
Superhuman Fairness

Omid Memarrast 1 Linh Vu 1 Brian Ziebart 1

Abstract
The fairness of machine learning-based decisions
has become an increasingly important focus in the
design of supervised machine learning methods.
Most fairness approaches optimize a specified
trade-off between performance measure(s) (e.g.,
accuracy, log loss, or AUC) and fairness mea-
sure(s) (e.g., demographic parity, equalized odds).
This begs the question: are the right performance-
fairness trade-offs being specified? We instead re-
cast fair machine learning as an imitation learning
task by introducing superhuman fairness, which
seeks to simultaneously outperform human de-
cisions on multiple predictive performance and
fairness measures. We demonstrate the benefits
of this approach given suboptimal decisions.

1. Introduction
The social impacts of algorithmic decisions based on ma-
chine learning have motivated various group and individ-
ual fairness properties that decisions should ideally satisfy
(Calders et al., 2009; Hardt et al., 2016). Unfortunately, im-
possibility results prevent multiple common group fairness
properties from being simultaneously satisfied (Kleinberg
et al., 2016). Thus, no set of decisions can be universally fair
to all groups and individuals for all notions of fairness. In-
stead, specified weightings, or trade-offs, of different criteria
are often optimized (Liu & Vicente, 2022). Identifying an
appropriate trade-off to prescribe to these fairness methods
is a daunting task open to application-specific philosophical
and ideological debate that could delay or completely derail
the adoption of algorithmic methods.

We consider the motivating scenario of multiple (error-
prone) stakeholders with different notions of fairness and
desired performance-fairness trade-offs collaboratively pro-
ducing decisions. Preference elicitations (Hiranandani et al.,
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Figure 1. Three sets of
decisions (black dots)
with different predictive
performance and group
disparity values defining
the sets of 100%-, 67%-,
and 33%-superhuman
fairness-performance
values (red shades) based
on Pareto dominance.

2020) is of limited use since knowing the stakeholder trade-
offs still leaves the question of how different stakehold-
ers preferences should be prioritized. Rather than seeking
optimal decisions for specific performance-fairness (meta-
)trade-offs, we propose a more modest, yet more practical
objective: produce decisions preferred by all stakehold-
ers over human-produced decisions with maximal fre-
quency. This provides an opportunity for superhuman de-
cisions that Pareto dominate human decisions across predic-
tive performance and fairness measures (Figure 1) without
identifying an explicit desired trade-off. We argue that for
many algorithmic fairness tasks, frequently outperforming
human decisions across all relevant predictive performance
and fairness measures may be sufficient for replacing human
decision-makers with algorithmic decision-makers.

To the best of our knowledge, this paper is the first to define
fairness objectives for supervised machine learning with
respect to noisy human decisions rather than using prescrip-
tive trade-offs or hard constraints. We leverage and extend a
recently-developed imitation learning method for subdomi-
nance minimization (Ziebart et al., 2022). Instead of using
the subdominance to identify a target trade-off, as previous
work does in the inverse optimal control setting of sequen-
tial decision-making to estimate a cost function, we use it to
directly optimize our fairness-aware classifier. We develop
a method based on policy gradient optimization (Sutton
& Barto, 2018) that allows flexible classes of probabilis-
tic decision policies (e.g., aware or unaware of protected
group membership status) to be optimized for given sets of
performance/fairness measures and demonstrations.

We conduct extensive experiments on standard fairness
datasets (Adult and COMPAS) using accuracy as a per-
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formance measure and three conflicting fairness definitions:
Demographic Parity (Calders et al., 2009), Equalized Odds
(Hardt et al., 2016), and Predictive Rate Parity (Choulde-
chova, 2017). Though our motivation is to outperform hu-
man decisions, we employ a synthetic decision-maker with
differing amounts of label and group membership noise to
identify sufficient conditions for superhuman fairness of
varying degrees. We find that our approach achieves high
levels of superhuman performance that increase rapidly with
reference decision noise and significantly outperform the
superhumanness of other methods that are based on more
narrow fairness-performance objectives.

2. Fairness, Elicitation, and Imitation
2.1. Group Fairness Measures

Group fairness measures are primarily defined by confu-
sion matrix statistics (based on labels yi ∈ {0, 1} and
decisions/predictions ŷi ∈ {0, 1} produced from inputs
xi ∈ RM ) for examples belonging to different protected
groups (e.g., ai ∈ {0, 1}).

We focus on three prevalent fairness properties in this paper:

• Demographic Parity (DP) (Calders et al., 2009) requires
equal positive rates across protected groups:

P(Ŷ = 1|A = 1) = P(Ŷ = 1|A = 0);

• Equalized Odds (EqOdds) (Hardt et al., 2016) requires
equal true positive rates and false positive rates across
groups, i.e.,

P(Ŷ =1|Y =y,A=1) = P(Ŷ =1|Y =y,A=0), y ∈ {0, 1};

• Predictive Rate Parity (PRP) (Chouldechova, 2017) re-
quires equal positive predictive value (ŷ = 1) and negative
predictive value (ŷ = 0) across groups:

P(Y =1|A=1, Ŷ = ŷ) = P(Y =1|A=0, Ŷ = ŷ), ŷ ∈ {0, 1}.

