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Abstract
Policies or guidelines are defined to support decision-making in a wide range of domains. These statements
describe what actions are allowed or recommended under certain conditions. The policies typically present rules
that may be evaluated to generate those allowances or recommendations when encoded in machine-actionable
terms. Asmany fields attempt to generate more computable guidelines, there is an increasing need to automatically
evaluate these policies and explain results. This paper presents a novel ontology design pattern for representing
policies using the OWL and PROV semantic web standards. It can be used to extend domain knowledge graphs
to include representations needed to support domain-specific decision making. The encoding of policy rules
using OWL restrictions over PROV entities enables the representation of common policy constructs, including
subjects, actions, objects, and their attributes. This modeling can be successfully applied in a number of domains
to increase inferential power and to provide better support for explaining the reasons for a given evaluation
result. This is demonstrated by applying the approach with web-based tools developed for two scenarios, radio
spectrum access policies, and health guidelines.

1. Introduction

Policies, in the context of this paper, are defined as domain-specific decision-making assets that express
one or more actions that are allowed or recommended under certain conditions. Policies are commonly
defined in authoritative documents in a textual (natural language) format. In contrast, there is increasing
engagement by several researchers to develop computable policies [1, 2, 3, 4] to alleviate some issues
associated with text-based policy authoring and evaluation.

Recent approaches [5, 6, 7] have proposed the application of semantic web standards, including the
Web Ontology Language (OWL) and the Semantic Web Rule Language (SWRL), for encoding policies
and guidelines. A large number of these are based on (or extensions of) the eXtensible Access Control
Markup Language (XACML) [8], the “de facto” standard for representing access control policies. While
well-established, it is not trivial or straightforward to leverage domain knowledge, increasingly encoded
as Knowledge Graphs (KGs), within XACML constructs as a way to increase inferential power in
complex domains.

This paper presents a novel ontology design pattern for representing policies and guidelines using the
OWL and PROV semantic webW3C standards. Ontologies created following this “OWL+PROV” pattern
extend domain knowledge graphs to include the encoding of the policy’s rules in class equivalencies,
expressed as OWL restrictions over domain entities. In this sense, these ontologies, in conjunction with
domain knowledge from KGs, can be leveraged by OWL reasoners to classify individuals as instances
of classes that represent policies if their rules are satisfied. The OWL+PROV design pattern advocates
for the creation of a class hierarchy, which incrementally appends the policy’s rules to support the
explanation of policy evaluation results. These claims are supported by demonstrating how the approach
has been applied with a web-based tool that creates ontologies in the OWL+PROV pattern for two
scenarios: radio spectrum access policies (Section 3) and health guidelines (Section 4). This pattern
can be applied to multiple domains while supporting the ultimate goals of computable policies: (i) to
leverage domain knowledge, which is commonly not present in the policies themselves, and (ii) to
explain how existing policies were used to achieve a policy-based decision.
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2. OWL+PROV: A Pattern for Representing Policies

The PROV Ontology [9] (PROV-O) provides resources for representing concepts (entities, activities,
and agents) involved in producing new things and their relationships. Although the primary usage
of PROV-O is to provide provenance tracking, its modeling is generic enough to be re-purposed for
supporting knowledge representations that contain such concepts. The intuition behind this modeling
approach is to treat “things” that are of interest (or subject to evaluation) to domain-specific policies
as proposed activities, their associated agents, and their related attributes. Based on this premise, it is
possible to classify these proposed activities as “permitted” or “denied” activities (in the case of access
control policies) and as specific “recommendations” or “directives” (in the case of guidelines). When
represented as individuals in RDF, proposed activities may be reasoned over and classified as instances
of additional classes if they satisfy some class’ equivalency requirements.

It is useful to consider the following common structural elements when analyzing policies and rules
from different domains:

• Subject: Who/what a policy applies to (a person, a radio system, etc.)
• Action: What the subject is trying to accomplish, a proposed activity (a health assessment, a radio
transmission, etc.)

• Attributes: Qualifiers for both the subject and action (a gender, a radio frequency range etc.)
• Effect: The outcome of a policy when its rules are satisfied (esp., a recommended action, a directive,
an allowance, etc.)

• Obligations: Special requirements associated with an allowance (a patient having a co-morbidity,
do not interfere when broadcasting, do not use more than 50% of the band, etc.)

