
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROPGCL: UNLEASHING THE POWER OF PROPAGA-
TION IN NODE-LEVEL GRAPH CONTRASTIVE LEARN-
ING

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph contrastive learning (GCL) has recently gained substantial attention, lead-
ing to the development of various methodologies. In this work, we reveal that a
simple training-free propagation operator PROP, achieves competitive results over
dedicatedly designed GCL methods across diverse node classification benchmarks.
We elucidate PROP’s effectiveness by drawing connections with established graph
learning algorithms. By decoupling the propagation and transformation phases of
graph neural networks, we find that the transformation weights are inadequately
learned in GCL and perform no better than random on node classification. When
the contrastive and downstream objects are misaligned, the attendance of trans-
formation causes the overfitting to the contrastive loss and harms downstream
performance. In light of these insights, we remove the transformation entirely and
introduce an efficient GCL method termed PROPGCL. We provide theoretical
guarantees for PROPGCL and demonstrate its effectiveness through a comprehen-
sive evaluation of node classification tasks.

1 INTRODUCTION

Graph contrastive learning (GCL) has emerged as a promising paradigm for learning graph represen-
tations in an unsupervised manner. By leveraging inherent structural information, GCL has achieved
state-of-the-art performance on graph learning tasks (Velickovic et al., 2019; Zhang & Chen, 2018;
You et al., 2020). However, GCL often involves intricate encoders and large-scale hyperparameter
tuning, raising the question of whether such complexity is necessary for effective learning.

In this work, we challenge the conventional wisdom that highly parameterized models are essential
for achieving strong performance in node-level GCL. Instead, we explore a simple yet powerful
alternative: uniform propagation, abbreviated as PROP, which involves no trainable layers. Remark-
ably, PROP demonstrates competitive performance on various node classification benchmarks, often
matching or surpassing more complicated GCL methods. This raises two important questions:

1. How can the training-free PROP perform so well?

2. Why do some existing GCL methods exhibit suboptimal performance?

To understand why PROP can perform comparably to GCL, we position it as a non-parametric smooth-
ing mechanism on a rewired graph through iterative optimization. Additionally, we demonstrate
that PROP inherently performs alignment in contrastive learning by viewing multi-hop neighboring
representations as positive samples, which elucidates the core strength in enhancing feature clustering.
This analysis explains the success of PROP and highlights the potential of simpler models in GCL.

To figure out the reason behind existing GCLs’ deficiency, we adopt a decoupling perspective and
independently analyze the transformation and propagation phases within the GCL encoder. Our
extensive analysis reveals a key limitation that existing node-level GCL methods often struggle
to learn meaningful transformation weights, which perform no better than random counterparts.
Moreover, transformation causes the learned representations to overfit to the contrastive loss. When
the contrastive objective misaligns with downstream tasks, the overfitting will cause downstream
degradation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Building on these insights, we propose an efficient method, PROPGCL, which eliminates all
transformation layers and extends the strength of PROP with graph-adaptive filters to learn flexi-
ble propagation coefficients. We provide theoretical guarantees for PROPGCL’s advantage in the
case where contrastive and downstream objectives are misaligned. To validate the effectiveness of
PROPGCL, we conduct extensive experiments across diverse node classification benchmarks, includ-
ing both homophilic and heterophilic datasets. Our results demonstrate that PROPGCL consistently
outperforms existing GCL methods with appreciably fewer computational resources.

The key contributions of this work are outlined as follows:

• We establish PROP, a training-free propagation operator, as a strong baseline in graph self-
supervised learning on node classification tasks. We explain its effectiveness by connecting
PROP with classical graph algorithms.

• From a decoupling perspective, we reveal that existing node-level GCL methods often
struggle to learn effective transformation weights. The parameter-intensive transformation
causes overfitting to the contrastive loss and harms the performance when contrastive and
downstream objectives are misaligned.

• We propose PROPGCL, a simple method that removes the transformation entirely and
enhances PROP with graph-adaptive propagation coefficients. We provide theoretical
guarantees for PROPGCL’s effectiveness and rigorously evaluate PROPGCL across diverse
node classification benchmarks, demonstrating its superiority over current GCL methods in
terms of both accuracy and efficiency, particularly on heterophilic datasets.

2 RELATED WORKS

GCL Designing Principles. Popular GCL design approaches predominantly focus on three aspects:
augmentation generation, view selection, and contrastive objectives. Augmentation strategies have
been explored to enhance representation learning, such as topology-based, label-invariant, and spectral
augmentations (Zhu et al., 2021b; Li et al., 2022b; Trivedi et al., 2022; Liu et al., 2022). For view
selection, many works focus on hard negative mining (Robinson et al., 2021; Yang et al., 2023; Niu
et al., 2024) and the necessity of positive pairs (Guo et al., 2023b). Meanwhile, contrastive objectives
are often grounded in the mutual information maximization principle (Velickovic et al., 2019) or
the information bottleneck principle (Xu et al., 2021). With the design complexity growing, we are
concerned about whether such intricacy is truly necessary for effective graph learning. In practice,
we find a training-free and propagation-only operator PROP achieves competitive results over many
GCL methods (although not all GCLs), and we provide reasonable insights into its effectiveness.

Simplifying GCL Architectures. Recent efforts have introduced various strategies to reduce the
complexity of existing methods. Some approaches remove the traditional augmentation process
by employing K-means clustering, adding noise to the embedding space, or introducing invariant-
discriminative losses (Yu et al., 2022; Lee et al., 2022; Li et al., 2023a). Zheng et al. (2022) simplify
similarity computations by discriminating between two groups of summarized instances, rather than
comparing all nodes. Li et al. (2023b) observe lower layers in deep networks suffer from degradation
and propose an efficient blockwise training strategy. Other works explore using simpler models like
MLPs or linear layers as the backbone encoder for GCL (Liu et al., 2023; Salha et al., 2019). However,
these methods continue to rely on transformation layers that introduce additional parameters. In
contrast, our method PROPGCL relies solely on a minimal-parameter propagation layer. This design
reduces complexity while maintaining plug-and-play adaptability across various GCL frameworks.

3 BACKGROUND

3.1 GRAPH CONTRASTIVE LEARNING PIPELINE

The GCL pipeline often includes two stages, pretraining and evaluation. In the pretraining stage,
graph views are first generated through augmentation approaches. The encoder f , usually defaulting
to Graph Neural Networks (GNNs), embeds the graph views into node-level or graph-level represen-
tations. GCL learns the encoder weights by maximizing representation consistency between different
views. The purpose of pretraining is to learn high-quality representations without relying on labeled
data. In the evaluation stage, a simple linear classifier g is trained in a supervised manner to map the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

pretrained representations to the downstream label space. This evaluation protocol is called linear
probing, which enables a fair comparison of representations learned by different GCL methods.

3.2 POLYNOMIAL GRAPH NEURAL NETWORKS

One of the foundational works of GNNs is GCN (Kipf & Welling, 2017), which propagates informa-
tion from local neighborhoods and then transforms the aggregated representation in each layer by
H(l+1) = σ(ÃH(l)W(l)), where H(0) = X denotes node features, Ã is the normalized adjacency
matrix, W(l) is transformation weights in the l-th layer, and σ is the activation function.

Decoupled GNNs. In GCN, propagating information and transforming representation are inherently
intertwined in each layer. However, this tight coupling of operations can lead to limitations, including
oversmoothing and scalability issues (Wu et al., 2019; Liu et al., 2020; Dong et al., 2021). Therefore,
simpler yet effective models are proposed by decoupling the two operations (Wu et al., 2019; Gasteiger
et al., 2019a; He et al., 2020). For instance, SGC (Wu et al., 2019) composes two decoupled phases
of 1) propagation which uniformly aggregates information from K-hops neighboring nodes by
H′ = ÂKX, and 2) transformation which transforms features by H = σ(H′W).

Polynomial GNNs. Despite the simplicity of SGC and its follow-ups, the propagation procedure is
fixed and shows limited expressiveness on more complicated graph structures (Balcilar et al., 2021; Nt
& Maehara, 2019; Zhu et al., 2021a). To solve this, polynomial GNNs replace the uniform propagation
with learnable combinations of polynomial basis functions to approximate arbitrary spectral filters
(Chien et al., 2021; He et al., 2021; 2022). Similarly, polynomial GNNs can be expressed in a unified
propagation and transformation framework,

Propagation: H1 =

K−1∑
k=0

θkgk(L)X, (1)

Transformation: H = σ(H1W), (2)

where θ ∈ RK are learnable propagation coefficients, gk(L) represents the polynomial basis functions
applied to the graph Laplacian matrix L, W is learnable transformation weights. Notably, the
flexibility of learning spectral filters helps polynomial GNNs capture intricate structures in heterophily
graphs where connected nodes tend to have different labels (He et al., 2021; 2022; Chien et al., 2021).

4 PROPAGATION IS A STRONG BASELINE FOR GRAPH SELF-SUPERVISED
LEARNING

In this section, we demonstrate that even without trainable networks, the uniform propagation is
in itself a strong baseline for graph self-supervised learning (GSSL) on node classification. We
benchmark its performance on a wide range of datasets and reveal the rationale by connecting
propagation to established graph learning algorithms.

4.1 BENCHMARK PROPAGATION AMONG GRAPH SELF-SUPERVISED LEARNING BASELINES

Method. We consider an operator PROP that aggregates features within K-hop neighbors:

HPROP = ÂKX, (3)

where Â = D′− 1
2A′D′− 1

2 with A′ = A+ I. Note that the formulation of PROP has no essential
difference from SGC. We name the method PROP instead of SGC to avoid confusion with the
common use of SGC in GCL literature, which often contains the transformation weights W and
serves as the encoder (Chen & Kou, 2023; Gao et al., 2023). Our goal is not to propose a new
formulation, but to establish it as a strong training-free baseline that has long been overlooked
in the GCL literature and explore the underlying rationale.

Datasets. For homophily benchmarks, we choose popular citation network datasets Cora, CiteSeer,
and PubMed (Sen et al., 2008; Namata et al., 2012), Amazon co-purchase datasets Photo, Computers
(Shchur et al., 2018). For heterophily benchmarks, we include Wikipedia datasets Squirrel, Chameleon
(Rozemberczki et al., 2021) and WebKB datasets Texas, Wisconsin, and Cornell (Pei et al., 2020).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Test accuracy (%) of PROP and graph self-supervised (GSSL) baselines on node classification
benchmarks, with blue indicating the best method, and orange the second-best.

