
Under review as a conference paper at ICLR 2024

REWARD CENTERING

Anonymous authors
Paper under double-blind review

ABSTRACT

We show that discounted methods for solving continuing reinforcement learning
problems can be significantly improved if they center their rewards by subtracting
out the rewards’ (changing) empirical average. The improvement is substantial at
commonly-used discount factors and increases further as the discount factor ap-
proaches 1. In addition, we show that if a problem’s rewards are shifted by a con-
stant, then non-centering methods perform much worse, whereas centering meth-
ods are (unsurprisingly) unaffected. In this sense, reward centering significantly
increases the generality of discounted reinforcement learning methods. Insight
into the benefits of reward centering can be gained from the decomposition of the
discounted value function proposed by Blackwell in 1962. The reward-centering
idea is general and can be added to any reinforcement learning algorithm; we
showcase the centered version of the Q-learning algorithm in this paper.

1 DISCOUNTING: MOTIVATION AND ISSUES

There are practical difficulties in applying standard RL methods when the discount factor is close to
one. These difficulties are common because in many problems of interest, we have two expectations
from our solution methods: (1) learn to behave in way that maximizes rewards over the long term, (2)
learn such behavior fast. These expectations appear to be conflicting when using standard methods:
the rate of learning is typically high with a small discount factor but the corresponding behavior is
likely too short-sighted; with large discount factors the behavior is more long-sighted but can take
prohibitively long to learn. Figure 1(left) illustrates this tension on a small problem that is reflective
of several real-world applications. The performance of the Q-learning algorithm (Watkins & Dayan,
1992) improved till the discount factor γ = 0.9 beyond which the rate of learning deteriorated
significantly (such observations are common, for instance, see Zhang & Ross (2021)).

However, there need not be a trade-off in meeting those expectations. The right panel of Figure 1
demonstrates the performance of a variant of Q-learning which learned behavior that accrued more
reward over the long term, quickly. We observed similar results on larger problems (see Section 3).
There is a simple idea at play: ensure the rewards experienced by the agent are zero on average by
estimating and subtracting the empirical average of the rewards online and incrementally. When this
centering technique is applied to Q-learning, we call the resulting algorithm Centered Q-learning.

Figure 1: Learning curves corresponding to a range of discount factors for Q-learning and Cen-
tered Q-learning on the Access-Control Queuing problem. The x-axis denotes the number of agent-
environment interactions and the y-axis denotes the rate of reward obtained by the agent over a
moving window. The shaded region denotes one standard error. More details in-text.

1

Under review as a conference paper at ICLR 2024

Figure 2: Learning curves for the two algorithms on slight variants of the Access-Control Queuing
problem with all the rewards shifted by a constant integer. The y-axis is shifted to compare learning
curves for all the variants on the same scale. More details in-text.

We also observed the rate of learning of standard algorithms is significantly affected by a constant
shift in the rewards. Adding a constant to all the rewards does not change the ordering of the
policies evaluated by the total-reward or the average-reward criterion in problems where the agent-
environment interactions go on ad infinitum. However, Q-learning is susceptible to this change.
To the original problem with a given reward signal, we added a constant integer to all the rewards.
Five different integers result in five problem variants which have the same best policy, but Figure 2
illustrates that Q-learning behaves differently on each variant. This is undesirable, especially in the
context of lifelong learning agents that may experience different kinds of reward signals over their
lifetimes. On the other hand, we saw Centered Q-learning was virtually unaffected by any shift in
the rewards (the learning curves for all the variants are overlapping in the right panel of Figure 2).

It turns out both of these issues are related. Asking why they occur also reveals how reward-centering
helps mitigate them. So let us take a step back and ask, what is discounting and why is it desirable?

First, we formalize the interaction between the agent and the environment by a finite Markov deci-
sion process (MDP)M .

= (S,A,R, p), where S denotes the finite set of states,A denotes the finite
set of actions,R denotes the finite set of rewards, and p : S ×R×S ×A → [0, 1] denotes the tran-
sition dynamics. At time step t, the agent is in state St ∈ S , takes action At ∈ A using a behavior
policy b : A× S → [0, 1], observes the next state St+1 ∈ S and reward Rt+1 ∈ R according to the
transition dynamics p(s′, r|s, a) = Pr(St+1 = s′, Rt = r|St = s,At = a). We consider the case
where the agent-environment interaction goes on ad infinitum, as in continuing problems.

The discounted-reward formulation in RL is pertinent in continuing problems. The geometric dis-
counting of future rewards is a way to ensure that the sum of infinite rewards observed by the agent
starting from any state remains finite; the total sum of rewards for any policy in a continuing problem
is infinite. Formally, for all discount factors γ ∈ [0, 1), the discounted value function is finite:

vγπ(s)
.
= E

[∞∑
t=0

γtRt+1|St = s,At:∞ ∼ π

]
≤ Rmax/(1− γ) ∀s, (1)

where π : A × S → [0, 1] denotes a stationary policy and Rmax denotes the upper bound of the
rewards in R. The optimal policy under the discounted-reward criterion is one that maximizes the
discounted sum of rewards from all states. That is, for discount factor γ, π∗

γ is an optimal policy if
vγπ∗

γ
(s) ≥ vγπ(s),∀s ∈ S,∀π ∈ Π, where Π denotes the set of all stationary policies.1

In many problems of interest, we wish to learn behaviors that maximize the total undiscounted re-
ward. But an optimal policy for a discount factor γ—call it a γ-optimal policy—does not necessarily
maximize the total undiscounted reward from each state. Thankfully, an implication of Blackwell’s
(1962) work is that for all finite MDPs, there exists a critical γ∗ such that ∀γ ∈ [γ∗, 1), the γ-
optimal policy also maximizes the average reward over a long time (and hence maximizes the total

1Naik et al. (2019) and Sutton & Barto’s (2018) Section 10.4 show the notion of optimality is not well-
defined for the control problem in the continuing setting with function approximation. Our theoretical analysis
is restricted to the tabular case for which there is a well-defined discounted-reward objective. However, we
keep this caveat in mind when reporting results of discounted solution methods with function approximation
later in this paper.

2

Under review as a conference paper at ICLR 2024

undiscounted reward) (see Puterman’s (1994) Theorem 10.1.4 and Grand-Clément & Petrik’s (2023)
Theorem 4.6). However, γ∗ is unknown. So a natural choice is to use large discount factors which
are hopefully larger than the unknown γ∗ for a given problem. But the rate of learning can be quite
low with large discount factors. This is not just an empirical observation; it is backed by theory: the
best known bounds of convergence rate for Q-learning are polynomials of 1/(1 − γ) (Qu & Wier-
man, 2020; Wainwright, 2019; Even-Dar et al., 2003). That is, the number of samples to learn the
optimal value function with Q-learning approaches infinity as the discount factor approaches one.

The range of the discounted valued function offers a clue to why the information-theoretic bound is
so large. From (1) we know the range of the discounted values is [−Rmax/(1− γ), Rmax/(1− γ)],
which grows as γ approaches 1. However, the optimal policy is only a function of the relative
(action) values, not their absolute values. So is it possible to estimate just the relative values, and
would that be easier than estimating the absolute values?