Figure 1 shows the proposed PROV-based model for representing these policy constructs in the
OWL+PROV pattern. The policy’s action is represented as a prov:Activity, which is associated with
the subject represented as a prov:Agent. The model seeks to reuse PROV concepts whenever possible.
Location and time are attributes that may be relevant in multiple domains for expressing spatial rela-
tionships and duration, so, in this sense, the location attribute is represented as a prov:Location while
the time attribute is represented using the predicates prov:startedAtTime and prov:endedAtTime.
For attributes not natively supported by PROV, the model uses the Semanticscience Integrated Ontology
(SIO) [10], which enables it to model objects and their attributes (measurement values, units) with the
use of the sio:Attribute class and sio:hasAttribute, sio:hasValue, and sio:hasUnit predicates. The
SIO ontology already contains a number of attributes, mostly for the biomedical domain, and it allows
any domain to further extend it, creating additional domain attributes.

Subject Action/Effect

Attributes

ActivityAgent
wasAssociatedWith

sio:Attribute

xsd:dateTime

endedAtTime

sio:hasAttribute

Location

atLocation

rdfs:Datatypesio:hasValue

unitsio:hasUnit

subClassOf

startedAtTime

sio:hasAttribute

Figure 1: Using PROV and SIO to model policy constructs.

For domain-specific policies expressed in natural language in textual documents, it is non-trivial to
effectively represent their rules in a more structured format while preserving the very same semantics
contained in the original text. Depending on the domain, a policy’s original text might not contain all
the background knowledge required in order for it to be correctly evaluated without the aid of domain



practitioners. When interpreted by domain practitioners, textual policies can be transformed into a
structured format that can then be used to create one or more logical expressions that convey a policy’s
rules, each leading to a unique effect, such as:

𝑎𝑐𝑡𝑖𝑜𝑛 ∧ 𝑠𝑢𝑏𝑗 ∧ 𝑎𝑡𝑡𝑟0 ∧ 𝑎𝑡𝑡𝑟1 ∧ ⋯ → 𝑒𝑓 𝑓 𝑒𝑐𝑡(𝑠)

These expressions combine a series of statements that qualify the action, the subject, and their
attributes in a Boolean AND operation that, when evaluated to be TRUE, implies the effect(s). An OWL
representation for this set of expressions can be used to classify proposed activities into classes that
represent effects such as recommended, permitted, or denied. The OWL+PROV pattern advocates
that a hierarchy be created where each level is represented by an OWL class that encodes one of the
statements as an OWL equivalency.

2.0.1. Action

The policy’s action rule is represented as a subclass of prov:Activity, and it is the top-level class in the
hierarchy. This class does not specify an OWL equivalency as it expects “things” that are subject to
evaluation to directly refer to the action they want to accomplish.

2.0.2. Subject

The policy’s subject rule is represented as a subclass of the Action class. This class specifies an OWL
equivalency to append the subject rule to the action rule, as seen below. The equivalency is defined as
an intersection of the Action class and the OWL constraint on the prov:wasAssociatedWith property.

1 ...
2 EquivalentTo:
3 Action and (wasAssociatedWith some Some_Subject)
4 SubClassOf:
5 Action

Listing 1: OWL equivalency for the subject rule in Manchester syntax.

2.0.3. Attributes

The policy’s attribute rules are represented as classes that further extend the hierarchy as sub-classes. As
seen below, these classes specify equivalencies defined as an intersection of the immediate super-class
and the constraint for the attribute rule being encoded.

1 ...
2 EquivalentTo:
3 Subject and
4 wasAssociatedWith some (hasAttribute some Some_Attribute)
5 SubClassOf:
6 Subject
7 ...
8 EquivalentTo:
9 Attribute and

10 wasAssociatedWith some (atLocation some Some_Location)
11 SubClassOf:
12 Attribute
13 ...
14 EquivalentTo:
15 Location and
16 startedAtTime value ”some_Value”
17 SubClassOf:
18 Location

Listing 2: OWL equivalency for the attribute rules in Manchester syntax.



2.0.4. Effect

The pattern represents policies’ effects as activity classes that are satisfied when proposed activities are
reasoned to belong to specific policies. When the OWL class hierarchy completes the representation
of a logical expression, it must define the policy’s effect that is associated with the expression. This
definition is performed by stating that the last class in the hierarchy is a subclass of the class that
represents the effect, as seen below.

