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Abstract

In mechanical structures like airplanes, cars and houses, noise is generated and
transmitted through vibrations. To take measures to reduce this noise, vibra-
tions need to be simulated with expensive numerical computations. Deep learn-
ing surrogate models present a promising alternative to classical numerical sim-
ulations as they can be evaluated magnitudes faster, while trading-off accuracy.
To quantify such trade-offs systematically and foster the development of meth-
ods, we present a benchmark on the task of predicting the vibration of harmon-
ically excited plates. The benchmark features a total of 12,000 plate geome-
tries with varying forms of beadings, material, boundary conditions, load posi-
tion and sizes with associated numerical solutions. To address the benchmark
task, we propose a new network architecture, named Frequency-Query Opera-
tor, which predicts vibration patterns of plate geometries given a specific excita-
tion frequency. Applying principles from operator learning and implicit models
for shape encoding, our approach effectively addresses the prediction of highly
variable frequency response functions occurring in dynamic systems. To quan-
tify the prediction quality, we introduce a set of evaluation metrics and evaluate
the method on our vibrating-plates benchmark. Our method outperforms Deep-
ONets, Fourier Neural Operators and more traditional neural network architec-
tures and can be used for design optimization. Code, dataset and visualizations:
https://github.com/ecker-lab/Learning_Vibrating_Plates

1 Introduction

Humans are exposed to noise in everyday life, which is unpleasant and unhealthy in the long term
[1]. Therefore, designers and engineers work on reducing noise that occurs, for example, in cars,
airplanes, and houses. In this work, we specifically consider vibrations in mechanical structures as
a source of sound. Vibrating structures radiate sound into the surrounding air. For example in a car,
the engine causes the chassis to vibrate, which then radiates sound into the interior of the car. By
reducing the vibration energy of the chassis, the noise can be reduced.

Vibrations of mechanical structures depend on the frequency of the excitation force (e.g. by the
engine). A special case occurs when the excitation frequency matches an eigenfrequency of a given
structure. In this case, the external force adds energy in phase with the structure’s natural vibration
and amplifies the motion with each cycle. This continues until the energy added equals the energy
lost due to damping, resulting in large vibration amplitudes. This effect is called resonance and leads
to characteristic resonance peaks in the dynamic response of the system. At resonance frequencies,
due to the higher vibration amplitudes, more noise is emitted. A second distinctive feature of struc-
tural vibrations is the vibration pattern, i.e. the spatial field of vibration velocity amplitudes. With
increasing frequency, these vibration patterns become more complex and exhibit more local maxima
and minima (Figure 1, left) [2].
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Figure 1: Left: We introduce the Vibrating Plates dataset of 12,000 samples for predicting vibration
patterns based on plate geometries. A harmonic force excites the plates, causing them to vibrate.
The vibration patterns of the plates are obtained through numerical simulation. Diverse architectures
are evaluated on the dataset. Right: Beadings are indentations and used in many vibrating technical
systems. Here, on an oil filter, a washing machine and a disk drive. They increase the structural
stiffness and alter the vibration.

To reduce noise, the vibration patterns of a mechanical structure can be influenced through modifica-
tions to its design. One method is the placement of damping elements, that absorb vibrational energy
and thereby reduce sound emission, but this adds weight and requires space. Another approach is
introducing beadings, which are indentations in plate-like structures (Figure 1, right). Beadings in-
crease the local stiffness of a structure, resulting in a shift in the structure’s eigenfrequencies and
subsequent resonance peaks. When they are well-placed, beadings can reduce the vibration energy
for a range of excitation frequencies by shifting the resonance peaks out of the range. Reducing the
vibration energy for a specific range of frequencies is a goal in many applications, e.g. in automotive
design, where a motor excites vibrations in a range of frequencies [3].

In this work, we focus on a crucial prerequisite for targeted modifications to a design: Computing its
vibrational behavior. The finite element method (FEM) is an established approach for numerically
solving partial differential equations. The geometry of a design is discretized into small elements
and the solution of the PDE is approximated by simple functions, e.g. polynomial functions, defined
on these elements. [4, 5]. This method enables the numerical simulation of vibration patterns, but
is computationally expensive. With increasing frequency and decreasing wavelength, finer meshes
are required to accurately resolve the vibrations. This leads to a high increase in computational load
and limits the number of designs and value of the frequencies that can be evaluated. Deep learning
surrogate models could accelerate the evaluation of design candidates by several magnitudes.

Related work on predicting the solution of partial differential equations with deep learning has
mostly focused on time-domain problems [e.g. 6, 7, 8]. In contrast, for our problem the change over
time is not of interest. Instead, we predict steady-state vibration patterns in the frequency domain.
Steady-state refers to the fact that the system vibrates harmonically and the amplitude and frequency
remain constant over time since the system is in a dynamic equilibrium. Despite being practically
relevant in acoustics and structural dynamics in general this problem is so far under-explored by
machine learning research.

Contributions. To explore the potential of vibration prediction with deep learning methods, we (1)
introduce a benchmark and define evaluation metrics on it, (2) evaluate a range of machine learning
methods on the benchmark and (3) introduce our own method.

Our novel benchmark dataset consists of 12,000 instances of an exemplary structural mechanical
system, a plate excited by a harmonic force, and their numerically computed vibrations given a
range of excitation frequencies. Given a plate instance, the task is to predict the vibration patterns
and frequency response. We vary material properties and the boundary conditions of the plate as
well as the geometry by adding beadings. Plates with beadings are abundant in technical systems
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(Figure 1, right). Plates are also often a component of more complex mechanical systems and their
vibrational behavior on their own is similar to more complex systems [9, 10], making them a well-
posed and scalable initial benchmark problem for deep learning methods.

To address the benchmark task, we propose a novel network architecture named Frequency-Query
Operator (FQO). This model is trained to predict the resulting vibration pattern from plate geome-
tries together with an excitation frequency query. This approach is inspired by work on operator
learning for predicting the solution to partial differential equations [11] and implicit models for
shape representation [e.g. 12, 13, 14], both techniques enable evaluating any point in the domain
instead of a fixed grid. In our case, this enables predictions for any excitation frequency, includ-
ing those not seen during training. On our vibrating-plates benchmark, the proposed FQO can
accurately predict the highly variable resonances occurring in vibration patterns and outperforms
DeepONet [11], Fourier Neural Operators [15] and other baselines.