The answer is affirmative thanks to the Laurent series decomposition which reveals the discounted
value function comprises of a large state-independent term that does not contribute to the action
selection (see Blackwell’s (1962) Theorem 4a or Puterman’s (1994) Corollary 8.2.4):

vγπ(s) =
r(π)

1− γ
+ v̄π(s) + eγπ(s), ∀s, (2)

where r(π) is the reward rate or the average reward obtained by policy π, v̄π(s) denotes the differ-
ential value function at state s, each defined for ergodic MDPs (for ease of exposition) as:

r(π)
.
= lim

n→∞

1

n

n∑
t=1

E
[
Rt | S0, A0:t−1 ∼ π

]
, (3)

v̄π(s)
.
= E

[∞∑
k=1

(
Rt+k − r(π)

)
| St = s,At:∞ ∼ π

]
, (4)

and eγπ(s) denotes an error term that go to zero as the discount factor goes to one. Note the differ-
ences in the values of states do not depend on the constant term r(π)/(1− γ).

The Laurent series decomposition provides a clear insight into the issues discussed at the beginning
of this section. If the state-independent offset has a large magnitude, approximation errors in esti-
mating it could potentially mask the differences between the states (especially so when the value
function approximators are initialized close to zero). There are two contributors to the magnitude
of the offset: a large discount factor, and a large reward rate. So it is unsurprising that the practical
issues discussed at the beginning of this section can be quite common, since there is a strong moti-
vation to set large discount factors and we want to learn policies that maximize the reward rate (and
hence the total reward). Large discount factors and shifts in the problems’ rewards can inflate the
offset, making it hard to learn the values and hence good policies.

2 CENTERED DISCOUNTED METHODS

If the offset r(π)/(1− γ) were zero, the value function approximator would not have to estimate it.
We can arrange for that to happen. For intuition, consider the case when the agent magically knows
the average reward of the target policy before we run any learning algorithm. Then, when estimating
the values, if the agent subtracts this known average reward from the stream of occurring rewards,
the offset would be zero, hence not contributing to the value function at all.

In particular, we can define a new centered discounted value function of policy π for a state s for a
discount factor γ ∈ [0, 1], where all the rewards are centered around r(π):

v̄γπ(s)
.
= E

[∞∑
t=0

γt
(
Rt+1 − r(π)

)
| St = s,At:∞ ∼ π

]
. (5)

Note that as γ → 1, v̄γπ(s) → v̄π(s),∀s. The centered discounted value function satisfies recursive
Bellman-like equations:

v̄γ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)
(
r − r̄ + γv̄γ(s′)

)
, ∀ s, or v̄γ = rπ − r̄1+ γPπv̄

γ ,

(6)

3

Under review as a conference paper at ICLR 2024

where 1 denotes a vector of all ones, rπ denotes the vector of expected one-step rewards from
each state, and Pπ denotes policy-conditioned state-to-state transition matrix, and (v̄γ , r̄) are free
variables. Interestingly, these Bellman equations have infinite solutions: (v̄γ

π, r(π)) is a solution
tuple, and so are

(
v̄γ
π + c1, r̄ − c(1− γ)

)
∀c ∈ R.

Now if the agent wanted to estimate the centered discounted value function of a target policy π from
its stream of experience following π and somehow knew that policy’s reward rate r(π), it could
update the tabular estimates Vt : S → R using a variant of the TD-learning update (Sutton, 1988):

Vt+1(St)
.
= Vt(St) + α

(
Rt+1 − r(π) + γVt(St+1)− Vt(St)

)
, (7)

where α is the step size. However, r(π) is typically unknown, so the agent has to estimate it as well.
The most obvious way to do this is to maintain a running estimate of the reward rate at every time
step. In particular, a scalar reward-rate estimate R̄ can be updated at each time step as:

R̄t+1
.
= R̄t + β(Rt+1 − R̄t), (8)

where β is another step size. Such an update is guaranteed to converge to true reward rate of
the policy with which the agent is behaving—in this case, π. Interleaving this update with (7)
would result in a convergent on-policy centered TD-learning algorithm (under the usual technical
conditions). This is good progress, but this approach of estimating the reward rate by an exponential
recency-weighted sample average of observed rewards is limited to the on-policy setting. In general
the agent may behave according to a different (more exploratory) policy than the one whose values
it is trying to learn. This off-policy setting is important to the goals of artificial intelligence (see,
e.g., Sutton et al., 2011), and we are motivated to find a way to estimate the reward rate of the target
policy when acting according to a different behavior policy.

We can leverage a technique from the average-reward literature. Recently, Wan et al. (2021) figured
out how to estimate the reward rate in the off-policy setting for solution methods of the average-
reward formulation. They showed that using the temporal-difference (TD) error (instead of the
conventional error in (8)) leads to an unbiased estimate of the reward rate even in the off-policy
setting. We can use this technique alongside any standard discounted method; in particular, we
modify Q-learning to obtain the Centered Q-learning algorithm, which updates a table of action-
value estimates as:

Qt+1(St, At)
.
= Qt(St, At) + αδt, (9)

R̄t+1
.
= R̄t + ηαδt, (10)

where, δt
.
= Rt+1 − R̄t + γmax

a′
Qt(St+1, a

′)−Qt(St, At), (11)

R̄t is the estimate of the average reward at time step t, and η > 0 is a step-size parameter.

Before presenting the convergence result of this algorithm, we note our reward-centering approach
to minimize the effect of the state-independent offset builds on two important works. Devraj and
Meyn (2021) proposed a variant of Q-learning that shifts its rewards using an arbitrary function of
the estimated state-action values. In particular, the update at time t is:

Qt+1(St, At)
.
= Qt(St, At) + α

(
Rt+1 − f(Qt) + γmax

a′
Qt(St+1, a

′)−Qt(St, At)
)
, (12)

where, f(Qt)
.
= κ

∑
s,a µ(s, a)Qt(s, a), κ > 0 is a scalar, and µ : S × A → [0, 1] is a probability

mass function. Let us consider the convergence of such an algorithm. For intuition, assume the
shifting quantity is not changing with time like f(Qt), but is a fixed scalar j ∈ R. For the MDP
M with rewards R, the optimal value function is qγ

∗ . If j is subtracted from all the rewards, the
agent experiences a slightly different MDPM′ with rewards R′, where the optimal value function
is qγ

∗ − j/(1− γ)1. Devraj and Meyn show their variant of Q-learning (12) converges almost surely
under general conditions to qγ

∗ − k/(1 − γ)1, where k depends on κ, µ and qγ
∗ . This is a great

start. The discounted value function qγ
∗ has an offset of r(π∗

γ)/(1 − γ), where π∗
γ is a discounted

optimal policy, and Devraj and Meyn’s algorithm can remove k/(1 − γ) of it. Devraj and Meyn
left the choice of µ and κ as open questions; we show that Centered Q-learning can be seen as an
instance of their algorithm with particular choices of µ and κ that significantly reduce the effect of
state-independent offset. This equivalence also enables us to use their theoretical machinery to show
almost-sure convergence and strong variance-reduction properties.

