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Figure 1: ReDi: Our generative image modeling framework bridges the gap between generative
modeling and representation learning by leveraging a diffusion model that jointly captures low-level
image details (via VAE latents) and high-level semantic features (via DINOv2). Trained to generate
coherent image—feature pairs from pure noise, this unified latent-semantic dual-space diffusion
approach significantly boosts both generative quality and training convergence speed.

Abstract

Latent diffusion models (LDMs) dominate high-quality image generation, yet inte-
grating representation learning with generative modeling remains a challenge. We
introduce a novel generative image modeling framework that seamlessly bridges
this gap by leveraging a diffusion model to jointly model low-level image latents
(from a variational autoencoder) and high-level semantic features (from a pretrained
self-supervised encoder like DINO). Our latent-semantic diffusion approach learns
to generate coherent image—feature pairs from pure noise, significantly enhancing
both generative quality and training efficiency, all while requiring only minimal
modifications to standard Diffusion Transformer architectures. By eliminating
the need for complex distillation objectives, our unified design simplifies training
and unlocks a powerful new inference strategy: Representation Guidance, which
leverages learned semantics to steer and refine image generation. Evaluated in
both conditional and unconditional settings, our method delivers substantial im-
provements in image quality and training convergence speed, establishing a new
direction for representation-aware generative modeling. Project page and code:
https://representationdiffusion.github.io/
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Figure 2: Accelerated Training. Generative performance curves on Imagenet 256 x 256 without
Classifier-Free Guidance. Left: Our ReDi accelerates convergence of DiT-XL/2 and SiT-XL/2 by
approximately x23. Right: ReDi converges x6 faster than REPA. When applied on top of REPA
delivers a x 11 speed-up.

1 Introduction

Latent diffusion models (LDMs) (Rombach et al., |2022)) have emerged as a leading approach for
high-quality image synthesis, achieving state-of-the-art results (Rombach et al., 2022; Peebles & Xiel
2023; | Ma et al. 2024). These models operate in two stages: first, a variational autoencoder (VAE)
compresses images into a compact latent representation (Rombach et al., 2022); second, a diffusion
model learns the distribution of these latents, capturing their underlying structure.

Leveraging their intermediate features, pretrained LDMs have shown promise for various scene
understanding tasks, including classification (Mukhopadhyay et al.,|2023)), pose estimation (Gong
et al2023), and segmentation (Li et al.,[2023b; |Liu et al., [ 2023; Delatolas et al., |2025). However,
their discriminative capabilities typically underperform specialized (self-supervised) representation
learning approaches like masking-based (He et al.| 2022), contrastive (Chen et al.l [2020), self-
distillation (Caron et al., [2021])), or vision-language contrastive (Radford et al.,[2021a) methods. This
limitation stems from the inherent tension in LDM training - the need to maintain precise low-level
reconstruction while simultaneously developing semantically meaningful representations.

This observation raises a fundamental question: How can we leverage representation learning to
enhance generative modeling? Recent work by [Yu et al.|(2025) (REPA) demonstrates that improving
the semantic quality of diffusion features through distillation of pretrained self-supervised repre-
sentations leads to better generation quality and faster convergence. Their results establish a clear
connection between representation learning and generative performance.

Motivated by these insights, we investigate whether a more effective approach to leveraging represen-
tation learning can further enhance image generation performance. In this work, we contend that the
answer is yes: rather than aligning diffusion features with external representations via distillation, we
propose to jointly model both images (specifically their VAE latents) and their high-level semantic
features extracted from a pretrained vision encoder (e.g., DINOv2 (Oquab et al., [2024)) within the
same diffusion process. Formally, as shown in we define the forward diffusion process
as q(x¢,z¢|x4—1,%¢—1) fort = 1,...,T, where xo = x and zg = z are the clean VAE latents and
semantic features, respectively. The reverse process pg(X;—1, Z¢—1|X¢, ;) learns to gradually denoise
both modalities from Gaussian noise.

This joint modeling approach forces the diffusion model to explicitly learn the joint distribution of
both precise low-level (VAE) and high-level semantic (DINOv2) features. We implement this approach,
called ReDi (Representation Diffusion), within the DiT (Peebles & Xie}, |2023)) and SiT (Ma et al.,
2024) frameworks with minimal modifications to their transformer architecture: we apply standard
diffusion noise to both representations, combine them into a single set of tokens, and train the standard
diffusion transformer architecture to denoise both components simultaneously.



Compared to REPA, our joint modeling approach offers three key advantages. First, the diffusion
process explicitly models both low-level and semantic features, enabling direct integration of these
complementary representations. Second, our method simplifies training by eliminating the need
for additional distillation objectives. Finally, during inference, our unified approach enables Repre-
sentation Guidance - where the model uses its learned semantic understanding to iteratively refine
generated images, improving quality in both conditional and unconditional generation.

Our contributions can be summarized as follows:

1. We propose ReDi, a novel and effective method that jointly models image-compressed latents
and semantically rich representations within the diffusion process, significantly improving image
synthesis performance.

2. We provide a concrete implementation of our approach for both diffusion (DiT) and flow-
matching (SiT) frameworks, leveraging DINOv2 (Oquab et al., 2024} as the source of high-
quality semantic representations.

