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Abstract001

Tokenization is a fundamental step in natu-002
ral language processing (NLP) and other se-003
quence modeling domains, where the choice004
of vocabulary size significantly impacts model005
performance. Despite its importance, select-006
ing an optimal vocabulary size remains un-007
derexplored, typically relying on heuristics or008
dataset-specific choices. In this work, we pro-009
pose a principled method for determining the010
vocabulary size by analyzing token frequency011
distributions through Zipf’s law. We show that012
downstream task performance correlates with013
how closely token distributions follow power-014
law behavior, and that aligning with Zipfian015
scaling improves both model efficiency and016
effectiveness. Extensive experiments across017
NLP, genomics, and chemistry demonstrate that018
models consistently achieve peak performance019
when the token distribution closely adheres to020
Zipf’s law, establishing Zipfian alignment as a021
robust and generalizable criterion for vocabu-022
lary size selection.023

1 Introduction024

Tokenization is a fundamental preprocessing step in025

natural language processing (NLP), where raw text026

is segmented into smaller units known as tokens027

(Sennrich et al., 2016). These tokens can repre-028

sent words, subwords, or characters, depending on029

the tokenization strategy (Schuster and Nakajima,030

2012), and they form the basis for subsequent rep-031

resentation learning. The choice of tokenizer and032

its vocabulary size has a direct impact on model033

capacity, robustness, and computational efficiency034

(Devlin et al., 2019).035

Among various strategies, Byte Pair Encoding036

(BPE) (Sennrich et al., 2016) is the most widely037

adopted method in modern large language models.038

Existing large language models typically fix a vo-039

cabulary size (e.g., 50K) (Achiam et al., 2023) in040

advance, then apply BPE to construct the tokenizer.041

This fixed-size approach, while convenient, lacks042

a principled basis and may not be optimal across 043

different tasks, domains, or languages. 044

In practice, choosing too small a vocabulary may 045

lead to fragmented or overly fine-grained tokens, re- 046

sulting in longer sequences and degraded semantic 047

representation(Provilkov et al., 2020). On the other 048

hand, overly large vocabularies may introduce re- 049

dundancy, inflate memory usage, and reduce model 050

efficiency (Brown et al., 2020). However, vocabu- 051

lary size is often treated as a fixed hyperparameter, 052

determined heuristically or based on dataset statis- 053

tics (Kudo and Richardson, 2018). 054

Several prior works have explored metrics such 055

as fertility (token-per-word ratio), parity (cross- 056

lingual symmetry), and coverage to evaluate tok- 057

enizers (Liu et al., 2020; Wu et al., 2016). How- 058

ever, these metrics have been shown to corre- 059

late poorly with downstream task performance(Ali 060

et al., 2024), especially when moving beyond NLP 061

to other modalities such as genomics or chemistry. 062

As a result, there remains a need for a more robust 063

criterion to guide vocabulary size selection. 064

In this work, we propose a principled approach 065

inspired by Zipf’s law, a well-known linguistic phe- 066

nomenon whereby word frequency is inversely pro- 067

portional to its rank in natural language corpora 068

(Powers, 1998). We hypothesize that effective tok- 069

enizers should induce token frequency distributions 070

that align with Zipfian behavior. To test this hypoth- 071

esis, we introduce the Zipf alignment score, which 072

quantifies how closely a tokenizer’s frequency dis- 073

tribution fits a power-law on a log-log plot. We use 074

this score as a proxy metric to guide vocabulary 075

size selection. 076

Empirically, we demonstrate that token distri- 077

butions adhering more closely to Zipf’s law cor- 078

respond to better downstream performance. Our 079

experiments span NLP, genomics, and chemistry 080

tasks, showing that Zipf alignment consistently pre- 081

dicts optimal vocabulary size across modalities. 082

To summarize, the main contributions of our 083
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paper are as follows:084

