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Abstract

Pre-trained large language models (LLMs) exhibit impressive mathematical reason-
ing capabilities, yet how they compute basic arithmetic, such as addition, remains
unclear. This paper shows that pre-trained LLMs add numbers using Fourier
features—dimensions in the hidden state that represent numbers via a set of fea-
tures sparse in the frequency domain. Within the model, MLP and attention layers
use Fourier features in complementary ways: MLP layers primarily approximate
the magnitude of the answer using low-frequency features, while attention layers
primarily perform modular addition (e.g., computing whether the answer is even
or odd) using high-frequency features. Pre-training is crucial for this mechanism:
models trained from scratch to add numbers only exploit low-frequency features,
leading to lower accuracy. Introducing pre-trained token embeddings to a randomly
initialized model rescues its performance. Overall, our analysis demonstrates that
appropriate pre-trained representations (e.g., Fourier features) can unlock the ability
of Transformers to learn precise mechanisms for algorithmic tasks.

1 Introduction

Mathematical problem solving has become a crucial task for evaluating the reasoning capabilities
of large language models (LLMs) [20, 7, 23, 13]. While LLMs exhibit impressive mathematical
abilities [34, 17, 1, 45, 40, 4, 11], it remains unclear how they perform even basic mathematical tasks.
Do LLMs apply mathematical principles when solving math problems, or do they merely reproduce
memorized patterns from the training data?

In this work, we unravel how pre-trained language models solve simple mathematical problems such
as “Put together 15 and 93. Answer: ”. Prior work has studied how Transformers, the underlying
architecture of LLMs, perform certain mathematical tasks. Most studies [5, 14, 42, 2, 12, 28, 18, 36]
focus on Transformers with a limited number of layers or those trained from scratch; [19] analyzes
how the pre-trained GPT-2-small performs the greater-than task. Our work focuses on a different task
from prior interpretability work—integer addition—and shows that pre-trained LLMs learn distinct
mechanisms from randomly initialized Transformers.

In §3, we show that pre-trained language models compute addition with Fourier features—dimensions
in the hidden state that represent numbers via a set of features sparse in the frequency domain. First,
we analyze the behavior of pre-trained LLMs on the addition task after fine-tuning, which leads to
almost perfect accuracy on the task. Rather than merely memorizing answers from the training data,
the models progressively compute the final answer layer by layer. Next, we analyze the contributions
of individual model components using Logit Lens [3]. We observe that some components primarily
approximate the answer—they promote all numbers close to the correct answer in magnitude—
while other components primarily classify the answer modulo m for various numbers m. Then,
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we use Fourier analysis to isolate features in the residual stream responsible for the low-frequency
“approximation” and high-frequency “classification” subtasks. Identifying these features allows us to
precisely ablate the ability of the model to perform either approximation or classification by applying
a low-pass or high-pass filter, respectively, to the outputs of different model components. We find
that MLP layers contribute primarily to approximation, whereas attention layers contribute primarily
to classification.

In §4, we show that pre-training is crucial for learning this mechanism. The same network trained
from scratch with random initialization not only shows no signs of Fourier features, but also has
lower accuracy. We identify pre-trained token embeddings as a key source of inductive bias that help
the pre-trained model learn a more precise mechanism for addition. Across the pre-trained token
embeddings of many different pre-trained models, Fourier analysis uncovers large magnitudes of
components with periods 2, 5, and 10. Introducing pre-trained token embeddings when training the
model from scratch enables the model to achieve perfect test accuracy. Finally, we show that the same
Fourier feature mechanism is present not only in models that were pre-trained and then fine-tuned,
but also in frozen pre-trained LLMs when prompted with arithmetic problems.

Overall, our work provides a mechanistic perspective on how pre-trained LLMs compute addition
through the lens of Fourier analysis. It not only broadens the scope from only investigating few-layer
Transformers trained to fit a particular data distribution to understanding LLMs as a whole, but also
hints at how pre-training can lead to more precise model capabilities.

2 Problem Setup

Task and Dataset. We constructed a synthetic addition dataset for fine-tuning and evaluation
purposes. Each example involves adding two numbers ≤ 260, chosen because the maximum number
that can be represented by a single token in the GPT-2-XL tokenizer is 520. For each pair of numbers
between 0 and 260, we randomly sample one of five natural language question templates and combine
it with the two numbers. The dataset is shuffled and then split into training (80%), validation (10%),
and test (10%) sets. More details are provided in Appendix F. In Appendix C.3, we show our that
results generalize to a different dataset formatted with reverse Polish notation.

Model. Unless otherwise stated, all experiments focus on the pre-trained GPT-2-XL model that has
been fine-tuned on our addition dataset. This model, which consists of 48 layers and approximately
1.5 billion parameters, learns the task almost perfectly, with an accuracy of 99.74% on the held-out
test set. We examine other models in §4.2 and §4.3.

Transformers. We focus on decoder-only Transformer models [41], which process text sequentially,
token by token, from left to right. Each layer ℓ in the Transformer has an attention module with
output Attn(ℓ) and an MLP module with output MLP(ℓ). Their outputs are added together to create
a continuous residual stream h [9], meaning that the token representation accumulates all additive
updates within the residual stream, with the representation h(ℓ) in the ℓ-th layer given by:

h(ℓ) = h(ℓ−1) +Attn(ℓ) +MLP(ℓ). (1)

The output embedding WU projects the residual stream to the space of the vocabulary; applying the
softmax function then yields the model’s prediction. We provide formal definitions in Appendix A.

