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Abstract

We study level set teleportation, a sub-routine which seeks to accelerate gradient methods by max-
imizing the gradient over the set of parameters with the same objective value. Since the descent
lemma implies that gradient descent (GD) decreases the objective proportional to the gradient-
norm, level-set teleportation maximizes guaranteed one-step progress. We prove level-set telepor-
tation neither improves nor worsens the convergence of GD for strongly convex functions, while for
convex functions teleportation can arbitrarily increase the distance to the global minima. To solve
teleportation problems, we develop a projected-gradient-type method requiring only Hessian-vector
products; we use our method to show that initializing GD with teleportation slightly under-performs
standard initializations for both convex and non-convex optimization problems. As a result, we re-
port a mixed picture: teleportation can be efficiently evaluated, but appears to offer marginal gains.

1. Introduction

We consider the minimization of a continuous, potentially non-convex function f. When the gradi-
ent of f is L-Lipschitz (i.e. f is L-smooth), the descent lemma (Bertsekas, 1997) implies gradient
descent (GD) with step-size 1, < 2/L makes progress proportional to the gradient-norm,
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If all other quantities are held constant, then increasing the norm of the gradient increases the one-
step progress guaranteed by smoothness. This implies gradient descent trajectories which maximize
the observed gradients may converge faster than their naive counterparts. This same argument has

been used to select new edges for incrementally growing a neural network (Evci et al., 2022).

Level set teleportation attempts to leverage the descent lemma by maximizing the gradient norm
without changing the objective value. At an iteration k satisfying a pre-determined scheduling rule,
level set teleportation solves the non-concave maximization problem,

wf € argmax J|VS@)I} st fw) = fw), @)

where the level set is £y, := {w : f(w) = f(wy)}. Zhao, Dehmamy, et al. (2023) show the Newton
and gradient directions coincide after teleportation, meaning the next gradient step is equivalent to a
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Newton update (see Fig. 1). For some functions, including quadratics, the gradient norm is also max-
imized everywhere along the gradient flow from w,:r (Zhao, Dehmamy, et al., 2023; Zhao, Gower,
et al., 2023). This suggests that level set teleportation may be an effective heuristic for improving
the convergence rate of gradient methods, particularly when used to initialize optimization.

A major barrier to evaluating the effectiveness of teleportation is the difficulty of solving Eq. (2).
Previous work has instead focused on symmetry teleportation (Zhao, Dehmamy, et al., 2023; Zhao,
Gower, et al., 2023), which restricts optimization to group symmetries of the objective. For exam-
ple, neural networks with positively homogeneous activation functions are invariant under certain
positive rescalings. Although group symmetries do not fully capture L, Zhao, Dehmamy, et al.
(2023) try to approximate level set teleportation by optimizing over parameterized group operators.

In contrast, we provide a simple algorithm for solving the level set teleportation problem based on
sequential quadratic programming (SQP). Our method, which requires only Hessian-vector prod-
ucts, works by linearizing the level set constraint f(w) = f(wy) at each iteration and resembles a
step of projected GD. The procedure is parameter-free—the step-size is selected automatically using
a merit function—and convergence can be guaranteed using connections to existing SQP methods.

We use our algorithm to evaluate the effectiveness of level set teleportation for initializing optimiza-
tion by computing war and we also perform a limited theoretical investigation. Our contributions
provide a mixed perspective on level set teleportation which we summarize as follows:

* The Good: We prove teleportation does not harm optimization when f is smooth and strongly-
convex, although it cannot improve convergence in the worst case. We also provide a fast,
parameter-free algorithm for solving teleportation and scale it to MNIST (LeCun et al., 1998).

* The Bad: We construct an example showing that level set teleportation can move arbitrarily
far from the minimizers for non-strongly convex functions, making convergence guarantees
unlikely in this setting. For deterministic updates, our experiments show initializing by tele-
portation only accelerates optimization initially and can lead to slow convergence later.

* The Ugly: Level set teleportation can improve convergence for specific problems, particularly
over the first few epochs, yet appears to have little effect in the stochastic setting. As a result,
it is difficult to strongly advocate for teleportation or to completely dismiss it outright.

1.1. Related Work

Level Set Teleportation: Armenta and Jodoin (2021) and Armenta, Judge, et al. (2020) use group
symmetries to randomly perturb the weights of neural networks during training. Zhao, Dehmamy,
et al. (2023) optimize over parametric symmetries, while Zhao, Ganeyv, et al. (2023) propose more
sophisticated mappings, including data-dependent symmetry operators. Zhao, Gower, et al. (2023)
give stronger guarantees on the gradient norm for symmetry teleportation on non-convex functions.