2 Dataset and Benchmark Construction

2.1 Vibrating Plates Dataset

We introduce a dataset consisting of instances of aluminum plate geometries and their vibration
patterns. The plates are simply supported, i.e. the edges cannot move up and down. Depending
on the dataset setting, the rotational stiffness at the boundary is varied, which corresponds to free
rotation or clamped edges. The plate is excited by a harmonic point force at varying positions
with the excitation frequency varied between 1 and 300 Hz. While the specific setting in other
mechanical engineering design tasks may differ, this setup functions as an exemplary engineering
design problem. Analogous problems are the design of an air-conditioning enclosure [16], a washing
machine [17] or parts of a car chassis [3]. Compared to these problems, our plate setup has two
differences that allow for a comparatively easy experimental real world validation of the computed
vibration patterns and do not change typical vibrational characteristics: First, exciting the plate with
a point force is a common experimental setup, where a plate is excited via a shaker. Second, the
condition of no rotational stiffness at the edges in comparison to clamped edges does not introduce
additional uncertainty and parameters into the measurement and mirrors e.g. a bonnet of a car that
rests on the chassis. Other typical types of fixation include screws or welding. In the following, we
describe the specific quantity of interest of the vibration patterns, how the vibration patterns of the
plate are obtained via numerical simulation and how the plate geometry and parameters are varied.

Vibration patterns and frequency response function. Our benchmark is designed to address
a vibroacoustic engineering design problem. Therefore, the goal is to predict a quantity that best
reflects the noise emitted by a mechanical structure. For a plate, a natural choice is the maximum
velocity field vz(x, y|f) for a specific frequency f . Here, vz(x, y|f) represents the component of
the velocity field orthogonal to the plate surface (in the following V(f) denotes the velocity field on
the discrete grid). This component closely relates to how much sound is radiated, but specific details
about where the velocity on the plate is highest are superfluous. Therefore, we use the mean of the
squared velocity as a more compact representation and express it in a frequency response function
F , which is a function of the excitation frequency:

F(f) = 10 log10

(
r

A

∫
A

vz(x, y|f)2 dA
)

(1)

The square velocity is proportional to the kinetic energy and is therefore closely related to how
strongly the vibration couples into a surrounding fluid and can then be perceived as airborne sound.
In the above expression, A is the plate area over which the velocity is averaged. The result is scaled
by a reference value r and converted to a decibel scale.

Numerical simulation. Historically, plate structures have been the subject of intense research
regarding their vibrational behavior [e.g. 18, 19]. A common approach in plate modeling is to reduce
the model to a two-dimensional problem with the goal to accurately describe the vibrational behavior
while being computationally efficient [20]. To model the vibrational behavior of plates in this work,
we use a shell formulation based on Mindlin’s plate theory [18]. This theory is applicable for
moderately thin plates and represents the plate using a mid-plane with constant thickness. Mindlins
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Figure 3: Dataset analysis. (a) shows two discretized plate geometries with their corresponding
frequency response, the red crosses mark the detected peaks. (b) shows the mean plate design
and frequency response. (c) shows number of peaks in different dataset settings. (d) shows the
distribution of the peaks over the frequencies.

plate theory is a standard choice in many engineering applications and has been experimentally
validated [21, 22].

Figure 2: Process of the finite element solution in
frequency domain in order to compute the velocity
field at each frequency query.

We apply the finite element method to solve the
shell formulation and simulate the vibrational
behavior of the plate [4] (Figure 2). This in-
volves partitioning the plate geometry into dis-
crete elements and approximating the solution
on these elements by simple ansatzfunctions.
By choosing a sufficiently large number of ele-
ments, the solution converges to the exact solu-
tion of the model [23]. We discretize the plate
with a regular grid and use triangular elements
in the domain to allow a flexible representation of beadings. The discretization is sufficient to re-
solve wave lengths in the plate structure, but limits the detail that can be represented with the beading
patterns. After discretizing the plate, the PDE is integrated over the elements and a linear system
of equations is derived. This linear system describes the dynamics of the discretized structure and
is solved with a direct solver. We perform the computations with a specialized FEM software for
acoustics [24]. Further details on the setup and mechanical model are given in Appendix A.1.

Dataset variations. The plate instances are varied in two settings: For the V-5000 setting, we
generate random beading patterns consisting of 1 - 3 lines and 0 - 2 ellipses. Also, the width of
the beading-elements is randomly varied. The size of the plates as well as material, boundary and
loading parameters are fixed. For the G-5000 setting, we apply the same beading pattern variation
and additionally vary the plate geometry (length, width and thickness) as well as the damping loss
factor, rotational stiffness at the boundary and forcing position. For each setting, 5000 instances for
training and validation are generated. 1000 further instances are generated as a test set and are not
used during training or to select a model. Further details are given in Appendix A.2.

Dataset analysis. The mean plate design shows a close to uniform distribution, with a margin
at the plate’s edge (see Figure 3b). With a greater proportion of beaded area in a given plate, the
number of peaks tends to decrease (see Figure 3a). This is due to additional beadings stiffening the
plates, and it represents an interesting trait specific to our problem. The density of peaks is related
to the frequency. As the frequency increases, so does the peak density. Starting from around 120
Hz the peak density plateaus (see Figure 3d). The average number of peaks in the G-5000 setting is
smaller than in the V-5000 setting. This is influenced by the on average smaller plates being stiffer
and therefore having less peaks in the frequency range (see Figure 3c).

2.2 Evaluation

Before computing our metrics, we perform the following preprocessing steps to address numerical
issues as well as facilitate an easier interpretation of the evaluation metrics. We normalize the fre-
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quency response and the velocity fields. To do this, we first take the log of the velocity fields, to align
it with the dB-scale of the frequency response. Then, we subtract the mean per frequency over all
samples (depicted in Figure 3b for frequency response) and then divide by the overall standard devi-
ation across all frequencies and samples. Small changes in the beading pattern can cause frequency
shifts, potentially pushing peaks out of the considered frequency band. To reduce the effect of such
edge cases, we predict frequency responses between 1 and 300 Hz but evaluate on the frequency
band between 1 and 250 Hz.

We propose three complementary metrics to measure the quality of the frequency response predic-
tions.

Mean squared error. The mean squared error (MSE) is a well-known regression error measure:
For the global deviation we compare the predicted F̂(f) and numerically computed frequency re-
sponse F(f) by the MSE error EMSE =

∑
i(F̂(fi)−F(fi))

2.