Violations of these fairness properties can be measured as
differences:

D.DP(ŷ,a) =

∣∣∣∣∣
∑N

i=1 I [ŷi=1, ai=1]∑N
i=1 I [ai=1]

(1)

−
∑N

i=1 I [ŷi=1, ai=0]∑N
i=1 I [ai=0]

∣∣∣∣∣;
D.EqOdds(ŷ,y,a) = max

y∈{0,1}

∣∣∣∣∣
∑N

i=1 I [ŷi=1, yi=y, ai=1]∑N
i=1 I [ai=1, yi=y]

−
∑N

i=1 I [ŷi=1, yi=y, ai=0]∑N
i=1 I [ai=0, yi=y]

∣∣∣∣∣; (2)

D.PRP(ŷ,y,a) = max
y∈{0,1}

∣∣∣∣∣
∑N

i=1 I [yi=1, ŷi=y, ai=1]∑N
i=1 I [ai=1, ŷi=y]

−
∑N

i=1 I [yi=1, ŷi=y, ai=0]∑N
i=1 I [ai=0, ŷi=y]

∣∣∣∣∣. (3)

2.2. Performance-Fairness Trade-offs

Numerous fair classification algorithms have been devel-
oped over the past few years, with most targeting one or two
fairness measures (Zafar et al., 2015; Hardt et al., 2016; Goel
et al., 2018; Aghaei et al., 2019). With some exceptions
(Blum & Stangl, 2019), predictive performance and fairness
are typically competing objectives in supervised machine
learning approaches (Menon & Williamson, 2018). Thus,
though satisfying many fairness properties simultaneously
may be naı̈vely appealing, doing so often significantly de-
grades predictive performance or even creates infeasibility
(Kleinberg et al., 2016).

Given this, many approaches seek to choose parameters θ
for (probabilistic) classifier Pθ that balance the competing
predictive performance and fairness objectives (Kamishima
et al., 2012; Hardt et al., 2016; Menon & Williamson, 2018;
Celis et al., 2019; Martinez et al., 2020; Rezaei et al., 2020).
Recently, Hsu et al. (2022) proposed a novel optimization
framework to satisfy three conflicting fairness measures
(demographic parity, equalized odds, and predictive rate
parity) to the best extent possible:

min
θ

Eŷ∼Pθ

[
loss(ŷ,y) + αDPD.DP(ŷ,a) (4)

+ αOddsD.EqOdds(ŷ,y,a) + αPRPD.PRP(ŷ,y,a)
]
.

2.3. Preference Elictation & Imitation Learning

Preference elicitation (Chen & Pu, 2004) is one natural ap-
proach to identifying desirable performance-fairness trade-
offs. Preference elicitation methods typically query users
for their pairwise preference on a sequence of pairs of op-
tions to identify their utilities for different characteristics of
the options. This approach has been extended and applied
to fairness measure elicitation (Hiranandani et al., 2020),
allowing efficient learning of linear (e.g., Eq. (4)) and non-
linear measures from finite and noisy preference feedback.

When decisions are made jointly by multiple stakeholders
(Donaldson & Preston, 1995) rather than a single individual,
preference elicitation may not be very informative. Each
stakeholder’s preferences could be elicited, for example,
but how those sets of preferences should be prioritized to
determine joint outcomes can remain unclear without strong
additional assumptions about the decision-making process
(e.g., outcomes determined by a majority vote) (Dowling
et al., 2016).

Imitation learning (Osa et al., 2018) is a type of supervised
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machine learning that seeks to produce a general-use policy
π̂ based on demonstrated trajectories of states and actions,
ξ̃ = (s̃1, ã1, s̃2, . . . , s̃T ). Inverse reinforcement learning
methods (Abbeel & Ng, 2004; Ziebart et al., 2008) seek
to rationalize the demonstrated trajectories as the result
of (near-) optimal policies on an estimated cost or reward
function. Feature matching (Abbeel & Ng, 2004) plays a key
role in these methods, guaranteeing if the expected feature
counts match, the estimated policy π̂ will have an expected
cost under the demonstrator’s unknown fixed cost function
weights w̃ ∈ RK equal to the average of the demonstrated
trajectories:

Eξ∼π̂ [fk(ξ)] =
1

N

N∑
i=1

fk

(
ξ̃i

)
,∀k (5)

=⇒ Eξ∼π̂ [costw̃(ξ)] =
1

N

N∑
i=1

costw̃

(
ξ̃i

)
,

where fk(ξ) =
∑

st∈ξ fk (st).

Syed & Schapire (2007) seeks to outperform the set of
demonstrations when the signs of the unknown cost function
are known, w̃k ≥ 0, by making the inequality,

Eξ∼π [fk(ξ)] ≤
1

N

N∑
i=1

fk

(
ξ̃i

)
,∀k, (6)

strict for at least one feature. Subdominance minimization
(Ziebart et al., 2022) seeks to produce trajectories that out-
perform each demonstration by a margin:

fk(ξ) +mk ≤ fk(ξ̃i),∀i, k, (7)

under the same assumption of known cost weight signs.
However, since this is often infeasible, the approach in-
stead minimizes the subdominance, which measures the
α-weighted violation of this inequality:

subdomα(ξ, ξ̃) ≜
∑
k

[
αk

(
fk(ξ)− fk(ξ̃)

)
+ 1
]
+
, (8)

where [f(x)]+ ≜ max(f(x), 0) is the hinge function and
the per-feature margin has been reparameterized as α−1

k .
Previous work (Ziebart et al., 2022) has employed subdom-
inance minimization in conjunction with inverse optimal
control:

min
w

min
α

N∑
i=1

K∑
k=1

subdomα(ξ
∗(w), ξ̃i),where:

ξ∗(w) = argmin
ξ

∑
k

wkfk(ξ),

learning the cost function parameters w for the optimal tra-
jectory ξ∗(w) that minimizes subdominance. One contribu-
tion of this paper is extending subdominance minimization

to the more flexible prediction models needed for fairness-
aware classification that are not directly conditioned on cost
features or performance/fairness measures.

