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ABSTRACT

Deep learners tend to perform well when trained under the closed set assumption
but struggle when deployed under open set conditions. This motivates the field of
Open Set Recognition in which we seek to give deep learners the ability to recog-
nize whether a data sample belongs to the known classes trained on or comes from
the surrounding infinite world. Existing open set recognition methods typically
rely upon a single function for the dual task of distinguishing between knowns
and unknowns as well as making fine known class distinction. This dual process
leaves performance on the table as the function is not specialized for either task.
In this work, we introduce Synergistic Classification and unknown Discrimination
(SCAD), where we instead learn specialized functions for both known/unknown
discrimination and fine class distinction amongst the world of knowns. Our exper-
iments and analysis demonstrate that SCAD handily outperforms modern methods
in open set recognition when compared using AUROC scores and correct classifi-
cation rate at various true positive rates.

1 INTRODUCTION

Recent studies have demonstrated the capacity of deep learners to achieve or even surpass human-
level performance, particularly in the image recognition domain (He et al., 2015). This performance
is typically achieved under the closed set assumption, however, in which the classes used for training
the model are fixed and the model should only make predictions on this predefined set of classes.
In practicality, the model may actually be deployed under open set conditions where the classes
used for training are only a subset of the infinite surrounding world and the model must be able to
distinguish between these known, trained on classes and the encompassing open world.

Conventionally, deep neural networks struggle under these open set conditions as they will confi-
dently map unknown classes to the known class decision space (Nguyen et al., 2015; Hendrycks
& Gimpel, 2017) as demonstrated in Figure 1a. This motivates the study of Open Set Recogni-
tion where we seek to discriminate between the world of knowns the model is trained on and the
surrounding infinite unknown space.

Open set recognition was first formalized in Scheirer et al. (2013) and has since inspired an entire
subfield of research. One of the first lines of work focused on an analysis of test time softmax scores
(Hendrycks & Gimpel, 2017) as classifiers trained under the closed set assumption tend to produce
low softmax probabilities for samples belonging to the unknown space. Bendale & Boult (2016)
take a similar route by extending the softmax layer to allow prediction of an unknown class. These
softmax based methods still suffer in open set recognition due to the inherent limitations of training
the networks under the closed set assumption (Chen et al., 2020).

Other methods take a generative approach (Neal et al., 2018; Oza & Patel, 2019) in an attempt to
generate samples belonging to the unknown world, or a distance-based approach (Mendes Júnior
et al., 2017; Shu et al., 2020) by thresholding a distance to the nearest known class. While these
methods perform better than traditionally used softmax score analysis, they still do not perform to
their maximum capability as they have no true representation for what the world of unknowns may
resemble.

Additionally, most current open set methods operate under the proposed setup of Scheirer et al.
(2013) in which a single function is given the task of distinguishing between knowns and unknowns
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(a) In conventional learning, classes from the known
space (training classes) and the infinite surrounding
image space map to the same decision space. Open set
recognition methods allow the decision space to map
back to the infinite surrounding image space by means
of an ”unknown” label.

(b) In SCAD, we hypothesize that the embedding
space should be distinctly separable between the
known classes and unknown classes. The knowns and
unknowns can be further separated by representing
each cluster in the embedding space by their respec-
tive prototype depicted in bold above.

Figure 1: (a) The conventional closed set assumption and the proposed open set reocognition solu-
tion. (b) Our proposed hypothesis of embedding space separation between knowns and unknowns.

and additionally making fine distinction amongst the world of knowns (i.e, classification). This leads
to a function that may perform relatively well for this joint task, but is not specialized for either task
leaving performance on the table.

To this end, we introduce our method Synergistic Classification and unknown Discrimination
(SCAD) to better address these shortcomings. In SCAD, we hypothesize that the known and un-
known classes should clearly separate in the embedding space as demonstrated in Figure 1b. This
separation can be accomplished by training an embedding network with a representative set of the
unknown world referred to as known unknowns as in (Scheirer et al., 2014). Each embedding space
can then be represented by its respective prototype for best separation. Furthermore, we train a clas-
sifier network under the closed set assumption for discrimination amongst the world of knowns. At
test time, we can determine if a sample belongs to the world of knowns or unknowns by setting a
threshold on the distance to the unknown prototype, and if a sample is deemed as known, we can
query the classifier to determine its class. This formulation of two specialized decision functions
allows each to be an expert in their respective task leading to higher performance when combined
together.