4

Under review as a conference paper at ICLR 2024

Separately, Schneckenreither (2020) realized the Laurent series decomposition (2) suggests that an
explicit estimate of the average reward can completely remove the offset. So they proposed an
algorithm where (a) there are two discount factors to aim for the stronger Blackwell optimality, and
(b) the average-reward estimate is updated like in (10) but only after non-exploratory actions. There
is no convergence proof for this algorithm, though Schneckenreither analyzed that if the algorithm
converged to the ideal fixed point, then the resulting policy would be (Blackwell-)optimal. Wan
et al. (2021) pointed out the average-reward estimate can be updated at every time step, including
ones with exploratory actions, and showed almost-sure convergence of their algorithms. Combining
their insights with those from Devraj and Meyn (2021) and Schneckenreither (2020), we can show
convergence of tabular Centered Q-learning. Here we present the informal theorem statement and a
proof sketch; the full presentation is in Appendix B, where we also show the learned value function
does not have a factor that scales with 1/(1− γ).

Theorem 1. If the Markov chain induced by the stationary behavior policy is irreducible, and a
per-state-action step size is reduced appropriately, Centered Q-learning (9–10) converges almost
surely: R̄t and Qt converge to a particular solution (r̄, q̄γ) of the following Bellman equations:

q̄γ(s, a) =
∑
s′,r

p(s′, r|s, a)
(
r − r̄ + γmax

a′
q̄γ(s′, a′)

)
. (13)

Proof. (Sketch) The proof first shows the updates of Centered Q-learning (9-10) can be combined
such that it becomes an instance of Devraj and Meyn (2021)’s algorithm with particular choices of
µ and κ. The convergence of the estimates then follows. Finally we show the convergent point is a
particular solution among the family of solutions of (13).

Note that the general reward-centering idea can be added to any RL algorithm for solving continuing
tasks. We focus on the reward-centered versions of Q-learning in this paper; we expect similar trends
for other algorithms that estimate values, like Sarsa (Rummery & Niranjan, 1994) or the family of
actor-critic methods (Konda & Tsitsiklis, 2001; Schulman et al., 2016).

3 EMPIRICAL RESULTS

In this section, we present empirical results with both the standard Q-learning algorithm and Cen-
tered Q-learning on a set of domains with tabular, linear, and non-linear function approximation
to empirically assess the benefits of reward centering. The domains are largely from CSuite:
github.com/google-deepmind/csuite. We provide high-level descriptions here; the repository doc-
umentation fleshes out the details.

We begin with the Access-Control Queuing domain (Sutton & Barto, 2018). This is a continuing
problem where the agent controls a server queue. A job arrives at the front of the queue with one
of four priorities, and the agent has to decide at each time step whether to accept or reject the job
based on the number of free servers left (out of 10). If a job is accepted, the agent gets a positive
reward proportional to the job’s priority; if rejected, the job is removed from the queue and the agent
gets zero reward. Occupied servers get free with a certain probability at each time step, and new
jobs have a uniform-random priority among {1, 2, 4, 8}. At each time step, the agent can observe
the number of servers that are currently free and the priority of the job at the front of the queue.

We applied both the standard discounted Q-learning and the proposed Centered Q-learning algo-
rithms on this domain, each for 50 independent runs of 80,000 steps. We tested various discount
factors and step sizes for both algorithms, along with different values of the additional step-size
parameter η for Centered Q-learning. All the learnable parameters were initialized to zero and both
algorithms used an ϵ-greedy behavior policy with a fixed value of ϵ = 0.1.

Figure 1 shows the online performance for both algorithms (our experiments did not have a sep-
arate testing period). For Q-learning, they correspond to the step-size parameters that resulted in
the fastest learning over the training period (quantified by the area under the learning curve); for
Centered Q-learning they correspond to the best step-size parameters for a fixed value of η (shown
in grey in the figure). This does not always mean the best (α, η) pair for Centered Q-learning but
that is okay since the results were robust to the choice of η. Throughout the paper we follow this
same practice of picking hyperparameters to plot learning curves.

5

https://github.com/google-deepmind/csuite

Under review as a conference paper at ICLR 2024

Figure 3: Parameter studies showing the sensitivity of the two algorithms’ performance to their
parameters on the Access-Control domain. The error bars indicate one standard error, which at
times is less than the width of the lines. Far left: Q-learning’s rate of learning deteriorated with large
discount factors for a broad range of the step-size parameter α. Center to right: For each discount
factor, the performance of Centered Q-learning was better across a broad range of α. Moreover, the
performance was robust across a large range of its second parameter η.

We saw that the performance of Centered Q-learning did not degrade when the discount fac-
tor was close to one, unlike that with Q-learning. For each discount factor, the performance
of Centered Q-learning matched or exceeded that of Q-learning. To verify if centering in-
deed helped remove the potentially large state-independent term, we checked the magnitude of
the learned values. One way is to compute the average value across all state-action pairs.

Table 1: Magnitude of learned
values by the two algorithms
on Access-Control Queuing

γ DiscQ CDiscQ
0.5 4.78 0.17
0.8 12.95 0.17
0.9 26.57 0.12

0.99 267.91 0.42
0.999 1434.47 0.51

However, this approach would typically lead to a poor approxima-
tion of the magnitude of learned values because many states (espe-
cially ones with low true values) may not occur frequently in the
agent’s ϵ-greedy interactions with the environment and hence their
estimated values may stay close to their initialization. Instead, we
checked the values of the states that actually occur in the agent’s
stream of experience, in particular the maximum action value (used
to choose the argmax action) of the last 10% states that occurred
during training. Table 1 shows these values for the parameters that
resulted in Figure 1’s learning curves. As γ increased, the mag-
nitude of learned values increased sharply with Q-learning but re-
mained small with Centered Q-learning.

These trends are quite general across the range of parameter values tested. Figure 3 shows the
performance sensitivity to the methods’ parameters. In particular, the x-axis denotes the step-size
parameter α and the y-axis denotes the average reward obtained during the entire training period
(which reflects the rate of learning). For both methods, the different curves correspond to different
discount factors. For Centered Q-learning, the three plots on the right correspond to different values
of the step-size parameter η. We saw the performance of Q-learning deteriorated with large discount
factors for a broad range of the step-size parameter α. In contrast, the performance of Centered
Q-learning did not degrade; in fact, it improved all the way till γ = 1 for a wide range of η values.
In addition, its performance was not sensitive to the choice of η.

Figure 2 shows the behaviors of Q-learning and Centered Q-learning when applied to five problem
variants with one of {−8,−4, 0, 4, 8} added to all the rewards, which does not change the ordering
of the policies in a continuing problem. Centered Q-learning, by design, behaved similarly on all
the problem variants while the behavior of Q-learning was substantially different. These trends were
also consistent across values of α and η (see the sensitivity plots in Appendix C).