3 Language Models Solve Addition with Fourier Features

In this section, we analyze the internal mechanisms of LLMs when solving addition tasks, employing
a Fourier analysis framework. We first show that the model initially approximates the solution
before iteratively converging to the correct answer (§3.1). We then show that the model refines
its initial approximation by computing the exact answer modulo 2, 5, and 10, employing Fourier
components of those same periods (§3.2). Finally, we demonstrate through targeted ablations that the
identified Fourier components are causally important for the model’s computational processes (§3.3).
Specifically, we show that MLP layers primarily approximate the magnitude of the answer, using low-
frequency features, while attention layers primarily perform modular addition using high-frequency
components.
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(a) Accuracy change (b) MLP logits (c) Attention logits

Figure 1: (a) Visualization of predictions extracted from fine-tuned GPT-2-XL at intermediate layers.
Between layers 20 and 30, the model’s accuracy is low, but its prediction is often within 10 of the
correct answer: the model first approximates the answer, then refines it. (b) Heatmap of the logits
from different MLP layers for the running example, “Put together 15 and 93. Answer: 108”. The
y-axis represents the subset of the number space around the correct prediction, while the x-axis
represents the layer index. The 33-rd layer performs mod 2 operations (favoring even numbers), while
other layers perform other modular addition operations, such as mod 10 (45-th layer). Additionally,
most layers allocate more weight to numbers closer to the correct answer, 108. (c) Analogous plot for
attention layers. Nearly all attention modules perform modular addition.

3.1 Behavioral Analysis

Our first goal is to understand whether the model merely memorizes and recombines pieces of
information learned during training, or it performs calculations to add two numbers.

Extracting intermediate predictions. To elucidate how LLMs perform computations and progres-
sively refine their outputs towards the correct answer, we extract model predictions at each layer from
the residual stream. Let L denote the number of layers. Using the Logit Lens method [3], instead
of generating predictions by computing logits WUh(L), predictions are derived through WUh(ℓ)

where ℓ ∈ [L]. We compute the accuracy of the prediction using each intermediate state h(ℓ). If
the models merely retrieve and recombine pieces of information learned during training, certain
layers will directly map this information to predictions. For instance, [25] demonstrates that there is
a specific MLP module directly maps a country to its capital.

LLMs progressively compute the final answers. Figure 1a instead shows that the model progres-
sively approaches the correct answer, layer by layer. The model is capable of making predictions
that fall within the range of ±2 and ±10 relative to the correct answer in the earlier layers, compared
to the exact-match accuracy. This observation implies that the Transformer’s layer-wise processing
structure is beneficial for gradually refining predictions through a series of transformations and
updates applied to the token representations.

3.2 Fourier Features in MLP & Attention Outputs

Logits for MLP and attention have periodic structures. We now analyze how each MLP and
attention module contributes to the final prediction. We transform the output of the attention and
MLP output at layer ℓ into the token space using WUAttn(ℓ) and WUMLP(ℓ) at each layer, thereby
obtaining the logits L for each MLP and attention module. We use the running example “Put together
15 and 93. Answer: 108” to demonstrate how the fine-tuned GPT-2-XL performs the computation.
As illustrated in Figure 1b and Figure 1c, both the MLP and attention modules exhibit a periodic
pattern in their logits across the output number space, e.g., the MLP in layer 33, outlined in green,
promotes all numbers that are congruent to 108 mod 2 (in Figure 20 in the appendix, we zoom into
such layers to make this clearer). Overall, we observe two distinct types of computation within these
components. Some components predominantly assign a high weight to numbers around the correct
answer, which we term approximation. Meanwhile, other components predominantly assign a high
weight to all numbers congruent to a+ b mod c for some constant c, which we term classification.

Logits for MLP and attention are approximately sparse in the Fourier space. It is natural to
transform the logits into Fourier space to gain a better understanding of their properties such as
the periodic pattern. We apply the discrete Fourier transform to represent the logits as the sum of
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(a) Logits for the MLP output in Fourier space (b) Logits for the attention output in Fourier space

Figure 2: The intermediate logits in Fourier space. We annotate the top-10 outlier high-frequency
Fourier components based on their magnitudes. T stands for the period of that Fourier component.
(a) The logits in Fourier space for the MLP output of the 33-rd layer, i.e., L̂(33)

MLP. The component
with period 2 has the largest magnitude, aligning with the observations in Figures 1b and 20a. (b) The
logits in Fourier space for the attention output of the 40-th layer, i.e., L̂(40)

Attn. The components with
periods 5 and 10 have the largest magnitude, aligning with the observations in Figures 1c and 20b.

sine and cosine waves of different periods: the k-th component in Fourier space has period 520/k

and frequency k/520 (see Appendix A for more details). Let L̂ denote the logits in Fourier space.
Figure 2 shows the Fourier space logits for two layers from Figure 1b and Figure 1c that have a clear
periodic pattern. We find that the high-frequency components in Fourier space, which we define as
components with index greater or equal to 50, are approximately sparse as depicted in Figure 2. This
observation aligns with [28], which found that a one-layer Transformer utilizes particular Fourier
components within the Fourier space to solve the modular addition task.

In Figure 3, we show that similar sparsity patterns in Fourier space hold across the entire dataset. We
compute the logits in Fourier space for the last 15 layers, i.e., L̂(ℓ)

Attn and L̂(ℓ)
MLP where ℓ ∈ [32, 47], for

all test examples and average them. We annotate the top-10 outlier high-frequency components based
on their magnitude. The MLPs also exhibit some strong low-frequency components; the attention
modules do not exhibit strong low-frequency components, only high-frequency components.

(a) Logits for MLP output in Fourier space (b) Logits for attention output in Fourier space

Figure 3: Analysis of logits in Fourier space for all the test data across the last 15 layers. For both the
MLP and attention modules, outlier Fourier components have periods around 2, 2.5, 5, and 10.

Final logits are superpositions of these outlier Fourier components. The final logits, L(L), are the
sum of all L(l)

MLP and L(l)
Attn across all layers l ∈ [L]. Figure 4 elucidates how these distinct Fourier

components contribute to the final prediction, for the example “Put together 15 and 93. Answer: 108”.
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(a) Final logits for top Fourier components (b) Summation of the Top-5 Fourier components

Figure 4: Visualization of how a sparse subset Fourier components can identify the correct answer.
(a) Shows the top-5 Fourier components for the final logits. (b) Shows the sum of these top-5 Fourier
components, highlighting how the cumulative effect identifies the correct answer, 108.

We select the top-5 Fourier components of L̂(L) based on their magnitudes and transfer them back
to logits in number space via the inverse discrete Fourier transform (Figure 4a). The large-period
(low-frequency) components approximate the magnitude while the small-period (high-frequency)
components are crucial for modular addition. Figure 4b shows that aggregating these 5 waves is
sufficient to predict the correct answer.