3. We also introduce Representation Guidance, which leverages the model’s semantic predictions
during inference to refine outputs, further enhancing image generation quality.

4. We demonstrate that our approach boosts performance in both conditional and unconditional
generation, while significantly accelerating convergence (see[Figure 2).

2 Related work

Representation Learning. Various approaches aim to learn meaningful representations for down-
stream tasks, with self-supervised learning emerging as one of the most promising directions. Early
approaches employed pretext tasks such as predicting image patch permutations (Noroozi & Favaro
2016) or rotation angles (Gidaris et al.|[2018]), while more recent methods utilize contrastive learn-
ing (Chen et al., [2020; Van den Oord et al., 2018} | Misra & Maaten, |2020), clustering-based objec-
tives (Caron et al.| [2020} [2018},|2019), and self-distillation techniques (Grill et al., |2020; |Chen & Hel
20215 |Caron et al., 2021} |Gidaris et al.l [2021). The introduction of transformers enabled Masked
Image Modeling (MIM), introduced by BEiT (Bao et al.,|2022) and evolved through SimMIM (Xie
et al., [2022), MAE |He et al.| (2022), AttMask (Kakogeorgiou et al.|[2022), iBOT (Zhou et al., 2022),
and MOCA (Gidaris et al.l 2024)), with DINOv2 (Oquab et al., [2024) achieving state-of-the-art
performance through scaled models and datasets. Separately, contrastive vision-language pretraining,
initiated by CLIP (Radford et al., [2021a), established powerful joint image-text representations.
Subsequent models like SigLIP Zhai et al.| (2023) and SigL.IPv2 (Tschannen et al., 2025) refined
this framework through enhanced training techniques, excelling in zero-shot settings and image
retrieval (Kordopatis-Zilos et al., [2025)). Building on these advances, we leverage pretrained DINOv?2
visual representations to enhance image generative modeling performance.

Diffusion Models and Representation Learning Due to the success of diffusion models, many
recent works leverage representations learned from pre-trained diffusion models for downstream
tasks (Fuest et al., 2024). In particular, intermediate U-Net (Ronneberger et al., [2015)) features have
been shown to capture rich semantic information, enabling tasks such as semantic segmentation
(Baranchuk et al.,2022; [Zhao et al., 2023)), semantic correspondence (Luo et al.,[2023} [Zhang et al.,
2023; Hedlin et al.l 2023)), depth estimation (Zhao et al., [2023), and image editing (Tumanyan
et al., 2023). Furthermore, diffusion models have been used for knowledge transfer by distilling
learned representations through teacher-student frameworks (Li et al.}|2023a) or refining them via
reinforcement learning (Yang & Wang} 2023). Other works have shown that diffusion models learn
strong discriminative features that can be leveraged for classification (Mukhopadhyay et al., [2023];
Xiang et al.,|2023)). In a complementary direction, REPA (Yu et al.|[2025) recently demonstrated that
aligning the internal representations of DiT (Peebles & Xiel 2023) with a powerful pre-trained visual
encoder during training significantly improves generative performance. Motivated by this observation,
we propose to integrate images and semantic representations into a joint learning process.

Multi-modal Generative Modeling Unifying the generation across diverse modalities has recently
attracted widespread interest. Notably, CoDi (Tang et al.| 2023) leverages a diffusion model that
enables generation across text, image, video, and audio in an aligned latent space. A joint represen-
tation for different modalities has been shown to have great scalability properties (Mizrahi et al.|
2023). For video generation, WVD (Zhang et al., 2024) incorporates explicit 3D supervision by
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Figure 3: Given an input image, the VAE latent and the principal components of DINOv2 are extracted.
Both modalities are noised and fused into a joint foken sequence, given as input to DiT or SiT.

learning the joint distribution of RGB and XYZ frames. To capture richer spatial semantics, GEM
(Hassan et al.|, [2024) generates paired images and depth maps. MT-Diffusion
learns to incorporate various multi-modal data types with a multitask loss including CLIP
image representations. However, they do not quantitatively assess how this impacts the
generative performance. VideoJam (Chefer et all,[2025)) models a joint image-motion representation
that boosts temporal coherence and introduces a theoretically motivated Classifier-Free Guidance
(CFG)|Ho & Salimans|(2022) variant to condition on both motion and text. Inspired by this approach
and building on the standard CFG framework, we propose Representation Guidance, incorporating
the visual representations as an additional guidance signal during inference.

3 Method

3.1 Preliminaries

Denoising Diffusion Probabilistic Models (DDPM) Diffusion models (Ho et al.,[2020) generate
data by gradually denoising a noisy input. The forward process corrupts an input x, (e.g., an image
or its VAE latent) over T steps by adding Gaussian noise:

Xt = vV uXg + V1 — Qe (n

where x; is the noisy input at step ¢, &; are constants that define the noise schedule, and € ~ N (0, 1)
is the Gaussian noise term. Following (2020), the reverse process learns to denoise x; by
predicting the added noise € using a network €y (-) with parameters 6. The training objective is:

Esimple = ]Exo,e,t||€9(xt7 t) - 6”2' (2)

Although we also include the variational lower bound loss from [Nichol & Dhariwall (2021)) to learn
the variance of the reverse process, we omit it hereafter for brevity.