2 RELATED WORK

Open Set Recognition. The field of open set recognition can be traced back to decision theory
where we attempt to instill a classifier with a reject option when a classifier’s confidence is low for a
particular test sample (Bartlett & Wegkamp, 2008; Yuan & Wegkamp, 2010). Scheirer et al. (2013)
first formalized the problem of open set recognition and explored the use of a ”1-vs-all” SVM for
unknown detection. Since then, deep learning methods have become the de facto method for open
set recognition due to their great success. Bendale & Boult (2016) first introduce deep learning in the
context of open set recognition by extending the softmax layer to modeling the distance of activation
vectors based on extreme value theory. This approach was further extended by Ge et al. (2017)
where deep neural networks are trained with unknown samples coming from a generative model.
Other generative approaches include image reconstruction methods such as Oza & Patel (2019) and
Yoshihashi et al. (2019) where unknown samples can be identified by poor reconstruction. More
recently, prototype-based methods Chen et al. (2020); Shu et al. (2020); Chen et al. (2021) have
shown great success by representing knowns and unknowns with learned prototypes and proceed to
identify test samples based on distance to each prototype.

Out-of-Distribution Detection. Open set recognition is closely related to the field of out-of-
distribution detection (Hendrycks & Gimpel, 2017) where we wish to identify if test samples come
from a drastically different distribution. The key difference lies in open set methods’ ability to fur-
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ther distinguish fine labels amongst the world of knowns as mentioned in Boult et al. (2019). Liang
et al. (2017) and Hsu et al. (2020) build upon the work of Hendrycks & Gimpel (2017) by per-
forming post processing on the softmax confidence scores similar to the softmax method described
above for open set recognition. Haroush et al. (2022) use hypothesis testing to generate p-values for
each testing sample for determination of whether the sample comes from the in-distribution data.
Zaeemzadeh et al. (2021) and Khalid et al. (2022) propose that learned features lie on a restricted
low dimensional embedding space and the out-of-distribution data occupies the surrounding unre-
stricted space similar to the open set recognition methods Dhamija et al. (2018); Chen et al. (2020)
and Chen et al. (2021). Our work draws inspiration from this described overlap region between open
set recognition and out-of-distribution detection.

3 PRELIMINARIES

We first establish the formalities of the open set recognition problem before formulating our
proposed solution (Scheirer et al., 2013; Geng et al., 2020; Chen et al., 2020). Suppose we
are given a dataset DKK of n labeled data points we will refer to as known knowns, namely
DKK = {(x1, y1), ..., (xn, yn)} where yi ∈ {1, ..., C} is the label for xi for C unique class la-
bels in DKK . At test time, we will perform inference on the larger test data DT consisting of data
from DKK as well as data from an unknown set DUU , which we refer to as unknown unknowns,
whose labels ti /∈ {1, ..., C}. That is DT = DKK∪DUU . We denote the embedding space of known
category k as Sk with corresponding open space Ok = Rd − Sk where Rd is the full embedding
space consisting of known knowns and unknowns unknowns. We further define the positive open
space from other known knowns as Opos

k and the remaining infinite space consisting of unknown
unknowns as the negative open space Oneg

k , that is Ok = Opos
k ∪ Oneg

k .

We first introduce open set recognition for a single known class and then extend to the multi-class
scenario. Given the data DKK , let samples from known category k be positive training data occupy-
ing space Sk, samples from other known classes be negative training data occupying space Opos

k , and
all other samples from Rd be unknown data, DUU , occupying space Oneg

k . Let ψk : Rd → {0, 1} be
a binary measurable prediction function which maps the embedding x to label y with the label for
the class of interest k being 1. In this 1-class scenario, we wish to optimize the discriminant binary
function ψk by minimizing the expected error Rk as

argmin
ψk

{Rk = Ro(ψk,Oneg
k ) + αRϵ(ψk,Sk ∪ Opos

k )} (1)

where Ro is the open space risk function, Rϵ is the empirical classification risk on the known data,
and α is a regularization parameter.