• We show that as the vocabulary size increases, the085

token frequency distribution on a log-log scale086

becomes increasingly linear, reflecting stronger087

alignment with Zipf’s law.088

• We demonstrate that downstream task perfor-089

mance consistently improves and reaches its peak090

when the token distribution most closely follows091

Zipfian behavior.092

• We propose a principled approach for selecting093

vocabulary size by measuring the degree of Zipf094

alignment in the token distribution. This method095

is simple, generalizable across domains, and pre-096

dictive of optimal performance.097

2 Related Work098

Tokenization Tokenization, the process of seg-099

menting raw data into smaller units, is a critical100

step in NLP and other fields. Classic methods like101

BPE (Sennrich et al., 2016) and WordPiece (Schus-102

ter and Nakajima, 2012) use subword segmentation103

to balance vocabulary size and out-of-vocabulary104

handling, while SentencePiece (Kudo and Richard-105

son, 2018) enables language-independent tokeniza-106

tion. These methods are foundational for modern107

models like BERT (Devlin et al., 2019) and GPT108

(Radford et al., 2019), as tokenization directly im-109

pacts model efficiency, robustness, and downstream110

task performance. Beyond text, tokenization has111

been adapted for genomics (e.g., k-mer tokeniza-112

tion in DNABERT (Ji et al., 2021)), chemistry (e.g.,113

SMILES segmentation (Schwaller et al., 2019)),114

and even vision and audio, where images are split115

into patches and audio into spectrograms (Dosovit-116

skiy et al., 2021; Radford et al., 2023), demonstrat-117

ing its versatility across modalities.118

Tokenizer Selection Criteria Prior work has ex-119

plored several heuristics for selecting tokenizers.120

One common approach is to use compression ra-121

tio as a proxy, under the assumption that better122

compression implies more efficient representations.123

Goldman et al. (2024) examine this hypothesis and124

find that compression correlates with performance125

in some cases, but not consistently. Ali et al. (2024)126

further evaluate metrics such as fertility, parity, and127

compression, showing that these do not reliably pre-128

dict downstream task performance. These findings129

suggest that standard metrics often fail to capture130

what makes a tokenizer effective, highlighting the131

need for more robust, task-aware criteria.132

Zipf’s law and Power Law Power-law distribu- 133

tions were first studied by Pareto in the context 134

of wealth distribution (Pareto, 1964). Zipf later 135

formalized this phenomenon in linguistics, show- 136

ing that word frequencies in natural language fol- 137

low a power-law distribution, now known as Zipf’s 138

law (Zipf, 2013). This distribution reveals that 139

a small number of words dominate the text fre- 140

quency, while most words are uncommon, a pat- 141

tern that is consistent across languages and corpora 142

(Montemurro, 2001). Power-law distributions are 143

also prevalent in other domains, including biology, 144

where gene expression levels and protein networks 145

exhibit scaling laws (Jeong et al., 2001), and in 146

social networks, where the degree distribution of 147

connections follows power-law behavior (Barabási 148

and Albert, 1999). 149

3 Observing Zipf’s Law 150

One of the most widely adopted subword tokeniza- 151

tion methods is Byte Pair Encoding (BPE) (Gage, 152

1994), which iteratively merges the most frequent 153

adjacent character pairs in a corpus until a prede- 154

fined vocabulary size is reached. The BPE algo- 155

rithm is shown in Appendix A. BPE has been 156

extensively used in state-of-the-art large-scale lan- 157

guage models. Given its widespread adoption, BPE 158

shows its importance in NLP research. 159

3.1 Vocabulary Size 160

Vocabulary size is a critical yet often overlooked 161

factor in designing tokenizers. If a model is trained 162

on an infinitely large dataset that comprehensively 163

represents all knowledge, and if the model has ac- 164

cess to unlimited computational resources, then 165

vocabulary size is of minimal concern—one can 166

simply choose a sufficiently large vocabulary. How- 167

ever, in real-world scenarios, training datasets rep- 168

resent only a subset of global knowledge, and com- 169

putational resources impose practical limitations on 170

training. This makes vocabulary size an essential 171

hyperparameter. 172

A small vocabulary set may fail to capture the 173

fundamental characters of a dataset, leading to 174

excessive fragmentation of words and loss of se- 175

mantic information. Conversely, an overly large 176

vocabulary set would introduce redundancy, lead- 177

ing to inefficient token representations that are not 178

optimally compact. This trade-off is especially 179

pronounced when dealing with domain-specific 180

datasets, where suboptimal vocabulary choices can 181

2



significantly impact model performance.182

Despite its importance, vocabulary size is often183

determined based on heuristics or set arbitrarily184

large without systematic optimization. Such arbi-185

trary choices may prevent models from capturing186