We found the reward-centering technique had similar benefits with both linear and non-linear func-
tion approximation as well (see Appendix A for all the pseudocodes).

In PuckWorld, the agent controls a puck-like object in a square rink where goal positions occur
randomly. The agent can push the puck in any of the cardinal directions. Repeated actions in a
direction gives the puck some velocity that is upper-bounded due to friction. The agent observes six
real numbers at each time step—the puck’s position and velocity and the goal position in x and y
directions—and gets a reward proportional to the negative distance to the goal. The best policy goes
to the goal position as soon as possible which moves to a new random location every 300 time steps.

We trained linear function approximators on this problem by tile-coding the 6-dimensional observa-
tion vector with 32 tilings of 4 tiles in each dimension. Each experiment was repeated for 20 runs
of 300,000 steps each. We tested a range of step-size parameters and discount factors for both al-

6

Under review as a conference paper at ICLR 2024

Figure 4: Learning curves corresponding to a range of discount factors for Q-learning and Centered
Q-learning on the PuckWorld problem. Centered Q-learning’s rate of learning was higher for each
discount factor and did not degrade as γ → 1.

gorithms, which started from zero initializations of the weights and the scalar reward-rate estimate.
The behavior policy was ϵ-greedy with ϵ = 0.1.

The trends were similar to but more dramatic than the previous tabular experiment. Figure 4 shows
learning curves corresponding to the step-size parameter that resulted in the best performance for
Q-learning and the best step-size parameter for the same value of η for Centered Q-learning (the
trends were consistent across the values of η tested; see the sensitivity plots in Appendix C). The
x-axis denotes the number of agent-environment interactions while the y-axis denotes the rate of
reward obtained by the agent over a moving window. The performance of Q-learning suffered as γ
increased while that of Centered Q-learning did not. In fact, it learned a better policy in shorter time
for discount factors all the way to 1. The higher starting points of the learning curves also indicate
that Centered Q-learning led to faster rate of learning with each of the discount factors tested.

Additionally, we observed similar trends when the rewards in the problem were shifted by a constant:
Q-learning’s rate of learning was highly sensitive to the shift, whereas that of Centered Q-learning
was virtually unaffected, that too for a large range of its two parameters (the learning curves and
sensitivity plots are in Appendix C).

The results with non-linear function approximation on the Pendulum domain followed the same
trends when we tested DQN (Mnih et al., 2015) and what we call Centered DQN. The agent controls
the torque at the base of a one-link pendulum and gets a reward at each time step proportional to
the negative angular distance of the pendulum from the upright position. The pendulum starts at rest
pointing down. The agent can only apply a discrete amount of torque of {−1, 0, 1} unit at each time
step after observing three real numbers: the sine and cosine of the pendulum’s angle w.r.t. pointing
downwards, and the pendulum’s angular velocity. There are no resets or timeouts; the agent must
learn to keep the pendulum in the upright position. The pendulum repeatedly falls because the
upright position is an unstable equilibrium and any exploratory actions can upset the pendulum.

We tested both DQN and Centered DQN to estimate the action values in this problem. The artificial
neural networks had two hidden layers with 64 units each with tanh activation functions, with the
networks’ weights trained using the Adam optimizer (Kingma & Ba, 2015) and the semi-gradient
mean-squared-error loss. The weights were initialized in the standard way to small values around
zero and the reward-rate estimate was initialized to zero. The agents followed an ϵ-greedy behavior

Figure 5: Learning curves corresponding to a range of discount factors for DQN and Centered DQN
on the Pendulum problem. Notably, the rate of learning with Centered DQN did not degrade when
γ → 1. More details in-text.

7

Under review as a conference paper at ICLR 2024

policy with ϵ = 0.1 without annealing. Each experiment was run for 100,000 steps and repeated 15
times. See Appendix C for the rest of the implementation details.

Figure 5 shows that the performance of DQN and Centered DQN with varying discount factors. A
discount factor of 0.5 was too small to solve the problem. The agents learnt a good policy using DQN
with discount factors 0.8 or 0.9 but failed to learn anything meaningful in 100k steps for discount
factors 0.99 and larger. In contrast, with Centered DQN the rate of learning did not degrade even
with discount factors all the way up to 1.

Here too we observed similar trends when the two algorithms were tested on reward-shifted variants
of the Pendulum problem: DQN’s rate of learning was highly sensitive to the shift, whereas that of
Centered DQN was robust across a broad range of its parameters (see Appendix C).

We also performed a series of experiments with the Catch domain, using both linear and non-linear
function approximators. In Catch, the agent controls a crate at the bottom row of a 2D pixel grid to
catch falling fruits. The agent gets a +1 reward on successfully catching a fruit, -1 on dropping one,
and 0 otherwise. At each time step, a new fruit is spawned with 10% probability in the top row, in
a random column. More than one fruit may be falling at any point of time, and each fruit falls one
pixel in one time step. The agent can choose among three actions: move the crate one pixel right,
left, or stay put. There are two kinds of observation vectors available to an agent: a 3-dimensional
real vector containing the x coordinate of the crate and the (x, y) coordinates of the lowermost fruit;
a 50-dimensional binary vector which is the flattened version of the entire 10× 5 pixel grid.

Figure 6 shows the learning curves of linear Q-learning and Centered Q-learning when applied to
the Catch problem by tile-coding the 3D real-valued observation vectors. The two plots on the left
show learning curves on the original problem. Both Q-learning and Centered Q-learning resulted in
good policies for all the discount factors tested, including a relatively low discount factor of 0.5. But
as soon as the problem’s rewards were shifted, the performance of Q-learning suffered significantly
for larger discount factors. The two plots on the right of Figure 6 show the performance on a variant
of the Catch problem which had 2 subtracted from all the rewards. Recall that shifting the rewards
by a constant does not change the ordering of the policies—the best policy remains unchanged. The
rate of learning was much slower for discount factors larger than 0.9 with Q-learning for all values
of the step size tested; on the other hand, Centered Q-learning continued to perform well.

Figure 6: Learning curves of the two linear algorithms for various discount factors on two variants of
Catch. Left: On the original problem, both algorithms performed well for all discount factors tested.
Right: On the problem variant with all rewards shifted by -2, Q-learning’s rate of learning was much
lower for larger discount factors while that of Centered Q-learning was virtually unaffected.

These trends are further supplemented by the two plots in the left of Figure 7, where we show the
sensitivity of the two algorithms to different problem variants. We created five problem variants by
adding each of {−4,−2, 0, 2, 4} to all the rewards one at a time. When the rewards are shifted by
zero, we get the original problem; when the rewards are shifted by -2, we get the other problem
variant discussed in Figure 6. On the x-axis is the effective step size for the linear function approx-
imators and on the y-axis is the reward rate averaged over the entire training period. The y-axis is
adjusted to compare the performance on all the problem variants at the same scale (see Appendix
C for more details). The performance of Q-learning was problem-dependent, whereas Centered
Q-learning resulted in roughly the same rate of learning regardless of the problem variant.

