

To integrate the sequence representation hseq and the topology representation x̃topo, we design
a cross-modal fusion module composed of bi-directional cross-attention, adaptive feature fusion
(AFF), and an explicit gating mechanism.

Bi-directional cross-attention. Both modalities are first projected into a shared hidden space of
dimension dh:

t = Wtx̃topo ∈ Rdh , S = WsH ∈ RL×dh ,

where H are token-level ESM embeddings and Wt,Ws are learnable projections. We expand t
into T pseudo-tokens {t1, . . . , tT } (T=1 by default) to serve as queries. Cross-attention is then
performed in two directions:

Ht→s = MHA(Q = T,K = S, V = S) ∈ RT×dh ,

Hs→t = MHA(Q = S,K = T, V = T ) ∈ RL×dh ,

where MHA denotes multi-head attention. We aggregate the outputs by averaging across tokens:

ht→s =
1

T

T∑
j=1

Ht→s,j , hs→t =
1

L

L∑
i=1

Hs→t,i.

Adaptive feature fusion (AFF). To combine the two directional summaries, we employ an adap-
tive weighting module that predicts fusion weights (α, β):

[α, β] = Softmax(Wf [ht→s;hs→t]),

yielding the fused representation
hbi = αht→s + β hs→t.

Explicit gating. Finally, we stabilize the fusion by mixing hbi with the original topology projection
t using a learnable gate:

g = σ(Wg[hbi; t] + bg) ,

hfuse = g · hbi + (1− g) · t,
where σ(·) is the sigmoid function and hfuse ∈ Rdh is the final cross-modal embedding passed to the
prediction head.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.6 PREDICTION HEAD

The fused cross-modal representation hfuse ∈ Rdh is concatenated with the independently encoded
topology vector htopo ∈ Rdh/2 to form the final feature:

z = [hfuse; htopo ] ∈ R
3
2dh .

Classifier architecture. To stabilize training and enhance nonlinearity, we employ a residual clas-
sifier built on gated residual networks (GRN) and gated GELU units (GEGLU):

h1 = GRN(LayerNorm(z)),

h2 = Dropout(h1),

h3 = GEGLU(h2),

ŷ = Softmax(Woh3 + bo),

where ŷ ∈ [0, 1]2 denotes the predicted probability distribution over immunogenic and non-
immunogenic classes.

Training objective. We optimize the standard cross-entropy loss:

L(θ) = − 1

N

N∑
i=1

(
y(i) log ŷ

(i)
1 + (1− y(i)) log ŷ

(i)
0

)
,

where ŷ
(i)
1 and ŷ

(i)
0 are the predicted probabilities for positive and negative classes, respectively.

At inference time, we output ŷ = argmaxj ŷj as the predicted label, with p̂ = ŷ1 serving as the
immunogenicity confidence score.

4 EXPERIMENTS

We conduct experiments to systematically evaluate the performance of TopoMHC on peptide–
MHC immunogenicity prediction. The primary goal is to examine whether incorporating topology-
informed structural descriptors provides consistent benefits over sequence-only baselines. To this
end, we perform direct baseline comparisons under identical training and evaluation protocols. All
experiments are carried out on a curated binding affinity dataset, and results are reported using stan-
dard classification metrics to ensure reproducibility and fair comparison.

4.1 DATASET

We evaluate our framework on a curated binary classification dataset of peptide–MHC binding affin-
ity (BA). Specifically, we focus on the HLA-A*02:01 allele, one of the most extensively studied
MHC class I molecules due to its high prevalence and clinical relevance. The dataset contains 12,953
peptide samples, each paired with an immunogenicity label that indicates whether the peptide is ex-
perimentally validated as a binder or a non-binder. To ensure consistency, all sequences are retained
within the canonical length range of 8–11 amino acids, which matches the binding preference of
class I MHC molecules. This dataset provides a reliable benchmark for evaluating large-scale im-
munogenicity prediction models and has been widely used in the development of existing baseline
methods.