the most meaningful token distributions for a given187

dataset, potentially limiting performance. We argue188

that optimal vocabulary size should be carefully de-189

termined for each dataset, particularly in different190

modalities such as NLP, genomics, and chemistry.191

Identifying the appropriate vocabulary size for a192

given domain is crucial for maximizing informa-193

tion retention and model efficiency.194

3.2 Power Law and Token Rank-Frequency195

Distributions196

Power law distributions characterize many natu-197

rally occurring phenomena, including linguistic198

structures. A power law describes a relationship199

where the frequency of an event is inversely pro-200

portional to its rank, typically expressed as f(x) ∝201

x−k, where x is the rank (Pareto, 1964).202

The log-log token rank-frequency distribution203

is based on empirical observations of textual data204

and is used to analyze the probabilistic structure205

of word frequencies within a text or corpus. In206

this representation, both the frequency of tokens207

(words) and their rank by frequency are plotted208

on logarithmic scales. If the token frequency fol-209

lows a perfect power-law distribution, the plot210

should form a straight line. However, in many real-211

world datasets, as shown in Section 5 and Figure 1,212

the plot often consists of segments with different213

slopes, indicating the presence of multiple classes214

of tokens with varying degrees of redundancy.215

In natural language, we typically observe that216

vocabulary distributions follow a power-law when217

trained on sufficiently large datasets. This obser-218

vation motivates us to investigate token distribu-219

tion patterns, particularly in specific datasets or do-220

mains. It leads us to ask: What is the optimal token221

distribution for a given domain or dataset? Can222

we determine the vocabulary size prior to training223

to obtain such an optimal distribution?224

3.3 Hypotheses and Vocabulary Size Selection225

Strategy226

Our study begins with the empirical observation227

that the token rank-frequency distribution exhibits228

a Zipfian pattern. This leads us to propose two hy-229

potheses that guide our vocabulary size selection:230

1. Hypothesis 1: As vocabulary size increases, 231

the log-log rank-frequency distribution of to- 232

kens gradually approaches a straight line, in- 233

dicating alignment with Zipf’s law. 234

2. Hypothesis 2: When the token distribu- 235

tion closely matches Zipf’s law, the model 236

achieves superior downstream performance. 237

In this section, we focus on verifying Hypothe- 238

sis 1 using the BookCorpus dataset. We train BPE- 239

based tokenizers with various vocabulary sizes 240

(ranging from 2K to 50K) and visualize the result- 241

ing rank-frequency distributions in log-log space. 242

From Figure 1, we observe the following note- 243

worthy phenomenon: 244

Observation 1: When the vocabulary is small, 245

the log-log rank-frequency distribution exhibits a 246

clear curvature, deviating significantly from the 247

ideal power-law form. As the vocabulary increases, 248

the curve straightens and approximates a linear 249

trend. This indicates that expanding vocabulary 250

promotes statistical self-organization of token us- 251

age, making the token distribution conform more 252

closely to Zipf’s law. This observation directly sup- 253

ports Hypothesis 1, showing that Zipfian behavior 254

emerges naturally as the vocabulary grows. Moti- 255

vated by this, we design a data-driven vocabulary 256

selection strategy that leverages Zipfian alignment 257

as a stopping criterion for vocabulary expansion. 258

To automatically determine an appropriate vo- 259

cabulary size, we design an iterative algorithm that 260

gradually grows the vocabulary and monitors how 261

well the resulting token distribution aligns with 262

Zipf’s law. The alignment is quantified using a 263

statistical goodness-of-fit score, such as the coef- 264

ficient of determination (R2), computed between 265

the empirical log-log rank-frequency curve and an 266

ideal Zipfian distribution. 267

The procedure begins with a small initial vocab- 268

ulary and expands it step by step using BPE or a 269

similar merge-based algorithm. After the t-th up- 270

date of vocabulary, we re-tokenize the corpus and 271

calculate the new Zipfian fit score, denoted as Zipft. 272

We keep track of the best Zipf score Zipfmax. 273

To determine when the vocabulary has grown 274

sufficiently, we introduce a stagnation counter that 275

monitors whether further merges lead to meaning- 276

ful improvements in Zipfian alignment. Specifi- 277

cally, if the score Zipft fails to exceed Zipfmax by 278

more than a small threshold ϵ after N steps, we 279

consider the Zipfian fit to have stabilized. At this 280

point, the vocabulary is no longer expanded, and 281

the current vocabulary is taken as the optimal set, 282
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Figure 1: Log-log rank-frequency distribution of different vocabulary sizes on BookCorpus. As the size increases,
the curves become increasingly linear, indicating closer adherence to Zipf’s law.