Symmetries in Optimization: Teleportation is closely connected to the notion of sharp minima in
deep learning (Dinh et al., 2017; Hochreiter and Schmidhuber, 1997; Keskar et al., 2017). In par-
ticular, sharpness aware minimization (Foret et al., 2021) biases optimization towards “flat” regions
with low curvature, while teleportation seeks large gradients to accelerate training. Neyshabur et
al. (2015) propose Path-SGD, a gradient method which is invariant to rescaling symmetries, while
Bamler and Mandt (2018) separate optimization into directions with symmetries and those without.
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Figure 1: Initializing by level set teleportation on two test functions. Booth is quadratic and tele-
porting aligns war with the maximum eigenvalue-eigenvector pair. Goldstein-Price is non-
convex and teleporting pushes war up a narrow “valley” from which convergence is slow.

2. Level Set Teleportation

We first analyze the effects of level set teleportation on the convergence of gradient methods. We
assume that f is L-smooth, has at least one minimizer w*, and is coercive. Coercivity implies the
level sets are compact and guarantees the teleportation problem admits a finite solution.

Instead of solving Eq. (2), we focus on the more general sub-level set teleportation problem,
1
w,:r = argmaxiHVf(w)H% st f(w) < f(wg), 3)
w

where the feasible set is the sub-level set Sy, = {w : f(w) < f(wyg)}. For convex f, Eq. (3) admits
at least one solution on the boundary of Sg; if f is strictly convex, then every solution is on the
boundary and the relaxation is equivalent to level set teleportation (Lemma 5). However, sub-level
set teleportation is acceptable even for non-convex functions since our overall goal is minimization.

Let 7 C N be a teleportation schedule, meaning w1 = wi — NV f (w,':) if k € T and wiy1 =
wy, — MV f (wy,) otherwise. Recall that f is p-strongly convex if for every w, w’ € R? it holds that

Fw) = f) + (V) w—w') + Sllw = o'|3. )

Our first result shows GD has the same convergence rate with and without teleportation.

Proposition 1 Suppose f is L-smooth and 1 strongly convex. Then gradient descent with step-size
sequence {ny} and teleportation schedule T converges as

flwg) = f(w") <

= [t

k
[max {(1 — mL)Q, (1— mu)z}] (f(wo) — f(w™)).
=0

(A
Moreover, this rate is tight in the worst case.

See Appendix A for proof. While Zhao, Gower, et al. (2023) give an upper bound for symmetry
teleportation with GD under the weaker Polyak-Eojasiewicz condition (Karimi et al., 2016), the
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Figure 2: Illustration of our method for solving level set teleportation on a convex quadratic. The
algorithm combines gradient-ascent with projections onto a linearized level-set.

final rate is worse and they do not study lower bounds. Next we consider non-strongly convex f and
prove sub-level set teleportation can arbitrarily increase the distance to the minimizer.

Proposition 2 For every C' > 0, there exists smooth, convex f such that teleportation satisfies

oy = w*ll2 = Cllwy, — w2

Although Proposition 2 is not a non-convergence result for GD with teleportation, it implies standard
proofs for smooth, convex functions which start by expanding ||wy1 — w*||3 are likely to fail.

3. Evaluating the Teleportation Operator

Sub-level set teleportation requires solving a general non-linear programming problem. Although
we could apply standard SQP methods, computing the Hessian of the teleportation objective requires
third-order derivatives of f, which is not feasible for large-scale problems. Instead, we develop an it-
erative projected-gradient-type method which is scalable and requires only Hessian-vector products.
We denote by x; the iterates of our method for solving teleportation, with xg = wy.

For general f, the sub-level set Sy is non-convex and does not admit an efficient projection operator.
In contrast, the linearization of this constraint around an iterate t ; yields a single half-space,

Sp(we) = {w : le() = fae) + (VS (@), w — ) < f(wp)},

for which projections are easy. To obtain a tractable algorithm, we consider maximizing a penalized
linearization of the log-gradient-norm subject to this constraint,

_ 1 2 VQf(xt)Vf(xt) 1 2
e = iigsi?i?{fog(”w ol + Vil " R

Taking the logarithm of the objective implicitly encodes positivity of the gradient norm and leads to
a normalized update rule, as we show next.

Proposition 3 The solution to Eq. (5) is given by

ve = — (e (VI (1), V2 (@) V f () + flae) = f(wr)), V(@)

6
21 = 2o+ (0 V2 (@) V f (20) + 1) IV f () |13 ©
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Figure 3: Performance profile comparing optimization with (solid lines) and without (dashed lines)
initialization by teleportation. A problem is solved when (f(wg) — f(w*)) /f(w*) <
0.5, where f(w*) is the smallest objective found by any method. Performance is judged
by comparing time to a fixed proportion of problems solved (see dashed line at 50%).