We can extend to the multiclass recognition problem by incorporating multiple binary classification
tasks and summing the expected risk category by category as

C∑
k=1

Ro(ψk,Oneg
k ) + α

C∑
k=1

Rϵ(ψk,Sk ∪ Opos
k ) (2)

leading to the following formulation

argmin
f∈H

{Ro(f,DUU ) + αRϵ(f,DKK)} (3)

where f : Rd → N is a measurable multiclass recognition function. From this, we can see that solv-
ing the open set recognition problem is equivalent to minimizing the combination of the empirical
classification risk on the labeled known data DKK and open space risk on the unknown data DUU
simultaneously over the space of allowable recognition functions H.

4 METHODOLOGY

4.1 SYNERGISTIC CLASSIFICATION AND UNKNOWN DETECTION

In the traditional formulation of the open set recognition problem as described above, we assume a
singular embedding space Rd consists ofN discriminant spaces for all known categories with all re-
maining space being the open space consisting of infinite unknowns. In formulating the framework
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of SCAD, we instead postulate that the embedding space Rd is composed of two disjoint spaces,
namely a known space Sknown and an unknown space Ounknown. That is to say that all of DKK be-
longs to the space Sknown and all of DUU belongs to the infinite surrounding open space Ounknown.
Thus, the open space is formulated as Ounknown = Rd − Sknown
Under this new assumption of the embedding space, we can now pose a new formulation of the
open set recognition problem by introducing a cascading optimization procedure where we wish to
optimize both a binary prediction function h : Rd → {0, 1} which maps the embedding of data x to
the label of known or unknown, and the classification function f : xi → N which maps the known
data xi to their respective target label yi ∈ {1, ..., N} as

argmin
h

{Ro(h,Rd)} (4a)

argmin
f

{Rϵ(f,Sknown)} (4b)

where Ro is the open space risk and Rϵ is the empirical classification risk. Based on this formulation
we can see that the first optimization procedure leads to another binary prediction function h similar
to the traditional formulation while the second procedure leads to a multiclass prediction function
f .

All that remains now is to find a method that best creates the full embedding space Rd to give a
simple discriminant function h and obtain a high performing multiclass prediction function f .

4.2 EMBEDDING SEPARATION OF KNOWNS AND UNKNOWNS

We first focus on the discrimination between knowns and unknowns in the embedding space Rd. A
deep neural network gθ : x → Rd is used as an embedding network to obtain embedding vectors
for all data x ∈ DKK ∪ DUU . In order to enforce the separation between the spaces Sknown and
Ounknown, the triplet loss (Schroff et al., 2015) is a natural choice of loss function to use when
training gθ. One could consider using other contrastive learning methods such as contrastive loss
(Khosla et al., 2020) or tuplet loss (Sohn, 2016), however, the choice to use triplet loss was made as
contrastive loss only considers pairs and tuplet loss is a more general version of triplet loss.

With the triplet loss, we can treat all training data in DKK as the positive samples. For negative
samples, we now need to find a representation of DUU for modeling the space Ounknown. Of course
this open space and therefore this dataset is infinite, but we can use a representative set of DUU we
refer to as known unknowns, DKU ⊆ DUU , to train gθ for embedding space separation of knowns
and unknowns. The choice to use a representative training set DKU to represent the entire world of
unknowns is taken from out-of-distribution detection literature (Liang et al., 2017; Lee et al., 2018;
Haroush et al., 2022).

Now armed with the known training set DKK and representative unknown training set DKU , we
can formalize use of the triplet loss to train gθ as

Lgθ =

n∑
i=1

||gθ(xai )− gθ(x
KK
i )||22 − ||gθ(xai )− gθ(x

KU
i )||22 + β (5)

where xai is a known known anchor, xKKi is a known known positive sample, xKUi is a known
unknown negative sample, and β is a margin that is enforced between the positive and negative
pairs.