1 ...
2 SubClassOf:
3 Rule, Effect

Listing 3: Effects represented as classes in Manchester syntax.

2.0.5. Obligations

Obligations are requirements that can be specified alongside effects. They should be accomplished for
the effect to be valid. Much like an effect, an obligation can be seen as an activity class that needs to be
satisfied for the effect to be valid as well, and the pattern represents obligations in a similar way, as
seen below.

1 ...
2 SubClassOf:
3 Rule, Effect, Obligation_1

Listing 4: Obligations represented as classes in Manchester syntax.

This hierarchy of OWL classes will maximize the reuse of encoded rules. It is common for a policy
to contain a set of logical expressions that share some of the rules. Even among different policies,
the logical expressions might contain similar statements that could be reused when encoded in OWL.
Another advantage of this hierarchical approach is that it supports the explanation of evaluation results
by traversing the OWL graph to find rules that were not satisfied.

2.1. Variations of the Pattern

In some domains, advantagesmight exist for changing the order in the class hierarchy, or even interlacing
policy constructs to better support the implementation of the pattern. As an example, attribute-
based access control (ABAC) policies [11] might benefit by having the access-controlled resource
attribute evaluated earlier and, therefore, “higher” in the hierarchy before the subject. In access control
applications, a common set of resources may be associated with different subjects and additional
attributes. Having the resource evaluated earlier allows this class to be reused by any subject or
additional attribute class, thereby minimizing the number of duplicate rules.

In other cases, the construction of this OWL class hierarchy might not directly benefit the implemen-
tation of the pattern, because either the explanation of results should be done in a different way than
traversing the OWL graph or there are no requirements for reusing previously-encoded rules. In this
sense, the OWL class equivalencies can be created in lesser numbers, by combining multiple attributes,
subjects, and even actions, in a single class. We call this approach the “flat” representation of policies.

3. Use Case 1: Dynamic Spectrum Access

The OWL+PROV pattern was applied in the construction of an ontology for representing and evaluating
spectrum access control policies. This is the core feature of the Dynamic Spectrum Access (DSA)
Policy Framework [12], a semantically-enabled system for managing machine-readable policies. In this
domain, policies regulate the use of specific partitions of the radio spectrum by permitting or denying
the usage of a specified frequency (or frequency range) based on the who/what is requesting usage (a



RuleID Parsed logical rule Requester Affiliation Frequency Location Effect Obligation
US91 IF RefFreq is ε (  ≥   1755 MHz 

AND  ≤ 1780 MHz) then the 
following provisions apply

US91-1 IF TR is AWS AND RefFreq is ε (  ≥   
1755 MHz AND  ≤ 1780 MHz) 
AND (TR has successfully 
coordinated on a nationwide basis 
prior to operation, unless otherwise 
specified by Commision rule, order , 
or notice) THEN TR is Primary

AWS non 
Federal

1755 MHz - 
1780 MHz

Permit with 
Obligation

TR has successfully 
coordinated on a nationwide 
basis prior to operation, 
unless otherwise specified by 
Commision rule, order , or 
notice and TR  is Primary

US91-2 IF TR is Federal AND RefFreq is ε ( 
≥  1755 MHz AND  ≤ 1780 MHz) 
AND TR is operating in one the 
following locations  AND (Until 
reaccommodated in accordance with 
47 CFR 301) THEN it is Primary 

TR Federal 1755 MHz - 
1780 MHz

Yuma Proving 
Ground, Fort Irwin, 
Fort Polk, Fort Bragg, 
White Sands Missile 
Range, Fort Hood

Permit with 
Obligation

Operate on a co-equal, 
primary basis with AWS 
stationsTR can't transmit 
Until re-accommodated in 
accordance with 47 CFR 301 

US91-3 IF TR is Federal AND JTRS AND 
RefFreq is ε (  ≥   1755 MHz AND  ≤ 
1780 MHz) AND TR is operating in 
one the following locations THEN It 
is Primary

JTRS Federal 1755 MHz - 
1780 MHz

Yuma Proving 
Ground, Fort Irwin, 
Fort Polk, Fort Bragg, 
White Sands Missile 
Range, Fort Hood

Permit with 
Obligation

JTRS is Primary

Figure 2: Spreadsheet excerpt showing the NTIA Redbook US91 policy capture.

device, an organization, a system, etc.), their affiliation (federal, non-federal), and where an instance of
the requester type is spatially located.