Unless otherwise specified, we focus on class-conditional image generation throughout this work.
For notational simplicity, we omit explicit class conditioning variables from all mathematical formu-
lations.

Diffusion Transformers (DiT) The DiT |Peebles & Xie| (2023)) implements €y using a Vision
Transformer [Dosovitskiy et al| (2021). Given the “patchified” input x; € R¥*% (L tokens of
dimension C,,), the model first computes embeddings:

hy = xWemp, Wepy € REXC, A3

The transformer processes h, € RE*C4 to produce o, € REL*%. The final noise prediction is
computed as:
€0(Xist) = 0 Waee, Waee € RO, “)

3.2 Joint Image-Representation Generation

Our goal is to train a single model to jointly generate images and their semantic-aware visual represen-
tations by modeling their shared probability distribution. This approach captures the interdependent



structures and features of both modalities. While we frame our approach using DDPM, it is also
applicable to models trained with flow-matching objectivesMa et al.| (2024) (see[Appendix A).

A high-level overview of our method is depicted in [Figure 3] Let I denote a clean image, xg =
E:(I) € RE*C jts VAE tokens (produced by the VAE encoder &,(-)), and zg = £.(I) € REXC:
its patch-wise visual representation tokens (extracted by a pretrained encoder £, (+), e.g., DINOv2
(Oquab et al| (2024))T] To match the spatial resolution of xo, we assume &, (-) includes a bilinear
resizing operation.

During training, given x and z,, we define a joint forward diffusion processes:

Xt = Vayxg + V1 — i€z, z = Vzg + V1 — age, (5)

where &, controls the noise schedule and €, ~ N(0,I), €, ~ N (0,I) are Gaussian noise terms of
dimensions RX* % and R1* ¢ respectively.

The diffusion model €4(x¢, z¢, t) takes as input x; and z;, along with timestep ¢, and jointly predicts
the noise for both inputs. Specifically, it produces two separate predictions: € (x;, z;,t) for the
image latent noise €, and €j(x¢, z;,t) for the visual representation noise €. The training objective
combines both predictions:

; (6)

Liont = B [l€50x1,20,1) = €l + X.ll€ (x0,211) — €|

[ I

5

where )\, balances the denoising loss for zy. By default, we use A\, = 1 in our experiments.

VAE Latent

3.3 Fusion of Image and Representation Tokens

We explore two approaches to combine and

jointly process x; and z; in the diffusion trans- ... .

former architecture: (1) merging tokens along Merge(;)Tokeus ... Separatib%okens .
the embedding dimension, and (2) maintaining < > I

separate tokens for each modality (see Fig. ). .

Both methods require only minimal modifi- [l F-.Ld
' B

cations to the DiT architecture, specifically
defining modality-specific embedding matrices
Wwe € RE*Ce and W7, € RE*C along DINOv2 PCA
with prediction heads W2, € R%>C and

. Figure 4: An illustration of our proposed token
W3, € RY*CY for x, and z; respectively. & Prop

fusion approaches: (a) The tokens of the VAE la-
tents and the DINOv2 are merged channel-wise, (b)
The tokens are concatenated along the sequence
dimension.

Merged Tokens The tokens are embedded
separately and summed channel-wise:

h, = x, W%, +2,W2> e R*Ca  (7)
The transformer processes h; to produce oy, with predictions:
6906 = Otw(gicem 65 = Otwgec' 3
This approach enables early fusion while maintaining computational efficiency, as the token count

remains unchanged.

Separate Tokens Tokens are embedded separately and concatenated along the sequence dimension:

he = [xe Wiy, 20 W] € R2XC, ©)
where [-, -] denotes sequence-wise concatenation. The transformer outputs separate representations

o; = [0 , of], with predictions:
T €T T
€g =0 Wg.., €5 =0;Wj.. (10)

This method provides greater expressive power by preserving modality-specific information through-
out processing, at the cost of increased computation due to increased token count.

Unless stated otherwise, we use the merged tokens approach for computational efficiency.

"For notational clarity, we incorporate the patchification step (typically with 2 x 2 patches in DiT architectures)
into the encoder definitions £, and &. .



3.4 Dimensionality-Reduced Visual Representation

In practice, the channel dimension of visual representations (C,) significantly exceeds that of image
latents (C,), i.e., C, > (.. We empirically observe that this imbalance degrades performance, as the
model disproportionately allocates capacity to visual representations at the expense of image latents.

To address this, we apply Principal Component Analysis (PCA) to reduce the dimensionality of zg
from C', to C., (where C, < C.,), preserving essential information while simplifying the prediction
task. The PCA projection matrix is precomputed using visual representations sampled from the
training set. All visual representations in Sections [3.2]and [3.3]refer to these PCA-reduced versions.