This iteration is equivalent to a step of projected gradient descent with a linearized sub-level set
constraint; see Fig. 2 for an illustration. It is also a step of sequential quadratic programming using
the crude estimator I/p; =~ V2 f(x;). Torrisi et al. (2018) leverage this fact to show that projected-
gradient algorithms with linearized constraints are convergent, although they require an additional
relaxation step Zx1 = az+1 + (1 — a)xy. We have not found this to be necessary in practice.

3.1. Computing the Step-size

A major disadvantage of our update is that it requires a step-size p; > 0. Since teleportation is a
sub-routine of a larger optimization procedure, tuning p; for good performance is not acceptable.
Following standard practice for SQP methods (see, e.g. Nocedal and Wright (1999, Theorem 18.2)),
we instead select p; using line-search on an Armijo-type condition (Armijo, 1966),

1
Py (@t+1) < @y (2t) + 5Dp(@1, 41 — 1), (7

where ¢ (z) = —%||Vf(2)|3 + v (f(2) — f(wg)),. ¥ > O controls the penalty strength, and
D (x4, d) is the directional derivative of ¢-. Setting ~ sufficiently large gives a descent direction.
(qt,vt)

IV (zo)ll3(f (ze) = f(wr))
is a descent direction of ¢-,, and the line-search condition simplifies to

Proposition 4 Let g, = V2 f(x,)V f(24) and suppose ~y; > . Then xy11 — x4

Srulinn) < ~3 IV AR+ (lae 00 — pellal3) IV F 0l ®)

When v; = 0 the update reduces to gradient ascent and y; = 0 is immediately sufficient for progress.
Proposition 4 provides a recipe for computing step-sizes using backtracking line-search. See Ap-
pendix B for details on termination criteria and a full description of our algorithm.
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Figure 4: Performance of full-batch optimizers with (solid) and without (dashed) initialization by
teleportation for training a ReLU MLP with two hidden layers of size 100 on MNIST.

4. Experiments

Solving the Teleportation Problem: Fig. 1 shows the convergence path of our teleportation solver
on two test functions (Goldstein and Price, 1971). See Fig. 5 in Appendix C.1 for additional results
showing our method converges to an approximate KKT point when teleporting on MNIST.

Initialization by Teleportation: Fig. 3 presents a performance profile (Dolan and Moré, 2002) com-
paring full-batch gradient descent (SGD), the Polyak step-size (SPS) (Loizou et al., 2021; Polyak,
1987), and normalized gradient descent (Norm. SGD) with (solid lines) and without (dashed lines)
initialization by teleportation on 160 problems from the UCI repository (Asuncion and Newman,
2007). We find that teleportation does not improve the performance of gradient methods in general.
Out of all three methods, only normalized gradient descent is competitive when used with telepor-
tation and it only outperforms the standard initialization early in optimization. See Fig. 7 for similar
results in the stochastic setting and Fig. 10 for special cases where teleportation is advantageous.

Image Classification: We perform additional experiments with ReLLU networks on MNIST (Fig. 4)
to confirm our observations. We find that teleportation significantly increases the gradient norm
along the optimization path, but methods initialized by teleporting require smaller step-sizes. As
a result, the intuition from the descent lemma fails and teleportation stalls. See Appendix C.1 for
additional results on Fashion MNIST (Xiao et al., 2017) and extensions to the stochastic setting.

5. Conclusion

Despite recent work advocating for level set teleportation as an optimization sub-routine for gradient
methods, little work has been done to solve teleportation problems or evaluate their practical utility.
We rectify this and study (sub)-level set teleportation in detail; we prove new theoretical guarantees
for gradient descent with teleportation, derive a novel algorithm for solving teleportation problems,
and evaluate the performance of teleportation on a large suite of problems. Our results reveal the
surprisingly mixed performance of teleportation in both theory and practice and we advocate a
balanced viewpoint that includes all its aspects — good, bad, and ugly.



LEVEL SET TELEPORTATION

References

Armenta, Marco and Pierre-Marc Jodoin (2021). “The representation theory of neural networks”.
In: Mathematics 9.24, p. 3216.

Armenta, Marco, Thierry Judge, et al. (2020). “Neural Teleportation”. In: CoRR abs/2012.01118.

Armijo, Larry (1966). “Minimization of functions having Lipschitz continuous first partial deriva-
tives”. In: Pacific Journal of mathematics 16.1, pp. 1-3.

Asuncion, Arthur and David Newman (2007). UCI machine learning repository.

Bamler, Robert and Stephan Mandt (2018). “Improving optimization for models with continuous
symmetry breaking”. In: International Conference on Machine Learning. PMLR, pp. 423-432.
Bertsekas, Dimitri P (1997). “Nonlinear programming”. In: Journal of the Operational Research

Society 48.3, pp. 334-334.

Dinh, Laurent et al. (2017). “Sharp Minima Can Generalize For Deep Nets”. In: Proceedings of the
34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017. Vol. 70. Proceedings of Machine Learning Research, pp. 1019-1028.