denoted by Vopt.283

This method adapts vocabulary size to the sta-284

tistical structure of the data and does not rely on285

arbitrary preset vocabulary sizes. In Section 5, we286

evaluate Hypothesis 2 and analyze how Zipfian287

alignment correlates with downstream task perfor-288

mance across different modalities.289

4 Method290

4.1 Models and Pre-training Methods291

We conduct experiments across multiple domains,292

including NLP, genomics (Gene), and chemistry293

(Chem), to evaluate the impact of vocabulary294

size on model performance. For each domain,295

we follow a two-stage process: pre-training on296

domain-specific datasets and fine-tuning on down-297

stream tasks. In the NLP domain, both encoder-298

only model (e.g., BERT (Devlin et al., 2019))299

and encoder-decoder model (e.g., mBART (Liu300

et al., 2020)) are evaluated. For BERT, we pre-301

train the model on a combination of OpenWeb-302

Text(Gokaslan and Cohen, 2019) and BookCor-303

pus(Zhu et al., 2015) datasets, following the stan-304

dard Masked Language Modeling (MLM) objec-305

tive (Devlin et al., 2019). The pre-trained BERT306

model is then fine-tuned on the GLUE bench-307

mark, which includes tasks such as sentiment anal-308

ysis, textual entailment, and paraphrase detection,309

and the model performance is evaluated using the310

GLUE score (Wang et al., 2018).311

For mBART, we pre-train the model on the312

WMT dataset using the Multilingual Denoising313

Pre-training objective, focusing on three language314

pairs: German-English (De-En), French-English315

(Fr-En), and Chinese-English (Zh-En) (Liu et al.,316

2020). The pre-trained mBART model is fine-tuned 317

on downstream translation tasks for the respective 318

language pairs and the performance is evaluated 319

using the BLEU score (Papineni et al., 2002). 320

In the genomics domain, we follow the approach 321

of DNABERT2 (Zhou et al., 2024), using a BERT- 322

based architecture tailored for DNA sequences. We 323

pre-train the model on DNA sequences from the 324

same dataset used in DNABERT2, employing the 325

MLM objective. Fine-tuning is performed on down- 326

stream classification tasks such as promoter predic- 327

tion and splice site detection, with model perfor- 328

mance evaluated using accuracy. 329

In the chemistry domain, we focus on the 330

SMILES representation of molecular structures, 331

using a BERT-based architecture. We pre-train the 332

model on the first 5 million data in ZINC20, a 333

large dataset of SMILES sequences representing 334

chemical compounds (Irwin and Shoichet, 2005). 335

Fine-tuning is performed on downstream classifi- 336

cation tasks such as molecular property prediction, 337

and performance is evaluated using the ROC-AUC 338

score . 339

4.2 Insight for Bigger Models 340

Due to resource constraints, we are limited to fine- 341

tuning relatively smaller models. However, Ruder 342

et al. (2019) argue that fine-tuning a smaller pre- 343

trained model on a smaller dataset can yield com- 344

petitive results compared to training a large model 345

from scratch, particularly for specific domains or 346

tasks . Based on this perspective, the conclusions 347

drawn from our experiments on smaller models can 348

also be extended to larger models, offering valuable 349

insights for scaling up model architectures. 350
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4.3 Finetuning Dataset and Evaluation351

Metrics352

For NLP tasks, we fine-tune BERT on the GLUE353

benchmark, excluding the WNLI task (Wang et al.,354

2018). The selected tasks and their evaluation met-355

rics are as follows: CoLA uses the Matthews corre-356

lation coefficient (MCC); MRPC and QQP use the357

average of accuracy and F1 score; STS-B uses the358

average of Pearson and Spearman correlation; and359

the remaining tasks are evaluated using accuracy.360

For NLP tasks with the mBART model, the361

model is first pre-trained on the WMT dataset362

(Bojar et al., 2016) for each language pair, and363

then fine-tuned on the IWSLT dataset, specifi-364

cally: IWSLT14(Cettolo et al., 2014) for De-En,365

IWSLT17(Cettolo et al., 2017) for Fr-En, and366

IWSLT15(Cettolo et al., 2015) for Zh-En.367

For genomics tasks with BERT, we use the GUE368

dataset that has 4 tasks: Core Promoter Detection,369

Transcription Factor Prediction, Promoter Detec-370

tion, and Epigenetic Marks Prediction.371

For the chemistry tasks with BERT, we use the372

MoleculeNet dataset, specifically the BBBP, Tox21,373

Sider, ClinTox, HIV, and BACE datasets, and use374

ROC-AUC as the evaluation metric .375

4.4 Determining Vocabulary Size376

Determining vocabulary size is crucial for down-377

stream tasks, as different domains require varying378

levels of token granularity. For NLP tasks, ex-379

periments are conducted with BERT vocabulary380

sizes ranging from 2,000 to 50,000. For multilin-381

gual translation tasks, vocab sizes between 2,000382

and 140,000 are utilized, as both languages share a383

common tokenizer. In the genomics and chemistry384

domains, where the character set is limited, vocab385

sizes between 500 and 8,000 are employed. This386

experimental setup enables a systematic analysis387

of the influence of vocabulary size on model effec-388

tiveness across these diverse modalities, providing389

insights into the optimal tokenizer configurations390

required for different types of data.391

5 Experiment Results392

Building on the empirical foundation established393

in Section 3.3, we now turn to validating Hypothe-394

sis 2: that model performance improves when the395

token rank-frequency distribution closely follows396

Zipf’s law. While Section 3.3 demonstrated the nat-397

ural emergence of Zipfian behavior with increasing398

vocabulary size, this section investigates whether399

such statistical alignment correlates with improve- 400

ments in downstream task performance. 401

To this end, we evaluate the impact of vocabu- 402

lary size across multiple domains—including nat- 403

ural language, genomics, and chemistry—to test 404

whether Zipfian alignment provides a meaningful 405

criterion for optimizing tokenizer vocabulary. We 406

analyze: 407

• The relationship between Zipfian goodness-of- 408

fit (measured via R2) and model performance; 409

• How the optimal vocabulary size varies across 410

domains; 411

• Whether alignment with Zipf’s law general- 412

izes beyond NLP to other modalities; 413

• Case studies and ablations to validate the ro- 414

bustness of our observations. 415

This analysis provides strong empirical support 416

for using Zipfian properties as an automatic, inter- 417

pretable, and domain-agnostic guide for vocabulary 418

size selection. 419

5.1 Impact on NLP task performance 420

To quantify the impact of vocabulary size, we eval- 421

uate BERT-Medium models trained with different 422

vocabulary sizes on the GLUE benchmark, cover- 423

ing eight NLP tasks. The results in Table 1 indicate 424

that models trained with 30,000 vocabulary size 425

consistently achieve the highest performance. No- 426

tably, performance at 30,000 is significantly higher 427

than at smaller vocabulary sizes, while further in- 428

creasing vocabulary size to 35,000 or 50,000 yields 429

marginal or even slightly worse results. 430

To better illustrate this trend, Figure 2a presents 431

the task performance as a function of vocabulary 432

size. The curve exhibits a clear upward trajectory, 433

peaking at 30,000 before plateauing. Cancho and 434

Solé (2001) empirically demonstrated that word- 435

frequency distributions in large corpora exhibit two 436

distinct power-law regimes, with clear inflection 437

points in the exponent values. This observation 438

motivates the application of segmented fitting and 439

enables a quantitative evaluation of linearity on log- 440

log rank-frequency plots. Alternative validation 441

methods for power-law behavior include maximum- 442

likelihood estimation combined with goodness-of- 443

fit tests based on the Kolmogorov-Smirnov statis- 444

tic, which measures the greatest vertical deviation 445

between empirical and theoretical cumulative dis- 446

tributions (Clauset et al., 2009). The Kolmogorov- 447

Smirnov statistic, however, is notably insensitive to 448

variations in the distribution tails, where the most 449

significant power law behavior arises. While pro- 450
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Vocab CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE Avg R2

size Matthews Acc. Acc./F1 Cor. Acc./F1 Acc. Acc. Acc.

