
Knowledge and Information Systems (2022) 64:2543–2564
https://doi.org/10.1007/s10115-022-01714-4

REGULAR PAPER

Graph relation embedding network for click-through rate
prediction

Yixuan Wu1 · Youpeng Hu2 · Xin Xiong3 · Xunkai Li2 · Ronghui Guo2 ·
Shuiguang Deng1

Received: 24 September 2021 / Revised: 19 June 2022 / Accepted: 26 June 2022 /
Published online: 4 August 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
Most deep click-through rate (CTR) prediction models utilize a mainstream framework,
which consists of the embedding layer and the feature interaction layer. Embeddings rich in
semantic information directly benefit the downstream frameworks to mine potential infor-
mation and achieve better performance. However, the embedding layer is rarely optimized
in the CTR field. Although mapped into a low-dimensional embedding space, discrete fea-
tures are still sparse. To solve this problem, we build graph structures to mine the similar
interest of users and the co-occurrence relationship of items from click behavior sequences,
and regard them as prior information for embedding optimization. For interpretable graph
structures, we further propose graph relation embedding networks (GREENs), which utilize
adapted order-wise graph convolution to alleviate the problems of data sparsity and over-
smoothing. Moreover, we also propose a graph contrastive regularization module, which
further normalizes graph embedding by maintaining certain graph structure information.
Extensive experiments have proved that by introducing our embedding optimization meth-
ods, significant performance improvement is achieved.

Keywords Click-through rate · Graph embedding · Recommender system · Graph neural
network

1 Introduction

Whether in online advertising, search engines, or recommender systems [37], human–
computer interaction [21], movies [17], robot service [24], and intelligent control [23],
click-through rate (CTR) prediction tasks are of great research and commercial value, whose
result can rank the items returned to a user to maximize the number of clicks.
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Fig. 1 The deep CTR prediction architecture with the graph embedding layers

Deep learningmethods have stronger expressive ability andmoreflexible structures,which
can better handle classification tasks. Instead of traditional methods, a series of representative
deep CTRmodels have been developed by introducing neural networks, such asWide&Deep
[3] and PNN [27], etc. In recent years, researchers have made various meaningful attempts.
DeepFM [7] is an end-to-end model with stronger generalization ability and memory ability,
which extracts both low- and high-order feature interactions by introducing factorization
machine (FM). DIN [44] and DIEN [43], which achieve considerable performance improve-
ments, utilize users’ historical click behaviors to mine the distribution and transfer of users’
interest, respectively, as the prior information to provide an estimate of current interest. It
can be seen that the inherent prior information of features can effectively improve prediction
accuracy.

The above deep CTR models are mainly composed of an input layer, an embedding layer,
a feature interaction layer, and an output layer, which can be regarded as a joint optimization
of representation learning and task-oriented learning. The embedding layer is responsible
for densifying the discrete features as their corresponding representations and then passing
them to the downstream modules for feature interaction. In practice, densification requires a
large number of data to support, while a user’s click behaviors or a item’s clicked behaviors
are too sparse compared to numerous items and users, which brings challenges to learn
representations with rich semantic information.

Graph embedding has achieved an excellent effect in the field of embedding representation
[4, 16, 20, 41]. By constructing interpretable graph structures, graph learning methods can
be applied to the CTR prediction for a more reasonable feature space, as shown in Fig. 1.
Based on click behavior sequences, graph intention network (GIN) [18] constructs the co-
occurrence graph of items and aggregates neighbor nodes by attention mechanism to solve
the problems of over-sparse andweak generalization. However, GIN leaves a lot to be desired,
such as underutilized relationship information and slow convergence speed.

In addition, the CTR model is prone to overfitting due to a huge amount of parameters
for feature extraction and interaction, resulting in its poor generalization ability. To solve it,
there is a mainstream solution to introduce regularization terms to enhance generalization
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ability. Inspired by graph contrastive learning methods such as deep graph infomax (DGI)
[32], we can maintain certain graph structure information in a self-supervised way to prevent
the overfitting phenomenon. With fewer parameters and no additional labels required, it is
considered as an efficient regularization strategy of the graph embedding layer.

Based on previous works and the pain points of CTR prediction, we propose our novel
embedding optimization method, namely graph relation embedding network (GREEN), on
the item co-occurrence graph and the user co-interest graph constructed through click behav-
ior sequences, as shown in Fig. 3. An adapted order-wise graph convolution is designed in
GREEN to aggregate information and provide rich prior information for a more reasonable
feature space. Moreover, we propose a graph contrastive regularization (GCR) method to
suppress the overfitting phenomenon. It is emphasized that our method is applicable to any
deep CTR models for embedding optimization.