3.5 Representation Guidance

To ensure the generated images remain strongly influenced by the visual representations during
inference, we introduce Representation Guidance. This technique during inference modifies the
posterior distribution to: Py (x¢,Z:) X pe(x¢)p(2¢|x¢)*, where w,. controls how strongly samples are
pushed toward higher likelihoods of the conditional distribution pg(z:|x;). Taking the log derivative
yields the guided score function:

th IOg ﬁ@ (Xta Zt) :th IOg Do (Xt) + wy (th IOg Do (Zt |Xt)) (1 1)
=V, log pe(xt) + wy (thlog Po(Xt,2t) — Vx,log pe (Xt))- (12)

By recalling the equivalence of denoisers and scores (Vincent, 2011), we implement this
representation-guided prediction ég(x;, Z¢, t) at each denoising step as follows:

€9(xt,2¢,1) = €9(X¢,t) + wy (€p(xt,Zt, 1) — €9(x4, 1)) . (13)

Following Ho & Salimans| (2022), we train both eq(x;, 2, t) and eg(x¢,t) jointly. Specifically,
during training, with probability p,.p, We zero out z; (setting €g(x;,t) = €9(x¢, 0,¢)) and disable
the visual representation denoising loss by setting A, = 0 in[Equation 6|

4 Experiments

4.1 Setup

Implementation details. We follow the standard training setup of DiT (Peebles & Xiel [2023)
and SiT (Ma et al., [2024)), training on ImageNet at 256 x 256 resolution with a batch size of 256.
Following ADM’s preprocessing pipeline (Dhariwal & Nichol, [2021), we center-crop and resize all
images to 256 x 256. Our experiments utilize transformer architectures B/2, L/2, and XL/2 all using
a 2 x 2 patch size. For unconditional generation, we simply set the number of classes to 1, maintaining
the original architecture. Images are encoded into VAE latent representations using SD-VAE-FT-EMA
(Rombach et al.| [2022) that produces outputs with x8 spatial downsampling factor and 4 output
channels. For 256 x 256 images, this results in 32 x 32 x 4 latent features. Through patchification
with 2 x 2 patches, the VAE encoder &, (-) yields L = 256 tokens, each with C,, = 16 channels
(4 channels x 2x2 patch size). For semantic representation extraction, we employ DINOv2-B with
registers (Darcet et al., [2023} |Oquab et al.,|2024). The 768-dimensional embeddings are reduced
to 8 dimensions via PCA (trained on 76,800 randomly sampled ImageNet images). After bilinear
interpolation to match the VAE’s 32 x 32 x 4 spatial resolution and 2 x 2 patchification, the encoder
E.(+) produces L = 256 tokens with C', = 32 channels each (8 channels x 2x2 patch size).

Sampling. For DiT models, we adopt DDPM sampling, while for SiT models, we employ the
SDE Euler—Maruyama sampler. The number of sampling steps is fixed at 250 across all experiments.
When using Classifier-Free Guidance (CFG) (Ho & Salimans|, [2022)), we apply it only to the VAE
channels, with a guidance scale of w = 2.4 (see [Figure 6). For Representation Guidance, we set
Ddrop = 0.2, the guidance scale to w, = 1.5 for B models and w, = 1.1 for XL models.

Evaluation. To benchmark generative performance, we report Frechet Inception Distance (FID)
(Heusel et al., 2017), sFID (Nash et al., 2021}, Inception Score (IS) (Salimans et al., 2016), Precision
(Pre.) and Recall (Rec.) (Kynkddnniemi et al.,|2019) using 50k samples and the ADM’s TensorFlow
evaluation suite (Dhariwal & Nichol, [2021}).



Table 1: FID Comparisons. FID scores Table 2: Comparison with State-of-the-art. Quantita-
on ImageNet 256 x 256 without Classifier- tive evaluation on ImageNet 256 x 256 with Classifier-
Free Guidance for DiT and SiT models of =~ Free Guidance. Both REPA and ReDi (ours) employ
various sizes with REPA and ReDi (ours). SiT-XL/2 as the base model.

MODEL #PARAMS ITER. FIDJ MODEL EpocHs FID| SFID| ISt PRrE.f REC.T
DiT-L/2 458M 400K 23.2 Autoregressive Models
w/ REPA 458M 400K 15.6 VAR 350 1.80 - 3654 0.83 0.57
w/ ReDi (ours) 458M 400K 10.5 MagViTv2 1080  1.78 - 3194 0.83 0.57
SiT-1/2 458M 400K 185 MAR 800 1.55 - 303.7 0.81 0.62
w/ REPA 458M 400K 9.7 Latent Diffusion Models
w/ ReDi (ours) 458M 400K 9.4 LDM 200 3.60 - 2477 0.87 048
DiT-XL/2 675M 400K 195 UTV1T—H/2 240 229 568 2639 082 0.57
/ REPA 675M 400K 12.3 DiT-XL/2 1400 227 4.60 2782 0.83 0.57
W : MaskDiT 1600 228 5.67 2766 080 0.61
DiT-XL/2 675M ™ 9.6 SD-DiT 480 3.23 - - - -
w/ REPA 675M 850K 9.6 SiT-XL/2 1400 2.06 4.50 2703 0.82 0.59
w/ReDi (ours) 675M 400K 8.7 FasterDiT 400 2.03 4.63 2640 0.81 0.60
SiT-XL/2 675M 400K 172 MDT 1300 1.79 457 283.0 0.81 0.61
w/ REPA 675M 400K 7.9 Leveraging Visual Representations
w/ ReDi (ours) 675M 400K 7.5 REPA 800 1.80 450 284.0 0.81 0.61
. ReDi (ours) 350 1.72 468 2787 0.77 0.63
SiT-XL/2 675M ™ 83 .
w/ REPA 675M M 59 ReDi (ours) 800 1.61 4.66 2951 0.78 0.64