Dolan, Elizabeth D and Jorge J Moré (2002). “Benchmarking optimization software with perfor-
mance profiles”. In: Mathematical programming 91, pp. 201-213.

Evci, Utku et al. (2022). “GradMax: Growing Neural Networks using Gradient Information”. In:
International Conference on Learning Representations. URL: https://openreview.net/
forum?id=gqjN4h_wwUO.

Fernandez-Delgado, Manuel et al. (2014). “Do we need hundreds of classifiers to solve real world
classification problems?” In: The journal of machine learning research 15.1, pp. 3133-3181.

Foret, Pierre et al. (2021). “Sharpness-aware Minimization for Efficiently Improving Generaliza-
tion”. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021.

Goldstein, Allen A. and J. F. Price (1971). “On descent from local minima”. In: Mathematics of
Computation 25, pp. 569-574.

He, Kaiming et al. (2015). “Delving Deep into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification”. In: 2015 IEEE International Conference on Computer Vision, ICCV
2015, Santiago, Chile, December 7-13, 2015, pp. 1026-1034.

Hochreiter, Sepp and Jiirgen Schmidhuber (1997). “Flat Minima”. In: Neural Comput. 9.1, pp. 1-
42,

Karimi, Hamed, Julie Nutini, and Mark Schmidt (2016). “Linear Convergence of Gradient and
Proximal-Gradient Methods Under the Polyak-t.ojasiewicz Condition”. In: Machine Learning
and Knowledge Discovery in Databases - European Conference, ECML PKDD 2016, Riva del
Garda, Italy, September 19-23, 2016, Proceedings, Part 1. Vol. 9851. Lecture Notes in Computer
Science, pp. 795-811.

Keskar, Nitish Shirish et al. (2017). “On Large-Batch Training for Deep Learning: Generalization
Gap and Sharp Minima”. In: 5th International Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings.

LeCun, Yann et al. (1998). “Gradient-based learning applied to document recognition”. In: Proc.
IEEE 86.11, pp. 2278-2324.

Loizou, Nicolas et al. (2021). “Stochastic Polyak Step-size for SGD: An Adaptive Learning Rate for
Fast Convergence”. In: The 24th International Conference on Artificial Intelligence and Statistics,


https://openreview.net/forum?id=qjN4h_wwUO
https://openreview.net/forum?id=qjN4h_wwUO

LEVEL SET TELEPORTATION

AISTATS 2021, April 13-15, 2021, Virtual Event. Vol. 130. Proceedings of Machine Learning
Research, pp. 1306-1314.

Nesterov, Yurii E. (2004). Introductory Lectures on Convex Optimization - A Basic Course. Vol. 87.
Applied Optimization. Springer.

Neyshabur, Behnam, Ruslan Salakhutdinov, and Nathan Srebro (2015). “Path-SGD: Path-Normalized
Optimization in Deep Neural Networks”. In: Advances in Neural Information Processing Systems
28: Annual Conference on Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pp. 2422-2430.

Nocedal, Jorge and Stephen J Wright (1999). Numerical optimization. Springer.

Paszke, Adam et al. (2019). “PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary”. In: Advances in Neural Information Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pp. 8024-8035.

Polyak, Boris T (1987). “Introduction to optimization”. In.

Torrisi, Giampaolo et al. (2018). “A Projected Gradient and Constraint Linearization Method for
Nonlinear Model Predictive Control”. In: SIAM J. Control. Optim. 56.3, pp. 1968—1999.

Xiao, Han, Kashif Rasul, and Roland Vollgraf (2017). “Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms”. In: arXiv preprint arXiv:1708.07747.

Zhao, Bo, Nima Dehmamy, et al. (2023). Symmetry Teleportation for Accelerated Optimization.
arXiv: 2205.10637 [cs.LG].

Zhao, Bo, Iordan Ganeyv, et al. (2023). “Symmetries, Flat Minima, and the Conserved Quantities of
Gradient Flow”. In: The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023.

Zhao, Bo, Robert M. Gower, et al. (2023). “Improving Convergence and Generalization Using Pa-
rameter Symmetries”. In: CoRR abs/2305.13404.


https://arxiv.org/abs/2205.10637

LEVEL SET TELEPORTATION

Appendix A. Proofs

Lemma 5 Suppose f is (strictly) convex. Then at least one (every) solution to the sub-level set
teleportation problem (Eq. (3)) is a solution to the level set teleportation problem (2).

Proof Let w(t) = w + tV f(w). From convexity,

Flw(t)) = flw) = ¢V f(w)ll3
fw) = fw(t) = t{V f(w(t), V f(w));.