Training Encoder Homophily Heterophily
Cora CiteSeer PubMed Computers Photo Mean Squirrel Chameleon Texas Wisconsin Cornell Mean

Supervised GCN 87.5 ± 1.0 80.2 ± 0.6 87.0 ± 0.3 88.4 ± 0.3 93.5 ± 0.4 87.3 47.6 ± 0.8 64.1 ± 1.6 76.4 ± 4.1 62.6 ± 2.8 64.4 ± 4.1 63.0

ChebNetII 87.2 ± 0.8 79.9 ± 0.8 88.5 ± 0.1 90.1 ± 0.3 94.9 ± 0.3 88.1 56.7 ± 1.3 72.3 ± 1.5 92.6 ± 1.8 89.3 ± 3.6 90.5 ± 1.6 80.3

Unsupervised Graph Embedding

DeepWalk Word2Vec 80.6 ± 0.8 63.1 ± 1.0 81.9 ± 0.2 87.3 ± 0.4 91.5 ± 0.5 80.9 43.3 ± 0.7 60.8 ± 1.3 53.4 ± 4.8 43.6 ± 4.1 44.6 ± 3.1 49.2

Node2Vec Word2Vec 80.2 ± 1.2 68.1 ± 0.9 80.7 ± 0.3 85.5 ± 0.4 90.3 ± 0.5 81.0 39.7 ± 1.0 59.2 ± 1.1 56.2 ± 4.6 43.6 ± 2.8 45.6 ± 2.8 48.9

GSSL with Vanilla GCN

GRACE GCN 86.9 ± 1.0 75.6 ± 0.7 85.3 ± 0.2 82.3 ± 0.2 90.1 ± 0.3 84.0 43.8 ± 1.0 62.3 ± 0.9 73.6 ± 4.3 67.0 ± 1.8 65.6 ± 9.0 62.5

DGI GCN 85.8 ± 1.0 78.6 ± 0.7 82.3 ± 0.3 79.6 ± 0.4 80.6 ± 1.2 81.4 37.1 ± 0.8 52.4 ± 1.3 82.6 ± 2.3 72.1 ± 2.4 80.3 ± 2.0 64.9

GAE GCN 84.9 ± 1.3 75.7 ± 0.8 84.7 ± 0.3 76.3 ± 0.5 90.5 ± 0.3 82.4 36.2 ± 0.9 56.8 ± 1.6 60.0 ± 4.3 56.9 ± 4.9 57.0 ± 6.7 53.4

VGAE GCN 85.1 ± 1.0 75.6 ± 0.7 84.6 ± 0.3 76.4 ± 0.5 88.3 ± 0.6 82.0 43.4 ± 0.6 61.4 ± 1.0 73.1 ± 3.4 60.8 ± 4.5 65.0 ± 7.4 60.8

MVGRL GCN 84.0 ± 1.0 74.5 ± 0.8 83.6 ± 0.4 83.5 ± 0.5 89.2 ± 0.4 83.0 31.3 ± 0.6 57.9 ± 1.6 77.7 ± 2.0 65.8 ± 3.5 67.5 ± 7.9 60.0

CCA-SSG GCN 86.7 ± 0.9 79.7 ± 0.6 84.8 ± 0.4 82.8 ± 0.3 91.2 ± 0.4 85.0 40.6 ± 0.7 57.8 ± 1.0 79.3 ± 3.1 71.1 ± 1.4 72.6 ± 4.9 64.3

BGRL GCN 85.1 ± 0.7 76.5 ± 0.9 84.0 ± 0.2 82.8 ± 0.4 86.1 ± 0.4 82.9 36.8 ± 0.7 55.5 ± 1.8 79.7 ± 3.6 67.5 ± 3.9 71.0 ± 10.3 62.1

GCA GCN 84.7 ± 1.0 76.5 ± 0.8 85.0 ± 0.2 79.3 ± 0.2 89.5 ± 0.3 83.0 41.0 ± 0.9 59.4 ± 1.1 78.0 ± 2.6 74.0 ± 2.1 66.9 ± 7.1 63.8

ProGCL GCN 84.6 ± 1.0 78.0 ± 0.5 86.9 ± 0.2 91.2 ± 0.5 84.3 ± 0.4 85.0 49.5 ± 0.6 67.5 ± 1.1 77.9 ± 3.8 71.4 ± 2.5 66.6 ± 11.3 66.6

GSSL with Polynomial GNNs

GRACE

ChebNetII 83.4 ± 0.9 74.8 ± 0.6 84.9 ± 0.3 84.1 ± 0.4 89.2 ± 0.5 83.3 37.9 ± 0.8 55.7 ± 1.0 77.9 ± 2.8 86.4 ± 3.6 75.7 ± 3.6 66.7
BernNet 82.8 ± 1.1 75.4 ± 0.9 84.2 ± 0.2 85.8 ± 0.4 89.7 ± 0.4 83.6 40.6 ± 0.7 54.7 ± 1.3 75.4 ± 3.6 88.3 ± 3.1 74.2 ± 4.1 66.7

GPRGNN 82.4 ± 1.0 75.4 ± 1.0 84.6 ± 0.3 81.0 ± 0.7 90.1 ± 0.5 82.7 38.2 ± 0.7 53.8 ± 1.4 78.7 ± 4.4 71.3 ± 3.9 77.7 ± 5.7 63.9

DGI

ChebNetII 83.4 ± 0.9 71.3 ± 1.2 81.9 ± 0.4 79.6 ± 0.3 78.7 ± 0.7 79.0 34.3 ± 0.6 51.0 ± 1.0 80.8 ± 2.1 81.8 ± 3.0 80.8 ± 1.6 65.7

BernNet 81.5 ± 1.0 73.4 ± 0.5 82.8 ± 0.2 79.2 ± 0.6 78.3 ± 0.5 79.1 32.4 ± 0.9 47.4 ± 1.8 82.8 ± 2.1 78.3 ± 2.3 83.6 ± 2.6 64.9

GPRGNN 82.4 ± 1.4 74.7 ± 1.0 80.9 ± 0.2 77.8 ± 0.6 77.8 ± 0.6 78.1 32.8 ± 0.6 51.0 ± 1.4 80.0 ± 2.0 70.0 ± 3.8 78.9 ± 3.8 62.5

Training-free Method

\ PROP 85.5 ± 0.8 78.9 ± 0.6 82.9 ± 0.5 87.5 ± 0.5 93.0 ± 0.3 85.6 58.5 ± 1.0 68.8 ± 1.4 86.2 ± 3.1 89.0 ± 3.3 86.2 ± 3.1 77.8

Settings. We consider two categories of representative GSSL methods as baselines: traditional graph
embeddings and deep learning methods (graph autoencoders and contrastive learning). Given the
superiority of polynomial GNNs, we also compare GCLs with polynomial GNNs. In the pretraining
stage, we maintain consistency in the hyperparameter search space across methods as much as
possible. In the evaluation stage, we adopt linear probing following Zhu et al. (2020b); Hassani &
Khasahmadi (2020). We follow Chien et al. (2021); Chen et al. (2024) to randomly split the nodes
into 60%, 20%, and 20%. Each experiment is repeated ten times with mean and standard deviation of
accuracy score reported. Experiments with public fixed splitting are also conducted in Appendix D.
We mainly evaluate transductive settings and also explore inductive settings on benchmarks Reddit
and PPI in Appendix C. See more experimental details in Appendix V.

Results. As shown in Table 1, even without training, PROP maintains a superior performance
over competing methods. For homophily benchmarks, PROP achieves comparable performances
with GSSL baselines. PROP reaches an average of 85.6% while the best-performing GSSL methods
have 85.0%. For heterophilic benchmarks, PROP exceeds other methods by a large margin of over
10% on average performance, including GCLs with polynomial GNNs. We hypothesize that under
unsupervised signals, learning weights is more challenging for complex heterophily graphs. As further
shown in Section 5.1, the learned transformation weights tend to lose informativeness. Therefore,
PROP shows more improvement on heterophily graphs by removing the misleading weights. Notably,
GSSL baselines often require time-intensive training and extensive hyperparameter tuning, while
PROP operates without back-propagation and has only one hyperparameter, the propagation step.

4.2 UNDERSTANDING PROP FROM ESTABLISHED GRAPH LEARNING ALGORITHMS

Reviewing well-established graph algorithms, we can understand PROP’s effectiveness by connecting
it with the graph smoothing mechanism and graph alignment learning. See proofs in Appendix H.

Propagation as non-parametric graph smoothing. By aggregating features from neighboring
nodes, cascaded propagation performs iterative representation updates. Inspired by Zhu et al. (2021a),
we show in the following theorem that with an appropriate learning step, the Dirichlet energy of a
rewired k-hop graph is minimized by propagation and converges to zero for non-bipartite graphs.

Theorem 4.1. For a learning step size of α = 0.5, the propagation operator (Equation 3) optimizes
the spectral energy objective L(H) = H⊤(I− Âk)H, which represents the Dirichlet energy on a
rewired graph, where neighboring nodes are defined over k-hop connections.

Based on the iterative optimization, propagation alone can be regarded as a non-parametric approach
that smooths out the neighborhood over the k-hop graph, which helps explain the effectiveness

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

of PROP on graphs beyond just the homophilous category. Note that when the propagation step
approaches infinity, node representations converge to identical values, also known as over-smoothing
(Oono & Suzuki, 2020; Cai & Wang, 2020). However, the total propagation step is practically limited
to a finite range, which provably improves the performance before oversmoothing kicks in (Keriven,
2022), as also supported by our experimental results.

Propagation as graph alignment learning. The propagation operator can also be understood as
a special alignment part in contrastive learning, where positive samples are randomly drawn from
neighboring nodes. We define the joint distribution of positive pairs as p(xi,xj) = Âij/

∑
i,j Âij ,

where Âij denotes the normalized edge weight between node vi and node vj on the k-hop graph.
This neighboring-node view demonstrates competitive performance in real scenarios (Lee et al., 2022;
Shen et al., 2023) with further illustration in Appendix G. Based on the definition, the alignment loss
is:

Lalign(f) = −Exi,xj∼p(xi,xj)[f(xi)
⊤f(xj)]. (4)

Intuitively, this alignment objective will bring the representation of neighboring nodes together. As
shown in the following theorem, propagation minimizes this alignment loss at its optimum, indicating
that propagation implicitly performs the alignment in contrastive learning.

Theorem 4.2. Let fk(xi) = H
(k)
i , ∀ i ∈ [N] be unit vectors, then limk→∞ Lalign(fk) = −1.

4.3 FURTHER INSIGHTS INTO PROP

Through a systematic re-evaluation, we establish propagation as a strong baseline within the GCL
literature. PROP does not evidence that the GCL paradigm is unnecessary, but rather evidence that
many current parametric designs may be overcomplicated. Below, we clarify the differences between
PROP and related methods and provide further insights.