w/ ReDi (ours) 675M 700K 5.6
w/ ReDi (ours) 675M M 3.3

4.2 Enhancing the performance of generative models

DiT & SiT. To demonstrate the effectiveness of our approach, we present performance gains for
various-sized DiT and SiT models in[Table 1] Our method, ReD1i, consistently delivers substantial
improvements across models of different scales. Notably, DiT-XL/2 with ReDi achieves an FID of
8.7 after just 400k iterations, outperforming the baseline DiT-XL/2 trained for TM steps. Similarly,
SiT-XL/2 with ReDi reaches an FID of 7.5 at 400k iterations, surpassing the converged SiT-XL at
7M steps. Additionally,[Table 2]reports results for SiT-XL/2 with Classifier-Free Guidance (CFG)
Ho & Salimans|(2022). Once again, ReD1i yields significant improvements, achieving an FID of 1.72
in just 350 epochs, outperforming the baseline trained to convergence over 1400 epochs.

Comparison with REPA. We further compare our results with REPA, which also leverages DINOv2
features to enhance generative performance. Our approach, ReDi, consistently achieves superior
generative performance with both DiT and SiT as the base models. As shown in[Table I| DiT-L/2
with ReD1i achives an FID of 10.5 significantly outperforming DiT-L/2 with REPA. Notably, it even
surpasses REPA trained for the same number of iterations with the larger DiT-XL/2, which achieves a
higher FID of 12.3. Further for SiT-XL models, ReDi attains an FID of 5.6 in just 700k iterations,
while REPA requires 4M iterations to reach an FID of 5.9. These results highlight the effectiveness of
our method in leveraging visual representations to significantly boost generative performance.

ReDi is complementary to REPA. Interestingly, we observe that the joint modeling objective of
our ReDi and the alignment objective of REPA are complementary. As presented in[Table 5|REPA +
ReDi matches the FID of the fully-converged REPA after only 350K iterations, and at 1M iterations
reaches an FID of 3.6. For the implementation details, see Appendix [B.3]

Accelerating convergence. The aforementioned results indicate that ReDi significantly accelerates
the convergence of latent diffusion models. As illustrated in[Figure 2] ReDi speeds up the convergence
of DiT-XL/2 and SiT-XL/2 by approximately x 23, respectively. Even when compared with REPA,
ReDi demonstrated a x6 faster convergence. When ReD1 is applied on top of REPA, the convergence
is x 11 faster.

Comparison with state-of-the-art generative models. Ultimately, we provide a quantitative
comparison between ReDi and other recent generative models using Classifier-Free Guidance (CFG)



Table 3: Unconditional Generation FID Per- Table 4: FID with Representation Guidance.
formance. Results on ImageNet 256 x 256. For ~ FID scores on ImageNet 256 x 256. RG denotes
comparison, we include conditional generation = Representation Guidance. Models at 400K steps.
results (shown in gray). Models at 400K steps. MODEL #PARAMS FID

RG denotes using Representation Guidance.

DiT-B/2 w/ ReDi 130M 25.7
MODEL #PARAMS FIDJ DiT-B/2 w/ ReDi+ RG 130M 20.2
DiT-B/2 (conditional) 130M 43.5 DiT-XL/2 w/ ReDi 675M 8.7
DiT-B/2 130M 69.3 DiT-XL/2 w/ ReDi+ RG 675M 5.9
w/ ReDi (ours) 130M 51.7
w/ ReDi+RG (ours) 130M 47.3 Table 5: ReDi with REPA. FID scores on Ima-
DiT-XL/2 (conditional)  675M  10.5  SeNet236x256 w/o CFG.
DiT-XL/2 675M  44.6 MODEL #ITER. FID|
w/ ReD1i+RG (ours) 675M  22.6 SiT-XL/2 w/ REPA+ReDi 350K 5.9

SiT-XL/2 w/ REPA+ReDi 1M 3.5

N "
-

Image

DINQOv2

Figure 5: Selected samples from our SiT-XL/2 w/ ReDi model trained on ImageNet 256 x 256.
Images and visual representations are jointly generated by our model. We use Classifier-Free
Guidance with w = 4.0.

(Ho & Salimans|, [2022)) in [Table 2} Our method already outperforms both the vanilla SiT-XL and
SiT-XL with REPA with only 350 epochs. At 800 epochs ReD1i reaches an FID of 1.64. We provide
qualitative results of both generated images and visual representations in [Figure 5|

Improving Unconditional Generation. To establish the effectiveness of our method in improving
generative models, we further present experiments for unconditional generation using DiT. As
shown in[Table 3] our ReDi significantly improves generative performance for various model sizes.
Specifically, with our ReDi FID drops from 69.3 to 51.7 for B and from 44.6 to 25.1 for XL models.