2,000 24.83 84.64 77.49 78.46 84.63 69.74 77.31 63.52 70.08 0.6939
5,000 28.87 86.07 78.41 79.42 85.78 72.03 80.71 64.22 71.94 0.7735
10,000 36.02 88.78 82.54 83.62 87.37 79.01 86.25 64.57 76.02 0.8340
20,000 44.22 91.61 84.33 86.79 88.92 81.42 87.74 67.32 79.04 0.8911
25,000 49.73 91.25 85.63 86.82 88.97 82.03 87.91 67.54 79.99 0.9119
27,500 51.79 91.84 86.02 87.14 89.25 82.21 88.34 67.89 80.56 0.9198
30,000 54.92 92.36 86.37 87.45 89.52 82.52 88.96 68.94 81.38 0.9372
32,500 52.37 92.42 86.30 87.32 89.78 82.31 88.63 68.53 80.96 0.9344
35,000 53.64 92.39 86.42 87.42 89.63 82.51 88.72 68.76 81.19 0.9397
37,500 52.97 92.47 86.29 87.21 89.54 82.34 88.52 68.69 81.00 0.9408
40,000 53.27 92.21 86.24 87.37 89.31 82.29 88.65 68.42 80.97 0.9425
50,000 50.23 91.83 85.95 86.47 88.88 81.94 88.26 67.94 80.19 0.9414

Table 1: Performance comparison across various classification tasks. Metrics are accuracy for SST-2, MNLI, QNLI
and RTE; Matthews correlation for CoLA; the average of accuracy and F1 scores for MRPC and QQP; and the
average of Pearson and Spearman correlations for STS-B. Each configuration is run three times with different
random seeds, and the averaged results are taken as the final performance.

viding a more comprehensive assessment by assign-451

ing additional weight to tail differences, metrics452

such as the Kuiper or Anderson-Darling statistics453

introduce added complexity to the analysis(Clauset454

et al., 2009). Given the dual-regime structure ob-455

served in Figure 1 and the importance of accurately456

capturing both the head and the tail of Zipfian dis-457

tributions, we approximate each rank-frequency458

distribution with a least squares linear fit and adopt459

the coefficient of determination R2 as goodness-460

of-fit measure because it offers an intuitive and461

interpretable quantification of linearity across the462

entire rank-frequency spectrum.463

The results show that as vocabulary size in-464

creases, the R2 value steadily improves. Specif-465

ically, before reaching a vocabulary size of 30,000,466

the R2 value increases rapidly, while after reach-467

ing 30,000, the R2 value stabilizes at a high value.468

From Figure 2a, we observe that R2 closely follows469

the trend of the average performance. This further470

demonstrates that the closeness to Zipf’s law at471

different vocabulary sizes reflects the performance472

of downstream tasks.473

Similar conclusions can be drawn from the re-474

sults of the translation tasks (Table 4 in Appendix475

B). When the R2 metric reaches its optimal value,476

the BLEU score is also relatively high. Figure 2d477

illustrates the relationship between the translation478

task performance and vocabulary size for three lan-479

guage pairs. Obviously, the trend of R2 is consis-480

tent with the task performance.481

Observation 2: The token rank-frequency distri-482

bution can serve as a prior indicator of a pre-trained483

model’s performance on downstream tasks. When 484

the token distribution approaches a power law, it 485

suggests that the tokenizer is well-suited for the 486

task, leading to better performance on downstream 487

tasks. This suggests that closeness to Zipf’s law 488

can be a useful metric for choosing the best tok- 489

enizer and vocabulary. 490

5.2 Generalization to Genomics and 491

Chemistry 492

To assess its generalizability, the proposed ap- 493

proach is extended to genomics and chemistry, 494

where determining the vocabulary remains an open 495

challenge. 496

In genomics, we pre-train BERT-based mod- 497

els on DNA sequences, following the setup of 498

DNABERT2, and evaluate performance on vari- 499

ous GUE classification tasks. The results presented 500

in Table 2 indicate that optimal performance is 501

achieved with moderate vocabulary sizes, specif- 502

ically around 4000. Notably, for 5 out of the 503

8 tasks, the BERT model trained with a 4000- 504

vocabulary-size tokenizer demonstrates superior 505

accuracy scores. As shown in Figure 2c, the R2 506

value continues to rise as the vocabulary size in- 507

creases up to 4000, after which there is no signifi- 508

cant improvement. This aligns with our intuition: 509

smaller vocabularies fail to capture biologically 510

meaningful substructures, while excessively large 511

vocabularies lead to redundant segmentations. 512

Similarly, in chemistry, we tokenize SMILES 513

molecular representations and pre-train models us- 514

ing the ZINC20 dataset. The results presented in 515

Table 3 indicate that performance continues to im- 516
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Figure 2: Model performance with different vocabulary sizes across four distinct domains. Model performance
exhibits a consistent trend with the Zipfian goodness-of-fit