3. Subdominance Minimization for Improved
Fairness-Aware Classification

We approach fair classification from an imitation learning
perspective (Ziebart et al., 2022). We assume vectors of
(human-provided) reference decisions are available that may
have been produced collaboratively by multiple stakehold-
ers with competing predictive performance-fairness trade-
offs. Our goal is to construct a fairness-aware classifier
that outperforms reference decisions on all performance and
fairness measures on withheld data as frequently as possible,
which also provides guarantees to all stakeholders.

3.1. Superhumanness and Subdominance

We consider reference decisions ỹ = {ỹj}M
j=1 that are

drawn from an (unknown) human decision-making pro-
cess or baseline method P̃, on a set of M items, XM×L =
{xj}M

j=1, where L is the number of attributes in each of M
items xj . Group membership attributes am from vector a
indicate to which group item m belongs.

The predictive performance and fairness of decisions ŷ for
each item are assessed based on ground truth y and group
membership a using a set of predictive loss and unfairness
measures1 {fk(ŷ,y,a)} (e.g., Equations 1, 2, 3). Without
loss of generality, we assume that larger values for these
measures are less desirable. Ideally, the set of these mea-
sures should cover the bases of all stakeholder preference
functions (i.e., stakeholder cost functions for evaluating dif-
ferent vectors of decisions can be expressed as summed
monotonic transformations of {fk(ŷ,y,a)} measures).
Definition 3.1. A fairness-aware classifier is considered γ-
superhuman for a given set of predictive loss and unfairness
measures {fk} if its decisions ŷ satisfy:

P (f (ŷ,y,a) ⪯ f (ỹ,y,a)) ≥ γ.

If strict Pareto dominance is required to be γ-superhuman,
which is often effectively true for continuous domains, then
by definition, at most (1− γ)% of human decision makers
could be γ-superhuman. However, far fewer than (1 − γ)
may be γ-superhuman if pairs of human decisions do not
Pareto dominate one another in either direction (i.e., neither
f (ỹ,y,a) ⪯ f (ỹ′,y,a) nor f (ỹ′,y,a) ⪯ f (ỹ,y,a)
for pairs of human decisions ỹ and ỹ′). From this perspec-
tive, any decisions with γ-superhuman performance more

1These measures take the place of features used to define
cost/reward function in imitation learning methods. We instead
use features to describe the inputs to our fairness-aware decision
model, P̂θ .
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than (1− γ)% of the time exceed the performance limit for
the distribution of human demonstrators.

Unfortunately, directly maximizing γ is difficult in part
due to the discontinuity of Pareto dominance (⪯). The
subdominance (Ziebart et al., 2022) serves as a convex upper
bound for non-dominance in each measure {fk} and on 1−γ
in aggregate:

subdomk
αk

(ŷ, ỹ,y,a) ≜ (9)
[αk (fk(ŷ,y,a)− fk(ỹ,y,a)) + 1]+ ;

subdomα(ŷ, ỹ,y,a) ≜
∑
k

subdomk
αk

(ŷ, ỹ,y,a).

Given N vectors of reference decisions as demonstrations,
Ỹ = {ỹi}N

i=1, the subdominance for decision vector ŷ with
respect to the set of demonstrations is:2

subdomα(ŷ, Ỹ ,y,a) =
1

N

∑
ỹ∈Ỹ

subdomα(ŷ, ỹ,y,a),

where ŷi is the predictions produced by our model for the
set of items Xi, and Ŷ is the set of these prediction sets,
Ŷ = {ŷi}N

i=1.

Figure 2. A Pareto fron-
tier for possible P̂θ (blue)
optimally trading off pre-
dictive performance (e.g.,
inaccuracy) and group
unfairness. The model-
produced decision (red
point) defines dominance
boundaries (solid red)
and margin boundaries
(dashed red), which in-
cur subdominance (ma-
roon lines) on three ex-
amples.

The subdominance is illustrated by Figure 2. Following
concepts from support vector machines (Cortes & Vapnik,
1995), reference decisions ỹ that actively constrain the pre-
dictions ŷ in a particular measure dimension, k, are referred
to as support vectors and denoted as:

ỸSVk
(ŷ, αk) ≜

{
ỹ|αk(fk(ŷ)− fk(ỹ)) + 1 ≥ 0

}
.

3.2. Performance-Fairness Subdominance Minimization

We consider probabilistic predictors Pθ : XM → ∆YM

that make structured predictions over the set of items in
the most general case, but can also be simplified to make
conditionally independent decisions for each item.

2For notational simplicity, we assume all demonstrated deci-
sions ỹ ∈ Ỹ correspond to the same M items represented in X.
Generalization to unique X for each demonstration is straightfor-
ward.

Definition 3.2. The minimally subdominant fairness-aware
classifier P̂θ has model parameters θ chosen by:

argmin
θ

min
α⪰0

Eŷ|X∼Pθ

[
subdomα

(
ŷ, Ỹ ,y,a

)]
+ λ∥α∥1.

Hinge loss slopes α ≜ {αk}K
k=1 are also learned from the

data during training. For the subdominance of the kth mea-
sure, αk indicates the degree of sensitivity to how much
the algorithm fails to sufficiently outperform demonstra-
tions in that measure. When αk value is higher, reducing
underperformance on that measure minimizes the overall
subdominance more than reducing underperformance on
other measures.