In summary, the main contributions of this paper are as follows:

• We mine potential relations based on click behaviors and propose a reasonable and
interpretable construction strategy of the item co-occurrence graph and the user co-
interest graph.

• We propose the graph relation embedding network. Through the relations among multi-
hop neighbors, it can effectively alleviate the data sparsity and learn better representation.

• As a novel regularization method, graph contrastive regularization is proposed to relieve
the problem of overfitting.

• Our method is implemented on the public datasets and achieved a considerable perfor-
mance improvement compared to the baseline.

2 Preliminaries

The datasets for CTR prediction consist of n samples, each of which is represented as (x, y),
where y ∈ {0, 1} represents whether the user clicks the target item in the specific context,
x = [x f ield1 , x f ield2 , ..., x f ieldm ], and x f ieldi is to describe the feature of user, item, context,
or others.

Since discrete features are often encoded to sparse one-hot vectors, they are densified
through an embedding layer in deep CTR models:

(e1, e2, ..., em) = f (x f ield1 , x f ield2 , ..., x f ieldm ), (1)

where f (·) represents the embedding function which follows the table lookup mechanism,
and e represents the corresponding embeddings. Further, theCTRprediction result is obtained
through a feature interaction layer and an output layer:

ŷ = σ(g(e1, e2, ..., em)), (2)

where g(·) represents the feature interaction function, such as multilayer perceptrons, ŷ is
the prediction result of the current data x, and σ(t) = 1

1+e−t . In the training process, the
binary cross entropy function is utilized to calculate prediction loss:

LBCE = −1

n

n∑

j

[
y j log ŷ j + (1 − y j ) log (1 − ŷ j )

]
. (3)

Finally, the end-to-end joint optimization process is carried out by the back propagation.
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3 Proposed approach

3.1 Graph construction

Compared with the specific framework of Graph Neural Networks (GNNs), a reasonable and
interpretable graph structure determines the upper limit ofmodel accuracy to a greater degree.
We construct graph structures for users and items, respectively, to enrich their embeddings for
both attribute information and the corresponding topology. Embeddings richer in semantic
information directly benefit the downstream frameworks for feature interaction to achieve
better performance. Graph construction is based on the following accepted assumptions:

• Users who click on the same item have a degree of interest similarity. The degree of
interest similarity of users is related to the number of the same items they clicked in
general.

• Items which are continuously clicked by the same user have a certain co-occurrence
relation. The degree of co-occurrence relation of items depends on the times of being
clicked by the same users continuously.

Given the item set I = {i1, i2, ..., iN }, the user set U = {u1, u2, ..., uM }, and the click
behaviorsb j = [i j1 , i j2 , ..., i jk ] of each user u j , where N andM represent the total number of
items and users, respectively, and the length of the click behaviors k is different for different
users, we construct a user co-interest graph Gu = (U, Eu) and an item co-occurrence graph
Gi = (I, Ei ), where Eu and Ei are the weighted edge sets of the user co-interest graph and
the item co-occurrence graph, respectively.

The construction of the item co-occurrence graph is shown in Fig. 2a. Referring to Li et
al. [18], we iterate through each user’s click behavior sequences in chronological order to
connect items that have been continuously clicked. If the two items are connected for the first
time, their weight is set to one, otherwise, their weight is increased by one. A bigger weight
between any two items illustrates that it is more possible for them to be continuously clicked
again.

On the other side, the user co-interest graph is shown in Fig. 2b, where s j represents the
user set clicked the same item i j .We connect all users who have clicked the same non-popular
item, whose clicked number is smaller than maximum length Lu , for popular items lead to
considerable meaningless relationships of users constructed and increase the complexity of
the graph. If they have been connected, the weight is increased by one. In this way, a bigger
weight between users means more similar click interests.

Based on this, we obtain the weighted adjacency matrices Ai ∈ R
N×N and Au ∈ R

M×M

to describe the connection relationship and strength among items or users. It is emphasized
that not only can the user embedding and the item embedding be optimized through our
model, but also others with latent graph structures are well applied.