prove as vocabulary size increases from 500 to517

3000. However, after reaching a vocabulary size of518

3000, performance begins to slightly decline with519

further increases in vocabulary size. A vocabulary520

size of 3000 yields the best performance, achiev-521

ing the highest ROC-AUC score and the highest522

average score. By examining the R2 metric in both523

Table 3 and Figure 2d, we observe that a vocabu-524

lary size of 3000 represents the turning point. This525

finding further supports our Observation 2 in the526

chemistry domain and provides valuable insight527

for utilizing an appropriate tokenizer that can ef-528

fectively capture functional groups in molecular529

structures.530

5.3 Case Studies: Tokenization Granularity531

Across Vocabulary Sizes532

In the case studies section, we provide examples to533

show that having a vocabulary that is too small or534

too large is not appropriate. The figure shows ex-535

amples from both the NLP and chemistry domains536

to illustrate this conclusion.537

In the first example below, we do analysis for 538

CCCOc1ccc(cc1)c2cccc3c2nccn3 – the SMILES 539

representation of the molecule, and compare how 540

different vocabulary sizes affect its tokenization. 541

With a small vocabulary size, the molecule is overly 542

fragmented—for instance, into tokens like c1ccc 543

and ccn3(cc1)—which breaks apart chemically 544

meaningful structures and leads to unstable or un- 545

interpretable fragments. At an appropriate vocabu- 546

lary size, the tokenizer produces segments such as 547

CCCOc1ccc, (cc1), and c2cccc3c2, which aligns 548

with functional groups and aromatic or heterocyclic 549

rings, enhancing chemical interpretability. How- 550

ever, when the vocabulary is too large, tokens like 551

c2cccc3c2n emerge, which over-merge frequent 552

but semantically inconsistent character sequences. 553

These tokens span across distinct substructures, dis- 554

rupting meaningful chemical units and weakening 555

the tokenizer’s ability to preserve domain-relevant 556

structure. This observation reinforces the impor- 557

tance of choosing a vocabulary size that balances 558

token compactness with chemical coherence. 559
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Vocab CPD H-TFP1 H-TFP2 PD M-TFP1 M-TFP2 EMP_H3 EMP_H4 Avg R2

size Acc. Acc. Acc. Acc. Acc. Acc. Acc. Acc.

500 80.15 81.29 83.76 89.77 72.81 88.28 86.05 87.53 83.71 0.9294
1,000 80.53 82.42 83.81 91.16 74.31 89.03 87.14 87.64 84.51 0.9541
2,000 81.45 82.91 84.20 92.23 74.56 90.36 85.99 88.15 84.98 0.9604
2,500 81.52 83.07 84.51 92.37 74.23 90.02 86.39 88.37 85.06 0.9646
3,000 81.64 84.67 85.21 92.29 73.96 90.07 86.53 88.84 85.40 0.9676
3,500 81.49 85.03 85.24 92.47 74.15 90.22 87.41 88.62 85.58 0.9696
4,000 81.23 85.12 85.45 92.76 74.60 90.68 88.54 89.01 85.92 0.9727
4,500 81.46 84.99 85.34 92.59 74.46 90.33 88.27 88.95 85.80 0.9730
5,000 81.00 84.92 85.10 92.53 74.35 90.47 87.81 88.77 85.62 0.9734
6,000 81.25 84.92 86.01 92.08 73.96 89.99 88.47 88.29 85.62 0.9736
7,000 81.34 84.28 85.52 92.04 74.48 89.85 88.16 88.35 85.50 0.9744
8,000 81.80 83.62 84.85 91.99 74.81 89.63 88.01 88.28 85.37 0.9739
10,000 81.61 84.72 84.79 91.67 74.35 89.69 88.16 88.77 85.47 0.9742

Table 2: Performance comparison of different vocabulary sizes in gene-related classification tasks. Accuracy is
reported for all tasks, measuring the performance of BERT-based models on DNA sequence classification. Each
configuration is run three times with different random seeds, and the averaged results are reported.

Vocab BBBP Tox21 Sider ClinToxHIV BACE Avg R2

size ROC ROC ROC ROC ROC ROC

500 67.05 65.34 53.41 75.09 76.51 72.20 68.27 0.9201
1,000 67.31 64.41 54.02 77.91 76.84 73.49 69.00 0.9643
1500 67.12 67.51 54.83 79.30 76.87 74.83 70.08 0.9659
2,000 66.89 66.39 56.00 82.14 78.29 74.17 70.65 0.9677
2,500 67.42 67.43 56.32 84.72 77.69 74.92 71.42 0.9687
3,000 67.73 68.26 56.89 86.92 77.58 75.11 72.08 0.9741
3,500 67.39 67.62 56.47 87.23 77.29 75.32 71.89 0.9735
4,000 67.24 66.34 55.61 88.59 76.20 75.50 71.58 0.9749
5,000 66.14 65.99 56.26 87.12 75.70 75.93 71.19 0.9751
8,000 66.27 64.29 56.69 88.94 77.71 75.77 71.61 0.9746

Table 3: Performance comparisons are performed on
various classification tasks in the MoleculeNet dataset,
using ROC-AUC scores as the evaluation metric. Each
configuration is run three times with different random
seeds, and the average is used as the final performance
metric.