The bi-level optimization of θ and α differs from single-
level support vector machine optimization (of θ alone),
which is a convex optimization problem (Cortes & Vapnik,
1995). Instead, subdominance is a quasi-convex function,
which similarly implies that there are no local optima as
a function of the realized predictive performance/fairness
measures.

Theorem 3.3. The αk-minimized subbdominance,

∑
k

Γk(ŷ,Ỹ,y,a)︷ ︸︸ ︷
min
αk≥0

(
subdomk

αk

(
ŷ, Ỹ ,y,a

)
+ λkαk

)
, (10)

is a quasiconvex function in terms of the set of measures,
{fk(ŷ,y,a)}.

We use the gradient of the expected subdominance with
respect to θ and α to update these variables iteratively, and
after convergence, the best learned weights θ∗ are used in
the final model P̂θ∗ . Though subdominance minimization
is not necessarily quasiconvex in terms of model parameters
θ, particularly for complex, nonlinear models, stochastic
gradient methods are often effective in avoiding local optima.
A commonly used linear model like logistic regression can
be used for P̂θ to simplify the overall optimization.
Theorem 3.4. The gradient of expected subdominance un-
der P̂θ with respect to the set of reference decisions {ỹi}N

i=1
is:

∇θEŷ|X∼P̂θ

[∑
k

Γk

(
ŷ, Ỹ,y,a

)]

= Eŷ|X∼P̂θ

[(∑
k

Γk(ŷ, Ỹ,y,a)

)
∇θ log P̂θ(ŷ|X)

]
,

where the optimal αk for each Γk (10) is obtained from:

αk = argmin
α

(m)
k

m such that fk (ŷ) + λ ≤ 1

m

m∑
j=1

fk

(
ỹ(j)

)
,
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using α
(j)
k = 1

fk(ŷ(j))−fk(ỹ(j))
to represent the αk value

that would make the demonstration with the jth smallest fk
measure, ỹ(j), a support vector with zero subdominance.

Using gradient descent, we update the model weights θ
using an approximation of the gradient based on a set of
sampled predictions ŷ ∈ Ŷ from the model P̂θ:

θ ← θ + η

∑
ŷ∈Ŷ

(∑
k

Γk(ŷ, Ỹ,y,a)

)
∇θ log P̂θ(ŷ|X)

 ,

Algorithm 1 Subdominance policy gradient optimization
Draw N set of reference decisions {ỹi}N

i=1 from a human
decision-maker or baseline method P̃. Initialize: θ ← θ0
while θ not converged do

Sample model predictions {ŷi}N
i=1 from P̂θ(.|Xi) for

the matching items used in reference decisions {ỹi}N
i=1

for k ∈ {1, ...,K} do
Sort reference decisions {ỹi}N

i=1 in ascending order
by kth measure value fk(ỹi): {ỹ(j)}N

j=1

Compute α
(j)
k = 1

fk(ỹ(j))−fk(ŷ(j))
αk = argmin

α
(m)
k

m such that

fk (ŷ) + λ ≤ 1
m

∑m
j=1 fk

(
ỹ(j)

)
Compute Γk(ŷi, Ỹ ,y,a)

θ ← θ + η
N

∑
i

(∑
k Γk(ŷi, Ỹ,y,a)

)
∇θ log P̂θ(ŷi|Xi);

We show the steps for training our model in Algorithm 1.
Reference decisions {ỹi}N

i=1 from a human decision-making
process or baseline method P̃ are provided as input to the
algorithm. θ is set to an initial value. In each iteration
of the algorithm, we first sample a set of model predictions
{ŷi}N

i=1 from P̂θ(.|Xi) for the matching items used for
reference decisions {ỹi}N

i=1. We then find the new θ (and
α) based on the algorithms discussed in Theorem 3.4.

3.3. Generalization Bounds

A fairness-aware classifier with a relatively small number
of support vectors has important generalization guarantees
under iid assumptions.

Theorem 3.5. A classifier P̂θ from a family with a convex
realizable space of measures {fk(ŷ, ỹ,y,a)} minimizing∑

i subdomα (ŷ, ỹi,yi,a) on a set of N iid reference de-

cisions with support vector sets
{
ỸSVk

(ŷ, αk)
}

is on av-
erage γ-superhuman on the population distribution with:
γ = 1− 1

N

∥∥∥⋃K
k=1 ỸS Vk

(ŷ, αk)
∥∥∥.

The proof for this generalization bound (see Appendix A)
is an extension to our setting of the generalization bound

based on support vectors developed for inverse optimal con-
trol subdominance minimization (Ziebart et al., 2022). It
requires that the realizable set of measures {fk(ŷ,y,a)} is
convex and that the (deterministic) Pθ with measures glob-
ally minimizing subdominance can be found. This may be
unrealistic for complex Pθ models (e.g., multilayer neural
networks).

Importantly, superhuman performance provides compara-
tive satisfaction guarantees for stakeholders. Specifically,
stakeholders will prefer the algorithmic decisions with at
least γ frequency for a fairly wide range of cost functions
defined in terms of the measures {fk(ŷ,y,a)}.

Corollary 3.6. For any stakeholder with a cost function,
cost(f ,X) such that:

f1 ⪯ f2 =⇒ cost(f1,X) ≤ cost(f2,X),

a γ-superhuman classifier will be preferable in expectation
with probability at least:

P (cost(f(ŷ,y,a), X) ≤ cost(f(ỹ,y,a)),X)) ≥ γ.