During the policy capture process, Rensselaer Polytechnic Institute (RPI) collaborated with DSA
domain experts from Capraro Technologies Inc. and LGS Labs of CACI International Inc. to select and
analyze English language, text-based policies from the National Telecommunications and Information
Administration (NTIA) Redbook [13]. It was observed that the text for many policies is equivalent to a
logical conditional expression, e.g., IF some device wants to use a frequency in a particular frequency
range AND at a particular location, THEN it is either PERMITTED or DENIED. More complex policies
contain a set of expressions, with each conditional expression focused on a particular attribute, e.g., a
device type, frequency, frequency range. Each conditional expression can be understood as a sub-policy
(e.g. a policy that further constrains an existing policy). The spreadsheet displayed in Figure 2 contains
an example of a complex policy from the NTIA Redbook, called US91. Due to space constraints, we
have omitted some of the sub-policies for US91 and the columns that document policy metadata and
provenance, including the original text, source document, URL, and page number.

The elements of the logical expression are further expressed in the columns as attribute-value pairs,
e.g., Requester = AWS, and mapped to the PROV model:

• Requester (prov:Agent): the device requesting usage of the spectrum
• Action (prov:Activity): the purpose for the usage of the spectrum
• Affiliation (sio:Attribute): the affiliation of the requester: Federal or Non-Federal
• Frequency (sio:Attribute): the frequency range or single frequency being requested for use
• Location (prov:Location): location(s) where the policy is applicable
• Effect (prov:Activity): the allowance or denial a policy expresses, if the rule is satisfied (Permit,
Deny, Permit with Obligations)

• Obligations the list of obligations the requester needs to comply with in order to be permitted

Based on the expressed attribute-value pairs, an OWL class hierarchy was created, as shown in
Listing 5, with each class directly representing a single sub-policy as expressed in the policy capture
spreadsheet (Figure 2). As the first class in the hierarchy, US91 extends the action class Transmission
(line 14) and appends the frequency range rule for the US91 policy (lines 5-12). In its turn, the US91-
1 sub-policy is represented by a class that extends US91 and appends the Requester and Affiliation
rules (lines 19-20). This sub-policy expresses the Permit effect; therefore, US91-1 is a subclass of
PermittedActivity.
1 ...
2 Class: US91
3 EquivalentTo:
4 Transmission and
5 (wasAssociatedWith some (hasAttribute some
6 (FrequencyRange
7 and (hasAttribute some
8 (FrequencyMaximum and
9 (hasValue some xsd:float[<= 1780.0f])))



10 and (hasAttribute some
11 (FrequencyMinimum and
12 (hasValue some xsd:float[>= 1755.0f]))))))
13 SubClassOf:
14 Transmission
15
16 Class: US91-1
17 EquivalentTo:
18 US91 and
19 (wasAssociatedWith some AdvancedWirelessService) and
20 (wasAssociatedWith some (hasAttribute some NonFederal))
21 SubClassOf:
22 US91, US91-1-Obligation,
23 PermittedActivity

Listing 5: OWL expression of part of the US91 policy in Manchester syntax.

To demonstrate how this policy is evaluated we use the following example: an instantiation of
the model in Figure 1 as a request expresses that a requester of type AdvancedWirelessService (a
prov:Agent) wants to make a Transmission (a prov:Activity) using the 1755-1756.25MHz frequency
range. The requester is at the location specified by the coordinates POINT(-114.23 33.20) and has
the Non-Federal attribute. Because the request specifies a Transmission, the requirement for this class
is satisfied. Next, the requested frequency range falls within the range constrained by the US91 class,
satisfying this class as well. The agent type in the request is an AdvancedWirelessService with the
Non-Federal attribute, satisfying the US91-1 class. Therefore, the request’s activity is reasoned to
be an instance of US91 and US91-1. As US91-1 is a subclass of PermittedActivity, the attempted
transmission of the request is also an instance of PermittedActivity.

The DSA framework [12] contains an evaluation engine that takes a set of transmission requests as
input and outputs the assigned effect, a list of obligations, and a list of reasons to explain the effect for
each request. For this explanation, the implementation employs a mix of OWL reasoning and graph
traversal to identify classes that were not satisfied during reasoning. The unsatisfied rules are then
presented as reasons.