Why is high-frequency classification helpful? The Fourier basis comprises both cos and sin waves
(see Definition A.3). By adjusting the coefficients of cos and sin, the trained model can manipulate
the phase of the logits in Fourier space (number shift in number space), aligning the peak of the
wave more closely with the correct answer. As shown in Figure 4a, consider a wave with a period
of 2. Here, the peak occurs at every even number in the number space, corresponding to the mod 2
task. In contrast, for components with a large period such as 520, the model struggles to accurately
position the peak at 108 (also see Figure 14 in the appendix for the plot of this component with
period 520 in the full number space). This scenario can be interpreted as solving a “mod 520”
task—a classification task among 520 classes—which is challenging for the model to learn accurately.
Nevertheless, even though the component with a period of 520 does not solve the “mod 520” task
precisely, it does succeed in assigning more weight to numbers near 108. The classification results
from the high-frequency components can then provide finer-grained resolution to distinguish between
all the numbers around 108 assigned a large weight by the lower frequencies. Due to this, the low-
frequency components need not be perfectly aligned with the answer to make accurate predictions.

3.3 Fourier Features are Causally Important for Model Predictions

In the previous section, we demonstrated that there are outlier Fourier components in the logits
generated by both the MLP and attention modules, as shown in Figure 3. We also illustrated that,
in one example, the low-frequency components primarily approximate the magnitude, while the
high-frequency components are crucial for modular addition tasks, as depicted in Figure 4. In this
section, through an ablation study conducted across the entire test dataset, we show that both types
of components are essential for correctly computing sums. Moreover, we reveal that the MLP
layers primarily approximate the magnitude of the answer using low-frequency features, whereas the
attention layers are responsible for modular addition using high-frequency features.

Filtering out Fourier components. To understand the role various frequency components play for
the addition task, we introduce low-pass and high-pass filters F . For an intermediate state h, and
a set of frequencies Γ = {γ1, . . . , γk}, the filter F(h; Γ) returns the vector h̃ that is closest in L2

distance to h subject to the constraint that the Fourier decomposition of WU h̃ at every frequency γi
is 0. We show in Appendix A that this has a simple closed-form solution involving a linear projection.
We then apply either a low-pass filter by taking Γ to be all the components whose frequencies are
greater than the frequency of the τ -th component for some threshold τ (i.e., removing high-frequency
components), and a high-pass filter by taking Γ to be all the components whose frequencies are less
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Table 1: Impact of Filtering out Fourier Components on Model Performance. Removing low-
frequency components from attention modules (blue) or high-frequency components from MLP
modules (red) does not impact performance

Module Fourier Component Removed Validation Loss Accuracy
None Without Filtering 0.0073 0.9974

ATTN & MLP Low-Frequency 4.0842 0.0594
ATTN Low-Frequency 0.0352 0.9912
MLP Low-Frequency 2.1399 0.3589

ATTN & MLP High-Frequency 1.8598 0.2708
ATTN High-Frequency 0.5943 0.7836
MLP High-Frequency 0.1213 0.9810

than the frequency of the τ -th component (i.e., removing low-frequency components). As in the
previous subsection, we take the high-frequency threshold τ = 50 for the following experiments (see
Appendix B for more details).

Different roles of frequency components in approximation and classification tasks. We evaluated
the fine-tuned GPT-2-XL model on the test dataset with different frequency filters applied to all of the
output of MLP and attention modules. The results, presented in Table 1, indicate that removing low-
frequency components from attention modules or high-frequency components from MLP modules
does not impact performance. This observation suggests that attention modules are not crucial for
approximation tasks, and MLP modules are less significant for classification tasks.

Eliminating high-frequency components from attention results in a noticeable decrease in accuracy.
Furthermore, removing high-frequency components from both the attention and MLP modules
simultaneously leads to an even greater reduction in accuracy. This finding corresponds with
observations from Figure 1b,c and Figure 3, which indicate that both MLP and attention modules
are involved in classification tasks due to the presence of high-frequency components in the logits.
As shown in Table 1, the approximation tasks are primarily performed by the MLP modules, with
contributions from the attention modules as well.

The errors induced by these ablations align with our mechanistic understanding. Ablating low-
frequency parts of MLPs leads to off-by 10, 50, and 100 errors: the model fails to perform the
approximation subtask, though it still accurately predicts the unit digit. Conversely, ablating high-
frequency parts of attention leads to small errors less than 6 in magnitude: the model struggles
to accurately predict the units digit, but it can still estimate the overall magnitude of the answer.
See Figure 21 in the Appendix for more details. These observations validate our hypothesis that
low-frequency components are crucial for approximation, while high-frequency components are
vital for classification. The primary function of MLP modules is to approximate the magnitude of
outcomes using low-frequency components, while the primary role of attention modules is to ensure
accurate classification by determining the correct unit digit.

4 Effects of Pre-training

The previous section shows that pre-trained LLMs leverage Fourier features to solve the addition
problem. Now, we study where the models’ reliance on Fourier features comes from. In this section,
we demonstrate that LLMs learn Fourier features in the token embeddings for numbers during
pre-training. These token embeddings are important for achieving high accuracy on the addition task:
models trained from scratch achieve lower accuracy, but adding just the pre-trained token embeddings
fixes this problem. We also show that pre-trained models leverage Fourier features not only when
fine-tuned, but also when prompted.

4.1 Fourier features in Token Embedding

Number embedding exhibits approximate sparsity in the Fourier space. Let WE ∈ Rp×D,
where p = 521 and D is the size of the token embeddings, denote the token embedding for numbers.
We apply the discrete Fourier transform to each column of WE to obtain a matrix V ∈ Rp×D, where
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(a) Number embedding in Fourier space

Multiples of 10Group ℤ/10ℤ

Equivalent under ℤ/10ℤ

(b) Number embedding clustering

Figure 5: (a) Number embedding in Fourier space for fine-tuned GPT-2-XL. T stands for the period
of that Fourier component.(b) Visualization of token embedding clustering of GPT-2 using T-SNE
and k-means with 10 clusters. The numbers are clustered based on their magnitude and whether they
are multiples of 10.

each row represents a different Fourier component. Then we take the L2 norm of each row to yield a
p-dimensional vector. Each component j in this vector measures the overall magnitude of the j-th
Fourier component across all the token embedding dimensions. Figure 5a shows the magnitude of
different Fourier components in the token embedding of GPT-2-XL. We see that the token embedding
has outlier components whose periods are 2, 2.5, 5, and 10. Therefore, similar to how the model
uses different Fourier components to represent its prediction (as shown in Section 3.2), the token
embeddings represent numbers with different Fourier components. Figure 15 in the Appendix shows
that the token embeddings of other pre-trained models have similar patterns the Fourier space. This
suggests that Fourier features are a common attribute in the token embedding of pre-trained LLMs.
In Figure 5b, we use t-SNE and k-means to visualize the token embedding clustering. We can see
that numbers cluster not only by magnitude but also by their multiples of 10.