PROP and raw node features. A training-free option is directly using raw node features, i.e., X.
However, feeding raw features into a downstream linear classifier sometimes results in degraded
performance, as shown in Appendix E. We argue that propagation is essential for incorporating
structural information, even in heterophily graphs, and helps particularly when node features are
noisy or uninformative. See detailed discussions in Appendix F.

PROP and random GNNs. Early works have shown the non-trivial ability of GNNs with random
weights (Kipf & Welling, 2017). The key distinction between PROP and random GNNs is whether
the transformation weights are incorporated. In the unsupervised setting, random introduces noise
under insufficient supervision signals. Empirically, in later sections, we reveal that incorporating
random weights in GCL performs worse than eliminating them.

PROP and Graph-Augmented MLPs (GA-MLPs). GA-MLPs, like SGC and APPNP (Gasteiger
et al., 2019a), also adopt the decoupling perspective by preprocessing raw features with graph opera-
tors and then training an MLP in a supervised manner. The key difference is that the transformation
learns in this supervised paradigm is critical, whose removal will downgrade the performance. How-
ever, as further revealed in our work, the MLP weights are poorly learned under unsupervised settings
and harm the downstream task. From another perspective, if we combine PROP with downstream
linear-probing, they are formally equivalent to GA-MLPs. We will not resort to any wordplay on
this issue. However, our intention is not to claim PROP as a novel method, but rather to highlight its
value as a long-overlooked yet strong baseline in GCL literature.

PROP on graph classification task. We also benchmark PROP among GSSL baselines on the
graph classification task. As shown in Appendix B, PROP achieves an average performance gap of
2.82% relative to the best-performing methods, a notable result given its training-free nature. We
hypothesize that the slight gap arises because the single-node features do not directly map to the
global graph label, necessitating advanced transformation or pooling operations. The theoretical
understandings in our paper focus primarily on node connections within a single graph, aligning more
closely with node classification. While PROP demonstrates some promise in graph classification, its
potential in this area warrants further investigation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 DISSECTING THE LIMITATIONS OF GNNS IN GCL

To understand why existing GCL methods often fail to outperform PROP, we decouple the propagation
and transformation phases, a widely adopted perspective in designing GNNs (Gasteiger et al., 2019a;b;
Li et al., 2022a). Our analysis shows that GCL methods struggle to learn effective transformation
weights but have promising potential in the propagation phase. Moreover, the transformation causes
an overfitting on the CL objective, potentially degrading the downstream performance. This finding
reveals the limitations of GCL and paves the way for more effective GCL methods.
5.1 FEATURE TRANSFORMATION IS INEFFECTIVE IN GCL

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

SL Heatmap

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

CL Heatmap

0.2

0.1

0.0

0.1

0.2

0.10

0.05

0.00

0.05

0.10

Figure 1: Characterization of the trans-
formation weights learned by SL and
GCL. Appendix T provides results of
more benchmarks and GCL methods.

We first empirically compare the characteristics of the
transformation weights learned by supervised learning
(SL) and GCL. As revealed in Figure 1, the SL weights
have a substantial variance across different neuron po-
sitions, while the GCL weights exhibit more uniform
smoothness, suggesting that specific neurons in SL play
pivotal roles in distinguishing features, whereas the GCL
transformation learning process appears overly general-
ized, diminishing the richness of feature representation.

To further verify the ineffectiveness of the transformation
weights learned by GCL, we conduct experiments by com-
paring them with random weights. In practice, we consider a decoupled encoder H = σ(HPROPW)
where W is the transformation weights. We compare the weights learned through GCL with a
random matrix whose element is independently sampled from a Gaussian distribution. As shown in
Table 2, the transformation weights learned by GCL are not remarkably better than random
counterparts. The model with random weights attains an average performance of 73.43%, even
surpassing the 72.86% reached by the transformation weights learned through GCL. We conduct
comprehensive experiments by varying GCL backbones, propagators, and random initialization meth-
ods, and conclusions are consistent as detailed in Appendix I. Notably, although random projection
(Bingham & Mannila, 2001) is well-established and proven effective in various works (Li et al., 2006;
Freund et al., 2007; Bauw et al., 2021), GCL should aim to learn weights tailored to data, rather than
relying on a random matrix. Therefore, the results indicate that many GCL methods fail to learn
informative transformation weights as expected.

Table 2: Test accuracy (%) of node classification benchmarks, comparing the transformation weights
learned through GCL with random weights. Blue indicates the best, while the underlined is the
second best. We present the DGI method and results for more GCL methods in Appendix I.

Training Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
GCL 83.23 ± 0.74 74.24 ± 0.55 82.10 ± 0.33 45.92 ± 0.65 64.00 ± 1.33 81.15 ± 2.13 71.88 ± 2.50 80.33 ± 1.80 72.86

Randomize W 83.02 ± 0.94 70.04 ± 0.82 83.87 ± 0.53 49.62 ± 0.99 67.94 ± 1.16 80.33 ± 1.81 72.25 ± 2.25 80.33 ± 1.97 73.43

5.2 LEARNING PROPAGATION IS PROMISING IN GCL

Now, we comprehensively examine both transformation and propagation phases. While polynomial
GNNs incorporate learnable parameters in both phases (Equation 1 and 2), GCLs with polynomial
GNNs tend to underperform, as shown in Table 1. This issue is often attributed to the mismatch
between the strong fitting capacity of polynomial filters and the lack of supervision signals (Chen
et al., 2022; 2024). However, our following experiments demonstrate that GCLs can effectively learn
polynomial filter coefficients.

From the decoupling perspective, there are three conjectures as to why polynomial GNNs under-
perform in GCL: (1) GCL learns ineffective transformation weights, (2) GCL learns suboptimal
propagation coefficients, or (3) a combination of both. To investigate the cause, we separately replace
the propagation coefficients θ and the transformation weights W with well-trained parameters from
the supervised setting. Specifically, we first train polynomial GNNs via supervised learning and
save the optimized parameters as WSL and θSL. We then proceed with the following experiments:
(1). Fix-propagation. Corresponding to the first conjecture, we initialize and freeze propagation
coefficients with the well-trained θSL, and only learn transformation weights W through GCL. (2).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Fix-transformation. Corresponding to the second conjecture, we initialize and freeze transformation
weights with the well-trained WSL, and only learn propagation coefficients θ through GCL. (3).
All-one baseline. We further consider a baseline with well-trained transformation weights WSL and
a fixed all-one propagation coefficient 1.

The experimental results are summarized in Table 3. For the first conjecture, the fix-propagation
model averages 72.19%, significantly lower than the supervised model’s 80.41%, and sometimes
even underperforms the original GCL method. It indicates that GCL struggles to learn effective
transformation weights (like WSL) even with strong filters. For the second conjecture, the fix-
transformation model achieves an average performance of 79.65%, closely matching that of the
supervised model. In contrast, the all-one baseline yields a lower accuracy of 75.56%, confirming that
the learned propagation coefficients are effective. Thus, GCL can learn informative propagation
coefficients with well-trained transformation weights. For further validation of propagation
learning, in Appendix J, we conduct flip experiments by fixing parameters with GCL-trained ones
and get a similar conclusion, with the learned propagation coefficients presented in Appendix U.

The observation suggests potential few-shot learning applications with limited ground-truth labels
for training. In Appendix O, we initially explore training propagation coefficients via CL while
optimizing transformation weights with supervision. However, in unsupervised settings, optimal
transformation weights are unattainable. In later sections, we provide an effective GCL solution with
learnable propagation only.

Table 3: Test accuracy (%) of node classification benchmarks. We freeze propagation coefficients
with optimal θSL and learn transformation weights through GCL (or the opposite). 1 denotes an
all-one vector. Blue indicates the best, while underlined is the second-best.

θ W Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
SL θSL WSL 88.39 ± 0.74 79.67 ± 0.72 87.11 ± 0.25 49.34 ± 1.09 69.52 ± 0.96 89.67 ± 2.13 91.25 ± 2.75 88.36 ± 3.11 80.41

GCL Learn Learn 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61 72.09

Fix-propagation θSL Learn 80.26 ± 0.95 76.15 ± 0.80 82.41 ± 0.64 40.31 ± 0.60 59.06 ± 1.58 78.69 ± 4.75 87.88 ± 2.75 72.79 ± 5.57 72.19
Fix-transformation Learn WSL 87.47 ± 0.67 81.11 ± 0.55 87.69 ± 0.24 45.74 ± 1.57 64.95 ± 2.19 90.00 ± 2.46 91.38 ± 3.50 88.85 ± 4.10 79.65
All-one baseline 1 WSL 78.24 ± 0.92 78.72 ± 0.48 84.75 ± 0.33 35.98 ± 0.77 59.61 ± 1.07 89.34 ± 3.93 89.38 ± 2.25 88.49 ± 3.77 75.56

5.3 TRANSFORMATION ENHANCES OVERFITTING TO CL OBJECTIVE

To explore why the transformation phase brings ineffectiveness, we compare GCL with/without
transformation from the optimization perspective. We find that during training, transformation
weights incur an overfitting to the contrastive learning objective, while keeping only propagation
alleviates the overfitting. As demonstrated in Figure 2, GCL with transformation (the ChebNet
polynomial expansion is used as the propagation operator) rapidly drives the CL training loss to
near zero. In contrast, GCL without transformation maintains a moderate loss level, reflecting its
resistance to over-optimizing the CL objective.

0 100 200 300 400 500
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 L
os

s

35

40

45

50

55

Ac
cu

ra
cy

 (%
)

54.70

41.79
(12.91)

(a). GCL w. transformation

0 100 200 300 400 500
Epoch

0.680

0.685

0.690

0.695

Tr
ai

ni
ng

 L
os

s

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

72.43
71.33

(1.09)

(b). GCL w.o. transformation

Figure 2: Overfitting to the contrastive loss.
More examples are shown in Appendix P.

Optimizing the contrastive loss to its minimum is pre-
ferred if the pretext objective is well aligned with the
downstream tasks. However, when positive samples
misalign with intra-class samples, forcing InfoNCE
loss to the minimum could result in a poor down-
stream performance, as theoretically proved in Wang
et al. (2022). Lacking prior downstream knowledge,
it’s infeasible for GCL to select perfect positive sam-
ples, especially for heterophilic graphs with compli-
cated structures. Thus, the overfitting to contrastive
loss negatively transfers to downstream tasks.

While we employ early-stopping for all baselines in
Table 1, our experiments show it fails to resolve this overfitting issue. We also tried possible strate-
gies, including l1 regularization, whitening techniques (Bell & Sejnowski, 1997), and normalization
methods (Hua et al., 2021; Guo et al., 2023a), but find these approaches offer limited improvement in
Appendix S. Meticulously designed frameworks and advanced contrastive principles may overcome
the limitations. However, for the free-structured graph data, there are no precise or even intuitive
definitions of semantic equivalence (unlike images or text), bringing much difficulty into design-
ing reasonable contrastive principles. In the following section, we propose a simple solution by

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

directly removing the transformation phase. Although easy in formulation, the method demonstrates
competitive performances across diverse benchmarks, with a great advantage of efficiency.