4.2 EXPERIMENTAL SETUP

We formulate peptide–MHC binding prediction as a binary classification task. Following standard
practice (Lundegaard et al., 2008a), peptides are labeled as positive (binder) if their measured or
predicted IC50 is below 500 nM, and negative otherwise. This threshold is widely used in immuno-
genicity prediction, ensuring comparability with existing methods. The curated dataset is stratified
into training, validation, and test sets with ratios of 80%/10%/10%. Stratification preserves the
positive-to-negative class ratio in each split and prevents data leakage between sets. Performance is
evaluated with Accuracy, Precision, Recall, F1-score, and AUC, which together provide a compre-
hensive view of discriminative ability and balance between false positives and false negatives. All
experiments are repeated with five random seeds and results are averaged.
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Training Details. All models are trained with AdamW (learning rate 3 × 10−4, weight decay
1 × 10−4) and batch size 32. We apply ReduceLROnPlateau with patience 7 and early stopping
with patience 15, using validation AUC as the criterion. All experiments are conducted on a single
NVIDIA A100 GPU with mixed-precision training.

4.3 BASELINE COMPARISON

To contextualize our results, we compare TopoMHC against several widely adopted baselines for
peptide–MHC class I binding prediction. These methods are considered state-of-the-art in im-
munoinformatics and serve as standard references in epitope prediction tasks.

Method Acc ↑ Prec ↑ Rec ↑ F1 ↑ AUC ↑
TopoMHC 0.8510 0.8515 0.8510 0.8512 0.9081
NetMHC4.0 0.8210 0.8621 0.6458 0.7384 0.8798

NetMHCpan-4.2 0.8289 0.8381 0.6791 0.7503 0.9056
NetMHCcons 0.8213 0.8638 0.6450 0.7385 0.8772

NetMHCstabpan 0.8225 0.8691 0.6434 0.7394 0.8764

Table 1: Performance comparison between our proposed TopoMHC and representative baselines
on the peptide–MHC binding affinity dataset.

Table 1 compares the performance of TopoMHC with representative baseline models. TopoMHC
achieves the best overall results across all five metrics, reaching an accuracy of 0.8510 and an AUC
of 0.9081. In contrast, sequence-based baselines such as NetMHC4.0, NetMHCcons, and NetMHC-
stabpan show higher precision (around 0.86) but substantially lower recall (around 0.64), indicating
that they tend to miss positive binders. NetMHCpan-4.2 performs more competitively, with bal-
anced precision and recall and an AUC of 0.9056, yet still falls short of TopoMHC. These results
confirm that incorporating topology-informed structural features enables TopoMHC to achieve more
consistent and well-rounded predictive performance compared to sequence-only models.

4.4 ABLATION STUDIES

We next assess the contribution of individual components in TopoMHC through ablation experi-
ments. We evaluate five variants: (i) w/o AFF (replacing the Attentional Feature Fusion with simple
concatenation); (ii) w/o Cross-Attention (removing bidirectional cross-attention between sequence
and topology); (iii) w/o Gate (removing the gating mechanism after fusion); (iv) ESM-only (se-
quence embeddings only); and (v) Topo-only (topology features only).

Modules Metrics
AFF Cross-Attn Gate Seq Topo Acc ↑ Prec ↑ Rec ↑ F1 ↑ AUC ↑

✓ ✓ ✓ ✓ ✓ 0.8510 0.8515 0.8510 0.8512 0.9081
✗ ✓ ✓ ✓ ✓ 0.8387 0.8426 0.8387 0.8398 0.9039
✓ ✗ ✓ ✓ ✓ 0.8375 0.8380 0.8375 0.8378 0.9035
✓ ✓ ✗ ✓ ✓ 0.8286 0.8286 0.8286 0.8286 0.8955
✗ ✗ ✗ ✓ ✗ 0.8310 0.8386 0.8310 0.8327 0.9028
✗ ✗ ✗ ✗ ✓ 0.6692 0.6565 0.6692 0.6465 0.6820

Table 2: Ablation study of TopoMHC on the BA dataset. We investigate the effect of adaptive
feature fusion, bidirectional cross-attention, and explicit gating. The best results are highlighted
with a gray background, while the best and second-best values are additionally marked in bold and
underlined. Separate “Seq only” and “Topo only” rows illustrate the contribution of each modality
in isolation.