Earth mover distance. The earth mover distance [25, 26] expresses the work needed to transmute
a distribution P into another distribution Q. As a first step, the optimal flow γ̂ is identified. Based
on γ̂ the earth mover distance is expressed as follows:

EEMD(P,Q) =

∑
i,j γ̂ij · dij∑

i,j γ̂ij
with γ̂ = min

γ

∑
i,j

γij · dij

where dij is the distance between bins i and j in P and Q. Correspondingly, γij is the flow between
bins i and j. We calculate the EEMD based on the original amplitudes in m/s that have not been
transformed to the log-scale (dB) and normalize these amplitudes with the sum over all frequencies.
As a consequence and unlike the MSE, EEMD is invariant to the mean amplitude and only considers
the shape of the frequency response. In this form, our metric is equivalent to the W1 Wasserstein
metric [27, 28].

Peak frequency error. To specifically address the prediction of resonance peaks, which are par-
ticularly relevant for noise emission, we introduce a third metric called peak frequency error. The
metric answers two questions: (1) Does the predicted frequency response contain the same number
of resonance peaks as the true response? (2) How far are corresponding ground truth and prediction
peaks shifted against each other? To this end, we set up an algorithm that starts by detecting a set of
peaks K in the ground truth and a set of peaks K̂ in the prediction using the find peaks function
in scipy [29] (examples in Appendix B). Then, we match these peaks pairwise using the Hungarian
algorithm [30] based on the distance between the frequencies of the peaks EF. This allows us to
determine the ratio between predicted and actual peaks |K̂|

|K| and |K|
|K̂| . To equally penalize predicting

too many and too few peaks we consider the minimum of both ratios: EPEAKS = 1−min{ |K̂|
|K| ,

|K|
|K̂|}.

3 Predicting Vibrations with Neural Networks
We propose a method to predict the frequency response, Fg,m(f), for plates characterized by their
geometry g (influenced by beading patterns) and scalar parameters m (height, width, thickness,
damping loss factor, rotational stiffness at boundary, loading position). This process involves two
steps: (1) First, the input g and m are encoded by an encoder Φ. Because g is defined on a regular
grid, standard image processing architectures are suitable. (2) Frequency response predictions are
generated for specific excitation frequencies f by a decoder Ψ (Figure 4). The computation can then
be expressed as:

Ψ(Φ(g,m), f) = F̂g,m(f) (2)

This problem formulation, training a neural network to predict a function and evaluating this func-
tion, given some input values, is a common paradigm in operator learning [11]. It allows for the
evaluation of any frequency query f , even if it has not been part of the training data. In contrast,
predicting frequencies on a fixed grid only allows for the evaluation of those frequencies. This for-
mulation shares similarities with implicit models, for instance by [13] in the context of 3d shape
prediction. Based on this, we investigate the following central aspects of our architecture:
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Figure 4: Frequency-Query Operator method. The geometry encoder takes the mesh geometry and
the scalar properties as input. The resulting feature volume along with a frequency query is passed to
the query decoder, that either predicts a velocity field or directly a frequency response. The velocity
field is aggregated to arrive at the frequency response at the query frequency f .

Q1 - Frequency-query approach: Vibrations are dominated by resonance peaks at specific fre-
quencies. The resonance frequencies vary strongly across instances. An implicit or operator learning
approach has been shown to be able to deal with high variation better in other contexts. In the con-
text of vibration prediction, a frequency-query approach could be employed to generate predictions
for one specific frequency.

Q2 - ViT encoder: Image processing architectures based on convolutions encode local features.
In contrast, vision transformers have a global receptive field size from early layers. As vibrations
are determined by the full geometry, we expect vision transformers to perform better.

Q3 - Velocity field prediction: We can train networks to either directly predict the aggregate
frequency response F or to predict the velocity field V and compute F from V via Equation 1. For
predicting the velocity field, much richer training data is available, since it describes a field over the
plate instead of the scalar frequency response. Most of this information is not represented in the
frequency response.
In the following, we describe architectural variations explored for these aspects.

3.1 Geometry Encoder Φ

To parse the plate geometry into a feature vector, we employ three variants: ResNet18 [31, RN18], a
vision transformer [32, 33, ViT] and the encoder part of a UNet [34]. For the RN18, we replace batch
normalization with layer normalization [35], as we found this to work substantially better. Compared
to the CNN-based RN18, the ViT architecture supports interactions across different image regions
in early layers. For both, the RN18 and the ViT encoder, we obtain a feature vector x by average
pooling the last feature map. Since the UNet generates velocity fields, no pooling is applied.

FiLM conditioning. For including the scalar parameters m, we introduce a film layer [36]. The
film layer first encodes the scalar parameters with a linear layer. The resulting encoding is then
multiplied element-wise with the feature of the encoder and a bias is added. This operation is
applied before the last layer of the geometry encoder (UNet) or after it (RN18, ViT).

3.2 Decoder Ψ

FQO-RN18 and FQO-ViT: Predicting F(f) directly. Having obtained an encoding of the plate
geometry and properties x, a decoder now takes this as well as a frequency query as input and maps
them towards a prediction. For the RN18 and ViT geometry encoders, the decoder is implemented
by an MLP taking both x and a scalar frequency value f as input to predict the response for that
specific query frequency, i.e. Ψ(x, f) ∈ R. The frequency query is merged to x by a film layer
[36]. By querying the decoder with all frequencies individually, we obtain results for the frequency
band between 1 and 300 Hz. The MLP has six hidden layers with 512 dimensions each and ReLU
activations.

FQO-UNet: Predicting F(f) through the velocity field V(f). To incorporate physics-based
contraints and take advantage of the larger amount of available data, we employ a UNet to pre-
dict the velocity fields, V(f). From V(f), we derive the frequency response F(f) (analogous to
Equation 1). A frequency query, introduced via a FiLM layer after the encoder, enables frequency-
specific predictions. To reduce the memory and computation demands per geometry during training,
we select a random subset of k frequency queries per geometry in a batch, with k < 300. If not
otherwise specified, k is set to 50.
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Table 1: Test results for frequency response prediction. Column VF indicates if F is indirectly
predicted through the velocity field (Q3), column FQ indicates if frequency queries (Q1) are used.
Q1 to Q3 refer to the model components described in Section 3.