The results with non-linear function approximation also exhibited the same trends. This time the
agents observed the 50D binary vector and estimated the values of the three actions with networks
having a hidden layer of 128 units. Each experiment was run for 80,000 steps and repeated 15

8

Under review as a conference paper at ICLR 2024

Figure 7: Parameter studies showing the sensitivity of the algorithms to their step-size parameter
and to variants of the Catch problem. Left: Q-learning’s rate of learning depended strongly on
the problem variant and the step size, whereas that of Centered Q-learning did not depend on the
problem variant. Right: The rate of learning of Centered DQN was roughly independent of the
problem variant as well as the step-size parameter while that of DQN depended on both.

times, starting with the standard initialization of all the weights to small values around zero and the
reward-rate estimate to zero. The remaining agent details were same as those for Pendulum.

The two plots on the right of Figure 7 show that the rate of learning with Q-learning varied widely
across the range of step sizes and across the range of problem variants. In particular, the rate of
learning was fastest on the original problem for a broad range of the step sizes, although the best
step size for each problem variant resulted in roughly the same rate of learning. With Centered
Q-learning, the rate of learning was almost independent of the problem variant, that too for a broad
range of the step size α.

The main takeaways from these results (and additional ones in Appendix C) across different prob-
lems with tabular, linear, and non-linear function approximators are:

• Reward centering can improve the performance of Q-learning-like methods for all discount
factors, especially as γ → 1.

• Reward centering can also make these methods robust to shifts in the problems’ rewards.
• The parameter η for reward centering can be relatively easy to set.

4 DISCUSSION AND LIMITATIONS

Centering the rewards around the current average reward makes standard methods faster and easier
to use. The benefits stem from minimizing the effect of the state-independent offset that is revealed
by the Laurent series decomposition of the discounted value function. One of the biggest appeals of
centering is that the discount factor becomes less of a parameter that needs to be tuned: it can be set
to large value (like 1) without the fear of a massive reduction in learning speed.

That being said, further improvements can be made. Reward centering helps value function approxi-
mators to focus on the essential differences between the states rather than the differences in addition
to a potentially large offset. However, the relative values themselves may have large magnitude. For
instance, if all the rewards in a problem are multiplied by a large number, then the relative values
will be scaled by the same number. If there are problems in estimating a large range of relative val-
ues, then reward centering can be combined with clever scaling approaches. For instance, Schaul et
al. (2021) have proposed a lightweight trick to rescale TD errors into an optimization-friendly range
(building on prior work by van Hasselt et al. (2016) and Pohlen et al. (2018)). With some care, their
techniques can likely be extended from the episodic to the continuing case.

Speaking of the episodic case, a pertinent direction of future work is to extend the general idea (and
benefits) of reward centering from the continuing to the episodic case. Note that unlike in con-
tinuing problems, shifting the rewards (by reward centering or otherwise) can change the episodic
problem—the ordering of policies may change. However, a stream of experience from long episodes
can appear as continuing to a learning agent, so perhaps there is an equivalent technique that makes
it easy to learn policies that maximize the total undiscounted in episodic problems.

The reward-centering idea can be added to any continuing RL algorithm that estimates values.
Studying the theory and empirical performance of centered versions of common algorithms other
than Q-learning would further showcase the benefits of reward centering. Finally, while we obtained
promising empirical results when centering with function approximation, the theory of reward cen-
tering should be analyzed beyond the tabular case.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Blackwell, D. (1962). Discrete Dynamic Programming. The Annals of Mathematical Statistics.

Borkar, V., & Meyn, S. (2000). The ODE method for convergence of stochastic approximation and
reinforcement learning. SIAM Journal on Control and Optimization.

Devraj, A., & Meyn, S. (2021). Q-learning with Uniformly Bounded Variance. IEEE Transactions
on Automatic Control. Also ArXiv:2002.10301.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., & Madry, A. (2019).
Implementation Matters in Deep RL: A Case Study on PPO and TRPO. International Conference
on Learning Representations.

Even-Dar, E., Mansour, Y., & Bartlett, P. (2003). Learning Rates for Q-learning. Journal of Machine
Learning Research.

Grand-Clément, J., & Petrik, M. (2023). Reducing Blackwell and Average Optimality to Discounted
MDPs via the Blackwell Discount Factor. ArXiv: 2302.00036.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. ArXiv:1412.6980.

Konda, V. R., & Tsitsiklis, J. N. (1999). Actor-critic algorithms. Advances in Neural Information
Processing Systems.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015).
Human-level control through deep reinforcement learning. Nature.

Naik, A., Shariff, R., Yasui, N., Yao, H., & Sutton, R. S. (2019). Discounted Reinforce-
ment Learning Is Not an Optimization Problem. Optimization Foundations for Reinforce-
ment Learning Workshop at the Conference on Neural Information Processing Systems. Also
ArXiv:1910.02140.

Ng, A., Harada, D., & Russell, S. (1999). Policy invariance under reward transformations: Theory
and application to reward shaping. International Conference on Machine Learning.

Paszke, A., Gross, S., Massa, F., et al. (2019). PyTorch: An imperative style, high-performance
deep learning library. Advances in Neural Information Processing Systems.

Pohlen, T., Piot, B., Hester, T., et al. (2018). Observe and look further: Achieving consistent
performance on Atari. ArXiv:1805.11593.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist systems. Technical
Report, Engineering Department, Cambridge University.

Qu, G., & Wierman, A. (2020). Finite-time analysis of asynchronous stochastic approximation and
Q-learning. Conference on Learning Theory.

Schaul, T., Ostrovski, G., Kemaev, I., & Borsa, D. (2021). Return-based scaling: Yet another nor-
malisation trick for deep RL. ArXiv:2105.05347.

Schneckenreither, M. (2020). Average Reward Adjusted Discounted Reinforcement Learning: Near-
Blackwell-Optimal Policies for Real-World Applications. ArXiv:2004.00857.

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2016). High-dimensional continuous
control using generalized advantage estimation. International Conference on Learning Repre-
sentations.

Singh, S., Jaakkola, T., & Jordan, M. (1994) Learning Without State-Estimation in Partially Observ-
able Markovian Decision Processes. Machine Learning Proceedings.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., & Precup, D. (2011).
Horde: A scalable real-time architecture for learning knowledge from unsupervised sensorimotor
interaction. International Conference on Autonomous Agents and Multiagent Systems.

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT Press.

10

Under review as a conference paper at ICLR 2024

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., & Precup, D. (2011).
Horde: A scalable real-time architecture for learning knowledge from unsupervised sensorimotor
interaction. International Conference on Autonomous Agents and Multiagent Systems.

Van Hasselt, H., Guez, A., Hessel, M., Mnih, V., & Silver, D. (2016). Learning values across many
orders of magnitude. Advances in Neural Information Processing Systems.

Wainwright, M. J. (2019). Stochastic approximation with cone-contractive operators: Sharp ℓ∞-
bounds for Q-learning. ArXiv:1905.06265.