The ablation results confirm that each module contributes complementary value. Removing AFF
lowers both Accuracy and AUC, demonstrating that adaptive weighting of topological subspaces
improves generalization. Similarly, eliminating cross-attention reduces performance by over 1%,
highlighting its role in explicit alignment of sequence and structural modalities. The gating mecha-
nism, though lightweight, also proves beneficial; its removal decreases Accuracy and AUC by about

8
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Figure 2: ROC curves for ablation variants of TopoMHC. Removing AFF or cross-attention reduces
performance, while unimodal baselines (ESM-only and Topo-only) show significantly inferior re-
sults.

2%. By contrast, unimodal baselines perform markedly worse: ESM-only is competitive but lags
behind multimodal variants, while Topo-only collapses to an AUC of 0.6820, underscoring that
topology alone is insufficient. Together, these results show that the synergy of sequence embed-
dings and topology descriptors, mediated by AFF and cross-attention, is essential for the robust
performance of TopoMHC.

5 CONCLUSION

In this work, we introduced TopoMHC, a multi-modal framework for peptide–MHC immunogenic-
ity prediction that integrates pretrained sequence embeddings with topology-informed structural
descriptors. By combining ESM-based sequence representations with handcrafted geometric and
persistent homology features, our model jointly captures local sequence motifs and global structural
organization. Extensive experiments on curated binding affinity datasets demonstrate that TopoMHC
consistently outperforms sequence-only and traditional baselines. Ablation studies further validate
the contributions of adaptive feature fusion and bidirectional cross-attention, underscoring the im-
portance of explicit cross-modal alignment. These findings highlight the utility of incorporating
topological priors into deep learning pipelines for immunogenicity prediction.

Future work. Several challenges remain. The dataset size is modest compared to other domains,
and generalization to unseen alleles or longer peptides requires further validation. Moreover, con-
former generation and persistent homology introduce additional computational cost, which may hin-
der large-scale deployment. Future directions include leveraging large-scale structural pretraining
and developing efficient differentiable topology modules. Overall, TopoMHC provides a principled
step toward unifying sequence modeling and topological analysis, opening new opportunities for
computational immunology and vaccine design.
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A APPENDIX

A.1 LLM USABLE STATEMENT

Large Language Models (LLMs) were only used to polish the language of this paper. No LLM was
used to generate research ideas, experiments, or analyses.

A.2 DATASET DETAILS

We conduct our experiments on a curated peptide–MHC binding affinity (BA) dataset focused on the
HLA-A*02:01 allele. After preprocessing, the final dataset contains 12,953 unique peptide–HLA
pairs, with 4,899 positives (immunogenic binders) and 8,054 negatives (non-binders). All peptides
fall within the canonical MHC-I length range of 8–11 amino acids, consistent with class I binding
preferences (Lundegaard et al., 2008a). Each example comprises a unique identifier, the raw amino
acid sequence, and a binary immunogenicity label derived from experimental measurements.

Task definition. Following common practice in BA prediction, we formulate peptide immuno-
genicity as a binary classification problem (binder vs. non-binder). We retain only HLA-A*02:01
instances to avoid cross-allele confounding and to emphasize within-allele generalization.

Preprocessing. We remove duplicated entries by (i) exact-sequence matching and (ii) peptide–
allele pair de-duplication. Peptides outside 8–11 residues are excluded. All labels originate from
experimental assays reported in the source collections; no heuristic relabeling is applied.

Data splits. We adopt an 8:1:1 stratified split for training, validation, and testing, preserving the
positive/negative ratio across splits. All baselines and our model are trained and evaluated under
identical partitions and metrics to ensure fair comparison and reproducibility.

Feature extraction. Sequence embeddings are obtained from a pretrained protein language model
(ESM-C), with token-level representations pooled into global descriptors. For structure-aware sig-
nals, we generate peptide conformers using RDKit (ETKDG initialization followed by UFF relax-
ation), from which we compute topology-informed features, including contact statistics, interface
geometry descriptors, distance-based summaries, and persistent homology invariants. The resulting
sequence and topology features are standardized independently and cached for efficient training and
evaluation.