4.3 Impact of Representation Guidance on generative performance.

Class Conditional Generation. In[Table 4 we present the impact of Representation Guidance (RG)
on generative performance. We observe that for both B and XL models, Representation Guidance
unlocks further performance enhancements by guiding the generated image to closely follow the
semantic features of DINOv2. Particularly for DiT-XL w/ ReDi the FID drops from 8.7 to 5.9. We
also present qualitative results in [Figure 8]

Unconditional Generation. Representation Guidance is especially useful in unconditional gener-
ation scenarios, where the absence of class or text conditioning prevents the use of Classifier-Free
Guidance to enhance performance. As demonstrated in[Table 3] Representation Guidance enhances
the performance of ReDi with both B and XL models, further closing the performance gap between
unconditional and conditional generation. Notably, ReDi with Representation Guidance achieves an
FID of 22.6, approaching the performance of the class-conditioned DiT-XL/2 (FID of 19.5).
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CFG to both VAE and DINOv2 representations

(VAE & DINOv2 CFG).

Table 6: Performance of Modality Combination Strategies. FID scores on ImageNet 256 x 256
without CFG for DiT-B/2 with ReDi using Separate Tokens (SP) and Merged Tokens (MR). See

for details on throughput measurements.

MODEL #TOKENS THROUGHPUT 1T FIDJ
DiT-B/2 256 4.52 43.5
w/ ReDi (MR) 256 4.51 25.7
w/ ReDi (SP) 512 2.26 24.7

4.4 Analysis

Dimensionality reduction ablation. We begin the analysis of our method by ablating the impact
of dimensionality reduction on the visual representations, as shown in Initially, we observe
that jointly learning as little as one principal component yields significant improvements in generative
performance. Increasing the component count continues to improve performance, up to r = 8,
beyond which further components begin to degrade the quality of generation. This suggests an
optimal intermediate subspace where compressed visual features retain sufficient expressivity to
guide generation without dominating model capacity.

Merged Tokens vs. Separate Tokens. In[Table 6 we evaluate the effectiveness of the two explored
integration strategies, Merged Tokens (MR) and Separate Tokens (SP), for joint learning of image
VAE latents and visual representations, using DiT-B/2 as our base model. While both approaches
achieve comparable performance gains, SP demonstrates slightly better results. This advantage
comes at a significant computational cost: SP doubles the transformer’s input sequence length by
introducing 256 additional DINOv2 tokens, resulting in approximately 2x greater compute demands
during both training and inference (Kaplan et al.,|2020). The MR strategy, by contrast, maintains the
original sequence length while delivering similar performance improvements, thereby preserving
computational efficiency as measured by throughput.

VAE-only Classifier-Free Guidance. As ReDi jointly models both VAE latents and visual repre-
sentations, we investigate two Classifier-Free Guidance (CFG) strategies: applying CFG exclusively
to VAE latents (VAE-only CFG) versus applying it to both modalities simultaneously (VAE & DINOv2
CFG). Our experiments in demonstrate that VAE-only CFG achieves superior results, yielding
an FID of 2.39 compared to 2.86 for the VAE & DINOv2 CFG approach. Notably, VAE-only CFG
also shows greater robustness to variations in the CFG weight parameter.



5 Conclusion

In this work, we explore the relationship between semantic representation learning and generative
performance in latent diffusion models. Building on recent insights, we introduced ReD1i, a novel
framework that integrates high-level semantic features with low-level latent representations within
the diffusion process. Unlike prior approaches that rely on auxiliary objectives, ReDi jointly models
the two distributions. We demonstrate that this simple approach is more effective at leveraging the
semantic features and leads to drastic improvements in generative performance. We further proposed
Representation Guidance, a novel guidance method that leverages the jointly learned semantic features
to enhance image quality. Across both conditional and unconditional settings, ReDi consistently
improves generation quality and accelerates convergence, highlighting the benefits of our approach.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We experimentally demonstrate the effectiveness of joint image-representation
generation in speeding up and improving conditional generative modeling in [Table T|and
and unconditional generation in The effect of Representation Guidance on
generative performance is also validated in[Table 4] and[Table 3]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss limitations of our work [Appendix E
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We present all the implementation details for our experiments in

Table 7] and [Table §|

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:
Justification: Upon acceptance, we will release our code publicly.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: To the best of our knowledge, we have provided all the necessary hyperparam-
eters, dataset splits, and experimental details to fully reproduce our results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Training large diffusion or flow models with multiple random seeds exceeds
our computational resources. This process is extremely resource-intensive and remains
uncommon in the diffusion research community.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We fully disclose the hardware used for our experiments in
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have read the code of ethics and made sure that the paper conforms to it in
every aspect.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the societal impact of our work in[Appendix F
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not foresee any high risk for misuse of this work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cite all models, datasets, and code implementations used to run
our experiments and evaluate our models.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21


https://neurips.cc/Conferences/2025/LLM

Appendix

Contents
[A " ReDi with Stochastic Interpolant Models (S1T)| 22
[A.1 Stochastic Interpolant Models (S1T)] . . . . . . ... . ... ... . oL 22
[A.2  Joint Image-Representation Generation with StI. . . . . . . ... ... ... ... 22
(B Additional Implementation Details| 23
B.I Architecturedetails . . . . .. ... ... 23
[B.2  Optimizationdetails|. . . . . . . .. ... ... ... ... . ... ... 23
[B.3  Further implementation details| . . . . . .. ... ... ... ... ... ..., 23
[C_Detailed Benchmarks| 23
D Baseline Generative Models| 24
E Timitag & T Worl 25
[F' Broader Impact| 25
|G Additional Qualitative Results| 26