4.3 DISCRIMINATION BETWEEN KNOWNS AND UNKNOWNS

With a binary discriminant embedding space Rd now at hand, we must now develop the discriminant
function h to differentiate between knowns and unknowns. As such, we draw inspiration from
Mensink et al. (2013); Ristin et al. (2014); Bendale & Boult (2016) by measuring the distance to
the embedding prototypes for known/unknown discrimination. We represent each of the known and
unknown clusters in the embedding space by their respective prototype determined by taking the
means of the known knowns, µKK , and known unknowns, µKU , in the embedding space.
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(a) We train a classifier network fθ′ using only data
consisting of known knowns with cross-entropy loss
and an embedding network gθ using known knowns
data and a representative set of the unknown data
termed known unknowns with triplet loss.

(b) At test time we take a test sample and feed it to gθ
to get an embedding vector. We then feed that vector
to the discriminator h for known/unknown declaration.
If known, we additionally feed the sample to the clas-
sifier fθ′ to obtain a fine class label.

Figure 2: SCAD training procedure (a) and inference procedure (b).

We then measure the Euclidean distance to µKU and set a threshold for final determination of
whether a test sample is known or unknown. Thus, the binary function h takes the form

h =

{
known if d(gθ(xt), µKU ) > τ

unknown if d(gθ(xt), µKU ) ≤ τ
(6)

where xt is a test sample from DT , d(gθ(xt), µKU ) = ||gθ(xt)− µKU ||22 is the Euclidean distance
between the embedding of xt and the known unknown prototype µKU and τ is a threshold.

4.4 MANAGEMENT OF OPEN SPACE RISK

In theory, the open space Ounknown is infinite making for difficult management of the open space
risk Ro. We instead opt to indirectly bound this open space for easier management of Ro as a
direct bounding would be nearly impossible due to the infinite nature of Ounknown. By enforcing
the distance between samples from Sknown and Ounknown to be outside some predefined margin of
separation we are able to indirectly bound Ounknown. This bounding procedure gives rise to Eq. 5
which enforces the distance between samples from the known knowns and known unknowns to be
greater than or equal to the margin β.

The use of DKK and DKU in the training of gθ for embedding space separation gives rise to the
bounding spaces Bknown and Bunknown respectively. Ideally, these spaces would be completely
separable in Rd, but in practicality there will be some overlap in the margin region. By representing
each bounding space by its prototype as described above, we are able to achieve greater separation in
Rd. As a result, training with triplet loss for separation between Bknown and Bunknown and further
representing each bounding region with its appropriate prototype for final binary prediction can be
viewed as managing the open space risk Ro(h,Rd) in Eq. 4.

4.5 DISTINCTION AMONGST KNOWNS

The last remaining step is now developing a way to best identify which known class a sample belongs
to for reduction of the empirical classification risk Rϵ. In order to distinguish fine class labels
amongst the world of knowns, we train a separate deep neural network fθ′ using cross-entropy loss
in parallel with the embedding network gθ. As fθ′ is only concerned with classification of the
knowns, we only use the data from DKK to train the classifier. Figure 2a shows the full training
procedure for training the multiclass prediction function fθ′ and the embedding network gθ.

At the inference stage, we only query fθ′ for a fine class label if the binary discriminant function h
predicts that a test sample xt belongs to the known space Sknown. Otherwise, xt is assigned to the
world of unknowns. Figure 2b gives an overview for the entire inference stage.
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5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

Datasets. We test on four commonly used datasets in open set recognition literature. Each of
the CIFAR datasets (Krizhevsky et al., 2009) is taken from either CIFAR10 or a combination of
CIFAR10 and CIFAR100. For CIFAR10 experiments, all experiments are performed by treating the
6 non-vehicle classes as known classes and the remaining 4 vehicle classes as the unknown (i.e.,
open) classes. CIFAR+M experiments takes the 4 vehicle classes from CIFAR10 as known and
randomly samples from M disjoint classes (i.e., non-vehicle classes) from the CIFAR100 dataset.
Lastly, in Tiny-Imagenet experiments (Le & Yang, 2015) we randomly choose 20 classes as the
known classes and treat all other 180 classes as unknown.