Recommended diagnostics. For transparency and reproducibility, we report: (i) class balance, (ii)
peptide-length coverage within 8–11 residues, and (iii) split-wise sample counts. To aid reviewers,
we also provide simple visual summaries (bar charts) of class balance and split composition, and
a histogram over peptide lengths (Appendix Figures 3–5). These do not introduce new results but
contextualize the evaluation setting.

A.3 CONFORMATION GENERATION

For each peptide sequence, we generated candidate 3D conformations using RDKit-based molecular
modeling pipelines. The procedure consists of four stages:

Residue assembly. Each amino acid in the input peptide was mapped to a canonical SMILES
fragment with appropriate stereochemistry. Fragments were covalently linked in sequential order,
ensuring peptide bond planarity and correct chirality at α-carbons. The resulting molecular graph
was sanitized using RDKit routines to verify valence and hydrogen counts.

Initial embedding. From the peptide molecular graph, we generated multiple 3D conformers us-
ing the ETKDG algorithm , which balances knowledge-based torsional preferences with distance
geometry sampling. Default generation produced up to 50 conformers per peptide before filter-
ing. To capture local flexibility, glycine residues were allowed enhanced torsional variation, while
proline rings were constrained to remain planar.
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Figure 3: Class balance (positive vs. negative) in the curated HLA-A*02:01 BA dataset.
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Figure 4: Peptide length coverage within 8–11 residues.

Energy minimization and sampling. Each raw conformer was optimized using the Universal
Force Field (UFF). This removed steric clashes and improved geometric plausibility. To further ex-
plore conformational space, we applied stochastic perturbations and short molecular dynamics–like
relaxation steps, producing up to Nc = 10 low-energy conformations per peptide. Redundant con-
formers were pruned by RMSD clustering with a threshold of 0.5 Å.

Output. For each peptide, the final conformer set was exported in pdb format. Conformations
were indexed by peptide ID and conformer index, then stored for downstream feature extraction. If
embedding failed, a simplified backbone-only scaffold with random torsional noise was substituted,
ensuring that every peptide contributed a valid set of conformers.

This multi-stage procedure balances geometric plausibility with structural diversity, producing re-
producible yet flexible peptide representations for topological feature computation.

A.4 FEATURE EXTRACTION

Topological and geometric descriptors. Given atomic coordinates, we computed topology-
informed descriptors using topo.py and topoMHC.py. Four categories of features were ex-
tracted: (i) contact maps defined at multiple Cα–Cα distance thresholds (default δ = 6Å, 8Å), from
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Figure 5: Train/validation/test split composition (stratified 8:1:1).

which density, degree statistics, and clustering coefficients were derived; (ii) interface geometry de-
scriptors quantifying cross-chain contact coverage, mean interface degree, and residue-level partici-
pation; (iii) distance statistics summarizing minimum, mean, and median inter-residue distances, as
well as interface mean distance and contact counts; (iv) persistent homology features computed from
Vietoris–Rips filtrations of atomic point clouds using the gudhi backend, including Betti numbers
(0–3), lifetime distributions, and summary statistics (mean, max, variance). To mitigate conforma-
tional noise, descriptors from multiple conformers were aggregated by mean, standard deviation,
minimum, and maximum, producing a fixed-length feature vector per peptide.

Sequence embeddings (ESM-C). Sequence-level features were extracted using the ESM-C pro-
tein language model, implemented in esm feature extractor.py. Residue-level embed-
dings with hidden dimension d = 1152 (for the chosen ESM-C variant) were stored in float32.
For efficiency, token-level embeddings were directly consumed by the fusion module without inter-
mediate pooling. For diagnostic purposes, pooled statistics (mean, max, std) were also computed
and cached. All embeddings were aligned to peptide identifiers to enable multimodal fusion with
topological descriptors.