A ReDi with Stochastic Interpolant Models (SiT)

In the main paper, we introduced ReDi within the DDPM framework, as employed by DiT models.
In this section, we begin with a brief overview of Stochastic Interpolant Models (2024) and
then describe how ReDi can be applied in this setting.

A.1 Stochastic Interpolant Models (SiT)

Following flow-based models |Lipman et al.| (2023)), stochastic interpolants involve a continuous
time-dependent process transforming a data distribution x¢ ~ p(x) into Gaussian noise € ~ A (0, I):

Xt =Xo+oE, ag=01=1, o =00=0, (14)
where o, and o, are increasing and decreasing functions of ¢ respectively.

Given this process, the marginal probability distribution p;(x) of x; in coincides with the
distribution of the probability flow ordinary differential equation with a velocity field:

).(t :V(Xt,t). (15)
The velocity field can be approximated by a neural network vy (z, t) by minimizing the following
training objective:

2
Lvelocity (0) = Exo )€,

‘V@(Xt,t) — QyXg — O€

(16)

A.2 Joint Image-Representation Generation with SiT

During training, given a VAE latent image x( and a visual representation zg, we define a joint
interpolation process:
Xt = QX0 + 01€p, Zy = Q4Z + Ot€z, 17)
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The model vy (xy,2¢,t) takes as input x; and z;, along with timestep ¢, and jointly predicts the
velocity for both inputs. Specifically, it produces two separate predictions: v§ (x¢, z;,t) for the image
latent velocity v, and v§(xy, z,,t) for the visual representation velocity v,. The training objective
combines both predictions:

Ljoint = XOH;:O t[HVg(Xt,th) — Gy X9 — 0y €;z:||2 + AL ||Vh(x¢, 24, t) — Gy 29 — Oy €z||2 , (18)

where )\, balances the velocity loss for z;. By default, weuse A\, = 1, oy =tand oy =1 — ¢ in our
experiments.

B Additional Implementation Details

B.1 Architecture details

We present in the configurations of the different-sized DiT and SiT models used in our
experiments.

Table 7: Model configuration details. The configurations are the same for both DiT and SiT models.

MODEL S1ZE B/2 L/2 XL/2
Input Size 32x32x4 32x32x4 32x32x4
Patch Size 2 2 2

# Layers 12 24 28

# Heads 12 16 16
Hidden Dim. 768 1024 1152

B.2 Optimization details

We present in the optimization hyperparameters used for all experiments presented in the
paper.

Table 8: Optimization details. The optimization hyperparameters for both DiT and SiT models.

Batch Size 256
Optimizer AdamW
LR 1074

(B1,B2)  (0.9,0.999)

Computational Resources. For both training and sampling we use 8 NVIDIA A100 40GB GPUs.
Throughput, as presented in is measured on a single NVIDIA A100 40GB GPU with a batch
size of 64 as the number of images generated per second using 250 sampling steps.

B.3 Further implementation details

ReDi with REPA experiment. To apply the Representation Alignment objective (REPA) on top
of ReDi we follow the implementation of (Yu et al.,[2025) and employ a projection layer in the Sth
transformer layer. The projection is a three-layer MLP with SiLU activations (Elfwing et al.|[2018).
The weight on alignment loss is Aggppy = 0.5.

C Detailed Benchmarks

We provide a detailed evaluation of the main experiments presented in the main paper, including
additional metrics and training iterations. Specifically, details the performance of the
SiT-XL/2 w/ ReDi models. Further [Table 10|presents results for the ReDi with REPA (SiT-XL/2).
For all models, we use the evaluation metrics reported in the original publications.
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MODEL #ITERS. FID| SFID| ISt PREC.t REC.T

SiT-XL/2 Peebles & Xie|(2023) ™ 83 6.3 131.7 0.68 0.67

w/ ReDi 50K 56.1 189  23.8 0.44 047

w/ ReDi 100K 23.1 59 615 0.64  0.57

w/ ReDi 200K 12.6 5.7 973 0.69 0.61

w/ ReDi 300K 9.7 5.3 117.3 0.71  0.62

w/ ReDi 400K 7.5 5.1 129.5 0.72  0.62

w/ ReDi M 3.3 4.8 188.9 0.74  0.68
Table 9: Detailed evaluation for SiT-XL/2 w/ ReDi. All results are reported without classifier-free
guidance.