Adding these inequalities and using Cauchy-Schwarz,

= [[VF(w®))ll2 = [[Vf(w)ll2,

That is, the gradient norm is monotone non-decreasing when f is convex. At least one solution to
the maximization problem must occur on the boundary of the sub-level set, which completes the
first part of the proof. For the second, simply note that the inequalities hold strictly if f is strictly
convex, implying that every solution must be on the boundary. |

Proposition 1 Suppose f is L-smooth and i strongly convex. Then gradient descent with step-size
sequence {ny} and teleportation schedule T converges as

h

k
flwy) — - H max { (1 — L)%, (1 — mip)*}] (f(wo) — f(w™)).
=0

7;

Moreover, this rate is tight in the worst case.

Proof First we show the upper bound. Since f is L-smooth and p strongly convex, V f satisfies the
following inequality:

<vf(x)_Vf(y),x—y>ZM+L"$_y”% L+

This is sometimes called coercivity of the gradient; see, for example, Nesterov (2004, Theorem
2.1.12). Suppose k € T. Then,

T IIVF(@) = Vi)l ©)

w1 = w13 = lwy = meVf(w)) — w3
= llwy — w*[I3 — 2m (Vf (wy)), wif —w") +772\|Vf(w;$)H§

- pL
< i — w3 — 2 ( HVf(wk)n)

w+ L
+ IV £ (w13

= (128 ot = B e (= ) IV A

g(r— it — w2

2 2
+77kmax{L2( k_+L> 2 <77k—+L>}||w1j_U)*||§

= max { (1 —neL)?, (1 — npp)®} [l — w*[|3,

+ *112
o = 'l +
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where we have used p strong convexity and L-smoothness to bound the gradient norm depending
on the step-size 1. Now we convert from iterates to function values using smoothness and strong
convexity again to obtain

~

= flwps1) —w* < =max {(1—mL)? (1 —nep)?} (f(wi) — f(w*))

S~ =

< ﬁ max {(1 - 77kL)27 (1 - UkM)Q} (f(wk) - f(w*)) )

where the last inequality follows from the definition of sub-level set teleportation. If & ¢ T, then the
proof proceeds identically without needing this final step. In either case, recursing on this expression
is now sufficient to give the final result.

For the lower bound, suppose f(w) = %Hw”% Clearly f is 1-smooth and strongly convex with
1 = 1. The unique minimizer is simply w* = 0. Starting from an arbitrary wy, each iteration of GD
with teleportation has the following recursion:

w1 = wy — mwy = (1= np)wy,

and the objective evolves trivially as

1 1
Slhonsall3 = (0 —m)?3 e |3
2 2
1
= (1= 5w,

where the second equality uses Lemma 5 to guarantee that the solution to sub-level set teleportation
lies on the level set £, and the fact that every point x € Ly, satisfies ||x|l2 = [Jwg||. Thus, each
step of gradient descent makes progress exactly matching the convergence rate for general smooth,
strongly convex functions regardless of teleportation. This completes the lower-bound. |

Proposition 2 For every C' > 0, there exists smooth, convex f such that teleportation satisfies

Jw — w2 > Cllwg — w2

Proof We assume for convenience that w = (x,y), x > 1 and y > 0. These assumptions can be
relaxed by modifying our construction, but the calculations are tedious. Let € > 0 such that o, y > €
and x + ey > ae + 1 hold, where both conditions can be satisfied by taking e sufficiently small.

Let gs be the Huber function defined by

122 ifzx <o
gs(x) =4 2 . (10)
d(|x] —0/2) otherwise.

and consider the objective function

1

211y2a (y — ). (1)

fle)(@y) = 91(2) + ge(y) +

10
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We first show that there exists 2’ = 1 and some y’ > « satisfying

f(e,a) (x/7 y/) = f(e,a) (-737 y)

For this to hold, we must have

e 1 2 €
fea(@ ¥)=1+e) =5+ 5V —a) =2+ ey — 5 = flea)(®,y)

= YY) P+2(€-—a)y + (e’ -2z —2ey+2) =0

<:>y/:a—e:|:\/(e—a)Q—az—i—Qx—l—Qey—Q.
In particular, for 4’ > «, it must hold that

(e —a)? —a? + 2z + 2ey — 2 > €2
— r+ey>ae+1,

where this last condition is guaranteed by assumption on €. We conclude that (2, y') is on the level
set as desired.

The gradient of f(. o) is easy to calculate as

sign(z) + € - sign(y) + Ly>q (y — ) if j2| > 1,|y| > €

T from(@y) = x + e sign(y) + Ly>a (y — a) if 2] < 1, |yl > €
(e,0) 1 sign(z) + ey + Ly>a (¥ — @) if|lz] >1,|y| <e
r+ey+ ly>a(y—a) if || <1,y <e.