4. Experiments
The goal of our approach is to produce a fairness-aware
prediction method that outperforms reference (human) de-
cisions on multiple fairness/performance measures. In this
section, we discuss our experimental design to synthesize
reference decisions with varying levels of noise, evaluate
our method, and provide comparison baselines.3

4.1. Training and Testing Dataset Construction

To emulate human decision-making with various levels of
noise, we add noise to benchmark fairness datasets and apply
fair learning methods over repeated randomized dataset
splits. We describe this process in detail in the following
section.

Datasets We perform experiments on two benchmark fair-
ness datasets:

• UCI Adult dataset (Dheeru & Karra Taniskidou, 2017)
considers predicting whether a household’s income ex-
ceeds $50K/yr based on census data. Group membership
is based on gender. The dataset consists of 45,222 items.

• COMPAS dataset (Larson et al., 2016) considers predict-
ing recidivism with group membership based on race. It
consists of 6,172 examples.

3Our code is publicly available at https://github.com/
omidMemari/superhumn-fairness.
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Figure 3. Prediction error versus difference of: Demographic Parity (D.DP), Equalized Odds (D.EqOdds) and Predictive Rate Parity
(D.PRP) on test data using noiseless training data (ϵ = 0) for Adult (top row) and COMPAS (bottom row) datasets.

Partitioning the data We first split the entire dataset
randomly into a disjoint train (train-all) and test
(test-all) set of equal size. The test set (test-all) is
entirely withheld from the training procedure and ultimately
used solely for evaluation. To produce each demonstration
(a vector of reference decisions), we split the (train-all)
set randomly into a disjoint train (train-demo) and test
(test-demo) set of equal size.

Noise insertion We randomly flip ϵ% of the ground truth
labels y and group membership attributes a to add noise to
our demonstration-producing process.

Fair classifier P̃: Using the noisy data, we provide ex-
isting fairness-aware methods with labeled train-demo
data and unlabeled test-demo to produce decisions on
the test-demo data as demonstrations ỹ. Specifically, we
employ:

• The Post-processing method of Hardt et al. (2016), which
aims to reduce both prediction error and {demographic
parity or equalized odds} at the same time. We use de-
mographic parity as the fairness constraint. We produce
demonstrations using this method for Adult dataset.

• Robust fairness for logloss-based classification (Rezaei
et al., 2020) employs distributional robustness to match

target fairness constraint(s) while robustly minimizing the
log loss. We use equalized odds as the fairness constraint.
We employ this method to produce demonstrations for
COMPAS dataset.

We repeat the process of partitioning train-all N = 50
times to create randomized partitions of train-demo and
test-demo and to then produce a set of demonstrations
{ỹ}50i=1.

4.2. Evaluation Metrics and Baselines

Predictive Performance and Fairness Measures Our
focus for evaluation is on outperforming demonstrations in
multiple fairness and performance measures. We use K = 4
measures: inaccuracy (Prediction error), difference
from demographic parity (D.DP), difference from equalized
odds (D.EqOdds), difference from predictive rate parity
(D.PRP).

Baseline methods As baseline comparisons, we train five
different models on the entire train set (train-all) and
then evaluate them on the withheld test data (test-all):

• The Post-processing model of (Hardt et al., 2016) with
{demographic parity or equalized odds} as the fairness
constraint (post proc dp and post proc eqodds).
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Figure 4. Experimental results on the Adult and COMPAS datasets with noisy demonstrations (ϵ = 0.2). Margin boundaries are shown
with dotted red lines. Each plot shows the relationships between two measures.

• The Robust Fair-logloss model of (Rezaei et al.,
2020) with {demographic parity or equalized odds}
as the fairness constraint (fair logloss dp and
fair logloss eqodds).

• The Multiple Fairness Optimization framework of Hsu
et al. (2022) which is designed to satisfy three conflicting
fairness measures {demographic parity, equalized odds,
and predictive rate parity} to the best extent possible
(MFOpt).

Hinge Loss Slopes As discussed previously, each αk

value corresponds to the hinge loss slope, which defines
the sensitivity of produced decision not sufficiently out-
performing the demonstrations on the kth measure. When
the αk is large, the model heavily weights support vector
reference decisions for that particular k when minimizing
subdominance. We report these values in our experiments.

4.3. Superhuman Model Specification and Updates

We use a logistic regression model Pθ0
with first-order mo-

ment feature functions, ϕ(y,x) = [x1y, x2y, . . . xmy]⊤,
and weights θ applied independently on each item as our
decision model. During the training process, we update the
model parameter θ to reduce subdominance.

Sample from Model P̂θ In each iteration of the algorithm,
we first sample prediction vectors {ŷi}N

i=1 from P̂θ(.|Xi)
for the matching items used in demonstrations {ỹi}N

i=1. In
the implementation, to produce the ith sample, we look up
the indices of the items used in ỹi, which constructs item set
Xi. Now we make predictions using our model on this item
set P̂θ(.|Xi). The model produces a probability distribution
for each item which can be sampled and used as a prediction
{ŷi}N

i=1.

Update model parameters θ We update θ until conver-
gence using Algorithm 1. For our logistic regression model,
the gradient is:

∇θ log P̂θ(ŷ|X) = ϕ(ŷ,X)− Eŷ|X∼P̂θ
[ϕ(ŷ,X)] ,

where ϕ denotes the feature function and ϕ(ŷ,X) =∑M
m=1 ϕ(ŷm,xm) is the corresponding feature function

for the ith set of reference decisions. We employ a learning
rate of η = 0.01.

4.4. Experimental Results

After training each model, e.g., obtaining the best model
weight θ∗ from the training data (train-all) for
superhuman, we evaluate each on unseen test data
(test-all). We employ hard predictions (i.e., the most
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Table 1. Experimental results on noise-free datasets, along with the αk values learned for each measure in subdominance minimization.