In the second example, we show how the phrase560

“invisible footprints” is tokenized with a vocabulary561

size of 30,000, correctly splitting it into “in” “vis-562

ible” “foot” “prints”. When a smaller vocabulary563

size is used, the word is split into non-semantic564

tokens such as “in” “vis” “ible” “foot” “prin” “ts”565

resulting in a loss of semantic meaning. When the566

vocabulary size is too large, each word is treated as567

a single token, introducing semantic redundancy.568

These examples further support our approach,569

providing insights into how vocabulary size influ-570

ences tokenization quality and, in turn, impacts571

task performance. They reinforce our method that572

vocabulary size determining should be Zipfian-573

guided, ensuring that tokenization reflects intrinsic574

linguistic and structural patterns.575

CCCOc1cccCCCOc1ccc(cc1)c2cccc3c2nccn3 (cc1) c2cccc3c2 nccn3

CCCO c1ccc c2cccc3 ccn3(cc1) c2n

CCCOc1ccc (cc1) c2cccc3c2n ccn3
large
vocab
size

appropriate
vocab size

(ours)

small
vocab
size

"invisible footprints" in visible foot prints

in vis foot tsible prin

invisble footprintslarge
vocab
size

appropriate
vocab size

(ours)

small
vocab
size

Figure 3: Case study: With an appropriate vocabulary
size, the tokenization not only is more effective but also
captures essential patterns of sequences.

6 Conclusion 576

This study explored the impact of tokenizer vo- 577

cabulary size on the performance of pre-trained 578

language models across various domains, includ- 579

ing natural language processing, genomics, and 580

chemistry. By analyzing the relationship between 581

token rank-frequency distribution and task perfor- 582

mance, we demonstrated that aligning token distri- 583

butions with power-law scaling laws can serve as 584

a robust criterion for determining optimal vocabu- 585

lary sizes. Our experiments revealed that models 586

achieve superior performance when the token dis- 587

tribution closely adheres to Zipf’s law, indicating 588

that this alignment enhances both efficiency and 589

effectiveness in downstream tasks. 590
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7 Limitations591

While our study provides valuable insights into the592

relationship between tokenizer vocabulary size and593

model performance, several limitations should be594

acknowledged.595

Due to hardware limitations, we only conduct596

pre-training experiments on relatively small mod-597

els. Although the conclusions drawn from these598

smaller models offer meaningful guidance for599

larger models, the significant difference in param-600

eter scale means that our findings may not fully601

generalize to state-of-the-art architectures with bil-602

lions of parameters. Further experiments on larger603

models are necessary to solidify our conclusions604

and validate the scalability of our approach.605

Our experiments primarily focused on a subset606

of modalities (e.g., NLP, genomics, and chemistry)607

and a limited range of pre-trained model architec-608

tures (e.g., BERT and mBART). To further general-609

ize our findings, future work should extend the eval-610

uation to additional modalities (e.g., vision, audio)611

and diverse model architectures (e.g., Transformer612

variants, hybrid models).613
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Vocab De-En En-De R2 Fr-En En-Fr R2 Zh-En En-Zh R2

size BLEU BLEU BLEU BLEU BLEU BLEU

2,000 13.67 12.83 0.5755 15.01 15.67 0.5976 8.25 8.81 0.6668
5,000 19.31 17.99 0.6784 22.44 23.01 0.6940 12.91 12.92 0.6372
8,000 21.53 20.84 0.7266 25.46 27.08 0.7259 14.62 15.28 0.6153
10,000 23.33 22.86 0.7528 29.78 29.73 0.7477 16.15 16.74 0.6031
20,000 26.26 24.27 0.8136 33.71 35.40 0.8306 16.92 19.61 0.6678
30,000 27.22 25.11 0.8609 35.33 35.97 0.8909 18.92 21.80 0.7602
40,000 28.13 24.99 0.8968 36.48 36.95 0.9201 19.16 21.90 0.8196
50,000 28.88 25.78 0.9204 36.34 37.22 0.9397 18.78 22.34 0.8568
60,000 29.75 26.66 0.9382 36.57 37.37 0.9510 19.57 23.03 0.8846
70,000 29.80 26.89 0.9521 37.59 37.94 0.9642 19.91 22.95 0.9042
80,000 30.01 26.67 0.9609 36.89 38.06 0.9687 19.82 23.29 0.9144
100,000 29.99 26.52 0.9615 37.11 38.09 0.9622 20.51 23.94 0.9372
110,000 29.91 26.63 0.9648 37.10 38.15 0.9649 20.91 24.48 0.9578
120,000 29.86 26.58 0.9657 37.09 38.07 0.9680 20.92 24.40 0.9630
130,000 29.77 26.67 0.9625 37.29 38.03 0.9674 21.21 24.69 0.9596
140,000 29.69 26.62 0.9613 37.01 37.90 0.9636 21.00 24.52 0.9585

Table 4: BLEU scores of models with different vocabulary sizes on the En-De, En-Fr, and En-Zh translation tasks.
Each configuration is averaged over three random seeds.