V-5000 G-5000

FQ VF EMSE EEMD EPEAKS EF EMSE EEMD EPEAKS EF

Baselines
k-NN - - 0.63 21.50 0.45 8.7 0.88 32.48 0.68 21.0
RN18 + FNO - - 0.42 10.76 0.34 5.6 0.28 14.12 0.21 6.1
DeepONet ✓ - 0.49 16.91 0.48 5.4 0.44 23.05 0.57 9.9
FNO (velocity field) - ✓ 0.47 13.10 0.36 6.3 0.49 21.16 0.39 10.7

Grid-RN18 - - 0.44 13.29 0.36 5.4 0.30 14.95 0.26 6.5
FQO-RN18 (Q1) ✓ - 0.32 10.70 0.17 5.3 0.24 13.51 0.13 5.1
FQO-ViT (Q2) ✓ - 0.68 20.96 0.54 7.1 0.52 24.34 0.49 11.5

Grid-UNet - ✓ 0.19 7.57 0.24 2.7 0.17 9.41 0.14 4.6
FQO-UNet ✓ ✓ 0.08 4.24 0.07 1.7 0.11 7.47 0.08 3.1

Grid-Unet and Grid-RN18: Predicting F for a fixed grid of frequencies. To ablate the
frequency-query approach, we employ two variations of the FQO-RN18 and FQO-UNet architec-
tures, that do not employ frequency queries. They instead generate predictions for 1-300 Hz at once.
This is done by setting the output size of the respective last layer to 300.

3.3 Baseline Methods
We further report baseline results on the following alternative methods: A k-Nearest Neighbors
regressor, that finds the nearest neighbors in the latent space of an autoencoder. DeepONet [11], with
a RN18 as backbone and a MLP to encode the query frequencies as a branch net. Two architectures
based on Fourier Neural Operators [15]. One employing an FNO as a replacement for the query-
based decoder based on RN18 features. The second directly takes the input geometry and is trained
to map it to the velocity fields.

3.4 Training
All methods are trained in a data-driven fashion for 500 epochs on the training dataset of 5000
samples. 500 samples from the training dataset are excluded and employed for validation. We
report evaluation results on the previously unseen test set consisting of 1000 additional samples.
For methods that predict V(f), i.e. UNet based methods and the FNO variation, the training loss is
set to LV where LV represents the MSE on the log-transformed, normalized squared velocity field
(Ablation on loss function in Appendix D). For methods that directly predict F , the loss is set to LF ,
the MSE on the normalized frequency response. Choosing the log-transformed quantities enables
the loss to be sensitive to errors outside of resonance frequencies. Otherwise, such errors would
have little influence on the total loss, as their magnitude is much lower. See Appendix C for further
details on the architectures and training procedure.

4 Experiments
We train the architecture variations and baseline methods on the Vibrating Plates dataset (see Ta-
ble 1). To assess which architecture aspects described in Section 3 are beneficial, we perform the
following comparisons. Regarding Q1 (frequency-query approach), the Frequency-Query Operator
variations consistently yield better predictions than equivalent grid-based methods, where responses
for all frequencies are predicted at once: The EMSE and the EEMD are lower, more peaks are repro-
duced, and the peak positions are more precise. Regarding Q3 (velocity field prediction), predicting
the velocity fields and then transforming them to the frequency response leads to better results than
directly predicting the frequency response. Specifically, the UNet based architectures strongly out-
perform all alternatives, which we attribute to the richer training data of velocity fields. Regarding
Q2, the ViT encoder leads to worse results than the CNN-based encoders.
All evaluated baseline methods achieve comparatively worse results than our proposed methods.
Despite using the same RN18 geometry encoder as FQO-RN18, DeepONet [11] performs worse. We
assume that this is due to incorporating frequency information through a single weighted summation,
which limits the model’s expressivity [37]. In contrast, FQO-RN18 introduces the queried frequency
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(a) Plate Geometry (b) Frequency Response Prediction

(c) Ground Truth Velocity Field at f (d) Predicted Velocity Field at f

(e) Reducing the Dataset Size

(f) Using less Freqs. per Plate

Figure 5: Results. (b) to (d) show the velocity field at one frequency and prediction for the plate
geometry in (a) from FQO-UNet. (e) shows the test MSE for training two methods with reduced
numbers of samples from V-5000. (f) shows effects of different data generation strategies. The blue
line is an isoconture for a fixed compute budget of 150,000 data points, with varying number of
frequencies per plate geometry. The green star represents using a larger dataset at 15 frequencies
per plate (half of V-5000). The red cross represents a model trained on V-5000. Training with fewer
frequencies per plate is more efficient.

earlier into the model. Two Fourier Neural Operator [15] baseline methods are evaluated: the first,
RN18 + FNO, which substitutes the query-based decoder with an FNO decoder, underperforms
compared to FQO-RN18 on both datasets. The second FNO baseline, trained directly to predict
velocity fields, yields poorer results.
Results for the G-5000 setting are slightly worse than for the V-5000 setting. The difference is
surprising small considering the seven additional varied parameters in the G-5000 setting. One
reason might be the average number of peaks in the frequency response: the plates in G-5000 are on
average smaller and because of this stiffer, leading to fewer peaks (on average 3.9 in G-5000 and 5.9
in V-5000). This interpretation is supported by the fact that the average error becomes higher with
increasing frequency and thus increasing peak density (Figure 3d).
Looking at a prediction example (Figure 5a-d) for our best model, FQO-UNet, the predicted velocity
field has subtle differences to the ground truth. The prediction captures the two modes and their
shape quite well, but the shape is slightly less regular than in the reference. Despite that, the resulting
frequency response prediction at f = 131 is close to the FEM reference. In comparison to the
grid-based prediction, where peaks tend to be blurry, the frequency response peaks generated by
FQO-UNet are more pronounced. Additional visualizations are provided in Appendix E.3 and in
the code repository. For the best architecture in our experiments, FQO-UNet, we report mean and
standard deviation results for multiple runs in Appendix E.2 and provide an ablation of model size
for the FQO-UNet and Grid-UNet architectures in Appendix D.

Transfer learning. To quantify to which degree features learned on a subset of the design space
transfer to a different subset, the V-5000 setting is split into two equally-sized parts based on the
number of mesh elements that are part of a beading. The ”more beadings” set contains only 5.1
peaks on average because the plates are stiffened by the beadings, compared to 6.7 peaks on average
for the ”less beadings” set. The training on plates with less beadings leads to a smaller drop in
prediction quality (see Table 2). This indicates that training on data with more complex frequency
responses might be more efficient. In addition, we train a single model on both G-5000 and V-5000.
Performance increases, indicating that training can benefit from training with data based on similar
mechanical models (Table 3).