Normalization and storage. Prior to training, all handcrafted descriptors were z-score normal-
ized across the dataset and serialized into .pkl dictionaries containing feature names and
feature values. Sequence embeddings were saved as separate esm features.pkl files,
ensuring modular reuse across experiments. At runtime, features were dynamically loaded and con-
catenated within the data.py loader to form multimodal inputs.

MODEL ARCHITECTURE

Our classifier integrates topology and sequence modalities with a bidirectional cross-attention block,
an Attentional Feature Fusion (AFF) layer, and an explicit gate:

• Unified projections. Topology features and per-token sequence embeddings are projected
into a shared hidden space (dimension 256 by default).

• Topo tokens. A single (or few) “pseudo-topology token(s)” are formed by linearly expand-
ing the topology vector, enabling token-to-token attention (topo tokens=1 by default).

• Bidirectional cross-attention. (i) topo→ seq: topology token(s) query sequence tokens;
(ii) seq→ topo: sequence tokens query topology token(s). Each direction uses a shared
multi-head projection module (MultiHeadProj) with H heads (default H=8) and Lay-
erNorm+GRN feed-forward refinement.
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• AFF fusion. The two directional summaries are fused by AFF: z = αu+β v, where (α, β)
are softmax-normalized attention weights estimated from both local (LayerNorm+MLP)
and lightweight global cues.

• Explicit gate to topology prior. A learnable sigmoid gate mixes the AFF output with the
original topology encoding to stabilize training and preserve structure-aware priors.

• Head. We concatenate the cross-fused vector with an independent topology encoder (two-
layer MLP with GELU), and feed the result into a GRN+GEGLU classifier head (Layer-
Norm → GRN → GEGLU → Linear) for binary prediction.

A.5 BASELINES AND EVALUATION

Baseline methods. We compared TopoMHC against several representative peptide–MHC binding
predictors.

NetMHC4.0. NetMHC4.0 employs fully connected neural networks trained on large-scale
peptide–MHC binding affinity data from IEDB and other curated resources (Andreatta & Nielsen,
2016). It incorporates gapped sequence alignment to enhance recognition of binding motifs and is
one of the most commonly used predictors for class I epitopes.

NetMHCpan-4.2. NetMHCpan represents a pan-specific extension of NetMHC, trained on both
binding affinity and eluted ligand datasets. The latest version, NetMHCpan-4.2, integrates transfer
learning and structural information to improve predictions of CD8+ T-cell epitopes across multiple
HLA alleles (Reynisson et al., 2025).

NetMHCstabpan. Unlike predictors that only estimate binding affinity, NetMHCstabpan focuses
on peptide–MHC complex stability, which has been shown to be a strong correlate of immunogenic-
ity. It uses artificial neural networks trained on stability data across multiple alleles (Rasmussen
et al., 2016).

NetMHCcons. NetMHCcons is a consensus-based predictor that combines the outputs of
NetMHC, NetMHCpan, and PickPocket into a unified prediction score, thereby improving robust-
ness and accuracy across alleles (Karosiene et al., 2012). This approach demonstrates the value of
ensemble learning in peptide–MHC binding prediction.

Input processing. All baseline methods were provided with the same curated BA dataset (HLA-
A*02:01, 12,953 samples). Peptides were represented by raw amino acid sequences in FASTA
or CSV format, depending on the interface requirements of each model. No structural features
were used in baseline runs. For reproducibility, we ensured that all methods received identical
training/validation/test splits (8:1:1 stratified).

Evaluation metrics. We evaluated model performance using five standard classification metrics:
Accuracy, Precision, Recall, F1-score, and Area under the ROC curve (AUC). Accuracy mea-
sures overall correctness, while precision and recall characterize positive prediction reliability and
sensitivity, respectively. F1-score balances precision and recall, and AUC provides a threshold-
independent measure of ranking quality. All metrics were computed on the held-out test set and
reported as averages over three independent runs to mitigate variance.

Training protocol. All models, including baselines, were trained using the same stratified split
and identical evaluation pipeline. For TopoMHC, we used AdamW optimizer with learning rate
scheduling and early stopping; baseline methods retained their recommended default hyperparam-
eters. This ensures that observed performance differences stem from modeling choices rather than
inconsistencies in training or evaluation.
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