A BPE algorithm809

This shows a detailed description of BPE algo-810

rithm.811

Algorithm 1 Byte Pair Encoding (BPE)

Require: Corpus D, target vocabulary size V
Ensure: Vocabulary set V

1: Initialize V with all unique characters in D
2: Compute frequency of all adjacent symbol

pairs in D
3: while |V| < V do ▷ Continue until target

vocabulary size is reached
4: Identify the most frequent pair (si, sj) in

D
5: Merge (si, sj) into a new symbol sk
6: V ← V ∪ {sk}
7: Update D by replacing all occurrences of

(si, sj) with sk
8: Update frequencies of adjacent symbol

pairs in D
9: end while

10: return V

B Result for Translation Task812

To investigate how vocabulary size affects machine813

translation performance, we conduct experiments814

on three language pairs (German-English, French-815

English, and Chinese-English) . Each model vari-816

ant is fine-tuned three times with different random817

seeds, and the average BLEU score is reported in818

Table 4819

C License and Terms of Use 820

We provide here the license information and terms 821

of use for all datasets, models, and other artifacts 822

used or created in this work. 823

Pre-training Datasets. 824

• OpenWebText and BookCorpus were used 825

to pre-train BERT in the NLP domain. Open- 826

WebText is a publicly available dataset in- 827

tended to replicate the quality of OpenAI’s 828

WebText corpus and is distributed under an 829

open research license.1 BookCorpus was orig- 830

inally collected by Zhu et al. (2015) and is 831

available for academic use only. 832

• WMT16/17/18 datasets are used for multilin- 833

gual pre-training and translation fine-tuning 834

with mBART. These datasets are publicly re- 835

leased as part of the WMT shared tasks, li- 836

censed for research use.2 837

• ZINC20 is used for pre-training in the chem- 838

istry domain. ZINC is a free database of 839

commercially-available compounds provided 840

by the Irwin and Shoichet Laboratories at 841

UCSF. It is available for academic research 842

under a public domain dedication (CC0).3 843

• DNA sequences used for genomics tasks are 844

derived from public genome datasets and fol- 845

low the same data sources as DNABERT2 846
1https://skylion007.github.io/

OpenWebTextCorpus/
2http://www.statmt.org/wmt16/
3https://zinc20.docking.org/
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(Zhou et al., 2024). These datasets are in the847

public domain and used solely for academic848

research.849

Downstream Task Datasets.850

• GLUE Benchmark datasets (Wang et al.,851

2018) are publicly released for research use852

and are commonly used under their respective853

licenses.854

• IWSLT14/15/17 datasets used for fine-tuning855

translation tasks are distributed for non-856

commercial research use as part of the IWSLT857

shared tasks.858

• MoleculeNet datasets (e.g., BBBP, Tox21,859

Sider, ClinTox, HIV, BACE) are released un-860

der the MIT license and made publicly avail-861

able by DeepChem.4862

• GUE Dataset used for genomics classifica-863

tion tasks is adopted following the usage in864

DNABERT2 (Zhou et al., 2024), and is used865

for research purposes.866

Code and Models. Our tokenizer construction867

scripts, Zipfian analysis tools, and vocabulary se-868

lection framework will be released under the MIT869

license. Any pre-trained models provided as part870

of this work will be licensed for academic research871

use only.872

D Experimental Details873

Computational Resources. All experiments874

were conducted using a combination of 8 NVIDIA875

2080Ti GPUs and 4 NVIDIA A10 GPUs. In total,876

our experiments consumed approximately 4,900877

GPU-hours on 2080Ti and 2,400 GPU-hours on878

A10 cards. These computations include all pre-879

training, fine-tuning, hyperparameter search, and880

validation runs across all domains.881

Model Sizes. The number of parameters used in882

each experimental setting is summarized below:883

• NLP (BERT models): 84M to 124M param-884

eters depending on vocabulary size.885

• NLP (mBART models): 177M to 320M pa-886

rameters depending on vocabulary size.887

• Genomics (BERT-based): 80M to 93M pa-888

rameters depending on vocabulary size.889

4https://moleculenet.org/

• Chemistry (BERT-based): 72M to 90M pa- 890

rameters depending on vocabulary size. 891

Reproducibility. Each experiment was repeated 892

using 3 different random seeds, and all reported 893

results are averages over these runs. 894

Software and Libraries. We implemented all 895

models using the HuggingFace Transformers li- 896

brary (v4.38) and PyTorch (v2.0). Data loading 897

and pre-processing were done using the Hugging- 898

Face Datasets library. Evaluation metrics such as 899

BLEU and ROC-AUC were computed using nltk, 900

scikit-learn, and custom scripts, with standard 901

configurations unless otherwise specified. 902
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