Metrics. We use the standard area under the ROC curve (AUROC) as the main metric when evaluat-
ing the performance of all compared methods. The benefit of using AUROC is its threshold indepen-
dent measure of the binary open set discriminator and its ability to summarize each method’s ability
to distinguish between positive and negative instances across the various thresholds. A draw back of
AUROC as commonly reported in open set trials, is it only takes into consideration known/unknown
discrimination. A good open set recognizer should be able to additionally discriminate amongst the
knowns given that a sample is predicted to be know. For this reason we additionally report the cor-
rect classification rate (CCR) at 95% true positive rate (TPR) of known detection similar to Dhamija
et al. (2018).

Compared Methods. We compare our method, SCAD, to four open set recognition methods that
are most comparable in regards to methodology. Counter-factual images (Neal et al., 2018) uses
a GAN (Goodfellow et al., 2014) to generate counter examples to the known class which are then
treated as the unknown class and used to train a ”K + 1” classifier where the (K + 1)th class is
the unknown class. Class anchor clustering (CAC) (Miller et al., 2021) poses a new loss function
to entice each of the distinct known classes to cluster around their respective standard basis vector
so that the unknown classes will then occupy the remaining open space. A distance threshold is
then used for distinct known or unknown discrimination similar to SCAD. Adversarial Reciprocal
Point Learning + confusion samples (ARPL+CS) (Chen et al., 2021) learns reciprocal points for
each known class open space while simultaneously using a generator to generate confusing training
samples to encourage known class separation in the latent space and uses a distance measure to the
furthest reciprocal point to obtain a probability of belonging to a particular known class. Lastly,
Vaze et al. (2022) propose that the best open set recognition model is simply one that is a Good
Classifier for the closed-set scenario. With this good closed-set classifier at hand, an analysis of the
maximum logit score produced by a sample is used in the final determination of distinct known or
unknown.

Setup. For all methods, we train on the dataset splits described above. For neural network archi-
tectures, we use Resnet18 (He et al., 2016) in all tested methods for fairest comparisons except in
counterfactual images and CAC. We keep the architectures unchanged in both of these methods as
the former used a specific generator and discriminator for best GAN performance and the latter did
not allow simplistic modulation with a Resnet encoder. Besides described architecture changes, all
other hyperparemeters for compared methods remain unchanged. All methods are trained via SGD
with standard L2 regularization. For SCAD, the margin of separation β in Eq. 5 is set to 0.5 and a
combination of semihard and hard negative mining are used for finding triplets. Lastly, we use half
of unknown classes for all datasets as the training set DKU in SCAD.

5.2 RESULTS COMPARISON.

We first evaluate the performance of SCAD vs. all other compared methods from an AUROC stand-
point. Table 1 shows AUROC results averaged across 3 runs for all methods and Figure 3 shows the
respective ROC curves. We observe that SCAD outperforms all compared methods for all datasets
handily. This can be attributed to SCAD’s specialized function h for declaration of knowns and
unknowns whereas all other methods use a singular function for both known/unknown discrimina-
tion and known class distinction as is commonly done in the traditional formulation of the open set
recognition problem in Eq. 3.

Additionally, SCAD’s h discriminator is further assisted by clear known and unknown separation
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Table 1: Reported AUROC score means and standard deviations for each tested method for the
various tested datasets averaged over 3 runs.

Method CIFAR10 CIFAR+10 CIFAR+50 Tiny-Imagenet

Counter-Factual Images 0.6999 ± 0.006 0.8251 ± 0.004 0.8168 ± 0.001 0.5734 ± 0.007
Class Anchor Clustering 0.7156 ± 0.002 0.7425 ± 0.013 0.7721 ± 0.002 0.5452 ± 0.036

Good Classifier 0.7479 ± 0.008 0.7734 ± 0.014 0.7720 ± 0.002 0.6291 ± 0.016
ARPL+CS 0.7813 ± 0.002 0.8346 ± 0.005 0.8241 ± 0.004 0.6402 ± 0.023

SCAD (Ours) 0.9613 ± 0.01 0.9223 ± 0.023 0.9257 ± 0.014 0.6548 ± 0.0103

(a) CIFAR10 (b) CIFAR+10

(c) CIFAR+50 (d) Tiny-Imagenet

Figure 3: Corresponding ROC curves for each tested method for the various tested datasets.