Sample efficiency. We train the FQO-UNet and the FQO-RN18 with reduced numbers of samples
(see Figure 5e). It is notable, that the FQO-UNet with a quarter of the training data achieves nearly
the same prediction quality as the FQO-RN18 with full training data. This highlights the benefit of
including the velocity fields into the training process. Quantitative results are given in Appendix E.1
for both dataset settings.
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Table 2: Transfer learning performance: We split V-5000 into two halves based on amount of bead-
ings and evaluate transfer learning performance across these splits: training subset 7→ test subset.
The gray rows denote test results on the original subset that has been used for training.

less beadings 7→ more beadings more beadings 7→ less beadings

EMSE EEMD EPEAKS EF EMSE EEMD EPEAKS EF

FQO-RN18 0.61 16.19 0.20 9.3 0.82 15.79 0.36 8.3
(origin) 0.33 10.48 0.18 5.0 0.42 12.00 0.29 5.8

FQO-UNet 0.39 11.17 0.21 5.6 0.54 12.02 0.25 5.5
(origin) 0.18 8.68 0.19 2.6 0.17 7.83 0.13 3.0

Table 3: A FQO-UNet is trained in parallel on batches from V-5000 and G-5000 and evaluated on
the G-5000 test set. Performance increases in all metrics.

EMSE EEMD EPEAKS EF

G-5000 0.111 7.47 0.079 3.1
G-5000 + V-5000 0.093 6.97 0.071 2.9

We further investigate the optimal ratio of numbers of frequencies per geometry and total num-
ber of geometries, by generating an additional dataset in the V-5000 setting consisting of 50,000
plate geometries but with only 15 frequency evaluations per geometry. These frequencies are uni-
formly spaced with a random starting frequency. Reducing the frequencies per geometry drasti-
cally increases the data efficiency of our method. With a tenth of data points compared to our
original dataset, the MSE metric approaches the original value (Figure 5f, quantitative results in
Appendix E.1).

Design optimization. We investigate the potential of our FQO-UNet to be used for optimizing
a beading pattern for reduced vibrations in a specified frequency range. Following the approach
described in [38], to generate plates with reduced vibrations, a diffusion model trained to generate
novel beading patterns is combined with gradient information from our FQO-UNet as follows: A
gradient on the pixels of the input beading pattern is obtained by passing a beading pattern through
the network, computing the sum of the predicted frequency response as a loss and then performing
backpropagation to the input beading pattern. This gradient is then used to guide the diffusion
model to generate beading patterns with reduced vibrations. We optimize beading patterns to reduce
vibrations between 100 and 200 Hz using the FQO-UNet trained on the V-5000 dataset (Figure 6).
Resulting plates have a lower mean frequency response in the targeted range than any plate in the
training dataset.

5 Related Work
Acoustics. While research on surrogate models for the spatio-temporal evolution of vector fields
is fairly common [39, 40, 41], directly predicting frequency responses through neural networks is
an understudied problem. A general CNN architecture is applied in [42] to calibrate the parameters
of an analytical model for a composite column on a shake table. The data includes spectrograms
representing the structural response in time-frequency domain. The frequency-domain response of
acoustic metamaterials is considered in a material design task by conditional generative adversarial
networks or reinforcement learning [43, 44, 45]. The frequency response of a multi-mass oscillator is

24.36 26.83

Figure 6: Design optimization. Exemplary generation result with lowest mean response between
100 Hz and 200 Hz out of 32 generations (left, mean response below). Plate with lowest response
out of all 5000 training examples from V-5000 (middle left). Comparison of responses from left
plates (middle right). Responses from 16 generated plates (right).
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predicted with transformer-based methods [46]. Within the context of aeroacoustics, the propagation
of a two-dimensional acoustic wave while considering sound-scattering obstacles is predicted in
time-domain by a CNN [47, 48]. A review of machine learning in acoustics is given by [49]. Several
acoustic benchmarks for numerical methods are available [50], however, these benchmarks do not
systematically vary input geometries, making them not directly applicable to data-driven models.

Scientific machine learning. Data-driven machine learning techniques were successfully applied
in many different disciplines within engineering and applied science; for example for alloy discovery
[51], crystal structure prediction [52], climate modeling [53] and protein folding [54]. A popular
use case for data-driven methods is to accelerate fluid dynamics, governed by the Navier-Stokes
equations [39, 40, 55, 56, 57].
The question of how to structure and train neural networks for predicting the solution of partial
differential equations (PDE) has been the topic of intense research. Many methods investigate the
inclusion of physics informed loss terms [58, 59, 60, 56, 61]. Some methods directly solve PDEs
with neural networks as a surrogate model [62, 63]. Graph neural networks are often employed, e.g.
for interaction of rigid and deformable objects as well as fluids [64, 65].

Operator learning and implicit models. A promising avenue of research for incorporating in-
ductive biases for physical models has been operator learning [11, 15, 66, 37, 41]. Operator learning
structures neural networks such that they implement a function that can be evaluated at real values
instead of a fixed discrete grid. DeepONet [11] implements operator learning by taking the value
at which it is evaluated as an input and processes this value in a separate branch. Fourier Neural
Operators [15] use a point-wise mapping to a latent space which is processed through a sequence of
individual layers in Fourier space before being projected to the output space.
Implicit models (or coordinate-based representation) are models where location is utilized as an
input to obtain a location-specific prediction, instead of predicting the entire grid at once and thus
fit in the operator learning paradigm. Such models were used to represent shapes [12, 67, 68, 13],
later their representations were improved [69, 70] and adapted for representing neural radiance fields
(NeRFs) [71, 14]. Our method applies techniques from these implicit models to operator learning.

6 Conclusion
We introduced the problem of predicting structural vibrations and associated frequency response
functions of mechanical systems. Unlike other benchmarks for deep learning surrogate models, this
task necessitates predicting a steady-state solution that remains constant over time, but varies across
different excitation frequencies. To this end, we created the Vibrating Plates dataset and bench-
mark and provide reference scores for several methods. Our Frequency-Query Operator method
addresses the benchmark and achieves better results than the DeepONet and FNO baselines. We
find that query-based approaches and the indirect prediction of a mean frequency response through
predicted field quantities lead to better results. Surrogate models as shown in this work can greatly
accelerate the prediction of physical quantities over the finite element method: Our models achieved
a speed-up of around 4 to 6 orders of magnitude (see Appendix C), which makes tasks such as design
optimization feasible. This efficiency, however, depends on the availability of enough pre-generated
training data and requires model training. We further investigated effects of changing the composi-
tion of the training dataset and found that using less frequencies per plate and more different plates
positively impacts prediction accuracy.

Limitations and future work. Our dataset and method serve as an initial step in the development
of surrogate models for vibration prediction. The dataset focuses on plates, a common geometric
primitive used in a great number of applications. However, many structures beyond plates exist,
involving curved shells, multi-component geometries and complex material parameters. While some
results from our study might transfer to these cases, more flexible architectures, able to deal with 3D
data, would be needed. Different mechanical models, might also produce more complex frequency
responses with e.g. more closely spaced modes, making the prediction task more challenging. As
more complex geometries incur higher computational costs of FEM simulations, key questions are
how to enhance sample-efficiency further, for example through transfer learning. A further limitation
is the manufacturability of the considered beading patterns. The plate beadings could in principle be
manufactured by deep drawing of sheet metal, but would require specifically designed stamps.
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nische Universität Braunschweig, 2022.