6 PROPGCL: GRAPH CONTRASTIVE LEARNING THAT ONLY LEARNS
PROPAGATION

6.1 PROPGCL

PROP’s strong performance suggests that a simple model without transformation can achieve compet-
itive results. However, the fixed uniform propagation has limited effectiveness in complex scenarios
like heterophilic graphs. Therefore, we enhance PROP by introducing learnable graph-adaptive
filter coefficients, leveraging GCL’s propagation-learning potential. Specifically, for a given GCL
framework, we replace the original encoder with the learnable spectral propagation,

HPROPGCL =

K−1∑
k=0

θkgk(L)X, (5)

where θ ∈ RK is learnable propagation coefficients, gk(L) represents polynomial basis functions.
For clarity, we denote the revised GCL framework with the prefix PROP, e.g., PROP-GRACE.

6.2 THEORETICAL ANALYSIS

We previously show that when the contrastive object misaligns with the downstream task, overfitting
to the CL loss will cause performance degradation. In the following analysis, we decompose such
imperfect CL loss into downstream-relevant and -irrelevant components, and prove that in such cases,
our PROPGCL is guaranteed to learn better representations than PROP and the backbone GCL.
Definition 6.1. (Optimal Propagation Decomposition) Let T ∗ = argminT LCL(T · X) be the
optimal operator for the contrastive learning loss. We assume T ∗ is a function of bounded variation,
i.e., T ∗ ∈ BV (Ω;Rd). By the Jordan decomposition theorem for bounded variation mappings,
T ∗ = f + g, where f is the continuous component and g is the discontinuous component.
Assumption 6.2. (Approximation Properties) We assume the continuous f corresponds to the
downstream-relevant component, e.g., informative signals on the graph, while the discontinuous g
represents nuisance or disconnected signals. Based on Chebyshev polynomial theory, continuous
functions can be well approximated by polynomials: infθ ∥f −

∑
k θkA

k∥F ≤ ϵf = CfK
−s, where

s > 0 and Cf is a constant. Discontinuous noises yield large polynomial approximation errors:
infθ ∥g −

∑
k θkA

k∥F ≥ ϵg > 0, where ϵg ≫ ϵf > 0.
Assumption 6.3. (Task Misalignment) When the contrastive learning objective is misaligned with
downstream tasks, we have ∥g∥F = α∥f∥F with α ̸= 1.

Based on the assumptions, we have the following theorem with proof in Appendix H.
Theorem 6.1. Under Assumptions 6.2 and 6.3, when α >

ϵf
∥f∥F

, we have:

∥HPROPGCL − fX∥F < min (∥HPROP − fX∥F , ∥HGCL − fX∥F) .

The theory shows that when CL and downstream objectives are misaligned (large α), PROPGCL
performs better than both baselines. By learning representations that balance CL optimization
with downstream relevance, PROPGCL maintains higher CL loss than GCL while achieving better
downstream performance, which further explains the empirical observation in Figure 2.

6.3 EXPERIMENTAL RESULTS

Benchmarks. Besides previous benchmarks, we also consider a recently proposed heterophily
benchmark (Platonov et al., 2023b) and large OGB benchmarks ogbn-arxiv and ogbn-products (Hu
et al., 2020). Experimental settings are kept the same as Section 4.1.

Baselines. For the baseline, we include PROP, which outperforms well-known GSSL methods as
outlined in Section 4.1. Additionally, we consider GCL methods specifically designed for heterophilic

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

graphs, including PolyGCL (Chen et al., 2024), HGRL (Chen et al., 2022), GraphACL (Xiao et al.,
2024), SP-GCL (Wang et al., 2023), and DSSL (Xiao et al., 2022). Our approach builds upon
GRACE and DGI as main backbones and uses the scale-friendly method GGD (Zheng et al., 2022)
for large OGB graphs. We utilize the Chebyshev basis as the polynomial function and conduct an
ablation study of basis choices in Appendix L. We mainly adopt the linear-probing evaluation and
also estimate clustering quality of unsupervised representations detailed in Appendix M.

Results. The main results on node classification benchmarks are presented in Table 4. Our method
surpasses the PROP baseline and GCL methods on most benchmarks, especially for heterophily
datasets where many traditional GCL methods struggle. For homophily benchmarks, PROP-
GRACE achieves the highest average accuracy of 88.76%, with PROP-DGI securing the second-
highest at 88.42%. Our approach attains the best performance in 3 out of 6 benchmarks and performs
comparably to the best methods in the remaining cases. For heterophily benchmarks, PROP-DGI
attains an average accuracy of 73.71%, surpassing the state-of-the-art PolyGCL by a margin of 4.23%.
Our method ranks first on 4 out of 6 benchmarks and second-best on the remaining two.

On the recent heterophily benchmark in Table 5, PROP-GRACE surpasses its backbone GRACE
by 3.99% on average, and PROP-DGI achieves the best results in 2 out of 5 benchmarks with an
average performance of 70.22%, second only to PolyGCL’s 71.68%. Notably, PolyGCL is designed
especially for heterophily graphs, whereas PROP-DGI builds on a more general DGI framework. On
large benchmarks in Table 6, our method performs comparably with the backbone method while
achieving higher efficiency. Remarkably, PROP-GGD outperforms GGD by 0.16% in accuracy on
ogbn-products, accompanied by a 25.44% reduction in training time. Moreover, PROPGCL also
presents better robustness on hyperparameters selection and noisy features (Appendix N).

Table 4: Test accuracy (%) of node classification benchmarks, comparing PROPGCL with PROP and
GCL baselines. Blue indicates the best method, while underlined represents the second-best choice.

Method Homophily Heterophily

Cora CiteSeer PubMed Photo Computers CS Mean Squirrel Chameleon Actor Texas Wisconsin Cornell Mean

PROP 85.48 ± 0.75 78.87 ± 0.63 82.89 ± 0.48 93.01 ± 0.28 87.54 ± 0.47 95.15 ± 0.19 87.16 58.48 ± 1.03 68.82 ± 1.42 39.36 ± 0.91 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11 71.35

GRACE 86.90 ± 1.03 75.60 ± 0.71 85.31 ± 0.23 90.10 ± 0.30 82.29 ± 0.23 92.99 ± 0.18 85.53 43.78 ± 0.99 62.30 ± 0.94 37.76 ± 0.77 73.61 ± 4.26 67.00 ± 1.75 65.57 ± 9.02 58.34

DGI 85.80 ± 0.95 78.58 ± 0.70 82.27 ± 0.31 80.63 ± 1.15 79.58 ± 0.39 93.48 ± 0.17 83.39 37.14 ± 0.80 52.38 ± 1.29 34.44 ± 0.45 82.62 ± 2.30 72.13 ± 2.38 80.33 ± 1.97 58.84

PolyGCL 86.19 ± 0.76 79.07 ± 0.82 86.69 ± 0.24 92.70 ± 0.18 88.91 ± 0.25 95.30 ± 0.07 88.14 56.09 ± 0.87 72.17 ± 1.12 40.50 ± 0.78 86.72 ± 2.13 85.50 ± 4.00 75.90 ± 2.46 69.48

SP-GCL 84.68 ± 0.81 76.43 ± 0.63 86.98 ± 0.23 92.65 ± 0.48 89.04 ± 0.35 91.95 ± 0.24 86.91 58.11 ± 0.70 70.98 ± 0.90 30.40 ± 1.11 81.97 ± 2.79 76.00 ± 3.75 65.74 ± 6.39 63.87

HGRL 85.39 ± 1.00 79.84 ± 0.91 85.12 ± 0.30 93.61 ± 0.22 85.89 ± 0.22 95.57 ± 0.12 87.57 38.89 ± 0.85 55.69 ± 1.03 37.09 ± 0.68 84.10 ± 4.75 86.13 ± 3.00 84.59 ± 4.27 64.57

GraphACL 87.41 ± 1.00 79.17 ± 0.55 85.71 ± 0.27 92.86 ± 0.33 86.43 ± 0.35 94.17 ± 0.16 87.63 53.77 ± 0.89 66.94 ± 1.05 38.73 ± 0.86 84.43 ± 1.80 80.00 ± 2.50 79.51 ± 1.80 67.23

DSSL 87.60 ± 1.18 79.52 ± 1.10 86.62 ± 0.24 93.15 ± 0.46 88.53 ± 0.38 94.10 ± 0.18 88.25 47.56 ± 0.98 68.85 ± 3.77 35.64 ± 0.51 85.90 ± 2.62 79.00 ± 2.75 80.98 ± 2.13 67.77

PROP-GRACE 87.42 ± 0.95 81.56 ± 0.83 86.19 ± 0.35 93.32 ± 0.31 88.12 ± 0.23 95.95 ± 0.14 88.76 55.09 ± 0.81 71.73 ± 1.18 39.35 ± 0.81 89.84 ± 1.81 88.50 ± 3.63 86.72 ± 2.46 71.87

PROP-DGI 86.19 ± 1.05 80.78 ± 0.65 85.14 ± 0.22 92.78 ± 0.37 89.81 ± 0.20 95.82 ± 0.18 88.42 60.53 ± 0.66 74.11 ± 0.96 39.53 ± 0.84 91.80 ± 2.30 88.88 ± 2.50 87.38 ± 2.62 73.71

Table 5: Test accuracy (%) of recent heterophily graph
benchmarks. Blue indicates the best method, while the
underlined represents the second-best.

Method roman empire amazon ratings minesweeper tolokers questions Mean
PROP 63.95 ± 0.33 40.22 ± 0.22 74.10 ± 0.58 71.74 ± 0.51 70.23 ± 0.59 64.05

DGI 62.64 ± 0.22 38.71 ± 0.23 80.01 ± 0.65 74.95 ± 0.58 68.05 ± 0.61 64.87

GRACE 59.04 ± 0.22 39.79 ± 0.28 75.89 ± 0.50 74.26 ± 0.73 72.15 ± 0.62 64.22

PolyGCL 71.11 ± 0.47 44.09 ± 0.31 86.11 ± 0.41 83.70 ± 0.59 73.41 ± 0.84 71.68
SP-GCL 55.72 ± 0.34 43.02 ± 0.38 72.38 ± 0.64 76.69 ± 0.60 73.91 ± 0.74 64.34

HGRL 63.31 ± 0.33 39.65 ± 0.32 52.14 ± 0.44 74.34 ± 0.45 OOM −
GraphACL 59.66 ± 0.37 42.68 ± 0.19 67.73 ± 0.72 74.93 ± 0.73 74.48 ± 0.51 63.90

DSSL 44.48 ± 0.33 40.44 ± 0.16 82.05 ± 0.50 73.88 ± 0.76 69.08 ± 0.82 61.99

PROP-GRACE 68.04 ± 0.25 42.76 ± 0.26 80.83 ± 0.58 77.51 ± 0.77 71.95 ± 0.92 68.21 (↑3.99)
PROP-DGI 74.66 ± 0.27 43.14 ± 0.28 80.50 ± 0.62 77.93 ± 0.54 74.88 ± 0.76 70.22 (↑5.35)

Table 6: Test accuracy (%) and training time
on large OGB benchmarks. Train time de-
notes the training time per epoch in seconds.