MODEL #ITERS. FID] SFID| ISt PREC.T REC.T

SiT-REPA-XL/2|Yu et al.|(2025) 400K 79 5.1 122.6 0.70  0.65

SiT-REPA-XL/2 M 59 5.7 157.8 0.70  0.69

w/ ReDi 50K 44.8 187 328 0.50  0.49

w/ ReDi 100K 15.2 5.6 853 0.68  0.59

w/ ReDi 200K 8.3 5.2 122.3 0.71  0.61

w/ ReDi 300K 6.3 5.1 140.6 0.73  0.62

w/ ReDi 400K 5.3 4.9 149.8 0.74  0.63

w/ ReDi IM 35 464 1779 0.75  0.69
Table 10: Detailed evaluation for ReDi with REPA. All results are reported without classifier-free
guidance.

D Baseline Generative Models

We provide here a brief description of the baseline approaches presented in the main paper. Specifi-
cally, we consider (a) Autoregressive Models, (b) Latent Diffusion Models, and (c) REPA (Yu et al.,
2025)) that also leverages visual representations to enhance generative performance.

(a) Autoregressive Models

VAR (Tian et al., |2024) proposes a scalable generative framework that autoregressively
predicts higher-resolution image details from lower-resolution contexts across multiple
scales.

MagViTv2 (Yu et al.,[2024) introduces a lookup-free quantization method enabling a large
vocabulary that is able to improve the generation quality of autoregressive models.

MAR (L1 et al.| [2024)) proposes an autoregressive image generation framework that eliminates
the need for vector quantization

(b) Latent Diffusion Models

LDM (Rombach et al.,|2022) proposes latent diffusion models, modeling the image distribu-
tion in a compressed latent space produced by a KL- or VQ-regularized autoencoder.

U-ViT-H/2|Bao et al. (2023) proposes a ViT-based (Dosovitskiy et al.,2021) latent diffusion
model that incorporates skip connections.

DiT [Peebles & Xie| (2023)) proposes a pure transformer backbone for training diffusion
models and incorporates AdaIN-zero modules.

MaskDiT (Zheng et al.| [2023)) trains diffusion transformers with an auxiliary mask recon-
struction task

MDT |Gao et al.|(2023) introduce an effective mask latent modeling scheme, and design an
asymmetric masking diffusion transformer.
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* SD-DiT (Zhu et al., 2024)) extends the MaskDiT architecture by incorporating a discrimina-
tion objective using a momentum encoder.

* SiT (Ma et al., 2024) improves diffusion transformer training by moving from discrete
diffusion to continuous flow-based modeling.

* FasterDiT (Yao et al.,|2024) incorporates supervision of the velocity direction into the
denoising objective, significantly accelerating the training process.

(c) Leveraging Visual Representations

* REPA (Yu et al. 2025) aligns the representations of diffusion transformer models to the
representations of self-supervised models.

E Limitations & Future Work

This section outlines some limitations of our current work and highlights promising directions for
future research.

Multiple visual representations. In this work, we demonstrate the effectiveness of jointly modeling
the visual representations from DINOv2 during the diffusion process. A promising direction for future
research is to investigate whether integrating multiple visual representations, each capturing different
semantic or structural properties, can further boost generative performance.

Different dimensionality reduction approaches. We have shown that projecting visual representa-
tions into a lower-dimensional space with PCA effectively compresses visual features while retaining
sufficient information. An interesting direction for future work is to explore more sophisticated
compression techniques, such as training an autoencoder, to better capture and retain the expressivity
of these features.

F Broader Impact

Generative models carry a substantial risk of misuse. Their application can lead to various negative
societal impacts, most notably the spread of disinformation. Enhancements in generative performance,
as achieved by our method, may further increase the realism of generated content, potentially making
disinformation even more convincing.
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G Additional Qualitative Results

vwo/ RG‘

Figure 8: The effect of Representation Guidance. Samples from our DiT-XL/2 w/ ReDi model
trained on ImageNet 256 x 256 for 400k steps with different Representation Guidance weights w;..
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Figure 9: Uncurated generation results of SiT-XL/2 w/ ReDi. We use Classifier-Free Guidance
with w = 4.0. Class label = 88.

Figure 10: Uncurated generation results of SiT-XL/2 w/ ReDi. We use Classifier-Free Guidance
with w = 4.0. Class label = 89.
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Figure 11: Uncurated generation results of SiT-XL/2 w/ ReDi. We use Classifier-Free Guidance
with w = 4.0. Class label = 207.

Figure 12: Uncurated generation results of SiT-XL/2 w/ ReDi. We use Classifier-Free Guidance
with w = 4.0. Class label = 250.
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Figure 13: Uncurated generation results of SiT-XL/2 w/ ReDi. We use Classifier-Free Guidance
with w = 4.0. Class label = 417.

Figure 14: Uncurated generation results of SiT-XL/2 w/ ReDi. We use Classifier-Free Guidance
with w = 4.0. Class label = 555.
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Figure 15: Uncurated generation results of SiT-XL/2 w/ ReDi. We use Classifier-Free Guidance
with w = 4.0. Class label = 928.

Figure 16: Uncurated generation results of SiT-XL/2 w/ ReDi. We use Classifier-Free Guidance
with w = 4.0. Class label = 933.
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