[4] Olek C Zienkiewicz, Robert Leroy Taylor, and Jian Z Zhu. The finite element method: its basis
and fundamentals. Elsevier, 2005.

[5] Klaus-Jürgen Bathe. Finite element method. Wiley Encyclopedia of Computer Science and
Engineering, pages 1–12, 2007.

[6] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Ale-
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Surrogate for the Temporal Propagation and Scattering of Acoustic Waves. AIAA Journal,
60(10):5890–5906, 2022.

[49] Michael J Bianco, Peter Gerstoft, James Traer, Emma Ozanich, Marie A Roch, Sharon Gannot,
and Charles-Alban Deledalle. Machine learning in acoustics: Theory and applications. The
Journal of the Acoustical Society of America, 146(5):3590–3628, 2019.

13



[50] Maarten Hornikx, Manfred Kaltenbacher, and Steffen Marburg. A platform for benchmark
cases in computational acoustics. Acta Acustica united with Acustica, 101(4):811–820, 2015.

[51] Ziyuan Rao, Po-Yen Tung, Ruiwen Xie, Ye Wei, Hongbin Zhang, Alberto Ferrari, T. P. C.
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A Dataset Construction
A.1 The Mechanical Model
In the following, we give a technical description of the mechanical model that is applied to generate
the datasets. For moderately thin plates, the plate theory by Mindlin is a valid differential equation
[18]:

B ∇4uz − ω2ρsh uz + ω2

(
Bρs
G

+ ρsI

)
∇2uz + ω4I

ρ2s
G

uz = pl

This equation is combined with a disc formulation for in-plane loads in order to receive a shell for-
mulation for the mechanical description of arbitrarily formed moderately thin structures considering
in-plane and transverse loads. The plate part is the dominating and important part for resolving
bending waves. In the equation, uz denotes the normal displacement of the plate structure as degree
of freedom of interest. B represents the bending stiffness, ρs the density, h the thickness, G the
shear modulus and I the moment of inertia. The angular frequency ω is defined as ω = 2πf . The
right hand-side excitation pl describes an applied pressure load, which is converted to point forces
through integration. As boundary conditions we apply homogeneous dirichlet boundary conditions,
i.e. uz(x) = 0 on the boundary and include a rotational stiffness at the boundary to model different
boundary conditions, ranging from free rotating to clamped plates. The equation is transformed into
a weak integral formulation by weighted residuals, discretized using finite elements and integrated
numerically. In particular, we use triangular shell elements with 3 nodes and linear ansatz functions.
The integration delivers the sparse linear system of equations. This linear system is solved using
the direct solver MUMPS [72] with a specialized FEM implementation for acoustics [24]. The dis-
cretization is chosen, such that the bending waves are resolved with a minimum of 10 nodes. The
bending wave length λB of a plate can be calculated by

λB =

√
2π

f

4

√
Et2

12(1− ν2)ρ
,

where E is the Young’s modulus, t the thickness, ν the Poisson ratio and ρ the density of the plate.
The final discretization is set to 181× 121 for G-5000 and 121× 81 for V-5000, which is sufficient
for convergence.

A.2 Datasets
The exact physical setting and variation of our mechanical model to form the V-5000 and
G-5000 datasets are given in Table 4, Table 6 and Table 5. Both dataset settings contain 6000
samples, each consisting of a plate geometry with associated physical and material parameters and
the computed velocity fields V(f) and frequency response F(f) for frequencies f 1 to 300 Hz.
1000 samples from the 6000 samples are selected as a test dataset and not considered during neural
network training or validation. Computing a single sample out of the 6000 samples takes 2 minutes
and 19 seconds on a machine with a 2 Ghz CPU (20 physical cores).

Table 4: Dataset settings. Width is the width of lines and ellipses in mm. Properties. (prop.) involves
plate size, thickness, material, boundary and loading properties.

Sample space Sample number
Setting Prop. Lines Ellipses Width Train Test

V-5000 fix 1 - 3 0 - 2 30 - 70 5000 1000
G-5000 vary 1 - 3 0 - 2 40 - 60 5000 1000

For the G-5000 dataset, the geometry, material, boundary condition and loading parameters are
varied. The effect of two of the material parameters is visualized in Figure 7. Increasing the damping
reduces amplitudes at resonance peaks but does not shift the overall form of the frequency response.
Increasing the thickness increases the overall stiffness and shifts resonance peaks towards higher
frequencies in a less regular manner. For boundary condition variation, we include one rotational
stiffness parameter, which models the rotational stiffness along the x-axis at the lower and upper
edge and along the y-axis at the left and right edge. The rotational stiffness is added at the respective
rotational degree of freedom at the boundaries and varied as given in Table 6.
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Table 5: Geometry and material parameters for V-5000 and G-5000 datasets.

Geometry Material (Aluminum)

length width thickness density Young’s mod. Poisson ratio loss factor

V-5000 0.9 m 0.6 m 0.003 m 2700 kg/m3 7e10 N/m2 0.3 0.02
G-5000 0.6 - 0.9 m 0.4 - 0.6 m 0.002 - 0.004 m 2700 kg/m3 7e10 N/m2 0.3 0.01 - 0.03

Table 6: Loading and boundary condition parameters for V-5000 and G-5000 datasets.

Loading (Point force) Boundary condition (rot. stiffness)

x-position y-position cry/crx

V-5000 0.36m 0.225m 0.0 Nm
G-5000 0.18 - 0.72 m 0.12 - 0.48m 0.0 - 100 Nm
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Figure 7: One-at-a-time parameter variation of the thickness parameter and the damping loss factor.
Increasing the damping reduces the amplitudes at the resonance peaks. Increasing the plate thickness
increases the stiffness of the plate and thus shifts the resonance peaks towards higher frequencies
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B Metrics - Peak Frequency Error
We provide examples of the find peak operation which serves as the basis for the peak frequency
error on ground truth (Fig. 8) and predictions (Fig. 9, using a kNN baseline) and visualize the
matched peaks for calculating the peak frequency error (Fig. 10). Note that find peaks is run with
the prominence threshold set to 0.5 meaning that the peak must be at least 0.5 units higher than their
surroundings.