Method
Dataset Adult COMPAS

Prediction error DP diff EqOdds diff PRP diff Prediction error DP diff EqOdds diff PRP diff

αk 62.62 35.93 6.46 4.98 82.5 4.27 3.15 12.72
γ-superhuman 98% 94% 100% 100% 100% 100% 100% 100%

MinSub-Fair (ours) 0.2109 0.0259 0.0067 0.1831 0.3668 0.0406 0.1247 0.1712
MFOpt 0.1957 0.0632 0.0775 0.2092 0.4347 0.0058 0.0695 0.1616

post proc dp 0.2125 0.0309 0.2204 0.3983 0.3460 0.0104 0.0770 0.1737
post proc eqodds 0.2139 0.1188 0.0072 0.3135 0.3634 0.0412 0.0602 0.1510
fair logloss dp 0.2812 0.0043 0.0480 0.1248 0.4676 0.0002 0.0714 0.1724

fair logloss eqodds 0.2541 0.1535 0.0301 0.1166 0.4515 0.1031 0.0291 0.1244

Table 2. Experimental results on datasets with noisy demonstrations, along with the αk values learned for each measure.

Method
Dataset Adult COMPAS

Prediction error DP diff EqOdds diff PRP diff Prediction error DP diff EqOdds diff PRP diff

αk 29.63 10.77 5.83 13.42 29.33 4.51 3.34 57.74
γ-superhuman 100% 100% 100% 100% 100% 100% 100% 98%

MinSub-Fair (ours) 0.1937 0.0310 0.0093 0.1760 0.3600 0.0320 0.0367 0.1723
MFOpt 0.3157 0.0132 0.0225 0.2092 0.4597 0.0919 0.0397 0.1533

post proc dp 0.2265 0.1442 0.0879 0.2304 0.3532 0.0879 0.0884 0.1605
post proc eqodds 0.2176 0.1572 0.1396 0.1451 0.3513 0.1442 0.1584 0.1485
fair logloss dp 0.3835 0.0246 0.0577 0.1158 0.4846 0.0053 0.1455 0.1832

fair logloss eqodds 0.3776 0.1179 0.0238 0.1380 0.4870 0.1272 0.0119 0.1539

probable label) using our approach at test time rather than
randomly sampling.

Noise-free reference decisions Our first set of experi-
ments considers learning from reference decisions with no
added noise.4 The results are shown in Figure 3. We observe
that our approach outperforms demonstrations in all fairness
measures and shows comparable performance in accuracy.
The (post proc dp) performs comparably to the average
of demonstrations in all dimensions, hence our approach
can outperform it in all fairness measures. In comparison
to (post proc dp), our approach can outperform in all
fairness measures but is slightly worse in prediction error.

We show the experiment results along with αk values in
Table 1. Note that the margin boundaries (dotted red lines)
in Figure 3 are equal to 1

αk
for measure k, hence there

is reverse relation between αk and margin boundary for
measure k. We observe larger values of αk for prediction
error and demographic parity difference. The reason is that
these measures are already optimized in demonstrations and
our model has to increase αk values for those measures to
sufficiently outperform them.

Noisy reference decisions In our second set of experi-
ments, we introduce significant amounts of noise (ϵ = 0.2)
into our reference decisions. We similarly add this noise to
the training datasets (train-all) of the baseline methods.

4Added noise does not imply the original dataset is noise-free.

Table 3. Percentage of reference demonstrations that each method
outperforms in all prediction/fairness measures.

Method
Dataset Adult COMPAS

ϵ = 0.0 ϵ = 0.2 ϵ = 0.0 ϵ = 0.2
MinSub-Fair (ours) 96% 100% 100% 98%

MFOpt 42% 0% 18% 18%
post proc dp 16% 86% 100% 80%

post proc eqodds 0% 66% 100% 88%
fair logloss dp 0% 0% 0% 0%

fair logloss eqodds 0% 0% 0% 0%

The results for these experiments are shown in Figure 4. We
observe that in the case of learning from noisy demonstra-
tions, our approach still outperforms the reference decisions.

The main difference here is that due to the noisy setting,
demonstrations have worse prediction error but regardless
of this issue, our approach still can achieve a competitive
prediction error. We show the experimental results along
with αk values in Table 2.

Relationship of noise to superhuman performance We
also evaluate the relationship between the amount of aug-
mented noise in the label and protected attribute of demon-
strations, with achieving γ-superhuman performance in our
approach. As shown in Figure 5, with slightly increasing the
amount of noise in demonstrations, our approach can out-
perform 100% of demonstrations and reach 1-superhuman
performance. In Table 3 we show the percentage of demon-
strations that each method can outperform across all predic-
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Figure 5. The relationship between the ratio of augmented noise
in the label and the protected attribute of reference decisions
produced by post-processing (upper) and fair-logloss (lower)
and achieving γ-superhuman performance in our approach.

tion/fairness measures (i.e., the γ−superhuman value).

5. Conclusions
In this paper, we introduce superhuman fairness, an ap-
proach to fairness-aware classifier construction based on im-
itation learning. Our approach avoids explicit performance-
fairness trade-off specification or elicitation. Instead, it
seeks to unambiguously outperform human decisions across
multiple performance and fairness measures with maximal
frequency. When successful, this provides important guaran-
tees for stakeholders with a broad set of possible preferences
for performance and fairness measures. We develop a gen-
eral framework for pursuing this based on subdominance
minimization (Ziebart et al., 2022) and policy gradient op-
timization methods (Sutton & Barto, 2018) that enable a
broad class of probabilistic fairness-aware classifiers to be
learned. Our experimental results show the effectiveness
of our approach in outperforming synthetic decisions cor-
rupted by small amounts of label and group-membership
noise when evaluated using multiple fairness criteria com-
bined with predictive accuracy.