3.2 Graph relation embedding network

In the item co-occurrence graph and the user co-interest graph, connected nodes have similar
clicked intentions or click interests. For example, when the user u j clicks on the item im , it
is extremely possible that u j will click on another item that has a co-occurrence relationship
with im , and im will be clicked by another user that has a co-interest relationshipwithu j . Itwill
be reflected in the relative position in the feature space, where the embedding representations
of co-occurrence items or co-interest users are more closer through the neighbor aggregation
of nodes on the graph.
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(a)

(b)

Fig. 2 An illustration of graph construction, where bi represents the sorted click behavior sequences of user i ,
s j represents the user set clicked item j , and j will be regarded as a popular item if the length of s j is longer
than Lu

Graph relation embedding network architecture is shown in Fig. 3. Taking item feature
as an example, we define the initial embedding matrix X ∈ R

N×d , the weighted adjacency
matrix A ∈ R

N×N of the graph structure, and the edges’ degree matrix D ∈ R
N×N , where

d is the dimension of embeddings and Di i = ∑
j Ai, j . The graph convolutional network

(GCN) was proposed in Kipf and Welling [15]:

H = GX2 = D̃−1/2ÃD̃−1/2X2, (4)

where Ã = A + IN , D̃ = D + IN , IN is an identity matrix whose dimension is the number
of nodes N , and 2 is a learnable right multiplication matrix, which is used to map the feature
space ofX to a new feature space. In Eq. (4), the graph convolution kernelG = D̃−1/2ÃD̃−1/2

is used for feature aggregation of adjacent nodes.
For the CTR task, the embedding representations of users and items have exclusive feature

space. Therefore, it is unnecessary to perform redundant and repeated feature spacemapping,
or introduce considerable optional learnable parameters resulting in the inference slowdown,
which is also verified in Wu et al. [34]. From the formula analysis, in our work k order graph
convolution is defined as:

X(k) = GX(k−1), (5)
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Fig. 3 Specific implementation of the graph relation embedding network

where X(0) = X which is the initial embedding matrix, and X(k) is the feature aggregation
of X through k times.

When we use multi-order graph convolution to perform the aggregation representation
of embedding, we will inevitably encounter over-smoothing problems, i.e., the phenomenon
that all node embeddings tend to be consistent, making the CTR prediction inaccurate. In
order to solve the problem, we introduce adapted order-wise weights. Inspired by the weight
of attention defined in Li et al. [18], the weight calculation corresponding to the k order graph
convolution is:

α(k) = 1

N

N∑

j=1

σ
[
(X(k)‖X‖(X(k) − X)‖(X(k) � X))W

]
, (6)

where ·‖· represents matrix concatenation, σ(·) is the sigmoid function, � denotes the
element-wise product, and W ∈ R

4d×1 is the trainable parameter. Then, the final output
of the GREEN is:

Xout =
k∑

j=0

α( j)GX( j). (7)

Equation (7) brings additional time complexity O(kdM) to base model by sparse com-
puting, where M represents the number of edges, and M >> k, d . Reasonable trimming for
edges can effectively accelerate the inference.
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Fig. 4 An illustration of the graph contrastive regularization

Applying the architecture of GREEN, each embedding is learned by more sufficient data
through the graph structure, which greatly alleviates the problem of data sparsity. Therefore,
by truncating outdated historical behaviors, the graph is adapted to the real-time relationship
changed rapidly, and the model can even obtain higher accuracy with less data.

3.3 Graph contrastive regularization

Inspired by the deep graph infomax (DGI) [32] model based on the contrastive paradigm,
a regularization method based on graph contrastive learning is proposed to further suppress
overfitting, namely graph contrastive regularization (GCR), as shown in Fig. 4.

The core idea of contrastive learning is to find three components from the original data:
positive sample, negative sample, and anchor. We randomly shuffle the initial embedding
matrix X of nodes to generate fake features X̃, and set xi and x̃i as the real and fake feature
of i-th node. We input X̃ into the same GREEN model to obtain the output representation of
the embedding layer:

X̃out =
k∑

j=0

α( j)GX̃( j), (8)

where X̃out represents the fake feature matrix. In addition, we use the mean function as the
readout step to extract the graph embedding representation as the anchor:

R(X) = σ

(
1

N

N∑

i=1

xi

)
, (9)

where σ(·) is the sigmoid function. Furthermore, a bilinear scoring function is utilized as the
discriminator:

D(xi , r) = σ
(
xi TWr

)
, (10)

where r represents the anchor introduced in Eq. (9), σ(·) is the sigmoid function, and W ∈
R
d×d is a learnable scoring matrix to generate the sample’s score for (xi , r). Finally, we use

noise contrastive estimation(NCE) loss [25]:
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LGCR = − 1

2M

⎛

⎝
∑

vi∈S
E(X,A)

[
log D(xout i , R(Xout ))

]

+
∑

v j∈S
E(X̃,A)

[
1 − log D(̃xout j , R(Xout ))

]
⎞

⎠ , (11)

where S ⊂ V is a randomly selected subset of the node set V . To balance the consumption
of additional resources and the degree of regularization, the size |S| is adjusted depending
on datasets characteristics. By Eq. (11), we effectively maximizes the mutual information
between xout i and R(Xout ), i.e., the JS divergence between the joint distribution and the
product of marginal distribution.

LGCR can be directly added to the base model loss Eq. (3) for integrated end-to-end
learning:

L = LBCE + wLGCR, (12)

where w is the weight of the GCR module as regularization term, which balances the graph
contrastive learning and CTR prediction. By sharing parameters of GREEN, the two tasks
complement information and promote learning together, improving the generalization ability
of the model. Specifically, in the training process, all trainable parameters in the model are
optimized by minimizing L. In the test process, the prediction result is obtained through the
main task without GCR.

Overall, the presence of ancillary lossLGCR has several advantages. First, the introduction
of GCR will maintain certain graph structure information to a certain extent. Secondly, the
multi-task learning paradigm can relieve the overfitting phenomenon because it can improve
the model’s robustness to unseen data [26]. Finally, as an ancillary task, it does not impose
any computational burden on the model application.

4 Experiments

4.1 Experimental settings

4.1.1 Datasets

The statistical information of the datasets is shown in Table 1, and the description is as
follows:

Amazon1 [10]: is used as the benchmark dataset with pretty rich click behaviors for CTR
prediction, which contains product reviews and metadata. We use two subsets: Electronics
and Movies and TV, to verify the effect of our embedding optimization method. We group
the samples by users, and each user’s click behaviors can be described as (b1, b2, ..., bn).
Our goal is to predict each user’s n-th click behavior based on the past n − 1 behaviors.

MovieLens2 [9]: is a dataset used to describe users’ ratings ranging from 0 to 5, which
is treated as a binary classification problem here, where the click data with the rating no
less than 4 are regarded as positive samples, and others are regarded as negative. We group
the samples by each user to predict his n-th click behavior following the Amazon dataset.

1 http://jmcauley.ucsd.edu/data/amazon/.
2 https://grouplens.org/datasets/movielens/20m/.
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Table 1 Statistics of the datasets

Dataset Users Items Categories Samples

Amazon (Electro) 192,403 63,001 801 1,689,188

Amazon (Movies and TV) 123,960 50,052 29 1,697,533

MovieLens 138,493 27,278 21 20,000,263

In order to prevent the over-rich historical information, we take the latest 10 historical click
behaviors as users’ latent interests in our experiments to enhance the prediction difficulty.

4.1.2 Baselines

We introduce GREEN and GCR successively on five basic models to verify our methods.
Wide & Deep [3]: combined by a wide component and a deep component is proposed to

capture both low-order and high-order feature interactions, which takes both memory ability
and generalization ability of the model into account.

PNN [27]: introduces a product layer after the embedding layer to better extract high-order
feature interactions.

DeepCrossing [30]: usesmultiple residual units tomine the relationship between features,
instead of explicitly interacting features.

DeepFM [7]: combines the advantages of factorization machines (FMs) and deep learn-
ing networks (DNNs) to shorten the convergence time while ensuring accuracy, where FM
extracts low-order feature interactions through multiple inner product units and a linear unit,
and DNN extracts high-order interactions among features through MLP layers.

DIN [18]: introduces the attention mechanism to extract the users’ latent interests from
their own historical behaviors. We combine the feature of historical behaviors with user
profile feature, item feature, context feature, etc, and then input them to MLP for end-to-end
learning.