4.2 Contrasting Pre-trained Models with Models Trained from Scratch

(a) Logits for MLP output in Fourier space (b) Logits for attention output in Fourier space

Figure 6: Visualization of the logits in Fourier space on the test dataset from the last 15 layers for the
GPT-2-XL model trained from scratch. For both the MLP and attention modules, there are no outlier
Fourier components, in contrast with the clear outlier components in the fine-tuned model (Figure 3).

To understand the necessity of Fourier features for the addition problem, we trained the GPT-2-XL
model from scratch on the addition task with random initialization. After convergence, it achieved
only 94.44% test accuracy (recall that the fine-tuned GPT-2-XL model achieved 99.74% accuracy).
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Fourier features are learned during pre-training. Figure 6 shows that there are no Fourier
features in the intermediate logits of the GPT-2-XL model trained from scratch on the addition task.
Furthermore, Figure 7a shows that the token embeddings also have no Fourier features. Without
leveraging Fourier features, the model merely approximates the correct answer without performing
modular addition, resulting in frequent off-by-one errors between the prediction and the correct
answer (see details in Figure 23).

(a) Embedding: GPT-2-XL Trained from Scratch (b) Validation Accuracy Comparison for GPT-2

Figure 7: (a) The number embedding in Fourier space for GPT-2-XL trained from scratch. There
are no high-frequency outlier components, in contrast with the pre-trained embeddings (Figure 5a).
(b) Validation accuracy of GPT-2-small trained from scratch either with or without pre-trained token
embeddings. We show the mean and the standard deviation of the validation accuracy across 5
random seeds. GPT-2-small with pre-trained token embedding consistently achieves 100% accuracy,
while GPT-2-small without pre-trained token embedding only achieves less than 60% accuracy.

Pre-trained token embeddings improve model training. We also trained GPT-2-small, with 124
million parameters and 12 layers, from scratch on the addition task. GPT-2-small often struggles
with mathematical tasks [26]. This model achieved a test accuracy of only 53.95% after convergence.
However, when we freeze the token embedding layer and randomly initialize the weights for all other
layers before training on the addition task, the test accuracy increases to 100%, with a significantly
faster convergence rate. This outcome was consistently observed across five different random seeds,
as illustrated in Figure 7b. Following Section 3.2, to validate that the model learn to leverage the
Fourier feature to solve addition, we analyze the logits in Fourier space for all the test data across all
12 layers In Figure 8, we can clearly observe that, with solely the pre-trained number embedding, the
Fourier features appear in the MLP and attention modules’ output for most layers. This demonstrates
that given the number embeddings with Fourier features, the model can effectively learn to leverage
these features to solve the addition task.

4.3 Fourier Features in Prompted Pre-Trained Models

Finally, we ask whether larger language models use similar Fourier features during prompting.

Pre-trained LLMs use Fourier features to compute addition during in-context learning. We first
test on the open-source models GPT-J [43] with 6B parameters, and Phi-2 [21] with 2.7B parameters
on the test dataset. Without in-context learning, the model cannot perform addition tasks. Therefore,
we use 4-shot in-context learning to test its performance. Their absolute errors are predominantly
multiples of 10: 93% of the time for GPT-J, and 73% for Phi-2 . Using the Fourier analysis framework
proposed in Section 3.2, we demonstrate that for Phi-2 and GPT-J, the outputs of MLP and attention
modules exhibit approximate sparsity in Fourier space across the last 15 layers (Figure 9 and Figure
19). This evidence strongly suggests that these models leverage Fourier features to compute additions.

Closed-source models exhibit similar behavior. We study the closed-source models GPT-3.5 [33],
GPT-4 [34], and PaLM-2 [16]. While we cannot analyze their internal representations, we can study
whether their behavior on addition problems is consistent with reliance on Fourier features. Since
closed-source LLMs are instruction tuned and perform well without in-context learning, we conduct
error analysis with 0-shot. Most absolute errors by these models are also multiples of 10: 100%
of the time for GPT-3.5 and GPT-4, and 87% for PaLM-2. The similarity in error distribution to
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(a) Logits for MLP output in Fourier space without
pre-trained number embeddings

(b) Logits for attention output in Fourier space without
pre-trained number embeddings

(c) Logits for MLP output in Fourier space with pre-
trained number embeddings

(d) Logits for attention output in Fourier space with
pre-trained number embeddings

Figure 8: Analysis of logits in Fourier space for all the test data across the 12 layers. (a,b) GPT-2-
small trained from scratch fail to learn to leverage the Fourier feature to solve addition. (c,d) However,
with solely the pre-trained number embeddings, GPT-2-small is able to learn to leverage the Fourier
features to solve the addition as the fine-tuned models.

(a) Logits for MLP output in Fourier space (b) Logits for attention output in Fourier space

Figure 9: For Phi-2 (4-shot), we analyzed the logits in Fourier space for all the test data across the
last 15 layers. For both the MLP and attention modules, the outlier Fourier components have periods
around 2, 2.5, 5, and 10, similar to the fine-tuned GPT-2-XL logits (Figure 3).

that of open-source models leads us to hypothesize that Fourier features play a critical role in their
computational mechanism.

9



5 Related Work

Learning mathematical tasks. Previous studies primarily explore what pre-trained LMs can achieve
on arithmetic tasks, with less emphasis on the underlying mechanisms [29, 37]. For instance, [22]
demonstrates that small Transformer models can effectively learn arithmetic by altering the question
format and utilizing a scratchpad method [30]. [19] identifies activation patterns for the “greater-than”
operation in GPT-2, and [5] focuses on the enumeration and selection processes in GCD computation.
In this paper, we dive into the specific roles of MLP and attention layers in solving mathematical
tasks. Our research analyzes these components’ distinct contributions to integer addition tasks.