Benchmark Method Test Acc Train Time

ogbn-arxiv
GGD 70.26 ± 0.15 1.02

PROP-GGD 69.71 ± 0.06 (↓ 0.55) 0.78 (↓ 23.15%)

ogbn-products
GGD 75.71 ± 0.24 284.39

PROP-GGD 75.87 ± 0.20 (↑ 0.16) 212.05 (↓ 25.44%)

6.4 EFFICIENCY ANALYSIS

Table 7: Time and space efficiency comparison.
Improvement refers to the percentage increase in
speed or decrease in memory consumption.

Metric Method Photo Computers CS Squirrel Chameleon

Time

GRACE 0.2872 0.4639 1.5111 0.7004 0.2295

PROP-GRACE 0.2400 0.3626 0.2374 0.2581 0.1450

Improvement 16.44% 21.84% 84.29% 63.15% 36.82%

Memory

GRACE 2518.04 2562.04 2562.04 5206.04 5678.04

PROP-GRACE 5.86 6.04 6.04 16.36 18.21

Improvement 99.77% 99.76% 99.76% 99.69% 99.68%

Thanks to the elimination of transformation
weights, PROPGCL demonstrates apprecia-
ble improvements in efficiency compared
to its backbone methods, both in terms of
computational time and memory usage, as
shown in Table 7. For instance, PROP-GRACE
achieves an 84.29% reduction in training time
per epoch relative to GRACE on the CS dataset.
Regarding memory efficiency, PROP-GRACE
consumes over 99% less memory for the encoder

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

on various benchmarks. Evaluations on more benchmarks and basis functions consistently confirm
the efficiency gains in Appendix Q, where we also provide a detailed time complexity analysis.

7 CONCLUSION

In this work, we establish PROP, a training-free propagation operator, as a strong self-supervised
learning baseline for node classification, supported by linking it to established graph algorithms.
From a decoupling perspective, we observe that transformation weights learned via GCL exhibit
uninformative characteristics and cause an overfitting to the CL objective. To address this, we
introduce a novel approach PROPGCL that focuses solely on learning propagation coefficients
through GCL, achieving state-of-the-art performance across diverse node classification benchmarks.
We believe this work paves the way for developing lightweight and effective GCL methods, with
potential for advancing both research and practical applications in graph learning.

REFERENCES

Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Sub2vec: Feature learning
for subgraphs. In PAKDD, 2018.

Muhammet Balcilar, Guillaume Renton, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul
Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In
ICLR, 2021.

Martin Bauw, Santiago Velasco-Forero, Jesus Angulo, Claude Adnet, and Olivier Airiau. Deep
random projection outlyingness for unsupervised anomaly detection. In ICML Workshop on
Uncertainty and Robustness in Deep Learning, 2021.

Anthony J Bell and Terrence J Sejnowski. The “independent components” of natural scenes are edge
filters. Vision research, 37(23):3327–3338, 1997.

Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: applications to
image and text data. In SIGKDD, 2001.

Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
Hans-Peter Kriegel. Protein function prediction via graph kernels. Bioinformatics, 21(suppl_1):
i47–i56, 2005.

Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. In ICML Graph
Representation Learning workshop, 2020.

Jialu Chen and Gang Kou. Attribute and structure preserving graph contrastive learning. In AAAI,
2023.

Jingfan Chen, Guanghui Zhu, Yifan Qi, Chunfeng Yuan, and Yihua Huang. Towards self-supervised
learning on graphs with heterophily. In CIKM, 2022.

Jingyu Chen, Runlin Lei, and Zhewei Wei. Polygcl: Graph contrastive learning via learnable spectral
polynomial filters. In ICLR, 2024.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In ICLR, 2021.

Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Corwin
Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
correlation with molecular orbital energies and hydrophobicity. Journal of medicinal chemistry, 34
(2):786–797, 1991.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. In NeurIPS, 2016.

Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
alignments. Journal of molecular biology, 330(4):771–783, 2003.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui. On
the equivalence of decoupled graph convolution network and label propagation. In WWW, 2021.

Yoav Freund, Sanjoy Dasgupta, Mayank Kabra, and Nakul Verma. Learning the structure of manifolds
using random projections. In NeurIPS, 2007.

Yuan Gao, Xin Li, and Yan Hui. Rethinking graph contrastive learning: An efficient single-view
approach via instance discrimination. IEEE Transactions on Multimedia, 26:3616–3625, 2023.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. In ICLR, 2019a.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
learning. In NeurIPS, 2019b.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, 2010.

Florian Graf, Christoph Hofer, Marc Niethammer, and Roland Kwitt. Dissecting supervised con-
trastive learning. In ICML, 2021.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In SIGKDD,
2016.

Xiaojun Guo, Yifei Wang, Tianqi Du, and Yisen Wang. Contranorm: A contrastive learning
perspective on oversmoothing and beyond. In ICLR, 2023a.

Xiaojun Guo, Yifei Wang, Zeming Wei, and Yisen Wang. Architecture matters: Uncovering implicit
mechanisms in graph contrastive learning. In NeurIPS, 2023b.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
NeurIPS, 2017.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In ICML, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV, 2015.

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via
bernstein approximation. In NeurIPS, 2021.

Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with
chebyshev approximation, revisited. In NeurIPS, 2022.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In SIGIR, 2020.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang Zhao. On feature
decorrelation in self-supervised learning. In CVPR, 2021.

Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. Decorrelated batch normalization. In CVPR, 2018.

Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167, 2015.

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing. In
NeurIPS, 2022.

Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Optimal whitening and decorrelation. The
American Statistician, 72(4):309–314, 2018.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In NeurIPS, 2020.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. In NeurIPS Workshop on
Bayesian Deep Learning, 2016.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised learning on
graphs. In AAAI, 2022.

Haifeng Li, Jun Cao, Jiawei Zhu, Qinyao Luo, Silu He, and Xuying Wang. Augmentation-free graph
contrastive learning of invariant-discriminative representations. IEEE Transactions on Neural
Networks and Learning Systems, 2023a.

Jintang Li, Wangbin Sun, Ruofan Wu, Yuchang Zhu, Liang Chen, and Zibin Zheng. Oversmoothing:
A nightmare for graph contrastive learning? arXiv preprint arXiv:2306.02117, 2023b.

Mingjie Li, Xiaojun Guo, Yifei Wang, Yisen Wang, and Zhouchen Lin. G2cn: Graph gaussian
convolution networks with concentrated graph filters. In ICML, 2022a.

Ping Li, Trevor J Hastie, and Kenneth W Church. Very sparse random projections. In SIGKDD, 2006.

Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, and Tat-Seng Chua. Let invariant
rationale discovery inspire graph contrastive learning. In ICML, 2022b.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In SIGKDD,
2020.

Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, and Jian Pei. Revisiting graph contrastive learning from
the perspective of graph spectrum. In NeurIPS, 2022.

Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu, Siwei Wang, Ke Liang, Wenxuan Tu, and Liang
Li. Simple contrastive graph clustering. IEEE Transactions on Neural Networks and Learning
Systems, 2023.

Sitao Luan, Chenqing Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure
Leskovec, and Doina Precup. When do graph neural networks help with node classification:
Investigating the homophily principle on node distinguishability. arXiv preprint arXiv:2304.14274,
2023.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? arXiv preprint arXiv:2106.06134, 2021.

Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
Demystifying structural disparity in graph neural networks: Can one size fit all? In NeurIPS, 2023.

Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond, 2020.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. Query-driven active
surveying for collective classification. In MLG, 2012.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu, and
Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arxiv 2017. arXiv
preprint arXiv:1707.05005, 2017.

Chaoxi Niu, Guansong Pang, and Ling Chen. Affinity uncertainty-based hard negative mining in
graph contrastive learning. IEEE Transactions on Neural Networks and Learning Systems, 2024.

Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
classification. In ICLR, 2020.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. In ICLR, 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In SIGKDD, 2014.

Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing
graph datasets for node classification: Homophily-heterophily dichotomy and beyond. In NeurIPS,
2023a.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of gnns under heterophily: Are we really making progress? In ICLR,
2023b.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In ICML, 2019.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In NeurIPS, 2022.

Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with
hard negative samples. In ICLR, 2021.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Guillaume Salha, Romain Hennequin, and Michalis Vazirgiannis. Keep it simple: Graph autoencoders
without graph convolutional networks. In NeurIPS Graph Representation Learning Workshop,
2019.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018.

Xiao Shen, Dewang Sun, Shirui Pan, Xi Zhou, and Laurence T Yang. Neighbor contrastive learning
on learnable graph augmentation. In AAAI, 2023.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In AISTATS, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In ICLR,
2020.

Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to improve
graph contrastive learning. In NeurIPS, 2021.

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer, Remi
Munos, Petar Veličković, and Michal Valko. Large-scale representation learning on graphs via
bootstrapping. In ICLR, 2022.

Puja Trivedi, Ekdeep S Lubana, Mark Heimann, Danai Koutra, and Jayaraman Thiagarajan. Analyzing
data-centric properties for graph contrastive learning. In NeurIPS, 2022.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical
compound retrieval and classification. Knowledge and Information Systems, 14:347–375, 2008.

Haonan Wang, Jieyu Zhang, Qi Zhu, Wei Huang, Kenji Kawaguchi, and Xiaokui Xiao. Single-pass
contrastive learning can work for both homophilic and heterophilic graph. In TMLR, 2023.

Yifei Wang, Qi Zhang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Chaos is a ladder: A new
theoretical understanding of contrastive learning via augmentation overlap. In ICLR, 2022.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
ing graph convolutional networks. In ICML, 2019.

Jun Xia, Lirong Wu, Ge Wang, and Stan Z. Li. Progcl: Rethinking hard negative mining in graph
contrastive learning. In ICML, 2022.

Teng Xiao, Zhengyu Chen, Zhimeng Guo, Zeyang Zhuang, and Suhang Wang. Decoupled self-
supervised learning for graphs. In NeurIPS, 2022.