Figure 4: CIFAR10 TSNE plot of the
embedding space.

in the embedding space Rd as initially hypothesized by
means of the triplet loss. We can confirm this by analyz-
ing the TSNE (Van der Maaten & Hinton, 2008) plot of
the embeddings produced by gθ as done in Figure 4 for
the CIFAR10 data split. Of course, we observe an over-
lap region where discrimination between knowns and un-
knowns can prove challenging, but by representing each
embedding cluster by its respective prototype, we are able
to achieve better separation leading to a more favorable
AUROC performance.

We do note the performance of SCAD vs. that of
ARPL+CS and Good Classifier for Tiny-Imagenet in Fig-
ure 3d. While SCAD maintains a favorable AUROC
score, there is a small region where these other two meth-
ods actually perform better. This would suggest in sce-
narios where small false positive rate (FPR) is desirable, one may want to consider alternatives to
SCAD. However, this small region of the ROC curve where SCAD is inferior is offset by the superior
performance of SCAD in CCR elaborated on below.
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Table 2: Reported CCR at 95% TPR score means and standard deviations for each tested method
for the various tested datasets averaged over 3 runs.

Method CIFAR10 CIFAR+10 CIFAR+50 Tiny-Imagenet

Class Anchor Clustering 0.688 ± 0.009 0.8869 ± 0.004 0.8805 ± 0.007 0.3773 ± 0.038
Good Classifier 0.5650 ± 0.001 0.5731 ± 0.012 0.5694 ± 0.003 0.5263 ± 0.002

ARPL+CS 0.6571 ± 0.002 0.8233 ± 0.002 0.5821 ± 0.004 0.1732 ± 0.004

SCAD (Ours) 0.6962 ± 0.004 0.8620 ± 0.002 0.8611 ± 0.001 0.6077 ± 0.028

(a) CIFAR10 (b) CIFAR+10

(c) CIFAR+50 (d) Tiny-Imagenet

Figure 5: Corresponding CCR vs. TPR curves for each tested method for the various tested datasets.

We now evaluate the performance of SCAD against all other compared methods from a CCR stand-
point. Table 2 reports the CCR at 95% TPR for all methods except Counter-Factual Images. We do
not report results for Counter-Factual images due to the inherent nature of using a ”K+1” classifier
(i.e., the ”K + 1” classifier is not dependent on known/unknown discrimination as course distinc-
tion is based on discriminator scores and fine distinction amongst the ”K + 1” classes is based on
separate classifier scores). We overall observe that SCAD is mostly competitive with all other tested
methods, but in particular performs exceptionally well on Tiny-Imagenet. The clear superiority of
SCAD on Tiny-Imagenet can be attributed to having a specialized classifier f ′θ capable of making
fine distinction amongst knowns for challenging datasets.

While SCAD remains competitive in all other datasets in regards to CCR at 95% TPR, we question
if this is true for all operating TPRs. To answer this, we plot the CCR against various TPRs in Figure
5. From this, we make multiple interesting observations. Firstly, we can observe that SCAD is, in
general, more stable than any of the compared methods. Again, this can be attributed to having a
specialized classifier capable of consistent performance regardless of the number of known decla-
rations. Secondly, we observe the CIFAR+10 and CIFAR+50 trials where SCAD is competitive,
but not dominant in regards to CCR at 95% TPR. Figures 5b and 5c actually suggest that at nearly
all other operating TPRs, SCAD is in fact superior. This would suggest that SCAD is the superior
method in scenarios where higher TPRs can be waived.
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We note the unintuitive performance of CCR being greater than 0 when TPR is 0. All methods except
Good Classifier are distance based methods to some anchor point (e.g., distance to standard basis
vector in CAC and distance to prototype in SCAD). Upon further inspection of these scenarios, few
test samples are being correctly declared as known while the overwhelming majority are declared
unknown. This can be attributed to a small amount of samples being infinitesimally close to their
respective anchor allowing for correct declaration as known and thus leading to a non-trivial CCR
at 0% TPR. This same principle applies to Good Classifier but in the context of logit scores.