Societal impacts By design, our approach has the po-
tential to identify fairness-aware decision-making tasks in
which human decisions can frequently be outperformed by
a learned classifier on a set of provided performance and
fairness measures. This has the potential to facilitate a tran-
sition from manual to automated decisions that are preferred
by all interested stakeholders, so long as their interests are
reflected in some of those measures. Since the formula-
tion only provides preference guarantees for stakeholders
with nonnegatively-weighted combinations of performance
and fairness measures, it may reduce the negative impact
of stakeholders in human-produced decision-making from
successfully seeking negative outcomes for specific groups.

Despite these benefits, our approach also has limitations.
First, when performance-fairness tradeoffs can either be
fully specified (e.g., based on first principles) or effectively
elicited, fairness-aware classifiers optimized for those trade-
offs should produce better results than our approach, which
operates under greater uncertainty cast by the noisiness
of human decisions. Second, if target fairness concepts
lie outside the set of measures we consider, our resulting
fairness-aware classifier will be oblivious to them. Third,
our approach assumes human-demonstrated decision are
well-intentioned, noisy reflections of desired performance-
fairness trade-offs. If this is not the case, then our methods
could succeed in outperforming them across all fairness
measures, but still not provide an adequate degree of fair-
ness.

Future directions We have conducted experiments with
a relatively small number of performance/fairness measures
using a simplistic logistic regression model. Scaling our
approach to much larger numbers of measures and classi-
fiers with more expressive representations are both of great
interest. Additionally, we plan to pursue experimental val-
idation using human-provided fairness-aware decisions in
addition to the synthetically-produced decisions we con-
sider in this paper. More broadly, other techniques that can
minimize subdominance or provide generalization guaran-
tees for stakeholders adoption preferences of algorithmic
decision-making are of significant interest.
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A. Proofs of Theorems
Proof of Theorem 3.3. We first establish that the average αk-minimized subdominance of a single measure k,

1

N

∑
ỹ

min
αk

subdomk
αk

(ŷ, ỹ,y,a) =
1

N

∑
ỹ

[
α∗
k

(
f̂k − fk(ỹ,y,a)

)
+ 1
]
+
., (11)

is a monotonic (increasing) function of f̂k ≜ fk(ŷ,y,a).

When α∗
k ≥ 0 is nonzero, it is minimized by defining a margin boundary at the largest support vector, ỹ(j):

α∗
k =

1

fk(ỹ(j),y,a)− f̂k
.

When summed over all examples, Equation (11) can be expressed as:

j

N


(
f̂k − fk(ỹ(1:j),y,a)

)
fk(ỹ(j),y,a)− f̂k

+ 1

 =
j

N


(
fk(ỹ(j),y,a)− fk(ỹ(1:j),y,a)

)
fk(ỹ(j),y,a)− f̂k

 . (12)

From the left-hand side of Eq. (12), we can see that when f̂k is equal to the average features of the j (smallest) support
vectors, fk(ỹ(1:j),y,a), the subdominance is equal to the support vector frequency (j/N ). This is also precisely the value
of f̂k at which a new support vector with measure value fk(ỹ(j+1),y,a), is added. Starting from the left-hand side of Eq.
(12), we show that this has the same value of j/N for the subdominance when f̂k = fk(ỹ(1:j),y,a):

j + 1

N

(
fk(ỹ(1:j),y,a)− fk(ỹ(1:j+1),y,a)

fk(ỹ(j+1),y,a)− fk(ỹ(1:j),y,a)
+ 1

)

=
j + 1

N

(
fk(ỹ(1:j),y,a)− fk(ỹ(1:j+1),y,a) + fk(ỹ(j+1),y,a)− fk(ỹ(1:j),y,a)

fk(ỹ(j+1),y,a)− fk(ỹ(1:j),y,a)

)

=
j + 1

N

(
−fk(ỹ(1:j+1),y,a) + fk(ỹ(j+1),y,a)

fk(ỹ(j+1),y,a)− fk(ỹ(1:j),y,a)

)

=
1

N

(
−(j + 1)fk(ỹ(1:j+1),y,a) + fk(ỹ(j+1),y,a) + jfk(ỹ(j+1),y,a)

fk(ỹ(j),y,a)− fk(ỹ(1:j),y,a)

)
(a)
=

1

N

(
−jfk(ỹ(1:j),y,a) + jfk(ỹ(j+1),y,a)

fk(ỹ(j+1),y,a)− fk(ỹ(1:j),y,a)

)
=

j

N
, (13)

where step (a) follows from (j + 1)fk(ỹ(1:j+1),y,a)− fk(ỹ(j+1),y,a) = jfk(ỹ(1:j). This shows that at its non-smooth
points, the subdominance is not decreasing.

Differentiating the right-hand side of Eq. (12) yields:

j


(
fk(ỹ(j),y,a)− fk(ỹ(1:j),y,a)

)
(fk(ỹ(j),y,a)− f̂k)2

 , (14)

which is nonnegative as long as fk(ỹ(j)) ≥ fk(ỹ(1:j),y,a), a condition that is always true by definition of the ordered
support vectors. Thus, since subdominance is non-decreasing at both its smooth and nonsmooth portions, it is a monotonic
(increasing) function of f̂k in each dimension k.