In particular, the gradient norm at (2, y’) is given by
IV ey (@ )5 = 14 € + (4 — ).
A straightforward case analysis reveals that for every Z, ¥ such that § < a,
IV fea) (@ D15 < IV ey (@' 0I5
That is, the maximizer of the gradient norm on the level set must satisfy y* > «. We conclude that
o —w* |3 = (@*,y)I3 = o®,
and, choosing o = C' - ||(z,y)|2,

lw® — w3 > Cllw — w*|3.

Proposition 3 The solution to Eq. (5) is given by

ve == (pe (V[ (@), V2 f () V f(0)) + f o) = fwr)) , V),

6
21 = 2o+ (pV2 (@) V f (20) + ) IV f () |13 ©

11
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Proof We proceed by case analysis. Let

o 1 2 V2 f(z)V f(21) B e
7 =g {5 oIV (a0l + (gt ) - el

Case 1: z € Sk(xt) Then Z satisfies the linearized constraint and x¢4; = Z must hold. It is
straightforward to compute that

Tyl = Ty — PVQf(xt)Vf(xt)'

Substituting this value into the linearization of the half-space and using z¢+1 € S (x¢), we find

PV f(20) "2 f (@) V f(20) + f() — f(wg) <0.

Case2: 7 & S, (x¢). Then the solution lies on the boundary of the half-space constraint and is given
by projecting Z onto

Li(ze) = {z: flze) + (Vf(ze),w — 20) = flwg)}.

The Lagrangian of this problem is

1
L(w, A) = Sl = 213 + A (f (@) + (VF(z), @ = 2) = f(wg).
Minimizing over x yields
Ty =T — AV f(21),

which shows that the dual function is given by,

1
d(N) = =5 N[V (@o)ll3 + A (F(20) + (Y (20), T = 20) = f(wg))
This is a concave quadratic and maximizing over A gives the following dual solution:
f(@e) — flwg) + p(Vf(ae), V2 f(x) V()
IV f ()13 ’

where have expanded the value of Z. Plugging this value back into the expression for x4 1,

T4l = Tt — Pv2f($t)vf($t)
(VS (), VA (@) V f () + flwe) — f(wr)
IV f ()13

This completes the second case. Putting the analysis together, we obtain the desired result:

Tyl = Xt — PVQf(l’t)Vf(iﬁt)

(V) VA (@)Y f (@) + Flwn) = f(wg) z
( IV f @0l )+ Vf(x1).

A* =

12
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Lemma 6 The directional derivative of the merit function satisfies

(V2f () V f (1), v0) = pe| V2 F (@) V £ ()13

D i d
olarid) = I

=y (fl2e) = flwe))y - (A2)

As a result, if
(V2f(xe)V f (1), vr)
IV f (@) [3(f (ze) = fwg))’

then xy11 — x¢ is a descent direction for ¢., at x;.

v >

Proof Let d; = z441 — 4. Define Ay(a) = ¢ (w' + ady) — ¢ (). Using first-order Taylor
expansions, we have

1 1
Ay(a) = *§||Vf($t +ady) |15+ 7 (f(ze+ ady) — flwy)), + §||Vf($t)||§ — v (f(@e) = f(wr))

= —a(Vf()V (@), di) + 7 (f(e) + a (Vf (@), de) = flwe)) . — 7 (F (@) = fwg))
+ 0(a?)
< —a (V2 f(z)V f(xe), de) +v(1— @) (f(2) = fw) . — 7 (f (@) = flwp)), +O(a?),

where we have used (V f(z:),dy) < f(wg) — f(z¢) from the definition of d;. Simplifying, we
obtain,

Ay(@) <= —a (V2 (@) V f(x0), di) —vo (f(21) = fwr)) ;. + O(a?).
Dividing both sides by « and taking the limit as o — 0 shows that

Dy(zy;dy) <= — (V2 f(2)V f(), di) + v (f(e) — flwr))
= (V2 f @)V (1), ve) — pel| V2 F (@) VF@)3) IV F @)l3 =y (F () = fwr),

s4s __ 72 (qt,vt)
Proposition 4 Let s = V< f(x4)V f(x¢) and suppose ~y; > TR @) =T )

is a descent direction of ¢-,, and the line-search condition simplifies to

.Then x¢11 — x4

P (Ti1) < —%va(:vt)llg + (gt ve) = pellaell3) /1I1V £ (o)lI3. ®)

Proof The first part of the proof follows immediately from Lemma 6. Substituting the expression
for the directional derivative into the line-search condition,

bainn) < — IV S+ () = Flwn))y — 7 () = Fluwn)),
+ (V@S @), ) = pll V25 ) V1)) IV 5 ) B
= S IVFEIB + (V5 @)V ), w) — VT @)V I @IB) IV 50 B

which is straightforward to check in practice. |

13
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Proposition 7 Suppose g is a loss function and f(w) = g(hy(X),y), where

ho(X) = 6(Wig(. .. Wa(6(W1X)))

is the prediction function of a neural network with weights w = (Wy,...,Wy), | > 2. If the
activation function ¢ is positively homogeneous such that limg_, ¢(3) = 0o andlimg_,« ¢'(B) <
o0, then optimal value of the sub-level set teleportation problem is unbounded and Eq. (3) does not
admit a finite solution.