5.3 PERFORMANCE ON KNOWN UNKNOWNS VS. UNKNOWN UNKNOWNS

We now turn our attention to analyzing the impact of using a representative set of the unknowns,
DKU , when training the embedding space Rd and how this might generalize to the entire world of
unknowns, DUU . To do so, we partition the testing data into two disjoint testing sets with resepct
to the unknown data: one testing set contains only known unknowns while the other contains only
unknown unknowns. We report the AUROC for each of these testing sets in Table 3 averaged over
3 runs.

Table 3: Reported AUROC score means and standard deviations for each disjoint unknown test set
for the various tested datasets averaged over 3 runs.

Unknown Dataset CIFAR10 CIFAR+10 CIFAR+50 Tiny-Imagenet

DKU 0.970 ± 0.001 0.925 ± 0.019 0.952 ± 0.006 0.640 ± 0.037
DUU 0.9347 ± 0.024 0.8712 ± 0.001 0.944 ± 0.005 0.6269 ± 0.033

We observe that the difference in performance between DKU and DUU is relatively small. Even the
isolated performance of DUU still outperforms all other compared methods in Table 1 suggesting
the the representative set DKU allows the embedding model gθ to generalize well to the world of
unknowns. Furthermore, we note the small disparity in AUROC scores for each of the unknown
datasets in the CIFAR+50 and Tiny-Imagenet trials compared to that of CIFAR10 and CIFAR+10.
Since we are using half of the entirety of unknown classes as the representative set DKU in SCAD,
this suggests that the larger we can make the representative training set, the better our ability to
generalize to the entire world of unknowns will be.

6 CONCLUSION

In this work, we introduce our method SCAD for open set recognition. SCAD benefits from having
two specialized functions for known and unknown discrimination as well as fine class distinction
amongst knowns. This allows each function to be an expert for their respective task allowing for
top tier performance compared to that of traditional open set recognition methods where a single
function is used for both known/unknown discrimination and fine class distinction. Additionally,
by using a representative set of the unknowns termed known unknowns, we are able to train an
embedding network for distinct separation between knowns and unknowns in the embedding space
allowing for easy discrimination. Our experiments show that we outperform modern open set recog-
nition methods in not only known/unknown discrimination, but also correct classification amongst
the knowns.

REFERENCES

Peter L Bartlett and Marten H Wegkamp. Classification with a reject option using a hinge loss.
Journal of Machine Learning Research, 9(8), 2008.

Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1563–1572, 2016.

Terrance E Boult, Steve Cruz, Akshay Raj Dhamija, Manuel Gunther, James Henrydoss, and Wal-
ter J Scheirer. Learning and the unknown: Surveying steps toward open world recognition. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 9801–9807, 2019.

9



Under review as a conference paper at ICLR 2024

Guangyao Chen, Limeng Qiao, Yemin Shi, Peixi Peng, Jia Li, Tiejun Huang, Shiliang Pu, and
Yonghong Tian. Learning open set network with discriminative reciprocal points. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part III 16, pp. 507–522. Springer, 2020.

Guangyao Chen, Peixi Peng, Xiangqian Wang, and Yonghong Tian. Adversarial reciprocal points
learning for open set recognition. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 44(11):8065–8081, 2021.

Akshay Raj Dhamija, Manuel Günther, and Terrance Boult. Reducing network agnostophobia.
Advances in Neural Information Processing Systems, 31, 2018.

ZongYuan Ge, Sergey Demyanov, Zetao Chen, and Rahil Garnavi. Generative openmax for multi-
class open set classification. arXiv preprint arXiv:1707.07418, 2017.

Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Recent advances in open set recognition:
A survey. IEEE transactions on pattern analysis and machine intelligence, 43(10):3614–3631,
2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Matan Haroush, Tzviel Frostig, Ruth Heller, and Daniel Soudry. A statistical framework for efficient
out of distribution detection in deep neural networks. In International Conference on Learning
Representations, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. Proceedings of International Conference on Learning Representa-
tions, 2017.