4.1.3 Matrics

In the field of CTR prediction, AUC is used to evaluate the effectiveness of models [6]. Since
the goal of CTR prediction is to sort the candidate items of each user, there are differences
among different users, such as some users have a higher click rate or often give higher scores
to items. Therefore, we use GAUC proposed by Zhu et al. [46] as our AUC matric:

AUC =
∑n

i=1 #impressioni × AUCi∑n
i=1 #impressioni

. (13)

Furthermore, RelaImpr [36] is used to measure relative improvement:

Rela Impr =
(
AUC(objective model) − 0.5

AUC(base model) − 0.5
− 1

)
× 100%. (14)

4.1.4 Implementation

To verify the validity, the hyperparameters for all models are consistent, followed by Zhou et
al. [44]. The models are learned by the Adam optimizer, the learning rate is set to 0.001, and
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Fig. 5 The relation curve between the weight w of the GCR module mentioned in Eq. (12) and AUC on
Amazon (Electro)

its decay rate is 0.9 per 336,000 samples. For all datasets, the training batch size is set to 32,
the testing batch size is set to 512, the embedding dimension d is set to 128, the maximum
length Lu is set to 40, the order k of GREEN is set to 4, and the sigmoid function is used as
the activation function.

For the GCRmodule, the contrastive size |S| is relevant to the scale of the dataset, and the
weight w is relevant to the model. For Amazon (Electro), |S| and w are set to 3000 and 0.01,
respectively. For MovieLens, |S| is set to 1000, andw is set to 2 for all except 0.001 for Deep
Crossing. And for Amazon (Movies and TV), |S| is set to 25,000, and w is set to 0.01, 0.001,
0.1, 0.001, 0.1 for Wide & Deep, PNN, Deep Crossing, DeepFM, and DIN, respectively. In
order to study the performance impact of the two parameters in the GCRmodule, we conduct
experiments by introducing GREEN and GCR in DeepFM on the Amazon (Electro). As can
be seen from Fig. 5, by fixing |S| to 3000, AUC varies with w, and the model performs best
when w is set to 0.01. Similarly, by fixing w to 0.01, the model performs best when |S| is set
to 3000 as shown in Fig. 6.

4.2 Ablation study

Based on Wide & Deep, PNN, Deep Crossing, DeepFM, and DIN, we extract item features
and user features of click samples in turn to verify the validity of the item co-occurrence
graph and the user co-interest graph applied GREEN architecture and GCR successively, and
the experimental results are shown in Tables 2, 3, and 4. On all base models and datasets,
GREEN can provide consistent and significant performance improvement, even rela Impr
is up to 27.97%. Compared to MovieLens with richer samples, GREEN has more impressive
improvements on Amazon with sparse samples, which proves that our model can relieve the
problem of data sparsity.Moreover, the introduction of GCR can achieve further performance
improvements.
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Fig. 6 The relation curve between the contrastive size |S| of the GCRmodule mentioned in Eq. (11) and AUC
on Amazon (Electro), where the total number of nodes is 192403

4.3 Comparative study

To further verify the effectiveness of our methods, we compare with the existing CTRmodels
for feature optimization. DUSIN [14] and DDIL [40] are both sequential recommendation
models for CTR prediction, which model behavior sequences to optimize the feature of user
interest. DUSIN extracts and segments users’ dynamic interests by considering the user’s
own historical sequence and potential interests of similar users. DDIL divides user interests
into local sessions and global sessions, which are used to capture users’ short-term dynamic
interests and long-term interests, respectively. In addition, DDIL learns the heterogeneous
behaviors within the sessions with consistency learning. The two models both concatenate
user feature, item feature, and the optimized feature of user interest into a multiple layer
perception (MLP).

The experimental results in Table 5 show that, in most cases, the model performs best
by introducing GREEN rather than DUSIN or DDIL. Moreover, it can bring further perfor-
mance improvement when utilizing our proposed embedding optimization method on the
item feature and user feature of DUSIN and DDIL.

4.4 Historical behavior truncation study

We restrict the number of click behaviors of each user as l for sparse data on Amazon
(Electro), i.e., retain the latest l historical behaviors (bn−l , bn−l+1, ..., bn−1) in the behavior
sequences (b1, b2, ..., bn−1). The truncation parameters and experimental results are shown
in Table 6, where m represents the maximum number of behaviors, and r% represents the
proportion of samples retained in the dataset. It is obvious that GREEN achieves a greater
performance improvement formore sparse click behaviors. Through the experimental results,
we observe that for lower m, the accuracy of the base model decreases due to data sparsity,
but the GREEN-based model shows a remarkable upward trend. It shows that the GREEN
framework is less sensitive to data sparsity, because relatively complete graph structures can
be constructed with limited historical behaviors, and even the graphs constructed by more
real-time data can achieve more excellent performance.
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Table 2 Prediction results on the Amazon (Electro) dataset