Teng Xiao, Huaisheng Zhu, Zhengyu Chen, and Suhang Wang. Simple and asymmetric graph
contrastive learning without augmentations. In NeurIPS, 2024.

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. Infogcl: Information-
aware graph contrastive learning. In NeurIPS, 2021.

Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
Fourier analysis sheds light on deep neural networks. arXiv preprint arXiv:1901.06523, 2019.

Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In SIGKDD, 2015.

Haoran Yang, Hongxu Chen, Sixiao Zhang, Xiangguo Sun, Qian Li, Xiangyu Zhao, and Guandong
Xu. Generating counterfactual hard negative samples for graph contrastive learning. In WWW,
2023.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? In NeurIPS, 2021.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In NeurIPS, 2020.

Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning automated.
In ICML, 2021.

Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen. Are graph
augmentations necessary? simple graph contrastive learning for recommendation. In SIGIR, 2022.

Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
networks. In NeurIPS, 2019.

Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. From canonical correlation
analysis to self-supervised graph neural networks. In NeurIPS, 2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In NeurIPS, 2018.

Yizhen Zheng, Shirui Pan, Vincent Lee, Yu Zheng, and Philip S Yu. Rethinking and scaling up graph
contrastive learning: An extremely efficient approach with group discrimination. In NeurIPS,
2022.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. In NeurIPS, 2020a.

Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. Interpreting and unifying graph neural
networks with an optimization framework. In WWW, 2021a.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph Contrastive
Representation Learning. In ICML Workshop on Graph Representation Learning and Beyond,
2020b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. An empirical study of graph contrastive learning.
In NeurIPS Track on Datasets and Benchmarks., 2021b.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In WWW, 2021c.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We are not aware of any specific ethical concerns related to this work. All experiments are conducted
on publicly available or synthetic datasets, without the use of sensitive or proprietary information.

REPRODUCIBILITY STATEMENT

We provide complete details of our methods, hyperparameters, datasets, and evaluation metrics in
both the main paper and the appendix. To further support transparency and reproducibility, we will
release our code upon acceptance.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, LLMs are primarily employed for polishing the language of the manuscript to ensure
grammatical correctness and coherence. Importantly, all conceptual development, theoretical analysis,
experimental design, and result interpretation are conducted independently by the authors. The use
of LLMs is strictly limited to auxiliary tasks, ensuring that the scientific contributions of this paper
remain entirely unaffected by such tools.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A APPENDIX

B EXPERIMENTS OF PROP ON THE GRAPH CLASSIFICATION TASK

Methods. To get the global graph representation, we first aggregate node features within K-hop
neighbors without any trainable weights, then average pool aggregated node features into a global
representation, i.e.,

HPROP =
1

N

∑
i

Hi, H = ÂKX, (6)

where N is the number of nodes, Hi is the representation of the node vi, Â = D′− 1
2A′D′− 1

2 with
A′ = A+ I.

Datasets. We choose molecules datasets MUTAG (Debnath et al., 1991) and NCI1 (Wale et al.,
2008), bioinformatics datasets PROTEINS (Borgwardt et al., 2005), and DD (Dobson & Doig, 2003),
social networks IMDB-BINARY, IMDB-MULTI (Yanardag & Vishwanathan, 2015), and COLLAB
(Yanardag & Vishwanathan, 2015).

Baselines. We consider three categories of representative methods as baselines: 1) graph kernel
methods including GL (Shervashidze et al., 2009), WL (Shervashidze et al., 2011), and DGK
(Yanardag & Vishwanathan, 2015), 2) traditional graph embedding methods including node2vec
(Grover & Leskovec, 2016), sub2vec (Adhikari et al., 2018), and graph2vec (Narayanan et al., 2017),
3) contrastive learning methods including InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020),
MVGRL (Hassani & Khasahmadi, 2020), JOAOv2 (You et al., 2021), ADGCL (Suresh et al., 2021).

Settings. Following You et al. (2020), we train the model in an unsupervised manner and feed the
learned representation into a downstream SVM classifier. To keep comparison fairness, we tune
hyperparameters in a unified combination, and keep the search space among methods as consistent as
possible. Details can be found in Appendix V.

Results. As shown in Table 8, PROP surpasses most graph kernels and traditional embeddings and
performs comparably with GCL methods. PROP achieves an average performance gap of 2.82%
relative to the best-performing methods, a notable result given its training-free nature. We hypothesize
that the slight gap arises because the single-node features do not directly map to the global graph label,
necessitating advanced transformation or pooling operations. Another optional choice is utilizing
Laplacian positional embeddings or random-walk embeddings as widely discussed in the literature of
Graph Transformers (Yun et al., 2019; Ying et al., 2021; Rampášek et al., 2022). We leave deeper
research on the graph classification task for future work.

Table 8: Test accuracy (%) of graph classification benchmarks, comparing PROP and GSSL methods.
The compared results are from published papers, and − indicates that results are unavailable. We
report the performance gap between one method and the best method, averaged across datasets in the
Mean Gap column. Bold indicates the best method, while underlined represents the second-best.

PROTEINS MUTAG DD NCI1 IMDB-B IMDB-M COLLAB Mean Gap ↓
Graph Kernel

GL − 81.66 ± 2.11 − − 65.87 ± 0.98 − − 7.60

WL 72.92 ± 0.56 80.72 ± 3.00 − 80.01 ± 0.50 72.30 ± 3.44 − − 2.88

DGK 73.30 ± 0.82 87.44 ± 2.72 − 80.31 ± 0.46 66.96 ± 0.56 − − 2.37

Traditional Graph Embedding

node2vec 57.49 ± 3.57 72.63 ± 10.20 − 54.89 ± 1.61 − − − 16.61

sub2vec 53.03 ± 5.55 61.05 ± 15.80 − 52.84 ± 1.47 55.26 ± 1.54 − − 19.79

graph2vec 73.30 ± 2.05 83.15 ± 9.25 − 73.22 ± 1.81 71.10 ± 0.54 − − 3.54

Graph Contrastive Learning

MVGRL − 75.40 ± 7.80 − − 63.60 ± 4.20 − − 11.87

InfoGraph 74.44 ± 0.31 89.01 ± 1.13 72.85 ± 1.78 76.20 ± 1.06 73.03 ± 0.87 48.66 ± 0.67 70.65 ± 1.13 2.07

GraphCL 74.39 ± 0.45 86.80 ± 1.34 78.62 ± 0.40 77.87 ± 0.41 71.14 ± 0.44 48.49 ± 0.63 71.36 ± 1.15 1.52
JOAOv2 74.07 ± 1.10 87.67 ± 0.79 77.40 ± 1.15 78.36 ± 0.53 70.83 ± 0.25 − 69.33 ± 0.34 1.78

ADGCL 73.81 ± 0.46 89.70 ± 1.03 75.10 ± 0.39 69.67 ± 0.51 72.33 ± 0.56 49.89 ± 0.66 73.32 ± 0.61 2.21

PROP 71.07 ± 0.30 87.44 ± 1.53 78.39 ± 0.37 75.24 ± 0.14 71.22 ± 0.28 47.11 ± 0.18 69.07 ± 0.05 2.82

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C EXPERIMENTS OF PROP IN THE INDUCTIVE SETTING

We conduct experiments in the inductive setting on the single-graph dataset Reddit and the multiple-
graph dataset PPI. The experimental settings, including data splitting and training hyperparameters,
follow those in Hamilton et al. (2017). The results are summarized in Table 9. For PPI (a multi-graph
benchmark with 50-dimensional node features), PROP (K=2) achieves an F1 score of 0.7527, which
is comparable to GRACE’s score of 0.7548. For Reddit, PROP (K=2) achieves an F1 score of 0.8452,
outperforming GRACE which achieves 0.8185. These results validate the effectiveness of PROP in
node classification tasks under the inductive setting.

Table 9: F1 score comparison of PROP and GRACE on benchmarks PPI and Reddit. Bold indicates
the best, while underlined represents the second-best choice.

Method F1 Score (PPI) F1 Score (Reddit)
GRACE 0.7548 0.8185
PROP (K = 0) 0.7076 0.5852
PROP (K = 1) 0.7493 0.8457
PROP (K = 2) 0.7527 0.8452

D EXPERIMENTS OF PROP WITH A FIXED PUBLIC-SPLITTING.

In Section 4.1, we evaluate PROP and graph self-supervised methods on the node classification task
with a random splitting. To ensure that the conclusion is not limited to a specific split setting, we
evaluate the models on the publicly available fixed splits following Zhu et al. (2021c); Zhang et al.
(2021). In practice, we use the public splitting introduced in Pei et al. (2020) for most datasets.
There is no available public splitting for Amazon-Photo and Amazon-Computers, so we randomly
split the dataset into 1/1/8 as the train/validation/test set, differing from the splitting in Section 4.1.
Other experimental settings are kept the same. As shown in Table 10, on 6 in 10 benchmarks, PROP
performs the best among baselines and exceeds the runner-up ProGCL by 4.23% on average. The
results verify the effectiveness of PROP in different data-splitting cases.

Table 10: Test accuracy (%) of PROP and other graph self-supervised methods on node classification
benchmarks with the public splitting. Bold indicates the best method, while underlined represents
the second-best choice.

Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon Texas Wisconsin Cornell Mean

DeepWalk 80.87 ± 1.07 63.14 ± 1.05 81.55 ± 0.27 84.66 ± 0.40 89.59 ± 0.18 43.32 ± 0.79 60.81 ± 1.27 53.44 ± 5.09 43.63 ± 4.25 44.59 ± 2.95 64.56

Node2Vec 84.27 ± 0.70 66.04 ± 1.83 81.33 ± 0.36 83.92 ± 0.31 89.31 ± 0.20 38.41 ± 1.19 59.50 ± 2.30 60.81 ± 1.89 55.10 ± 3.73 60.54 ± 3.24 67.92

GAE 85.96 ± 1.03 72.78 ± 1.11 85.06 ± 0.49 75.29 ± 0.53 89.50 ± 0.26 35.56 ± 1.27 56.51 ± 1.62 62.43 ± 4.86 61.18 ± 3.53 60.27 ± 3.51 68.45

VGAE 86.20 ± 0.76 73.26 ± 0.65 85.19 ± 0.43 72.17 ± 0.33 86.90 ± 0.38 42.38 ± 1.13 60.29 ± 1.05 63.78 ± 3.51 59.61 ± 2.75 60.54 ± 2.16 69.03

GRACE 84.10 ± 1.01 70.41 ± 0.92 84.79 ± 0.38 78.51 ± 0.44 87.80 ± 0.41 39.65 ± 0.87 55.83 ± 1.05 64.59 ± 4.59 58.82 ± 4.91 60.81 ± 2.16 68.53

DGI 87.20 ± 0.99 72.50 ± 1.49 82.55 ± 0.38 71.35 ± 0.57 80.43 ± 0.63 36.61 ± 1.05 52.02 ± 1.32 70.54 ± 2.97 63.53 ± 3.92 61.62 ± 2.16 67.84

MVGRL 83.44 ± 0.72 71.61 ± 0.73 82.48 ± 0.30 80.96 ± 0.67 86.87 ± 0.41 31.48 ± 0.83 58.77 ± 1.45 68.38 ± 2.98 62.94 ± 3.53 61.62 ± 2.16 68.86

CCA-SSG 87.71 ± 0.75 75.42 ± 0.80 85.55 ± 0.40 78.96 ± 0.33 90.91 ± 0.38 40.16 ± 0.74 54.98 ± 1.18 68.65 ± 3.78 64.12 ± 4.31 61.89 ± 2.43 70.84

BGRL 85.77 ± 0.89 72.66 ± 1.54 84.63 ± 0.49 74.43 ± 0.91 85.50 ± 0.59 37.20 ± 1.07 53.82 ± 1.67 67.03 ± 2.70 60.59 ± 3.14 60.81 ± 2.43 68.24

GCA 86.60 ± 0.79 74.71 ± 1.18 86.44 ± 0.34 75.63 ± 0.46 88.77 ± 0.54 41.33 ± 0.88 59.28 ± 1.54 69.46 ± 2.97 62.94 ± 2.75 61.89 ± 2.16 70.71

ProGCL 85.45 ± 0.85 73.61 ± 1.10 86.86 ± 0.41 81.64 ± 0.70 89.91 ± 0.31 50.23 ± 0.86 67.81 ± 1.47 69.46 ± 2.97 62.75 ± 2.75 61.35 ± 1.35 72.91

PROP 84.57 ± 0.82 74.55 ± 1.09 84.65 ± 0.24 84.78 ± 0.38 90.83 ± 0.34 57.20 ± 1.41 68.71 ± 1.18 71.35 ± 4.60 79.61 ± 3.14 75.14 ± 3.78 77.14

E EXPERIMENTS OF PROP WITH DIFFERENT AGGREGATION STEPS

In this section, we present the accuracy of PROP with different propagation steps. We find that the
best step choice varies among datasets, but a shallow propagation is enough in most cases. As shown
in Figure 3, only one-step propagation performs best in datasets including Cora, CiteSeer, Chameleon,
Squirrel, Computers, and Photo. For Texas, Wisconsin, Cornell, Actor, and CS, the raw features, (i.e.,
zero propagation step) are enough. Moreover, when the performance achieves its best, raising the
propagation step will cause a degradation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9
Aggregation Step

70

75

80

85

Ac
cu

ra
cy

Cora

Highest Accuracy
Cora mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

68

70

72

75

78

80

Ac
cu

ra
cy

CiteSeer

Highest Accuracy
CiteSeer mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

82

83

84

85

Ac
cu

ra
cy

PubMed

Highest Accuracy
PubMed mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

40

50

60

70

Ac
cu

ra
cy

Chameleon
Highest Accuracy
Chameleon mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

60

65

70

75

80

85

90

Ac
cu

ra
cy

Texas

Highest Accuracy
Texas mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

50

60

70

80

90

Ac
cu

ra
cy

Wisconsin
Highest Accuracy
Wisconsin mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

60

70

80

90

Ac
cu

ra
cy

Cornell

Highest Accuracy
Cornell mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

30

40

50

60

Ac
cu

ra
cy

Squirrel
Highest Accuracy
Squirrel mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

30

32

34

36

38

40

Ac
cu

ra
cy

Actor
Highest Accuracy
Actor mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

86

88

90

92

94

96

Ac
cu

ra
cy

CS
Highest Accuracy
CS mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

60

65

70

75

80

85

Ac
cu

ra
cy

Computers

Highest Accuracy
Computers mean

0 1 2 3 4 5 6 7 8 9
Aggregation Step

50

60

70

80

90

Ac
cu

ra
cy

Photo

Highest Accuracy
Photo mean

Figure 3: Accuracy (%) of PROP with different propagation steps. We mark the best step choice with
a red star. Experiments are conducted ten times and the shadow denotes the derivation.

F COMPARISON BETWEEN PROP AND RAW FEATURES

F.1 GRAPH STRUCTURE AS EFFECTIVE SUPERVISED SIGNALS

The taxonomy of homophily and heterophily is commonly used to assess whether the graph structure
is informative for training GCN-like models. However, beyond this traditional dichotomy, recent
metrics characterizing graph properties have been proposed, showing a closer relationship with
GNN performance (Mao et al., 2023; Luan et al., 2023; Platonov et al., 2023a). For instance, Ma
et al. (2021) observe that the inter-class similarity on the Squirrel dataset is slightly higher than the
intra-class similarity for most classes, which helps explain the moderate performance of GCN on this
dataset.

However, the performance of GCN-like models is influenced by the interplay between graph structure
and node features. Therefore, poor performance of GCN does not necessarily imply that the graph
structure is ineffective, nor does it imply the opposite. To verify this, we design experiments based
on the mutual information between labels and graph elements, including graph structure and node
features. To decouple the effects of structure and node features, we use an MLP instead of a GCN
as the training model, with node features X, adjacency matrix A, and their concatenation as inputs,
respectively.

The results are shown in Table 11. Surprisingly, for some heterophily datasets, MLPs using the
graph structure as input achieve satisfactory performance. For instance, on the Squirrel dataset,
which has a low homophily ratio of 0.22, the MLP based on the graph structure achieves an accuracy
of 73.58%. This suggests that, even with a low homophily ratio, the graph structure can still serve as
a highly effective supervision signal for label prediction.

F.2 NODE FEATURE PERTURBATION EXPERIMENTS

PROP demonstrates significant advantages over Raw Features (RF), particularly in scenarios where
node features are noisy or uninformative. To illustrate this, we compare PROP and RF under noise-
perturbation and masking-perturbation settings. For noise-perturbation, Gaussian noise is added

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 11: Test accuracy (%) of MLP with different input signals on node classification benchmarks.
H(G) denotes the edge homophily ratio introduced in Zhu et al. (2020a). Lower H(G) denotes
graphs with a high heterophily level. [,] denotes concatenation. Bold indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Chameleon Squirrel Actor

H(G) 0.81 0.74 0.80 0.23 0.22 0.22

MLP(X) 73.64 70.72 85.75 49.34 35.06 36.51
MLP(A) 78.27 57.81 81.41 77.41 73.58 21.84

MLP([X,A]) 82.29 73.57 85.83 71.05 67.63 31.84

to the original node features. For masking-perturbation, we randomly mask the channels of node
features with varying mask ratios in [20%, 40%, 60%, 80%]. As shown in Table 12 and Table 13,
PROP consistently outperforms RF across various benchmarks when node features are perturbed.
For instance, in the noise-perturbation setting, PROP achieves an average performance improvement
of over 33% compared to RF. Similarly, in the masking-perturbation setting, PROP maintains its
superiority even with a mask ratio as high as 80%.

Table 12: Test accuracy (%) of noise-perturbed node classification benchmarks, comparing PROP and
Raw Features (RF). We add noise from a normal distribution onto the original features to generate
randomly noisy node features. Bold indicates the best method.

Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon Mean
RF 39.90 ± 6.85 32.31 ± 8.47 57.28 ± 5.69 42.60 ± 7.57 54.57 ± 6.27 21.34 ± 1.03 25.47 ± 2.47 39.07

PROP 76.73 ± 2.02 69.25 ± 2.44 81.50 ± 2.00 73.76 ± 11.58 70.23 ± 7.74 48.94 ± 6.14 69.39 ± 2.15 69.97

Table 13: Test accuracy (%) of mask-perturbed node classification benchmarks, comparing PROP and
Raw Features (RF). We randomly mask a proportion of features to generate perturbed node features.
Bold indicates the best method.

Mask ratio Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon Mean

20%
RF 54.01 ± 3.40 60.34 ± 4.24 70.00 ± 4.66 65.87 ± 5.16 68.59 ± 4.98 28.37 ± 0.67 41.77 ± 2.78 55.56

PROP 76.19 ± 3.76 71.87 ± 2.68 83.85 ± 0.99 89.78 ± 1.51 83.37 ± 2.18 47.13 ± 4.50 64.40 ± 2.45 73.80

40%
RF 49.10 ± 2.61 44.68 ± 9.49 58.36 ± 5.81 50.62 ± 9.53 53.56 ± 9.74 25.67 ± 1.97 34.99 ± 4.88 45.28

PROP 61.25 ± 6.68 54.87 ± 10.25 76.85 ± 4.43 76.16 ± 10.29 64.66 ± 10.61 38.68 ± 5.98 53.90 ± 6.67 60.91

60%
RF 46.95 ± 5.67 36.10 ± 8.12 55.88 ± 4.87 44.29 ± 7.96 53.85 ± 7.58 23.22 ± 2.27 30.72 ± 4.09 41.57

PROP 54.47 ± 6.93 42.59 ± 10.70 63.68 ± 9.19 60.27 ± 14.32 60.69 ± 8.46 28.47 ± 6.50 41.03 ± 8.97 50.17

80%
RF 48.33 ± 3.69 30.18 ± 5.64 52.01 ± 3.18 41.47 ± 5.78 57.87 ± 2.63 21.93 ± 2.04 28.42 ± 3.13 40.03

PROP 49.06 ± 6.39 33.77 ± 9.83 57.89 ± 8.73 57.89 ± 8.73 60.37 ± 5.14 26.35 ± 5.38 34.64 ± 9.06 44.90

G INTUITIVE ILLUSTRATION OF NEIGHBORING-NODE VIEW

Using neighboring nodes can be understood as a form of view generation in GCL. Formally, this
involves designing a permutation matrix P that transforms the graph such that A′ = P⊤AP and
X′ = PX. The same row of X (or A) and X′ (or A′) corresponds to neighboring nodes in the
original graph. This kind of view generation is also applied in previous works and shows satisfying
experimental performance (Lee et al., 2022; Shen et al., 2023).

Consider a simple example of a triangle graph with three nodes v1, v2, and v3, connected as (v1, v2),

(v1, v3) (v2, v3). A specific permutation P =

(
0 1 0
0 0 1
1 0 0

)
transforms the original graph’s adjacency

matrix A =

(
0 1 1
1 0 1
1 1 0

)
, X =

(
x1

x2

x3

)
into A′ = P⊤AP =

(
0 1 1
1 0 1
1 1 0

)
, X′ = PX =

(
x2

x3

x1

)
.