Since the per-measure subdominances are independent and combined via summation over all the dimensions k to form the
entire subdominance, the sublevel sets must be convex, and the subdominance overall is therefore a quasiconvex function of
f̂ .
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Proof of Theorem 3.4. The gradient of the training objective with respect to model parameters θ is:

∇θEŷ|X∼P̂θ

∑
k

Γk(ŷ,Ỹ,y,a)︷ ︸︸ ︷
min
αk

(
subdomk

αk

(
ŷ, Ỹ ,y,a

)
+ λkαk

) = Eŷ|X∼P̂θ

[(∑
k

Γk(ŷ, Ỹ ,y,a)

)
∇θ log P̂θ(ŷ|X)

]
,

which follows directly from a property of gradients of logs of function:

∇θ log P̂(ŷ|X) =
1

P̂(ŷ|X)
∇θP̂(ŷ|X) =⇒ ∇θP̂θ(ŷ|X) = P̂(ŷ|X)∇θ log P̂(ŷ|X). (15)

We note that this is a well-known approach employed by policy-gradient methods in reinforcement learning (Sutton & Barto,
2018).

Next, we consider how to obtain the α−minimized subdominance for a particular tuple (ŷ,Ỹ ,y,a), Γk

(
ŷ, Ỹ ,y,a

)
=

minαk

(
subdomk

αk

(
ŷ, Ỹ ,y,a

)
+ λkαk

)
, analytically.

First, we note that subdomk
αk

(
ŷ, Ỹ ,y,a

)
+ λkαk is comprised of hinged linear functions of αk, making it a convex

and piece-wise linear function of αk. This has two important implications: (1) any point of the function for which the
subgradient includes 0 is a global minimum of the function (Boyd & Vandenberghe, 2004); (2) an optimum must exist at a
corner of the function: αk = 0 or where one of the hinge functions becomes active:

αk(fk(ŷi)− fk(ỹi)) + 1 = 0 =⇒ αk =
1

fk(ỹi)− fk(ŷi)
. (16)

The subgradient for the jth of these points (ordered by fk value from smallest to largest and denoted fk(ỹ
(j)) for the

demonstration) is:

∂αk
subdomk

αk

(
ŷ, Ỹ ,y,a

) ∣∣∣
αk=(fk(ŷ)−fk(ỹ(j)))−1

= ∂αk

(
1

N

j∑
i=1

[
αk

(
fk(ŷ)− fk(ỹ

(i))

)
+ 1

]
+

+ λαk

)

= λ+
1

N

j−1∑
i=1

(
fk(ŷ)− fk(ỹ

(i))

)
+
[
0, fk(ŷ)− fk(ỹ

(j))
]
,

where the final bracketed expression indicates the range of values added to the constant value preceding it.

The smallest j for which the largest value in this range is positive must contain the 0 in its corresponding range, and is thus
the provides the j value for the optimal αk value.

Proof of Theorem 3.5. We first recall generalization guarantees for support vector machines (SVMs) (Cortes & Vapnik,
1995) based on leave-one-out cross validation (LOOCV) that our approach leverages. For support vector machines, examples
that are not support vectors incur zero loss and do not actively constrain the SVM parameters. Thus, when these examples
are removed, the decision boundary does not change and therefore no cross validation loss is incurred on any left-out
example during LOOCV. Due to this, the support vector frequency is an upper bound on the leave-one-out cross validation
error, which is an (almost) unbiased estimate of the generalization inaccuracy (Vapnik & Chapelle, 2000).

Since subdominance is quasiconvex instead of convex, this analysis is slightly more complicated. Specifically, it requires
the set of realizable f measures to be convex. The intersection of the sublevel sets of the quasiconvex subdominance
(Theorem 3.3 with a convex set of feasible measures is also convex, so the constrained subdominance minimization problem
(minimizing subdominance over the set of realizable features for the family of possible Pθ) is also quasiconvex. As a result,
no local optima exist that are not global optima. Since the non-support vectors do not actively constrain the global optima,
removing them does not change the global optima and therefore they do not contribute any loss to the leave-one-out cross
validation error. The remaining argument then follows directly from the SVM LOOCV analysis.
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B. Additional Results
In the main paper, we only included plots that show the relationship of a fairness metric with prediction error. To show the
relation between each pair of fairness metrics, in Figures 6 and 7 we show the remaining plots removed from Figures 3 and
4 respectively.
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Figure 6. The trade-off between each pair of: difference of Demographic Parity (D.DP), Equalized Odds (D.EqOdds) and Predictive
Rate Parity (D.PR) on test data using noiseless training data (ϵ = 0) for Adult (top row) and COMPAS (bottom row) datasets.

B.1. Experiment with more measures

Since our approach is flexible enough to accept wide range of fairness/performance measures, we extend the experiment
on Adult to K = 5 measures. In this experiment we use Demographic Parity (D.DP), Equalized Odds (D.EqOdds),
False Negative Rate (D.FNR), False Positive Rate (D.FPR) and Prediction Error as the measures to outperform reference
decisions on. The results are shown in Figure 8.
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Figure 7. The trade-off between each pair of: difference of Demographic Parity (D.DP), Equalized Odds (D.EqOdds) and Predictive
Rate Parity (D.PR) on test data using noiseless training data (ϵ = 0.2) for Adult (top row) and COMPAS (bottom row) datasets.
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Figure 8. The trade-off between each pair of: difference of Demographic Parity (D.DP), Equalized Odds (D.EqOdds), False Negative
Rate (D.FNR), False Positive Rate (D.FPR) and Prediction Error on test data using noiseless training data (ϵ = 0) for Adult dataset.
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