Proof For simplicity, we prove the result in the scalar case for [ = 2, although it immediately
generalizes. Since ¢ is positively homogeneous, we have

wap(wir) = awz((wi/a)x).

Let wy = aws and W = w;/a. Define v = wap(wix) = Wap(wix). Then gradients with respect
to the first and second layers are given by

0 fw) = 2 gwpnd! (@rz)e

0w
= 042 (V)wed (wr /)
- avg 2 1
0 0 -
5= F(0) = Zog(0)0(ina)
0
= g)d(wis/a).
Taking the limit as o — 0, we see that
0
9, (w) =0
0
aﬂ)Q (w) — 00,

by assumption on ¢. Thus, there exists a diverging sequence of points on the level set whose gradient
norm is also diverging. Since the level sets are unbounded, the objective is not coercive and the
problem is ill-posed. This completes the proof. |
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Algorithm 1: Sub-level Set Teleportation
Input: Iterate: wy; Initial Step-size: p; Tolerances: €, d.

XTo < Wy

qo < V2 f(x0)V f (o) // Update direction

while |P.q:||2 > € or f(z:) — f(wg) > 6 do // KKT conditions
vg < — (plas, V() + flxy) — f(wk))+ V f(xe) // Correction factor

zep1 x4 (p- g +v) [V f () |I5

while ¢, (z:11) > 3|V f (@) lI5+ (g1, ve) — pllacl13)/IIV f(20)|3 do // Line-search
p < p/2
vp < = (p{ae, VI (xe)) + f(xe) — flwg)), V()
Ter1 <z + (p-q+v)/ IV F ()3

end

Ge1 = V2 f(2)V f ()

end
Output: x;

Appendix B. Additional Algorithmic Details

Now we briefly discuss how to terminate our algorithm. Suppose that x is a local maximum of
Eq. (3). If the linear independence constraint qualification (LICQ) holds, then  must satisfy the
KKT conditions for some \ > 0 (Bertsekas, 1997),

V2 (@) V(@) /IIV f ()| + AV f () = 0, (13)
P < Fug) and A(7(x) — Fluwg)) = 0.

That is, V2f(2;)V f(z¢) < Vf(z¢) and the sub-level set constraint is satisfied. The teleportation
problem satisfies LICQ unless V f(Z) = 0; in this case, stationarity at & implies stationarity over
all of S, and teleporting is not interesting. Thus, we assume LICQ holds and combine termination
based on the KKT conditions with line-search to give a complete solver in Algorithm 1.

Appendix C. Experiments
C.1. Additional Experiments

Now we give experimental results which could not be included in the main paper due to space
constraints.

Scaling Teleportation to MNIST: To further demonstrate the effectiveness of teleportation algo-
rithm, we solve sub-level set teleportation for a two-layer MLP with fifty hidden units and soft-plus
activations on the MNIST dataset. We use weight-decay regularization to ensure the objective is
coercive. Fig. 5 shows the norm of the network gradient (i.e. the teleportation objective), the KKT
residual (13), and violation of the constraints during teleportation. Our algorithm converges to a
KKT point where the gradient norm is two orders of magnitude larger than that at the standard
Kaiming initialization (He et al., 2015).

Effects of Regularization: The teleportation problem for ReLU networks does not admit a finite
solution without additional regularization (Proposition 7). Fig. 6 confirms this result and shows
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Figure 5: Sub-level set teleportation for a two-layer MLP with 50 hidden units on MNIST. Our
algorithm finds an approximate KKT point despite the non-convex problem. Teleporting
increases the gradient norm by two orders of magnitude over the standard initialization.
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Figure 6: Effect of regularization strength on optimization when training three-layer ReLU
networks on 20 datasets from the UCI repository. A problem is solved when
(f(wg) — f(w*)) /f(w*) < 0.5, where f(w*) is the smallest objective found by any
method. Methods initialized with teleportation (solid lines) are more sensitive to small
regularization than methods without (dashed).

that decreasing the strength of weight-decay regularization negatively affects the success rate of
teleportation compared to standard initializations. Thus, teleportation is best suited to problems
where large regularization is already desirable for modeling reasons.

Stochastic Performance Profile: Fig. 7 provides a version of the performance profile from the
main paper (Fig. 3) where all optimization methods are run with mini-batching. We observe similar
results to the deterministic case, although the effect of teleportation does appear to be minimized
when using stochastic methods.