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

0 50 100 150 200 250

4

2

0

2

4

Figure 8: Find peak results on random ground truth samples.
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Figure 9: Find peak results on predictions.
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Figure 10: Visualization of the matching between ground truth (blue) and prediction (orange) peaks.
Matched peaks are indicated in red.
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C Architectures

In the following, our neural network architectures and the training procedure are described. The
training and neural networks can be reproduced based on the publicly available code repository. To
give an overall impression of the employed models, Table 7 gives an overview of the number of
parameters and the speed for a forward pass prediction.

Table 7: Model size and speed comparison for a forward pass of a batch of 16 plate geometries on
an A100 GPU. In comparison, solving one geometry via FEM takes 2 minutes and 19 seconds. The
slowest deep learning method is then around 6000 times faster.

# weights in Mio Time (s)

RN18 + FNO 11.8 0.014
DeepONet 11.3 0.005
FNO (velocity field) 134 0.008

Grid-RN18 12.9 0.005
FQO-RN18 12.7 0.005
FQO-ViT 9.28 0.013

Grid-UNet 27.9 0.010
FQO-UNet 7.1 0.338

FEM (20 CPU cores) - ∼ 2224.000

C.1 Frequency-Query-based Methods

Predicting F(f) directly: FQO-RN18 and FQO-ViT. To directly predict the frequency response
instead of predicting the velocity fields and then transforming it to the frequency response, we use a
ResNet [31] and a vision transformer (ViT) [32] as geometry encoders. For the ResNet, we opt for
the ResNet18 backbone. We replace batch normalization with layer normalization [35], as we found
this to work substantially better. In addition, we employ the vision transformer (ViT) architecture
[32]. The ViT supports interactions across different image regions in early layers. We use a variation
of the ViT-Base configuration with a reduced token size of 192, an intermediate size of 768 and three
attention heads. For both the RN18 and the ViT encoder, we obtain the d-dimensional global feature
x through average pooling from the last feature map or the encoded tokens. Scalar parameters are
introduced to the encoding by a film layer. As a decoder, we employ an MLP. The MLP r takes both
x and a scalar frequency value f as input to predict the response for that specific query frequency,
i.e. r(x, f) ∈ R. The frequency query is introduced by a film layer to x. By querying the decoder
with all frequencies individually, we obtain results for the frequency band between 1 and 300 Hz.
The MLP has six hidden layers with 512 dimensions each and ReLU activation functions.

Predicting F(f) through the velocity field V(f): FQO-UNet. To predict V(f) instead of di-
rectly predicting F(f), we employ a UNet. The plate geometry is encoded by the UNet encoder
and the scalar material parameters are introduced before the last contraction block of the UNet. A
frequency query is introduced after the encoder again by a film layer and the decoder then produces
predictions of size 40 × 60, which is sufficient to capture the structure and modes of the velocity
fields. Since the decoder has to be evaluated for each frequency query individually, we opt to map
to predictions for five velocity fields per query.
The UNet consists of three contraction blocks, two spatial-shape-preserving blocks and two expan-
sion blocks. Additionally, two self-attention layers are included in the encoder and one self attention
layer in the decoder. To ensure global features are included in the full feature volume after the en-
coder, adaptive average pooling is applied to the feature volume and the result is concatenated to the
feature volume.

C.2 Grid-based Methods

To provide a direct comparison to the query-based approach, two methods that predict all frequency
responses at once are tested.
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Grid-RN18. The same RN18 is used to generate a global feature x as in the FQO-RN18. Given
x, an MLP r predicts the frequency response on a fixed 1 Hz interval grid, with r(x) ∈ R300. We
employ six hidden layers with 512 dimensions each and ReLU activations.

Grid-based U-Net. For the grid-based U-Net we also employ the same architecture as for the
query-variation but double the number of channels to account for the larger number of predictions
that the network has to produce at once. The U-Net is trained to predict all 300 velocity fields at
once.

C.3 Baseline Methods
RN18 + Fourier Neural Operator (FNO). A 1d FNO as constructed by [15] takes as input x
processed by a linear layer to size 300, the number of frequencies to be predicted. We keep 32
modes and use eight FNO blocks with 128 hidden channels.

DeepONet. We further test a DeepONet with the RN18 as branch network and as trunk network,
a four layer MLP of width 128 and 512 as output width to match the size of x. The trunk network
processes the frequency queries and is then combined with x to produce the prediction [11, 66].
Note, the RN18 branch network is the same as the encoder of the FQO-RN18.

FNO (velocity fields). The FNO takes as input the geometry interpolated to the resolution 40×60.
The 2d FNO then consists of eight FNO blocks with 128 hidden channels and finally 300 output
channels to map to the 300 velocity fields in this resolution. In the FNO blocks, 32 modes are
preserved after the Fourier transform. Scalar parameters are introduced by a film layer after the first
FNO block.

C.4 k-Nearest Neighbors (k-NN)
We further test a k-Nearest Neighbors algorithm as a baseline, which predicts the frequency response
of a plate as the mean frequency response of the k closest plates in the training set. To determine
the distance between different plate designs, we use the cosine distance on the 96-dimensional latent
space of a convolutional autoencoder [73] trained on the beading pattern geometries. The normal-
ized scalar properties are appended to the latent space to include them. To obtain a prediction, the
frequency responses of the k neighbors are averaged and the optimal k in the range [1, 25] is empir-
ically determined to minimize the MSE. Determining the nearest neighbors directly in the geometry
space was tried out, but yielded worse results.

C.5 Training
The networks are trained using the AdamW optimizer [74], with β = [0.9, 0.99] and weight decay
set to 0.00005. We further choose a cosine learning rate schedule with a warm-up period [75] of 50
epochs. The maximum learning rate is set to 0.001, except for the UNet and ViT architectures, for
which it is set to 0.0005. In total, the networks are trained for 500 epochs. As a validation set, 500
samples from the training dataset are set and excluded from the training and the checkpoint with the
lowest MSE on these samples is selected. We report evaluation results on the previously unseen test
set.

Compute resources. All trainings reported in this work were computed on a cluster with single
A100 GPUs. The most resource intense training run took roughly 1d and 16h on a single A100 GPU
and was the ablation of the number of channels with the highest scaling factor for the FQO-UNet
method detailed in Section D. All other training runs with the FQO-UNet were completed in less
than 24h. The trainings for the other methods were substantially shorter with i.e. the Grid-UNet
finishing training in roughly 2h - 3h and likewise the FNO (velocity field) method. The roughly 20
to 30 training runs for the FQO-UNet dominate the required compute resources. We estimate that
it took in total 1 A100 for 30 days. In addition, preliminary and failed experiments required further
computational resources.