Mechanisms of pre-trained LMs. Recent studies have significantly advanced our understanding
of the underlying mechanisms of pre-trained Transformer models. For instance, research on “skill
neurons” by [44] and “knowledge neurons” by [8] underscores the development of specialized neural
components that encode task-specific capabilities or hold explicit factual information in the pre-trained
LMs, enhancing model performance on related tasks. [25] and [15] discuss how MLPs and FFNs
transform and update token representations for general language tasks. In contrast, we show that the
pre-trained LMs use multiple layers to compute addition by combining the results of approximation
and classification. Additionally, [46] demonstrated the capacity of GPT-2 to consolidate similar
information through pre-training in the model weights, which aligns with our observations on the
importance of pre-training in developing effective number embedding and arithmetic computation
strategies in LMs.

Fourier features in Neural Networks. Fourier features are commonly observed in image models,
particularly in the early layers of vision models [32, 31, 10]. These features enable the model to
detect edges, textures, and other spatial patterns effectively. Recently, Fourier features have been
noted in networks trained for tasks that allow cyclic wraparound, such as modular addition [28, 27],
general group compositions [6], or invariance to cyclic translations [38]. [28] demonstrates that
learning Fourier features can induce ‘grokking’ [35]. Furthermore, [24] provides a mathematical
framework explaining the emergence of Fourier features when the network exhibits invariance to
a finite group. We extend these insights by observing Fourier features in tasks that do not involve
cyclic wraparound. [39] found that by selecting problem-specific Fourier features, the performance
of MLPs can be improved on a computer vision-related task.

6 Conclusion

In this paper, we provide a comprehensive analysis of how pre-trained LLMs compute numerical sums,
revealing a nuanced interplay of Fourier features within their architecture. Our findings demonstrate
that LLMs do not simply memorize answers from training data but actively compute solutions through
a combination of approximation and classification processes encoded in the frequency domain of
their hidden states. Specifically, MLP layers contribute to approximating the magnitude of sums,
while attention layers contribute to modular operations.

Our work also shows that pre-training plays a critical role in equipping LLMs with the Fourier
features necessary for executing arithmetic operations. Models trained from scratch lack these crucial
features and achieve lower accuracy; introducing pre-trained token embeddings greatly improves
their convergence rate and accuracy. This insight into the arithmetic problem-solving capabilities of
LLMs through Fourier features sets the stage for potential modifications to training approaches. By
imposing specific constraints on model training, we could further enhance the ability of LLMs to
learn and leverage these Fourier features, thereby improving their performance in mathematical tasks.

7 Limitations

We note that our contributions are limited by the size of the dataset. As the maximum number that
can be represented by one token for GPT-2-XL is 520, we analyze on the dataset whose operands are
less than 260. However, as the Fourier features commonly exist in many different pre-trained models
as shown in Section 4, we believe different models still use Fourier features, possibly with a more
complicated strategy.
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Appendix

Roadmap. In Appendix A, we introduce some formal definitions that used in our main content. In
Appendix B, we show why we separate the Fourier components into the high-frequency part and
the low-frequency part and why we choose τ to be 50. In Appendix C, we show our observation
generalizes to another format of dataset, another arithmetic task and other models. In Appendix D,
we provide more evidence that shows the Fourier features in the model when computing addition. In
Appendix E, we provide more evidence that shows the GPT-2-XL trained from scratch does not use
Fourier feature to solve the addition task. In Appendix F, we give the details of our experimental
settings.

A Formal Definition of Transformer and Logits in Fourier Space

We first introduce the formal definition of the Transformer structure that we used in this paper.
Definition A.1 (Transformer). An autoregressive Transformer language model G : X → Y
over vocabulary Vocab maps a token sequence x = [x1, . . . , xN ] ∈ X , xt ∈ Vocab to a prob-
ability distribution y ∈ Y ⊂ R|Vocab| that predicts next-token continuations of x. Within the
Transformer, the i-th token is embedded as a series of hidden state vectors h

(ℓ)
t , beginning with

h
(0)
t = emb (xt) + pos(i) ∈ RD. Let WU ∈ R|Vocab|×D denote the output embedding. The final

output y = softmax(WU
(
h
(L)
N

)
) is read from the last hidden state. In the autoregressive case,

tokens only draw information from past tokens:

h
(ℓ)
t = h

(ℓ−1)
t +Attn

(ℓ)
t +MLP

(ℓ)
t

where

Attn
(ℓ)
t := Attn(ℓ)

(
h
(ℓ−1)
1 , h

(ℓ−1)
2 , . . . , h

(ℓ−1)
t

)
and MLP

(ℓ)
t := MLP

(ℓ)
t (Attn

(ℓ)
t , h

(ℓ−1)
t ).

In this paper, we only consider the output tokens to be numbers. Hence, we have the unembedding
matrix WU ∈ Rp×D, where p is the size of the number space. As we are given the length-N input
sequences and predict the (N + 1)-th, we only consider h(ℓ)

N = h
(ℓ−1)
N + Attn

(ℓ)
N +MLP

(ℓ)
N . For

simplicity, we ignore the subscript N in the following paper, so we get Eq. (1).

Definition A.2 (Intermediate Logits). Let L(ℓ)
Attn := WUAttn(ℓ) denote the intermediate logits of

the attention module at the ℓ-th layer. Let L(ℓ)
MLP := WUMLP(ℓ) denote the intermediate logits of

the MLP module at the ℓ-th layer. Let L(ℓ) := WUh(ℓ) denote the logits on intermediate state h(ℓ).

Throughout the model, h undergoes only additive updates (Eq. (1)), creating a continuous residual
stream [9], meaning that the token representation h accumulates all additive updates within the
residual stream up to layer t.