4. Use Case 2: Health Guidelines

In healthcare, clinical practice guidelines are systematically developed statements to assist practitioners
and patients. There are guidelines for various medical disciplines such as allergy, cardiology, family
medicine, gastroenterology, men’s health, women’s health, neurology, oncology, pediatrics, psychiatry,
etc. There is immense value in encoding these guidlines in computable formats to supplement clin-
ical decision support systems [14, 15, 16], integrate connected health applications [17], and provide
semantics-driven dietary recommendations [18, 19, 20]. Symbolic reasoning processes that are enabled
by such semantically-rich explainable policies are shown to effect patient persuasion and education
towards better health outcomes [21, 22].

In this section, we will demonstrate the application of the OWL+PROV to diabetes guidelines [23]
by leveraging the Guideline Provenance (G-Prov) ontology [24]. These guidelines were developed
as part of the Health Empowerment by Analytics Learning and Semantics (HEALS) project1 at RPI.
In the HEALS project, we primarily focused on the semantic modeling of recommendations from
lifestyle interventions and pharmacological treatment guidelines. The “Lifestyle Management” position
statement [25] defines a set of policies for supporting medical nutrition treatment for such patients.
These policies are categorized by topics (such as “Dietary Fat” and “Alcohol”), and each policy provides
an “Evidence Rating” stating how strongly various existing studies support the policy. Here is an
example from the guideline:

“Adults with diabetes who drink alcohol should do so in moderation (no more than one drink

1https://idea.rpi.edu/research/projects/heals

https://idea.rpi.edu/research/projects/heals


Figure 3: Selected dietary recommendations from the guideline modeled using OWL+PROV.

per day for adult women and no more than two drinks per day for adult men). Evidence Rating
= C.”

In the above policy example, we can identify the recommended action, which is to drink alcohol
in moderation. Additional information is provided regarding what moderation means in terms of the
quantity. The rules (conditions) for when this recommendation should be valid can be identified. These
include (i) the person is an adult, (ii) the person has diabetes, and (iii) the person drinks alcohol. In
addition, the recommendation specifies different actions for males and females, so each gender is also
part (a condition) of the policy’s rules. The supporting evidence rating has a “grade” C, which is defined
as evidence from poorly controlled or uncontrolled studies. Such a guideline would be weighed lower
by a health practitioner compared to a health guideline that has an evidence rating of either A or B.

When modeling health guidelines, we observe a similar pattern as radio spectrum (Section 3), even
though they are vastly different domains. Health guidelines (referred to as policies within this paper)
encapsulate observations (a set of conditions) and one or more recommended actions derived from
practitioner expertise and/or the published results of studies and research. The policies we modeled as
part of the HEALS project recommend evidence-based recommendations for a diabetic patient, based
on their lifestyle, diabetes condition, ongoing treatment, and diet.

Figure 3 shows a section of some of the diabetes guidelines that we have modeled, focusing on
lifestyle interventions. These terms were modeled in a domain ontology and then referred by the
policies, including temporal pattern descriptors (i.e., Drinks_Alcohol).

In addition, we represent the evidence rating as a class (i.e. GradeC) and assert the last class in
this policy’s hierarchy to be a subclass of it. By doing so, we enable a similar precedence evaluation
approach as we did in the radio spectrum domain.

A demo video outlining the usage of these guidelines is available2 if one prefers to get a better
understanding on the background and the motivation behind the health guidelines we have modeled.

2https://foodkg.github.io/demo.html

https://foodkg.github.io/demo.html


5. Evaluation

The OWL+PROV ontology design pattern was evaluated using Thorn’s criteria [26] for model qual-
ity based on its changeability, reusability, formalness, mobility, correctness, and usability. For this
evaluation, we have used ontologies created for the radio spectrum domain, as we had access to a
comprehensive domain KG to support them and stakeholders to validate policies’ contents. In general,
the OWL+PROV approach does very well, although, without support tools, usability issues can arise
due to the initial counterintuitiveness in the modeling process.
Changeability is the ability to evolve the model while maintaining the uses of previous versions.

During the use of this approach, we have identified the following ways in which the model changes:

• New policy attributes: The Affiliation attribute surfaced during the course of the project. To
accommodate the new attribute, we first represented Affiliation as a new attribute in the domain
ontology, and then, we created a new class in the class hierarchy of affected policies with the
appropriate affiliation rule. The existing rules remained unaffected.