Wan, Y., Naik, A., & Sutton, R. S. (2021). Learning and Planning in Average-Reward Markov
Decision Processes. International Conference on Machine Learning.

Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning.

Zhang, Y., & Ross, K. W. (2021) On-Policy Deep Reinforcement Learning for the Average-Reward
Criterion. International Conference on Machine Learning.

Zhao, R., Abbas, Z., Szepesvári, D., Naik, A., Holland, Z., Tanner, B., & White, A. (2022). CSuite:
Continuing Environments for Reinforcement Learning, Github: google-deepmind/csuite

11

https://github.com/google-deepmind/csuite

Under review as a conference paper at ICLR 2024

A PSEUDOCODES

Algorithm 1: Centered Q-learning (tabular)
Input: The policy b to be used (e.g., ϵ-greedy)
Algorithm parameters: discount factor γ, step-size parameters α, η

1 Initialize Q(s, a) ∀s, a; R̄ arbitrarily (e.g., to zero)
2 Obtain initial S
3 while still time to train do
4 A← action given by b for S
5 Take action A, observe R,S′

6 δ = R− R̄+ γmaxa Q(S′, a)−Q(S,A)
7 Q(S,A) = Q(S,A) + αδ

8 R̄ = R̄+ ηαδ
9 S = S′

10 end

Algorithm 2: Centered Q-learning (linear)
Input: The policy b to be used (e.g., ϵ-greedy)
Algorithm parameters: discount factor γ, step-size parameters α, η

1 Initialize wa ∈ Rd ∀a, R̄ arbitrarily (e.g., to zero)
2 Obtain initial observation x
3 while still time to train do
4 A← action given by b for x
5 Take action A, observe R,x′

6 δ = R− R̄+ γmaxa w
⊤
a x−wAx

7 wA = wA + αδx

8 R̄ = R̄+ ηαδ
9 x = x′

10 end

Algorithm 3: Centered DQN (non-linear)
Input: The policy b to be used (e.g., ϵ-greedy)
Algorithm parameters: discount factor γ, step-size parameters α, η

1 Initialize value network, target network; initialize R̄ arbitrarily (e.g., to zero)
2 Obtain initial observation x
3 while still time to train do
4 A← action given by b for x
5 Take action A, observe R,x′

6 Store tuple (x, A,R,x′) in the experience buffer
7 if time to update estimates then
8 Sample a minibatch of transitions (x, A,R,x′)b

9 For every i-th transition: δi = Ri − R̄+ γmaxa q̂(x
′
i, a)− q̂(xi, Ai)

10 Perform a semi-gradient update of the value network parameters with a loss fn of δ2

11 R̄ = R̄+ ηαmean(δ)
12 Update the target network occasionally
13 end
14 x = x′

15 end

We recommend two small but useful optimizations to these general pseudocodes in Appendix C.

12

Under review as a conference paper at ICLR 2024

B CONVERGENCE OF CENTERED Q-LEARNING

This section presents the complete Centered Q-learning algorithm, the convergence theorem, and its
proof.

Suppose the agent’s interaction with the MDP follows a stationary behavior policy b ∈ Π. Let
St, At denote the state-action pair occurring at time step t, followed by the reward Rt+1 and next
state St+1. Let νt(s, a) denote the number of times a state-action pair (s, a) has occurred up to and
including time step t. The update rules of Centered Q-learning are:

Qt+1(St, At)
.
= Qt(St, At) + ανt(St,At)δt, (14)

R̄t+1
.
= R̄t + ηανt(St,At)δt, (15)

where, δt
.
= Rt+1 − R̄t + γmax

a′
Qt(St+1, a

′)−Qt(St, At), (16)

η > 0, and αn = c/(n+ d) where c, d > 0 for all n ≥ 1.2

Theorem 1. (Formal) If the joint process {St, At} induced by the stationary behavior policy is an
irreducible Markov chain, that is, starting from every state-action pair, there is a non-zero probabil-
ity of transitioning to any other state-action pair in a finite number of steps, then (Qt, R̄t) in tabular
Centered Discounted Q-learning (14)–(16) converges to a solution of (q̄γ , r̄) in (13).

Proof. Recall the update equation for Devraj and Meyn’s (2021) Relative Q-learning:

Qt+1(St, At)
.
= Qt(St, At) + α

(
Rt+1 − κµ⊤Qt +max

a′
Qt(St+1, a

′)−Qt(St, At)
)
. (17)

Note from (14) and (15) that R̄t− R̄0 = η
(∑

s,a Qt(s, a)−
∑

s,a Q0(s, a)
)

. To simplify the anal-

ysis, we can assume R̄0 = 0 and Q0 = 0 without loss of generality. Then, R̄t = η
∑

s,a Qt(s, a).
Thus, we can rewrite (14) and (15) as:

Qt+1(St, At)
.
= Qt(St, At) + α

(
Rt+1 − η

∑
s,a

Qt(s, a) + max
a′

Qt(St+1, a
′)−Qt(St, At)

)
.

(18)

Comparing (17) and (18), we can write Centered Q-learning as an instance of Relative Q-learning
with:

µ(s, a) =
1

|S||A|
∀s, a, and κ = η|S||A|.

Then the convergence result of Relative Q-learning applies. Thus,

Qt → Q∞
.
= qγ

∗ −
κ

1 + κ− γ
µ⊤qγ

∗1

= qγ
∗ −

η

1 + η|S||A| − γ

∑
s,a

qγ∗ (s, a)1. (19)

And,

R̄t → R̄∞
.
= η

∑
s,a

qγ∗ (s, a)−
η2|S||A|

1 + η|S||A| − γ

∑
s,a

qγ∗ (s, a)

=
η(1− γ)

1 + η|S||A| − γ

∑
s,a

qγ∗ (s, a). (20)

Now, note that the family of solutions of (13) is
(
q̄γ
∗ + c1, r(π∗

γ) − c(1 − γ)
)
, or equivalently(

qγ
∗ − d1, d(1 − γ)

)
. Choosing d = η

1+η|S||A|−γ

∑
s,a q

γ
∗ (s, a), we see that (19) and (20) form a

solution tuple of (13).

2Devraj and Meyn (2021) considered the step-size sequence 1/n in their algorithm but it can be easily
verified that αn = c/(n + d) also satisfies the step-size condition required by Borkar and Meyn’s (2000)
seminal result (that was used by Devraj & Meyn (2021) to show the convergence of their algorithm).

13

Under review as a conference paper at ICLR 2024

Note: the use of the tight ‘irreducible’ assumption is not due to theoretical necessity but for ease
of presentation. An irreducible Markov chain is one in which there is a non-zero probability of
going from every state to every state (each pair of states is then said to communicate with each
other). A looser ‘weakly communicating’ assumption means that apart from the closed irreducible
set of states, there are some transient states that eventually lead to the closed set. The irreducible
assumption is common in non-episodic MDP literature because convergence can then be specified
for every state without separately specifying what happens to transient and non-transient states.
Devraj and Meyn (2021) use the irreducible assumption (as assumption Q1 in their paper) and our
result builds on their work and hence uses the same assumption. See Puterman’s (1994) Appendix
A.2 for a detailed classification of states of a Markov chain.