To analyze the logits in Fourier space, we give the formal definition of the Fourier basis as follows:
Definition A.3 (Fourier Basis). Let p denote the size of the number space. Let −→x := (0, 1, . . . , (p−
1)). Let ωk := 2πk

p−1 . We denote the normalized Fourier basis F as the p× p matrix:

F :=



√
1

p−1 · −→1√
2

p−1 · sin
(
ω1

−→x
)√

2
p−1 · cos

(
ω1

−→x
)√

2
p−1 · sin

(
ω2

−→x
)

...√
2

p−1 · cos
(
ω(p−1)/2

−→x
)


∈ Rp×p

The first component F [0] is defined as a constant component. For i ∈ [0, p− 1], F [i] is defined as
the k-th component in Fourier space, where k = ⌊ i+1

2 ⌋. The frequency of the k-th component is
fk := k

p−1 . The period of the k-th component is Tk := p−1
k
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We can compute the discrete Fourier transform under that Fourier basis as follows:
Remark A.4 (Discrete Fourier transformer (DFT) and inverse DFT). We can transform any logits
u ∈ Rp to Fourier space by computing û = F · u. We can transform û back to u by u = F⊤ · û

Next, we define the logits in Fourier space.

Definition A.5 (Logits in Fourier Space). Let L(L), L(ℓ)
Attn and L(ℓ)

MLP denote the logits (Definition
A.2). The output logits before softmax in Fourier space is defined as: L̂(L) = F · L(L). The logits of
the MLP and attention modules in Fourier space are defined as:

L̂(ℓ)
Attn = F · L(ℓ)

Attn and L̂(ℓ)
MLP = F · L(ℓ)

MLP.

We ignore the first elements in L̂(L), L̂(ℓ)
Attn and L̂(ℓ)

MLP for the Fourier analysis in this paper as they
are the constant terms. Adding a constant to the logits will not change the prediction.

Let τ ∈ R denote a constant threshold. The low-frequency components for the logits in Fourier
space are defined as L̂(ℓ)[1 : 2τ ]. The high-frequency components for the logits in Fourier space are
defined as L̂(ℓ)[2τ :]. For the following analysis, we choose τ = 50 (the specific choice of τ = 50 is
explained in Appendix B).

Next, we propose the formal definition of low-pass/high-pass filter that is used in the following
ablation study.
Definition A.6 (Loss-pass / High-pass Filter). Let x ∈ RD denote the output of MLP or attention
modules. Let F denote the Fourier Basis (Definition A.3). Let τ ∈ R denote the frequency threshold.
Let WU ∈ Rp×D denote the output embedding. For low-pass filter, we define a diagonal binary

matrix B ∈ {0, 1}p×p as bii =
{
1 if i ≥ τ

0 otherwise
. For high-pass filter, we define a diagonal binary

matrix B ∈ {0, 1}p×p as bii =
{
1 if 1 ≤ i < τ

0 otherwise
. Note that we retain the constant component, so

bi,i = 0. The output of the filter F(x) : RD → RD is defined by the following objective function:

min
y

∥x− y∥22

subject to BFWUy = 0

The solution to the above optimization problem is given by a linear projection.
Remark A.7. The result of the optimization problem defined in Definition A.6 is the projection of x
to the null space of BFWU . Let N (BFWU ) denote the null space of BFWU . We have

F(x) = N (BFWU ) · N (BFWU )⊤ · x⊤
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B Fourier Components Separation and Selection of τ

(a) Logits for MLP output in Fourier space (b) Logits for attention output in Fourier space

Figure 10: We analyzed the logits in Fourier space for all the test data across the last 15 layers. For
both the MLP and attention modules. We only plot the first 50 Fourier components (a) The MLP
exhibits some outlier low-frequency Fourier components. (b) The attention module’s low-frequency
Fourier components are not as obvious as the ones in MLP.

Following Definition A.6, we define single-pass filter as follows:
Definition B.1 (Single-Pass Filter). Let x ∈ RD denote the output of MLP or attention modules.
Let F denote the Fourier Basis (Definition A.3). Let γ ∈ R denote the γ-th Fourier component
(Definition A.3) that we want to retain. Let WU ∈ RV×D denote the output embedding. We define a

diagonal binary matrix B ∈ {0, 1}V×V as bii =
{
0 if ⌊ i+1

2 ⌋ = γ or i = 0,

1 otherwise.

The output of the filter Fγ(x) : RD → RD is defined as the following objective function:

min
y

∥x− y∥22

subject to BFWUy = 0

Remark B.2. The result of the optimization problem defined in Definition B.1 is the projection of x
to the null space of BFWU . Let N (BFWU ) denote the null space of BFWU . We have

Fγ(x) = N (BFWU ) · N (BFWU )⊤ · x⊤

For the single-pass filter, we only retrain one Fourier component and analyze how this component
affects the model’s prediction. The residual stream is then updated as follows:

h(ℓ) = h(ℓ−1) + Fγ(Attn
(ℓ−1)) + Fγ(MLP(ℓ−1))

We evaluated the fine-tuned GPT-2-XL model on the addition dataset with the Fourier components
period 520 and 2. Given that Tk := V−1

k (Definition A.3), we retained only the Fourier components
with γ = 1 and 260, respectively.

As shown in Figure 11a, with only one frequency component, whose period is 2, the model accurately
predicts the parity with 99.59% accuracy. As depicted in Figure 11b, with a single frequency
component of period 520, the model fails to accurately predict with 96.51% accuracy. We consider
the frequency component with a period of 2 as the model’s prediction for the mod 2 task, and the
frequency component with a period of 520 as its prediction for the mod 520 task. Figures 11 and 12
suggest that the model effectively learns the mod 2 task, as it involves a two-class classification, but
struggles with the mod 520 task, which requires classifying among 520 classes. As the model does
not need to be trained to converge to the optimal for these low-frequency components as explained at
the end of Section 3.2, predicting with the period-520 component leads to predictions that normally
distributed around the correct answers.
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(a) Retaining Period-2 Frequency Components (b) Retaining Period-520 Frequency Components

Figure 11: The prediction analysis when predicting with only one Fourier component. (a) Retaining
only the Period-2 Fourier component makes the prediction 99.59% accurate for mod 2 task (b)
Retaining only the Period-520 Fourier component makes the prediction 96.61% inaccurate for the
mod 520 task.

Figure 12: Retaining only the Period-520 Fourier component makes the model’s predictions normally
distributed around the correct answers.