• Novel evaluation rules of existing attributes: At first, we had the Location attribute being
evaluated as a calculation of some coordinate being within some known polygon. Later, some
new policy rules required the location attribute to be evaluated in terms of distances. To allow
this, we have created a new class in the class hierarchy of policies containing such rules that
would now contain distance rules instead of within rules.

Reusability is the ability to reuse (parts of) the model when evolving or developing other models.
The reusability of this ontology design pattern is very high. We originally developed OWL+PROV to
express policies around radio spectrum allocation and were able to re-apply the approach to a relatively
diverse set of other areas, including medical treatment guidelines. Further, these reuses have helped to
inform each other, as we were able to see a path to modeling obligations consistently by analyzing the
correct approach in deontic logic.

The formalness of a model is the ability to manage the model in a formalized manner. OWL+PROV
maps neatly onto the exact truthmaker semantics expressed in [27] and provides an integration point
among multiple modal logics by denoting more than one set of top-level classes of activities. These
semantics are more precise than classical formulations of modal logics by explicitly mapping them to
activities (thereby restricting the universe of discourse) and providing an OWL-compatible set-theoretic
basis for distinguishing between kinds of activities and individual acts. Additionally, models developed
using OWL+PROV use formal representations rigorously enough to actually evaluate actions based on
classifying them into specific policies. As shown in Section 3, moving from a data model representation
based on XACML to OWL+PROV enabled us to directly evaluate policies using an existing OWL
reasoner.

Themobility of a model is the ability to be moved, transferred, and integrated with other systems. We
have used two different approaches to evaluate the mobility of ontologies created in the OWL+PROV
pattern. Common Logic [28] is an ISO standard that defines a family of logic languages that enable the
interchange of knowledge among computer systems. We have used the Common Logic Interchange For-
mat (CLIF) as a way of serializing the OWL representation of policies. This approach was implemented
in [12] as a way of exporting existing policies.
Correctness is the correspondence (or mapping) between the model and the modeled artifacts. For

radio spectrum policy, prior work in [12] describes the representation coverage for radio spectrum
policy as published. We have tested our policy framework on a subset of the United States NTIA radio
spectrum policies [13], using example activity requests that produce the expected classifications of
those requests as permitted or prohibited activities.
Usability is the ease of effectively communicating a model to new users and the ability to align the

model with the users’ “mental models,” or the users’ conception of how the representation works, thereby
minimizing learning curves. We found that users do not always share the same initial assumptions
about what a “policy” is. However, once they understood that a policy is a way for expressing kinds



of actions that might take place (and thereby be allowed or not), the users with an understanding of
OWL were able to quickly build policy rules directly in OWL using existing semantic web tools like
Protege. The users that did not have ontology development training but did understand the domain
policies were able (with some training) to adopt some new terminology, e.g., permit and deny and use
the tools and domain-specific languages that we built to accurately express policies, while the tools
automatically translated the policies into the appropriate OWL class definitions.

6. Related Work

Existing literature about semantic approaches to policy representation includes Kirrane [7], which offers
a comprehensive survey of access control models, well-known policy languages, proposed frameworks
that utilize ontologies and/or rules to express policies, and categorization of policy languages and
frameworks against access control requirements. Thi [29] proposes an OWL-based extension to the
eXtensible Access Control Markup Language (XACML 3.0) [8] to support a generalized context-aware
role-based access control (RBAC) model providing spatio-temporal restrictions and conforming with
the NIST RBAC standard [30]. Their work augments the XACML architecture with new functions and
data types.

Kolovski [31] maps the web service policy language, WS-Policy [32], to the description logic fragment
species of OWL and demonstrates how standard OWL reasoners can check policy conformity and
perform policy analysis tasks.

Garcìa [33] and Finin [34] offer important contributions to how end-to-end usage rights and access
control systems may be implemented in OWL and RDF. Garcìa proposes a “Copyright Ontology” based
on OWL and RDF for expressing rights, representations that can be associated with media fragments
in a web-scale “rights value change.” Finin describes two ways to support standard RBAC models in
OWL and discusses how their OWL implementations can be extended to model attribute-based RBAC
or, more generally, ABAC. OWL-POLAR [35] is a model based on OWL DL designed to manage and
analyze policies as soft constraints for agents. It enables the representation of norms and their activation
conditions using conjunctive semantic formulas and employs SPARQL queries for reasoning about
policy conflicts and resolution. By leveraging ontology consistency checkers, it can detect conflicts
among norms and determine resolutions, though it does not address temporal aspects.