D Ablations
We provide ablation results for the loss function for training methods that predict the velocity field.
We consider the loss function Ltotal = αLV + (1 − α)LF and provide results in Table 8. This
ablation was performed with training batches consisting of 300 frequencies per geometry, instead of
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a subset. We find that the loss on the velocity field prediction LV is more important than the loss on
the frequency response.

Table 8: Ablation of α value for weighing loss on the predicted velocity field vs. predicted frequency
response. Higher α value indicates more weight on velocity field. 1 indicates only velocity field loss.
The selected α parameter is printed in bold.

V-5000

α EMSE EEMD EPEAKS EF

0 0.25 8.02 0.15 4.4
0.5 0.15 5.52 0.11 2.9
0.9 0.09 3.90 0.08 1.8
1 0.09 4.00 0.07 1.8

We provide ablation results on the number of channels in the FQO-UNet and Grid-UNet architec-
tures in Table 9. For the FQO-UNet, this ablation was performed with training batches consisting
of 300 frequencies per geometry, instead of a subset. We find that increasing the number of chan-
nels did not lead to a perfomance improvement for the Grid-UNet and leads to marginal further
improvements for the FQO-UNet architecture.

Table 9: Ablation of number of channels of FQO-UNet and Grid-UNet. The number of channels is
multiplied by a constant factor over the depth, named width. The selected width parameter is printed
in bold.

V-5000

width EMSE EEMD EPEAKS EF

FQO-UNet
16 0.12 5.00 0.09 2.2
32 0.09 3.90 0.08 1.8
64 0.08 3.82 0.07 1.8

Grid-UNet
16 0.31 11.44 0.31 3.9
32 0.24 8.56 0.25 3.3
64 0.19 7.57 0.24 2.7
128 0.24 8.17 0.21 3.7
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E Additional Results
E.1 Sample Efficiency
To provide full baseline results for the training with a reduced amount of samples, we refer to Table
10.

Table 10: Test results for different training dataset sizes for both settings, V-5000 and G-5000.

V-5000 G-5000

EMSE EEMD EPEAKS EF EMSE EEMD EPEAKS EF

FQO-UNet
10 % 0.55 15.26 0.37 6.4 0.54 22.70 0.37 11.1
25 % 0.33 12.00 0.24 4.2 0.33 16.67 0.17 7.3
50 % 0.19 8.54 0.17 2.9 0.19 11.02 0.12 4.7
75 % 0.13 6.95 0.13 2.3 0.14 9.14 0.10 3.8
Full dataset 0.08 4.24 0.07 1.7 0.11 7.47 0.08 3.1

FQO-RN18
10 % 0.73 19.44 0.49 7.9 0.65 27.57 0.55 13.9
25 % 0.58 14.27 0.31 7.2 0.45 21.04 0.44 8.9
50 % 0.45 12.20 0.20 6.4 0.35 17.00 0.15 7.2
75 % 0.37 10.96 0.18 5.5 0.29 15.06 0.15 5.9
Full dataset 0.32 10.70 0.17 5.3 0.24 13.51 0.13 5.1

Full results on training with different ratios of frequencies and geometries are provided in Table 11.

Table 11: Data generation experiment.

V-5000

# Freqs # geometries EMSE EEMD EPEAKS EF

300 500 0.48 13.16 0.32 5.7
150 1,000 0.31 11.18 0.22 4.3
30 5,000 0.12 8.74 0.14 2.1
10 15,000 0.10 11.18 0.17 1.6
3 50,000 0.10 11.47 0.20 1.4
15 50,000 0.02 4.06 0.04 0.08
original 300 5,000 0.08 4.24 0.07 1.7

E.2 Multiple Trainings with Random Splits
To provide a notion of the variability of the results for different training runs, we performed four
trainings for the FQO-UNet with different initial seeds and different random splits in training and
validation set. These trainings were performed with training batches consisting of all 300 frequen-
cies per geometry, instead of a subset. In Table 12 we report evaluation results on the respective
validation sets and on the unseen test set and observe only modest variation.

Table 12: 4 models were trained on random splits in training and validation sets (4500 and 500
samples respectively). The results are denoted as mean [standard deviation].

V-5000

Evaluation set EMSE EEMD EPEAKS EF

Validation set 0.096 [0.0023] 4.1 [0.072] 0.081 [0.0071] 2 [0.061]
Test set 0.094 [0.0031] 4.1 [0.091] 0.08 [0.003] 1.9 [0.096]

E.3 Visualizations
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Figure 11: V-5000 example predictions. The velocity fields at the three peaks with the highest
amplitude are shown. The plots are scaled with respect to the maximum velocity in the prediction
and reference velocity field to make the differences in magnitude visible.
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Figure 12: G-5000 example predictions. The velocity fields at the three peaks with the highest
amplitude are shown. Empty axes indicates less than three peaks in the response. The plots are
scaled with respect to the maximum velocity in the prediction and reference velocity field to make
the differences in magnitude visible.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper introduces a dataset and method for predicting vibrations of plates.
This is communicated in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We included a limitations paragraph, detailing the limitation in scope of our
data as well as our method. Computational efficiency is also discussed and numerical
values are given in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include theoretical results, as it mainly deals with appli-
cational issues.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental reproducibility is guaranteed by providing code and data. Fur-
ther, we included several sections in the appendix, giving concrete architectural and train-
ing details and describing the simulation setup to obtain our dataset. Evaluating design
optimization results requires proprietary Finite-Element simulation software.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The link to code and data is included directly in the abstract. It is https:
//github.com/ecker-lab/Learning_Vibrating_Plates

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In addition to our code, Section C.5 in the Appendix details specific training
settings. The training and test datasets are provided in separate files.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Appendix E.2 mean and standard deviation results for four training runs
with different seeds and training and validation splits are reported, giving a notion of vari-
ability.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Information on compute resources for deep learning is provided in Section
C.5. Information on compute resources for the dataset generation is provided in Section
A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: Including deep learning in the engineering pipeline for actual applications is
at a very preliminary stage.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Justification: This work does not use existing assets, save for publically available codebases
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: The dataset included in our work is published in a curated dataset reposi-
tory hosted by the University of Göttingen and accompanied by structured metadata. It is
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Guidelines:

• The answer NA means that the paper does not release new assets.
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submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: Human subjects were not involved.
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bution of the paper involves human subjects, then as much detail as possible should
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• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Human subjects were not involved.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.
• Depending on the country in which research is conducted, IRB approval (or equiva-

lent) may be required for any human subjects research. If you obtained IRB approval,
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• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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