The Fourier components with larger periods present greater difficulty in solving the corresponding
modular addition task compared to those with smaller periods. As demonstrated in Figure 12, compo-
nents with large periods serve primarily as approximations of the correct answer. Consequently, we
categorize the Fourier components into low-frequency and high-frequency groups. The low-frequency
components approximate the magnitude of the answer, whereas the high-frequency components are
employed to enhance the precision of the predictions.

In reference to Figure 4, to elucidate the contribution of these distinct Fourier components to our
final prediction and the rationale behind their separation, consider the example: “Put together 15 and
93. Answer: 108”. We selected the top-10 Fourier components of L̂(L) based on their magnitudes
and converted them back to logits in the numerical space by multiplying with F⊤. We plotted
the components with components index less than 50 in Figure 13a and those with components
index greater than 50 in Figure 13b. Leveraging the constructive and destructive inference for
different waves, the components with low periods assign more weight to the correct answer, 108,
and less weight to numbers close to 108. These high-frequency (low-period) components ensure the
prediction’s accuracy at the unit place. For the low-frequency (large-period) components, the model
fails to precisely learn the magnitude of the factor between the cos and sin components, which results
in failing to peak at the correct answer. Thus, the low-frequency (large-period) components are used
to approximate the magnitude of the addition results.
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(a) Final Logits for Components whose index Less
than 50

(b) Final Logits for Components whose index Greater
than 50

Figure 13: Visualization of tthe individual final logits for the top-10 Fourier components with example
“Put together 15 and 93. Answer: 108’ (a) The components index less than 50. (b) The components
index greater than 50.

Figure 14: Visualization of the Fourier component whose period is 520 analysis for the final logits.

18



C Does Fourier Features Generalize?

C.1 Token Embedding for Other LMs

We first show that other pre-trained LMs also have Fourier features in their token embedding for the
numbers [0, 520].

(a) pre-trained GPT-2-XL (b) fine-tuned GPT-2-XL

(c) pre-trained RoBERTa (d) pre-trained Phi2

Figure 15: Number embedding in Fourier space for different pre-trained models.
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C.2 Multiplication Task

A key question is whether pre-trained models utilize Fourier Features solely for solving addition
tasks or if they generalize to other arithmetic tasks. We hypothesize the latter, knowing that numbers
are represented by their Fourier features in the token embeddings after pre-training. Consequently,
this Fourier representation should be leveraged in a variety of number-related tasks. To validate this
hypothesis, we perform a Fourier analysis on the GPT-2-XL model fine-tuned for the multiplication
task.

Considering a maximum number of 520 for multiplication would result in an insufficient dataset size.
Therefore, we set the maximum allowable product to 10000.

For each pair of numbers where the product does not exceed this limit, we used a distinct phrasing
for each pair of numbers, selecting one template from five available templates. This ensures that
every unique pair of numbers between 0 and 260 is presented with a consistent phrasing from these
templates. We have fixed that typo in the revised version. The different phrasings used include: “What
is the product of num1 and num2?”, “Find the product of num1 multiplied by num2.”, “Calculate
num1 times num2.”, “num1 multiplied by num2 equals what?”, and “Multiplication of num1 with
num2.” The dataset is then shuffled to ensure randomness and split into training (80%), validation
(10%), and test (10%) sets. We finetune the model for 25 epochs with a learning rate of 1e− 4. Upon
convergence, the validation accuracy reaches 74.58%.

As the primary objective is to determine whether the Fourier features are utilized in tasks other than
addition, Figure 16 displays the logits in Fourier space for each layer, as in Figure 3. It is evident that
the logits are sparse in Fourier space.

(a) Logits for MLP output in Fourier space (b) Logits for attention output in Fourier space

Figure 16: We analyzed the logits in Fourier space for all the test data across the last 15 layers. For
both the MLP and attention modules, the outlier Fourier components have periods around 2, 2.5, 3.3,
5, and 10.
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C.3 Same Results for other format

To demonstrate that our observations are not confined to a specific description of the mathematical
problem, we conducted experiments on another format of addition problem and obtained consistent
results. From Figure 17, we can see that there are also periodic structures in the intermediate logits.

(a) MLP output logits for the last 15 layers (b) Attention output logits for the last 15 layers

Figure 17: Heatmap of the logits across different layers. The y-axis represents the subset of the
number space around the correct prediction, while the x-axis represents the layer index.

From Figure 18, we can also see the Fourier features for the MLP and attention output. These
two experiments validate that our observations are not confined to a specific format of the addition
problems.

(a) Logits for MLP output in Fourier space (b) Logits for attention output in Fourier space

Figure 18: We analyzed the logits in Fourier space for all the test data across the last 15 layers.
For both the MLP and attention modules, the outlier Fourier components have periods around 2,
2.5, 5, and 10. (a) The MLP exhibits some outlier low-frequency Fourier components. (b) The
attention module does not exhibit any outlier low-frequency Fourier components, but it has stronger
high-frequency components.

C.4 Fourier Features in Other Pre-trained LM

Using the Fourier analysis framework proposed in Section 3.2, we demonstrate that for GPT-J, the
outputs of MLP and attention modules exhibit approximate sparsity in Fourier space across the last
15 layers (Figure 19)
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(a) Logits for MLP output in Fourier space (b) Logits for attention output in Fourier space

Figure 19: For GPT-J (4-shot), we analyzed the logits in Fourier space for all the test data across the
last 15 layers. For both the MLP and attention modules, the outlier Fourier components have periods
around 2, 2.5, 5, and 10.

D Supporting Evidence For the Fourier Features

We selected the layers that clearly show the periodic pattern in Figure 1b and Figure 1c and plot their
logits in Figure 20.

(a) Logits for the 33-th layer’s MLP output (b) Logits for the 40-th layer’s attention output

Figure 20: The x-axis represents the number space, and the y-axis represents the logits value. (a) The
logits wave for the MLP output of the 33rd layer, L(33)

MLP. The MLP favors even numbers. The MLP
module favors the answer to 15 + 93 mod 2. (b) The logits wave for the attention output of the 40th

layer, L(40)
Attn. The attention module favors the answer to 15 + 93 mod 10 and 15 + 93 mod 5.