MNIST and Fashion MNIST: Fig. 8 replicates our experiments on MNIST with stochastic gradi-
ents, while Fig. 9 shows that similar results hold for the Fashion MNIST dataset. Note that in both
these experiments we try increasing the step-size 10 iterations after teleporting (deterministic case
only) to test the hypothesis that overly small step-sizes are the case of slow convergence. We find
that increasing the step-size leads to noisy updates and does not improve optimization speed.
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Figure 7: Performance profile comparing optimization methods with (solid lines) and without
(dashed lines) initialization by sub-level set teleportation. A problem is solved when
(f(wg) — f(w*)) /f(w*) < 0.5, where f(w*) is the smallest objective found by any
method. All methods are run with mini-batches of size 64. The performance of methods
with and without teleportation is generally similar, although the standard initialization
performs slightly better overall.

Utility of Teleportation: Finally, Fig. 10 shows three UCI datasets where teleportation helps sig-
nificantly over the standard initialization. We include these results to provide a balanced view on
teleportation, the utility of which depends on the particular dataset and model considered.

C.2. Experimental Details

In this section we include additional details necessary to replicate our experiments. We run our
experiments using PyTorch (Paszke et al., 2019). Unless otherwise stated, all experiments using
neural networks are conducted on ReLU networks with two hidden layers, each of which has
100 units. When selecting step-sizes for optimization methods, we perform a grid-search using
the grid {1, 1071,1072,1073,1074,107?, 10_6}. All experiment results are shown for three ran-
dom restarts excepting the performance profiles, where averaging is not straightforward. We plot
the median and first/third quartiles. Step-sizes are selected by minimizing the training loss at the
end of the last epoch. For our teleportation method, we initialize the step-size at p = 0.1 and use the
tolerances ¢ = § = 1070, In practice, we scale ~; by 2 for stability and relax the Armijo progress
criterion with parameter o = 1073. For SGD with momentum, we use the momentum parameter
B = 0.9 and dampening parameter ;. = 0.9. We estimate f* with zero for SPS.
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Figure 8: Performance of optimizers with (solid) and without (dashed) initialization by teleporta-
tion on MNIST. We train a ReLU MLP with two hidden layers of size 100. Stochastic
methods are run with a batch-size of 128. In the deterministic setting, we try increasing
the step-size of methods with teleportation by a factor of 10 after 10 epochs to see if
slow convergence is due to overly small step-sizes. Larger step-sizes do not improve op-
timization speed, which indicates the “stalling” behavior we observe may be due to local
geometry.

Test Functions: We use open-source implementations of the Booth and Goldstein-Price functions'.
Gradient descent with and without teleportation are run with an Armijo line-search starting from
step-size 7 = 1. Newton’s method is run with a fixed step-size n = 0.8.

1. Available here: https://github.com/AxelThevenot/Python_Benchmark_Test_Optimization_
Function_Single_Objective
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Figure 9: Performance of optimizers with (solid) and without (dashed) initialization by telepor-
tation on Fashion MNIST. We follow the same experimental protocol as in Fig. 8 and
observe similar results.

Teleportation on MNIST: We use a two-layer ReLU network with fifty hidden units. The strength
of weight decay regularization is set at A = 1.8.

UCI Performance Profiles: We run on the following 20 binary classification datasets selected from
the UCI repository: blood, breast-cancer, chess—krvkp, congressional-voting,
conn-bench-sonar, credit—-approval,cylinder-bands,hill-valley,horse-colic,
ilpd-indian-liver, ionosphere, magic, mammographic, musk-1, ozone, pima,
tic-tac-toe, titanic, ringnorm, spambase. We use the pre-processed datasets provided
by Fernandez-Delgado et al. (2014), although we do not use their splits since these are known to
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Figure 10: Performance of methods initialized using sub-level set teleportation for training three
layer ReLLU networks on three datasets from the UCI repository. These results are spe-
cially selected from the 20 datasets used in the performance profile (Fig. 3) to showcase
situations where teleportation outperforms the standard initialization. All methods are
run in batch mode. Normalized SGD and SPS perform particularly well with teleporta-
tion and do not show the stalling behavior observed on MNIST.

have test set contamination. To obtain 180 distinct problems, we also consider regularization param-
eters from the grid {107%,1072,1073,107%,107°,1075,1077,10®}. For the stochastic setting,
we use batch-sizes of 64.

Image Classification: We use a fixed strength of A\ = 1072 for the weight decay regularization. All
other settings are as described above.
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Effects of Regularization: The data for Fig. 6 comes directly from the performance profiles in
Fig. 3 and Fig. 7. All results are shown for ReLU networks.

Additional UCI Plots: The data for Fig. 10 comes directly from the performance profile in Fig. 3.
All results are shown for regularization parameter A = 0.2.
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