Fenz [36] supports complex decision-making with an approach that translates technical decision
options into a language that is understood by relevant stakeholders. This is accomplished by following
a proposed 5-step ontology engineering method. Ontologies created with this method model relevant
problem parameters as RDF resources (including potential solutions for the problem and physical entities
of the domain), and contain description logics statements as class equivalencies capable of classifying
the model entities into potential solutions. While this work has similarities with our approach, as we
encode policy rules as class equivalencies for classifying proposed activities into recommendations, it
doesn’t offer support for explaining evaluation results and for reusing existing rules.

The Open Digital Rights Language (ODRL) [37] provides an ontology that is especially applicable for
modeling policies that embody agreements concerning intellectual property, especially copyrighted
works. Instead, we chose to base our foundational modeling on XACML, which, as noted, has a
long implementation history in cross-domain access control. Both models consider permissions and
obligations, and ODRL arguably provides more flexibility and extensibility for modeling agreements
such as licenses, which we will consider for future policy-based spectrum management work. The scope
of our current work did not permit the expression and evaluation of spectrum licenses or agreements;
future work will include this, and we will look to work based on ODRL for inspiration, especially for
guidance in logically modeling agreements.

With respect to medical guidelines, some of our previous work has demonstrated how a semantic
technology approach can be used in characterizing disease (breast cancer) based on newly emerging
criteria using OWL [38] and representing the provenance of specific disease guidelines where we
demonstrate the application of the W3C provenance ontology in ADA guideline annotation [24].



Our approach combines OWL, PROV-O, and the HermiT OWL reasoner with an ontology, represented
as a knowledge graph, to support the representation of decision-making policies in multiple domains.
Relevant related research is described in Dundua [39], in which OWL is used for modeling and analyzing
access control policies, especially ABAC, and the integration of the ABACmodel into ontology languages
is considered. In addition, Sharma [40] describes how OWL can be used to formally define and process
security policies that can be captured using ABAC models. This work demonstrates how models,
domains, data, and security policies can be expressed in OWL and how a reasoner can be used to decide
what is permitted.

7. Conclusion

The growing creation and adoption of domain-specific knowledge graphs over the past decade, both
in industry and academia, has resulted in an increased number of domain entities being represented
in such structures. In many knowledge graph (KG) applications, the entities include domain terms
that are referred to in textual policies (and their attributes). Being able to leverage such knowledge
in policy evaluations can allow for the creation of more intelligent evaluation processes, including
increased evaluation power due to the expressiveness of KGs and better techniques for explaining
the reasons for a given evaluation result. In addition, since policies usually do not contain all of the
required background knowledge to allow for their correct evaluation, as demonstrated in the paper,
the OWL+PROV pattern enables this domain knowledge in KGs to be leveraged by allowing the OWL
constraints that represent a policy’s rules to refer to domain entities in domain KGs.

This policy representation approach builds on previous work by matching the cross-domain policy
expression semantics of XACML. It extends these semantics with the capacity to express rich spatio-
temporal restrictions, enabling the implementation of a wide variety of attribute-based policies across
domains. It leverages background knowledge from domain-specific knowledge graphs that are structured
with a domain-derived ontology, enabling the inference of policy applicability based on attributes and
constraints. Our approach uniquely conceptualizes policy requests as PROV activities and request
evaluations as realizations. Finally, the OWL+PROV pattern allows a novel reasoner-based explanation
in request evaluation results, enabling domain policy developers to understand the precise reasons for
policy decisions.

In terms of limitations, the domain knowledge is currently used “as is,” and policy evaluations
will be constrained by the quality of the domain graph. In the DSA and health domains, we have
encountered performance issues with OWL reasoning due to the number of axioms involved in the
process. To alleviate this, we first removed a number of axioms from the supporting ontologies (PROV
and SIO) that we judged were not relevant to the policy evaluation process, which drastically reduced
the reasoning time. In an additional effort to further reduce the required reasoning time, we modified
our implementation to segment the graph containing individuals subject to the evaluation into smaller
graphs and then used parallel processing to reason over each graph. The results were combined after
the conclusion of each individual processing thread.

A web-based tool [41] that leverages domain knowledge graphs to allow the creation of policies
using the OWL+PROV pattern is available.
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