REDUCTION OF THE OFFSET DUE TO CENTERED Q-LEARNING

This subsection shows how Centered Discounted Q-learning reduces the state-independent offset
term in the estimated Q values.

Let π∗
γ be a γ-optimal policy. Assume the Markov chain under π∗

γ is unichain, meaning that there
is only one recurrent class of states and a set of transient states in the chain. Let r(π∗

γ) denote its
reward rate. Note that qγπ∗

γ
= qγ∗ . We can rewrite (19) as:

Q∞(s, a)

= qγπ∗
γ
(s, a)− η

1 + η|S||A| − γ

∑
s,a

qγπ∗
γ
(s, a) +

r(π∗
γ)

1− γ
−

r(π∗
γ)

1− γ

=

(
qγπ∗

γ
(s, a)−

r(π∗
γ)

1− γ

)
− η

1 + η|S||A| − γ

∑
s,a

qγπ∗
γ
(s, a) +

r(π∗
γ)

1− γ

=
(
q̄π∗

γ
(s, a) + ϵ(γ, s, a)

)
− η

1 + η|S||A| − γ

∑
s,a

qγπ∗
γ
(s, a) +

r(π∗
γ)

1− γ

= q̄π∗
γ
(s, a) + ϵ(γ, s, a)− η

1 + η|S||A| − γ

∑
s,a

(
qγπ∗

γ
(s, a)−

r(π∗
γ)

1− γ

)
+

r(π∗
γ)

1− γ

(
1− η|S||A|

1 + η|S||A| − γ

)

= q̄π∗
γ
(s, a) + ϵ(γ, s, a)− η

1 + η|S||A| − γ

∑
s,a

(
qγπ∗

γ
(s, a)−

r(π∗
γ)

1− γ

)
+

r(π∗
γ)

1− γ

(
1− γ

1 + η|S||A| − γ

)

= q̄π∗
γ
(s, a) + ϵ(γ, s, a)− η

1 + η|S||A| − γ

∑
s,a

(
q̄π∗

γ
(s, a) + ϵ(γ, s, a)

)
+

r(π∗
γ)

1 + η|S||A| − γ

where the third and last equation uses the Laurent series decomposition. As γ → 1, π∗
γ becomes a

Blackwell-optimal policy (denote it by πB) and ϵ(γ, s, a)→ 0, so the above equation converges to:

q̄πB
(s, a)− 1

|S||A|
∑
s,a

q̄πB
(s, a) +

r(πB)

η|S||A|
.

The first term is the differential action-value function of πB . The third term is negligible in problems
with large state and action spaces. The second term is the mean of differential action-values. In
general this can be non-zero. But we can build intuition for its magnitude by considering a special
case when the stationary distribution µπB

(that uniquely exists under the unichain assumption) is
uniform: µπB

(s, a) = 1/(|S||A|).3 Then this second term is also zero (by Wan et al.’s (2021)
Lemma B.11).

Importantly, none of the three terms scale with 1/(1− γ). Hence the magnitude of Q∞ is typically
much smaller than qγ∗ , especially when γ → 1.

3This special case also helps build intuition of where the reward-rate estimate converges: from (20), R̄∞ =
r(π∗

γ) ∗ η|S||A|/(1− γ+ η|S||A|) → r(π∗
γ), for problems with large state and/or action spaces. The equality

is a result of the property: µ⊤
π v

γ
π = r(π)/(1− γ) (Singh et al., 1994; Sutton & Barto, 2018: Section 10.4).

14

Under review as a conference paper at ICLR 2024

C MORE RESULTS AND EXPERIMENTAL DETAILS

In this section we provide the remaining experimental details and additional results that supplement
the ones in the main text.

Table 2 contains a list of all the hyperparameters tested for the hyperparameters that are common
across all the domains: γ, α, η. Note that we can obtain the Q-learning algorithm from the imple-
mentation of the Centered Q-learning algorithm if the reward-rate estimate is initialized to zero and
η = 0. Also note that the non-linear centering algorithm (Centered DQN) in its current form requires
a large value of η compared to the the tabular or linear versions. The reason is how a minibatch is
used in the implementation of this deep RL algorithm. In line 11 of Algorithm 3, the mean of the
TD errors of the minibatch of transitions is taken. The mean can make the overall gradient for the
reward-rate update very small, so a large value of η can be used.

The number of timesteps, number of runs, initializations are reported in the main text. The agent’s
behavior policy was always ϵ-greedy with fixed ϵ = 0.1. We set commonly used values for the var-
ious parameters of the deep RL (non-linear) experiments: the batch size was 64, the value-network
and reward-rate parameters were updated every 32 steps, the target network was updated every 128
steps, the experience buffer size was 10,000. Apart for the main step-size parameter, the default
parameters (set by PyTorch (Paszke et al., 2019)) were used for the Adam optimizer.

In our implementations we added two simple optimizations:

1. Make the reward-rate estimate completely independent of its initialization: this can be done
using the unbiased constant step-size trick (see Sutton & Barto’s (2018) Exercise 2.7).

2. Propagate the changes to the reward-rate estimate faster: this can be done by first computing
the TD error, then updating the reward-rate estimate, then recomputing the TD error with
the new reward-rate estimate, and finally updating the value estimate(s).

These optimizations did not affect the overall trends in the results but provided a small yet noticeable
improvement for a tiny computational cost, hence we recommend using them.

For the experiments involving a shift in the problem rewards, the rewards obtained on each problem
variant are not directly comparable. For intuition, imagine the first four rewards in the original
problem be 2,0,3,1. In a variant of the problem with 5 added to all the rewards, the first four rewards
may now appear to be 7,5,8,4. An agent solving the latter problem might trivially appear better than
one solving the former problem even though its fourth reward was relatively lower. To compare
them meaningfully, from the rewards obtained by an agent, we can subtract the constant that was
added in the first place to all the problem’s rewards. That is, we can shift the rewards back to make
fair comparisons across problem variants. This is what we did when presenting the results of the
shifting experiments; this is explicitly denoted by the word “shifted” in the y-axis label.

Table 2: List of hyperparameters tested for each domain

γ α η

Access-Control Queuing
(tabular)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/128, 1/64, 1/32,
1/16, 1/8, 1/4, 1/2, 1]

[0,1/256, 1/64,
1/16,1/4, 1]

PuckWorld
(linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[0.01, 0.1, 0.3, 0.5,
0.7, 0.9, 1.0, 1.1]

[0,1/256, 1/64,
1/16,1/4, 1]

Catch
(linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/128, 1/64, 1/32,
1/16, 1/8, 1/4, 1/2, 1]

[0,1/256, 1/64,
1/16,1/4, 1]

Catch
(non-linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/512, 1/256, 1/128,
1/64, 1/32, 1/16, 1/8]

[0, 1, 2,
4, 8, 16]

Pendulum
(non-linear)

[0.5, 0.8, 0.9,
0.99, 0.999, 1]

[1/512, 1/256, 1/128,
1/64, 1/32, 1/16, 1/8]

[0, 1, 2,
4, 8, 16]

15

Under review as a conference paper at ICLR 2024

Figure 8: Parameter studies showing the sensitivity of the two algorithms’ performance to variants
of the Access-Control Queuing domain. The error bars indicate one standard error, which at times
is less than the width of the lines. Far left: Q-learning’s performance differed significantly on the
different variants over a broad range of the step-size parameter α. Center to right: Centered Q-
learning performance was about the same across the problem variants, and was quite robust to the
choice of its parameter η. All the curves correspond to γ = 0.9; the trends were consistent across
other discount factors.