Figure 21 illustrates that the errors resulting from the ablation study (Section 3.3) correspond with our
theoretical insights. Removing low-frequency parts from the MLP results in errors such as off-by 10,
50, and 100. Without these low-frequency components, the MLP is unable to accurately approximate,
although it still correctly predicts the unit digit. In contrast, removing high-frequency components
from the attention modules results in smaller errors, all less than 6 in magnitude. These findings
support our statement that low-frequency components are essential for accurate approximation,
whereas high-frequency components are key for precise classification tasks. Consequently, the
primary function of MLP modules is to approximate numerical magnitudes using low-frequency
components, and the essential function of attention modules is to facilitate precise classification by
identifying the correct unit digit.
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(a) Filtering out low-frequency components of MLP (b) Filtering out high-frequency components of attention

Figure 21: (a) Across all the test data, the difference between predictions and labels are all the
multiple of 10. (b) Across all the test data, the differences between predictions and labels are all
below 6.

E More Experiments on GPT-2-XL Trained from Scratch

Following the methodology proposed in Section 3, we plotted the logits of the MLP and attention
modules for each layer, as shown in Figure 22. The prediction is solely determined by the 40-th layer
MLP. Unlike Figure 3, there is no observable periodic structure across all layers.

(a) MLP output logits for the last 15 layers (b) Attention output logits for the last 15 layers

Figure 22: Heatmap of the logits across different layers. The y-axis represents the subset of the
number space around the correct prediction, while the x-axis represents the layer index. The final
prediction is solely decided by the 40-th layer MLP.

For the model trained from scratch on the created addition dataset, all of the predictions on the test
dataset deviate from the correct answer within 2 as shown in Figure 23.
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Figure 23: Error distribution for GPT-2-XL trained from scratch.

F Details of Experimental Settings

Fine-tuned GPT-2-XL We finetune GPT-2-XL on the “language-math-dataset” with 50 epochs
and a batch size of 16. The dataset consists of 27, 400 training samples, 3, 420 validation samples,
and 3, 420 test samples. We use the AdamW optimizer, scheduling the learning rate linearly from
1× 10−5 to 0 without warmup.

Train GPT-2-XL from scratch We train GPT-2-XL on the “language-math-dataset” from scratch
with 500 epochs and a batch size of 16. The dataset consists of 27, 400 training samples, 3, 420
validation samples, and 3, 420 test samples. We use the AdamW optimizer, scheduling the learning
rate linearly from 1× 10−4 to 0 without warmup.

Train GPT-2 from scratch For both with pre-trained token embedding and without token embedding,
we train GPT-2 on the “language-math-dataset” with 700 epochs and a batch size of 16. The dataset
consists of 27, 400 training samples, 3, 420 validation samples, and 3, 420 test samples. We use the
AdamW optimizer, scheduling the learning rate linearly from 5 × 10−5 to 0 without warmup. In
Figure 7b, we train the model with five different seeds and plot the mean and deviation for them.

Create the addition dataset in main content We consider numbers in base 10 up to a maximum
value of 260. For each pair of numbers between 0 and 260, we used a distinct phrasing for each pair
of numbers, selecting one template from five available templates. This ensures that every unique pair
of numbers between 0 and 260 is presented with a consistent phrasing from these templates. We have
fixed that typo in the revised version. The different phrasings used are: “Total of num1 and num2.”,
“Add together num1 and num2.”, “Calculate num1 + num2.”, “What is the sum of num1 and num2?”,
and “Put together num1 and num2.”. The dataset is shuffled to ensure randomness and then split into
training (80%), validation (10%), and test (10%) sets.

Create the addition dataset in Appendix C.3 with different format We consider numbers in base
10 up to a maximum value of 260. We generate all possible pairs of numbers within this range using
combinations with replacement. For each pair, we convert the numbers to the specified base and
create questions formatted as “num1,num2+” with their corresponding answers. The dataset is then
split into training (80%), validation (10%), and test (10%) sets.

Experiments Compute Resources All experiments involving fine-tuning and training from scratch
in this paper were conducted on one NVIDIA A6000 GPU with 48GB of video memory. The
fine-tuning process required less than 10 hours, while training from scratch took less than 3 days.
Other experiments, such as those involving Logit Lens, were completed in less than 1 hour.

Licenses for Existing Assets & Open Access to Data and Code. For the following models, we use
the checkpoints provided by Huggingface. For all the trained models, we use default hyperparameters
during all the training but with different random seeds.

• GPT-2-XL: https://huggingface.co/openai-community/gpt2-xl, Modified MIT License

• GPT-2: https://huggingface.co/openai-community/gpt2, Modified MIT License

• GPT-J: https://huggingface.co/EleutherAI/gpt-j-6b, Apache-2.0 License

• Phi2: https://huggingface.co/microsoft/phi-2, MIT License
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• GPT-3.5 and GPT-4: https://chatgpt.com/ or https://openai.com/index/openai-api/
• PaLM-2 https://ai.google/discover/palm2/

G Impact Statement

Our work aims to understand the potential of large language models in solving arithmetic tasks. Our
paper is an interpretability paper and thus we foresee no immediate negative ethical impact. We
believe improved understanding and enhancement of LLMs can lead to more robust AI systems that
are capable of performing complex tasks more reliably. This can benefit areas such as automated data
analysis, financial forecasting, and more.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the introduction (Section 1), we explicitly state the observations and their
implications.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations is discussed in Section 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This is an interpretation paper without any theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the details of experimental settings in Section F. By following
these settings, our results can be reproduced. The detail process about the interpretability
methods can be found in Section A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer:[No]
Justification: The goal of this paper is to understand how LLMs compute addition. We
believe the code is not central to our contribution.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer:[Yes]
Justification: We show all the details in Section F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We run the experiments with 5 random seeds. In Figure 7, we show the plot
the error bar with the mean and the standard deviation of the validation accuracy.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The detail of the computing resourse is provided at the end of Section F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have read the NeurIPS Code of Ethies and made sure the paper
followsthe NeurIPS Code of Ethics in every aspect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The potential societal impact is discussed in Section G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper works on simple addition task and dataset. We belive there is no
such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[Yes]

Justification: The details are listed in Section F

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We did not introduce any new assets in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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