Item Item&User

AUC RelaImpr (%) AUC RelaImpr (%)

Wide & Deep 86.09 0.00 86.09 0.00

+GREEN 89.30 8.89 93.19 19.67

+GCR 89.30 8.89 93.24 19.81

PNN 86.54 0.00 85.83 0.00

+GREEN 90.18 9.96 95.85 27.97

+GCR 90.30 10.29 95.88 28.05

Deep Crossing 86.72 0.00 85.85 0.00

+GREEN 89.33 7.11 93.43 21.14

+GCR 89.43 7.38 93.47 21.26

DeepFM 86.93 0.00 86.38 0.00

+GREEN 89.87 7.96 94.94 23.52

+GCR 89.95 8.17 95.36 24.68

DIN 87.15 0.00 87.27 0.00

+GREEN 91.37 11.35 94.16 18.48

+GCR 91.45 11.57 94.34 18.96

Table 3 Prediction results on the MovieLens dataset

Item Item&User

AUC RelaImpr (%) AUC RelaImpr (%)

Wide & Deep 71.73 0.00 71.00 0.00

+GREEN 72.83 5.06 71.59 2.81

+GCR 72.83 5.06 72.21 5.76

PNN 73.50 0.00 73.92 0.00

+GREEN 74.45 4.04 74.54 2.59

+GCR 74.55 4.47 75.40 6.19

Deep Crossing 72.41 0.00 72.00 0.00

+GREEN 73.59 5.27 72.77 3.50

+GCR 73.68 5.67 72.79 3.59

DeepFM 73.66 0.00 75.74 0.00

+GREEN 74.73 4.52 76.06 1.24

+GCR 75.22 6.59 76.07 1.28

DIN 74.53 0.00 73.97 0.00

+GREEN 75.76 5.01 75.85 7.84

+GCR 75.83 5.30 76.04 8.64
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Table 4 Prediction results on the Amazon (Movies and TV) dataset

Item Item&User

AUC RelaImpr (%) AUC RelaImpr (%)

Wide & Deep 88.44 0.00 87.43 0.00

+GREEN 92.58 10.77 94.51 18.92

+GCR 92.60 10.82 94.69 19.40

PNN 89.33 0.00 89.40 0.00

+GREEN 93.19 9.81 96.14 17.11

+GCR 93.25 9.97 96.14 17.11

Deep Crossing 89.50 0.00 88.46 0.00

+GREEN 92.54 7.70 94.73 16.30

+GCR 92.55 7.72 94.83 16.56

DeepFM 90.13 0.00 89.27 0.00

+GREEN 93.04 7.25 95.24 15.20

+GCR 93.06 7.30 95.32 15.40

DIN 89.47 0.00 88.60 0.00

+GREEN 93.37 9.88 94.84 16.17

+GCR 93.45 10.08 95.03 16.66

Table 5 Prediction results of comparative study on three CTR datasets

Amazon (Electro) Item Item&User

AUC RelaImpr (%) AUC RelaImpr (%)

MLP 85.78 0.00 84.92 0.00

+DUSIN 86.98 3.35 87.14 6.36

+DDIL 87.12 3.75 85.91 2.84

+GREEN 89.28 9.78 93.02 23.20

+DUSIN +GREEN 91.53 16.07 94.32 26.92

+DDIL +GREEN 88.33 7.13 93.08 23.37

MovieLens

MLP 71.65 0.00 70.69 0.00

+DUSIN 71.01 −2.96 70.30 −1.88

+DDIL 75.08 15.84 74.93 20.49

+GREEN 72.90 5.77 71.67 4.74

+DUSIN +GREEN 72.95 6.00 72.12 6.91

+DDIL +GREEN 75.95 19.86 76.29 27.07

Amazon (Movies and TV)

MLP 88.53 0.00 87.15 0.00

+DUSIN 89.22 1.79 87.80 1.75

+DDIL 89.82 3.35 86.13 −2.75

+GREEN 92.49 10.28 94.56 19.95

+DUSIN +GREEN 93.88 13.89 95.35 22.07

+DDIL +GREEN 94.79 16.25 95.07 21.32
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Table 6 Historical behavior truncation experimental results on Amazon (Electro)

m(r%) 20(90.10%) 12(80.49%) 9(71.90%) 7(61.92%)
6(54.47%) 5(44.25%) 4(29.50%) 3(14.75%)