Figure 9: Learning curves for Q-learning and Centered Q-learning with γ = 0.99 on variants of
the PuckWorld problem. The performance of Q-learning was different on each variant while that
of Centered Q-learning was roughly the same. Centered Q-learning also resulted in much faster
learning. These trends were consistent across values of γ.

Figure 10: Parameter studies showing the sensitivity of the two algorithms’ performance to their
parameters on the PuckWorld domain. Far left: Q-learning’s performance was relatively poor for a
large range of α. Center to right: For each discount factor, the performance of Centered Q-learning
was better across a broad range of α. Moreover, performance only changed a little w.r.t. η.

16

Under review as a conference paper at ICLR 2024

Figure 11: Parameter studies showing the sensitivity of the two algorithms’ performance to variants
of the PuckWorld domain. The error bars indicate one standard error, which at times is less than the
width of the lines. Far left: Q-learning’s performance differed significantly on the different variants
over a broad range of the step-size parameter α. Center to right: Centered Q-learning performance
was about the same across the problem variants, and was quite robust to the choice of its parameter
η. All the curves correspond to γ = 0.99; the trends were consistent across other discount factors.

Figure 12: Learning curves for DQN and Centered DQN with γ = 0.8 on variants of the Pendulum
problem. The performance of DQN was different on each variant while that of Centered DQN was
roughly the same. Centered DQN also resulted in much faster learning.

Figure 13: Parameter studies showing the sensitivity of the two algorithms’ performance to their
parameters on the Pendulum domain. Far left: The performance of DQN was not good for discount
factors larger than 0.9. Center to right: For each discount factor, the performance of Centered
Q-learning was better across a broad range of α. And CDQN was not too sensitive to its second
parameter η. γ = 0.5 was too small to solve this problem.

Figure 14: Parameter studies showing the sensitivity of the two algorithms’ performance with γ =
0.8 to variants of the Pendulum problem. Far left: DQN’s performance differed significantly on
the different variants. Center to right: Centered DQN’s performance was about the same across the
problem variants across a large range of the step size α, and was also quite robust to the choice of η.

17

Under review as a conference paper at ICLR 2024

D RELATION TO OTHER APPROACHES

The reward-centering idea is compatible with (and not a competitor of) approaches like reward scal-
ing and advantage estimation. In addition, reward centering is a particular type of reward shaping.
We discuss these points in the following subsections.

REWARD CENTERING IS COMPATIBLE WITH REWARD SCALING

Dividing all the rewards with a (potentially changing) scalar number is typically referred to as
reward scaling (see, e.g., Engstrom et al., 2020). Just like reward centering, reward scaling
does not change the ordering of policies in a continuing problem. Scaling reduces the spread
of the rewards, centering brings them close to zero, both of which can be favorable to complex
function approximators such as artificial neural networks that are used for value estimation starting
from a close-to-zero initialization. The popular stable baselines3 repository scales (and clips4)
the rewards by a running estimate of the variance of the discounted returns (github.com/DLR-
RM/stable-baselines3/blob/master/stable baselines3/common/vec env/vec normalize.py#L256).
Mean-centering the rewards as well would be beneficial for continuing domains.

Note that the mechanism of computing the mean and variance is trickier in the off-policy case than
the on-policy case. We use Wan et al.’s (2021) technique to estimate the mean, which is theoretically
sound even in the off-policy case. Simply maintaining a running estimate of the variance (as in the
stable baselines’ approach) introduces a bias. Schaul et al.’s (2021) technique is a good starting
point.

REWARD CENTERING IS COMPATIBLE WITH ADVANTAGE ESTIMATION

Reward centering and the advantage function have orthogonal benefits. The advantage function
benefits the actor by reducing the variance of the updates in the policy space (Sutton & Barto,
2018; Schulman et al., 2016). On the other hand, reward centering benefits the critic’s or baseline’s
estimation by eliminating the need to estimate the large state-independent constant offset. Both the
quantities involved in the advantage function—aγπ(s, a) = qγπ(s, a) − vγπ(s) ∀s, a—have the large
state-independent offset r(π)/(1− γ). The net effect of the offset is zero when they are subtracted.
But the key point is that both the state- and action-value estimates include the large offset. Reward
centering removes the need to estimate the large offset for both the state- and action-value function,
which simplifies the critic-estimation problem. The actor update is left unchanged with reward
centering because the advantage function itself remains unchanged: āγπ(s, a) = q̄γπ(s, a) − v̄γπ(s),
because q̄γπ(s, a) = qγπ(s, a)− r(π)/(1− γ) and v̄γπ(s) = vγπ(s)− r(π)/(1− γ) (using this paper’s
notation).

Hence we expect reward centering to benefit all the algorithms that estimate values, which includes
all actor-critic methods that involve advantage estimation. An extensive empirical study of centered
variants of several common policy-based algorithms (like TRPO and PPO) is a ripe avenue of future
work.

REWARD CENTERING IS A SPECIFIC TYPE OF REWARD SHAPING

Reward centering can be seen as reward shaping (Ng et al., 1999) with a constant state-independent
potential function: Φ(s) = r(π)/(1− γ) ∀s. Their Theorem 1 then reiterates that reward centering
does not change the optimal policy of the problem.

A possible drawback of reward shaping is that fully specifying the potential-based shaping function
can be tricky, especially for problems with large state spaces. In the case of reward centering this is
relatively easy: the potential function is constant across the entire state space, and we know how to
learn the average reward reliably from data.

4Reward clipping in general changes the problem. Blinding the agent from large rewards can impose a
performance ceiling or make some games impossible to solve (Schaul et al.’s (2021) Section 4.3 discusses this
in the context of Atari problems).

18

https://github.com/DLR-RM/stable-baselines3/blob/e3dea4b2e03da6fb7ea70db89602909081a7967b/stable_baselines3/common/vec_env/vec_normalize.py#L256
https://github.com/DLR-RM/stable-baselines3/blob/e3dea4b2e03da6fb7ea70db89602909081a7967b/stable_baselines3/common/vec_env/vec_normalize.py#L256

	1 Discounting: Motivation and Issues
	2 Centered Discounted Methods
	3 Empirical Results
	4 Discussion and Limitations
	A Pseudocodes
	B Convergence of Centered Q-learning
	C More Results and Experimental Details
	D Relation to Other Approaches