Yen-Chang Hsu, Yilin Shen, Hongxia Jin, and Zsolt Kira. Generalized odin: Detecting out-
of-distribution image without learning from out-of-distribution data. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10951–10960, 2020.

Umar Khalid, Ashkan Esmaeili, Nazmul Karim, and Nazanin Rahnavard. Rodd: A self-supervised
approach for robust out-of-distribution detection. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pp. 163–170. IEEE, 2022.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. Advances in neural
information processing systems, 33:18661–18673, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. Advances in neural information processing
systems, 31, 2018.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

10



Under review as a conference paper at ICLR 2024

Pedro R Mendes Júnior, Roberto M De Souza, Rafael de O Werneck, Bernardo V Stein, Daniel V
Pazinato, Waldir R de Almeida, Otávio AB Penatti, Ricardo da S Torres, and Anderson Rocha.
Nearest neighbors distance ratio open-set classifier. Machine Learning, 106(3):359–386, 2017.

Thomas Mensink, Jakob Verbeek, Florent Perronnin, and Gabriela Csurka. Distance-based image
classification: Generalizing to new classes at near-zero cost. IEEE transactions on pattern anal-
ysis and machine intelligence, 35(11):2624–2637, 2013.

Dimity Miller, Niko Sunderhauf, Michael Milford, and Feras Dayoub. Class anchor clustering: A
loss for distance-based open set recognition. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pp. 3570–3578, 2021.

Lawrence Neal, Matthew Olson, Xiaoli Fern, Weng-Keen Wong, and Fuxin Li. Open set learning
with counterfactual images. In Proceedings of the European Conference on Computer Vision
(ECCV), pp. 613–628, 2018.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confi-
dence predictions for unrecognizable images. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 427–436, 2015.

Poojan Oza and Vishal M Patel. C2ae: Class conditioned auto-encoder for open-set recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
2307–2316, 2019.

Marko Ristin, Matthieu Guillaumin, Juergen Gall, and Luc Van Gool. Incremental learning of ncm
forests for large-scale image classification. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3654–3661, 2014.

Walter J. Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and Terrance E. Boult. Toward
open set recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7):
1757–1772, 2013. doi: 10.1109/TPAMI.2012.256.

Walter J. Scheirer, Lalit P. Jain, and Terrance E. Boult. Probability models for open set recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(11):2317–2324, 2014. doi:
10.1109/TPAMI.2014.2321392.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 815–823, 2015.

Yu Shu, Yemin Shi, Yaowei Wang, Tiejun Huang, and Yonghong Tian. P-odn: Prototype-based
open deep network for open set recognition. Scientific reports, 10(1):7146, 2020.

Kihyuk Sohn. Improved deep metric learning with multi-class n-pair loss objective. Advances in
neural information processing systems, 29, 2016.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Sagar Vaze, Kai Han, Andrea Vedaldi, and Andrew Zisserman. Open-set recognition: A good
closed-set classifier is all you need. In International Conference on Learning Representations,
2022.

Ryota Yoshihashi, Wen Shao, Rei Kawakami, Shaodi You, Makoto Iida, and Takeshi Naemura.
Classification-reconstruction learning for open-set recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4016–4025, 2019.

Ming Yuan and Marten Wegkamp. Classification methods with reject option based on convex risk
minimization. Journal of Machine Learning Research, 11(1), 2010.

Alireza Zaeemzadeh, Niccolo Bisagno, Zeno Sambugaro, Nicola Conci, Nazanin Rahnavard, and
Mubarak Shah. Out-of-distribution detection using union of 1-dimensional subspaces. In Pro-
ceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition, pp. 9452–
9461, 2021.

11


	Introduction
	Related Work
	Preliminaries
	Methodology
	Synergistic Classification and Unknown Detection
	Embedding Separation of Knowns and Unknowns
	Discrimination Between Knowns and Unknowns
	Management of Open Space Risk
	Distinction Amongst Knowns

	Experiments and Results
	Experimental Setup
	Results Comparison.
	Performance on Known Unknowns vs. Unknown Unknowns

	Conclusion