Wide & Deep 85.73 85.56 85.29 85.14

85.06 84.73 83.78 82.05

+GREEN 93.13(+7.4) 93.40(+7.84) 93.34(+8.05) 93.11(+7.97)

93.16(+8.10) 93.51(+8.78) 92.46(+8.68) 91.66(+9.61)

PNN 86.37 86.24 86.06 85.81

85.69 85.31 84.50 83.24

+GREEN 95.86(+9.49) 96.19(+9.95) 96.37(+10.31) 96.51(+10.70)

96.85(+11.16) 97.16(+11.85) 97.72(+13.22) 98.13(+14.89)

Deep Crossing 86.23 86.15 85.96 85.82

85.41 85.26 84.43 82.94

+GREEN 93.00(+6.77) 92.99(+6.84) 92.87(+6.91) 93.15(+7.33)

93.37(+7.96) 94.07(+8.81) 93.86(+9.43) 94.52(+11.58)

DeepFM 86.65 86.57 86.60 86.13

86.04 85.56 84.83 83.69

+GREEN 95.22(+8.57) 95.69(+9.12) 95.89(+9.29) 96.24(+10.11)

96.49(+10.45) 96.96(+11.40) 97.19(+12.36) 97.63(+13.94)

DIN 87.00 86.65 86.67 86.25

85.98 85.52 84.58 83.15

+GREEN 94.08(+7.08) 94.29(+7.64) 94.24(+7.53) 94.44(+7.53)

94.66(+8.46) 94.61(+9.09) 94.98(+10.40) 94.36(+11.21)

4.5 Graph convolution order study

We conduct experiments on Amazon (Electro) about different convolution orders k on the
graph convolution architecture and the GREEN architecture, respectively, and the experi-
mental results are shown in Fig. 7. Graph convolution method utilizes the final order as node
representations after multiple aggregation, where GREEN introduces adaptive order-wise
weights among different orders. On the item co-occurrence graph, when the order k is more
than 3, the accuracy of the graph convolution method decreases due to over-smoothing, while
the accuracy of GREEN has been continuously improved with the increasing order. On the
two graphs, the accuracy of the graph convolution method has been maintained at a low
level with the increase of k, where GREEN achieves considerable performance by learning
excellent adaptive order-wise weights among multiple orders.

4.6 Overfitting analysis

Figure 8 illustrates the trend of training loss and test loss on Amazon (Electro). Compared
with base models, GREEN leads to a rapid drop in loss value, which is significantly lower
than the original. It can be seen from Fig. 8, when the number of training steps reaches
160,000 to 180,000, the training loss of almost all models decreased, while their test loss
increased, which shows that there is an overfitting phenomenon. By introducing GREEN
and GCR, the phenomenon is alleviated effectively, and the degree of separation between
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Fig. 7 The relation curve between order k and AUC on Amazon (Electro), where GC represents the graph
convolution method without adapted order-wise weights

train and test loss curves is reduced, which proves that it can alleviate the phenomenon of
overfitting. Moreover, GCR further reduces the minimum loss to obtain better accuracy base
on GREEN.

4.7 Application analysis

The inference time for the test set and the trainable parameter quantity of ourmodels are shown
in table 7. The inference time is measured in a single NVIDIA GTX 2080Ti GPU. Neither
GREEN nor GCR will significantly increase the number of learnable parameters. GREEN
sacrifices a certain amount of time to bring significant performance improvement, which
promotes the accuracy of CTR prediction to a new level. Moreover, due to the independence
of GCR, it does not affect the inference time during the test process.

5 Related work

5.1 Deep CTR

Manymethods for feature interaction appeared in the field of CTR prediction, such as logistic
regression (LR) [29], factorization machine (FM) [28], or field-aware factorization machines
(FFM) [13]. Benefiting from the advantages of deep learning, some combined models based
on deep neural networks have greatly improved the accuracy of CTR prediction. Product-
based neural network (PNN) [27] utilizes product layers for feature intersection. Wide &
Deep architecture [3] takes both memory ability and generalization ability of the model
into account. DeepFM [7] uses a factorization machine to enhance the capability of feature
interaction. Deep interest network (DIN) [44] introduces the attention mechanism to mine
users’ interest, and deep interest evolution network (DIEN) [43] further excavates the transfer
of users’ interest to assist prediction. Our optimization method for the embedding layer is
universal and compatible with all the above models.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 8 The curve of loss on Amazon (Electro)
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Table 7 The inference time for
the test set and the trainable
parameter quantity of our models
for Amazon (Electro)

Model Times(s) Trainable Params

Wide & Deep 5.960 28.815M

+GREEN(k = 1) 23.980 28.827M

+GREEN(k = 2) 37.305 28.827M

+GREEN(k = 3) 52.966 28.828M

+GREEN(k = 4) 60.050 28.829M

+GCR 61.246 28.849M

PNN 5.809 28.826M

+GREEN(k = 1) 21.747 28.826M

+GREEN(k = 2) 32.490 28.827M

+GREEN(k = 3) 48.207 28.828M

+GREEN(k = 4) 60.318 28.829M

+GCR 61.170 28.849M

Deep Crossing 7.913 28.923M

+GREEN(k = 1) 20.659 29.088M

+GREEN(k = 2) 34.208 29.089M

+GREEN(k = 3) 47.789 29.090M

+GREEN(k = 4) 60.914 29.091M

+GCR 61.845 29.111M

DeepFM 7.892 28.815M

+GREEN(k = 1) 23.671 28.826M

+GREEN(k = 2) 33.735 28.827M

+GREEN(k = 3) 47.778 28.828M

+GREEN(k = 4) 59.766 28.828M

+GCR 59.055 28.849M

DIN 9.755 28.869M

+GREEN(k = 1) 22.956 28.881M

+GREEN(k = 2) 37.114 28.882M

+GREEN(k = 3) 47.106 28.882M

+GREEN(k = 4) 59.447 28.883M

+GCR 60.337 28.904M

5.2 Graph neural network

Graph neural networks (GNNs) received unprecedented attention in recent years because
of its efficient performance [35], such as graph convolutional networks (GCNs) [15], graph
attention networks (GATs) [31], and GraphSAGE [8]. They are based on the methods of
neighbor aggregation to integrate the node information to optimize downstream tasks [45].
Graph-based tasks have been expanded to include representation learning[16] [4], clustering
[1, 19], and link prediction [2], etc. We design the GNN framework to optimize the learning
ability of the embedding layer and introduce various skills to minimize the inference time
and solve the over-smoothing problem.

On the other side, graph contrastive learning prospers in the field of graph embedding.
Deep graph infomax (DGI) [32] introduces the work of deep infomax (DIM) [12] into the
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graph field. DGI constructs negative samples through feature shuffle and learns better node
embeddings by maximizing mutual information between local representations and global
graph representations. Inspired by this, we propose a graph contrastive regularization method
for the deep CTR model to maintain a certain graph structure and suppress the overfitting
problem.

5.3 Graph on recommendation

Recommender systems [22, 37] use certain algorithms to solve the problem of information
overload, and filter out different candidate sets for different users quickly and individually,
which are mostly used in search engines, movies [17, 38], e-commerce [42], and other fields.
Graph learning has a wide range of meaningful applications [39] [5], and researchers have
tried to introduce them into the recommendation field. Taking collaborative filtering as an
example, its core information, the sparse user-item matrix, is a ready-made graph structure.
Therefore, the inherent information can be mined in the form of graphs, such as NGCF [33]
and the faster and lighter Light-GCN [11].

In the field of CTR, graph intention network (GIN) [18] utilizes historical click behaviors
to construct the co-occurrence graph of items, and uses the GAT to aggregate neighbor nodes
to solve the problems of sparseness and weak generalization. However, GIN leaves a lot to be
desired, such as underutilized relationship information, considerable parameters, and slow
convergence speed. Our work is mainly to carry on a series of research and optimization to
solve the weakness of the graph method in the field of CTR prediction.

6 Conclusion

In this paper, we offer the guidance of graph construction with interpretability, introducing
graph learning methods into the field of CTR prediction. To take advantage of the prior rela-
tionshipmined in the graphs, we propose a novel embedding framework named graph relation
embedding network (GREEN), which utilizes multi-order graph convolution and adaptive
order-wise weighting to aggregate information for a more reasonable feature space. More-
over, a graph contrastive regularization (GCR)module is designed to further normalize graph
embedding bymaintaining certain graph information.We conduct extensive experiments and
the results verify that our methods can achieve considerable performance improvement to
promote the accuracy of CTR prediction to a new level. In future work, the methods of effi-
cient GNN and lightweight graph construction will bring more application prospects to the
application of graphs in the CTR field.
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