The corresponding nodes in G = (A,X) and G′ = (A′,X′) form positive pairs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Based on random sampling, other choices of P are possible, such as transforming X = (x1,x2,x3)
⊤

to X′ = (x3,x1,x2)
⊤. For node v1, the probabilities of transferring to v2 and v3 are equal. When the

sampling process is repeated sufficiently, the positive samples (v1, v2) and (v1, v3) are sampled with
approximately equal frequency, corresponding to the neighboring set in the propagation procedure.

More formally, consider the alignment loss defined in the paper,

Lalign(f) = −Exi,xj∼p(xi,xj)[f(xi)
⊤f(xj)].

Here, the probability distribution p(xi,xj) = Âij/
∑

i,j Âij is defined as the normalized edge
weight between nodes vi and vj in the k-hop graph. When the sampling process is efficient, we can
approximate the neighbor sets in the propagation as positive pairs.

H PROOF OF THEOREMS

H.1 PROOF OF THEOREM 4.1

Here we present the proof of Theorem 4.1, restated for reference.

Theorem 4.1. For a learning step size of α = 0.5, the propagation operator (Equation 3) optimizes
the spectral energy objective L(H) = H⊤(I− Âk)H, which represents the Dirichlet energy on a
rewired graph, where neighboring nodes are defined over k-hop connections.

Proof. We consider the rewired k-hop graph with the adjacency matrix denoted as Ã = Âk. The
Dirichlet energy on the k-hop graph is L(H) = H⊤L̃H, where L̃ = I− Ã. The gradient update of
the Dirichlet energy objective gives the following update rule of node features H,

H− α
∂L(H)

∂H
= H− 2αL̃H = ((1− 2α)I+ 2αÃ)H, (7)

where the α is the step size. When we choose the learning rate α = 0.5, we recover the propagation
operation in Equation 3, i.e., Hnew = ÃH = ÂkH.

H.2 PROOF OF THEOREM 4.2

Here we present the proof of Theorem 4.2, restated for reference.

Theorem 6.1. Under Assumptions 6.2 and 6.3, when α >
ϵf

∥f∥F
, we have:

∥HPROPGCL − fX∥F < min (∥HPROP − fX∥F , ∥HGCL − fX∥F) .

Proof. Again, we consider the rewired k-hop graph with the adjacency matrix denoted as Ã = Âk.
A key step is to notice that the alignment objective Equation 4 is closely relevant to the Dirichlet
energy when f(xi) = Hi, ∀ i ∈ [N] :

Lalign(f) = −
∑
i,j

Ãij [H
⊤
i Hj]/(

∑
i,j

Ãij) = H⊤ÃH/(
∑
i,j

Ãij) = H⊤(I− L̃)H/(
∑
i,j

Ãij). (8)

It is easy to see that graph convolution converges to identical vectors, known as oversmoothing.
Therefore, we have ∀ i, j, (H∞)i = (H∞)j . Therefore,

lim
k→∞

Lalign(fk) = H⊤
∞ÃH∞/(

∑
i,j

Ãij) = (
∑
i,j

Ãij)/(
∑
i,j

Ãij) = −1,

which concludes the proof.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

H.3 PROOF OF THEOREM 6.1

Here we present the proof of Theorem 6.1, restated for reference.
Theorem 6.1. Under Assumptions 6.2 and 6.3, when α >

ϵf
∥f∥F

, we have:

∥HPROPGCL − fX∥F < min (∥HPROP − fX∥F , ∥HGCL − fX∥F) .

Proof. Since GCL has sufficient capacity to fit T ∗ = f + g, at convergence we have:

∥HGCL − (f + g)X∥F ≈ 0.

However, for downstream performance, we care about proximity to fX , i.e.,

∥HGCL − fX∥F = ∥HGCL − (f + g)X+ gX∥F .

By applying the triangle inequality, we obtain:

∥HGCL − fX∥F ≥ ∥gX∥F − ∥HGCL − (f + g)X∥F .

When GCL overfits to the CL loss, it yields:

∥HGCL − fX∥F ≥ ∥gX∥F = α∥f∥F ∥X∥F . (9)

According to the Chebyshev approximation theory, continuous functions admit exponentially fast
polynomial approximation, while discontinuous mappings incur large approximation error (Xu et al.,
2019; Rahaman et al., 2019). Let θ̂ be the learned parameters. Then we have

∥HPROPGCL − fX∥F =

∥∥∥∥∥∑
k

θ̂kA
kX− fX

∥∥∥∥∥
F

≤ ϵf∥X∥F . (10)

PROP is a special case of PROPGCL by letting θK = 1, θi = 0, i ̸= K. Therefore, PROP satisfies∥∥Ak − f
∥∥
F
≥ δ with δ > ϵf , leading to:

∥HPROP − fX∥F =
∥∥AKX− fX

∥∥
F
≥ δ∥X∥F . (11)

From Equation 9, Equation 10, and Equation 11, we obtain that: For PROPGCL and PROP, we have
ϵf∥X∥F < δ∥X∥F . This holds since ϵf < δ.

For PROPGCL and GCL, we have ϵf∥X∥F < α∥f∥F ∥X∥F . This holds when α >
ϵf

∥f∥F
.

Therefore, under the stated conditions, we finally have:

∥HPROPGCL − fX∥F < min (∥HPROP − fX∥F , ∥HGCL − fX∥F) ,

which ends the proof.

I EXPERIMENTS ON GCL WITH RANDOM WEIGHTS

In Section 5.1, we show that in the DGI method, after replacing the trained transformation weights
with a random Gaussian matrix, the downstream performance does not deteriorate as expected. We
conclude that the transformation weights learned in GCL are not better than random. To enhance the
generalizability of our conclusion, we extended our experimental evaluations to include more GCL
methods, propagators, and initialization methods. The experimental settings are kept the same.

Variants on GCL methods. Table 14 shows the results using the GRACE and BGRL methods. For
GRACE, replacing the transformation weights with random weights raises the performance from
73.93% to 74.51% on average. For BGRL, the replacement brings an increase of more than 2% in
average performance.

Variants on initialization methods. We compare GCL weights with four random initializations:
Gaussian, Uniform, Kaiming (He et al., 2015), Xavier (Glorot & Bengio, 2010)). Table 15 shows
that all randomized weights perform comparably to (even slightly better than) GCL-trained weights,
confirming the GCL weights deficiency.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Variants on the propagators. We consider an alternative APPNP-like propagator (Gasteiger et al.,
2019a):

HAPPNP = (1− α)AkX+ αX,
where α is the teleport (or restart) probability. As shown in Table 16, for the APPNP propagator,
GCL-learned weights still show no significant advantage over different random weights.

Although we can not exhaustively try all GCL random variants, the results of representative variants
above are able to verify that many GCL methods fail to learn effective transformation weights.

Table 14: Test accuracy (%) of node classification benchmarks with GRACE and BGRL methods,
comparing the GCL-learned transformation weights and random weights. Bold indicates the best-
performing weights in each GCL method.

Method Weights Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean

GRACE GCL-learned 83.15 ± 0.82 74.97 ± 0.56 81.53 ± 0.25 48.46 ± 0.95 67.24 ± 1.42 84.75 ± 2.95 70.88 ± 2.00 80.49 ± 2.13 73.93

Randomize W 82.91 ± 0.72 69.93 ± 0.59 81.39 ± 0.40 53.82 ± 0.79 69.67 ± 1.01 84.59 ± 2.79 73.25 ± 1.38 80.49 ± 2.30 74.51

BGRL GCL-learned 83.27 ± 0.79 73.40 ± 0.93 81.36 ± 0.29 40.43 ± 0.77 65.07 ± 0.96 81.97 ± 3.11 73.38 ± 2.25 80.00 ± 2.13 72.36

Randomize W 82.43 ± 0.44 73.85 ± 0.74 80.77 ± 0.28 54.12 ± 0.67 71.40 ± 1.16 84.59 ± 3.11 71.38 ± 5.25 80.33 ± 1.97 74.86

Table 15: Test accuracy (%) of node classification benchmarks with DGI method, comparing the
transformation weights learned and random weights initialized in different methods. Bold indicates
the best method, while underlined is the second-best.

Training Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
GCL 83.23 ± 0.74 74.24 ± 0.55 82.10 ± 0.33 45.92 ± 0.65 64.00 ± 1.33 81.15 ± 2.13 71.88 ± 2.50 80.33 ± 1.80 72.86

Gaussian-random 83.02 ± 0.94 70.04 ± 0.82 83.87 ± 0.53 49.62 ± 0.99 67.94 ± 1.16 80.33 ± 1.81 72.25 ± 2.25 80.33 ± 1.97 73.43

Uniform-random 82.63 ± 1.05 70.63 ± 1.13 83.38 ± 0.50 44.49 ± 1.03 68.42 ± 0.92 82.62 ± 2.62 73.25 ± 2.25 80.82 ± 1.80 73.28

Kaiming-random 82.46 ± 0.71 69.09 ± 0.71 83.68 ± 0.32 44.99 ± 0.63 68.42 ± 1.53 82.46 ± 2.79 75.75 ± 3.38 80.66 ± 1.97 73.44
Xavier-random 82.45 ± 0.74 68.90 ± 0.74 83.56 ± 0.43 45.02 ± 0.64 68.34 ± 1.47 82.95 ± 2.30 75.13 ± 1.75 80.82 ± 1.97 73.40

Table 16: Test accuracy (%) of node classification benchmarks with DGI method and APPNP
propagator, comparing the GCL-learned transformation weights and different random weights. Bold
indicates the best method, while underlined is the second-best.

Training Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
GCL 84.79 ± 0.80 75.47 ± 0.76 82.25 ± 0.24 40.74 ± 0.61 58.99 ± 1.40 80.33 ± 1.97 87.00 ± 2.50 80.33 ± 1.80 73.74

Gaussian-random 85.42 ± 0.99 76.49 ± 0.55 84.85 ± 0.16 45.76 ± 0.69 58.95 ± 1.23 82.79 ± 3.28 88.50 ± 2.63 83.44 ± 3.61 75.78
Uniform-random 85.34 ± 0.84 76.81 ± 0.68 84.60 ± 0.24 43.87 ± 0.90 58.42 ± 0.96 78.69 ± 2.62 86.88 ± 1.25 78.52 ± 2.46 74.14

Kaiming-random 83.23 ± 1.00 75.68 ± 0.79 83.76 ± 0.15 39.31 ± 0.91 55.89 ± 1.44 81.15 ± 4.59 87.25 ± 3.25 81.15 ± 4.43 73.43

Xavier-random 83.02 ± 0.69 75.28 ± 0.61 83.10 ± 0.19 38.55 ± 0.86 55.60 ± 1.20 81.15 ± 4.10 87.63 ± 3.13 78.69 ± 6.23 72.88

J FLIP CL-SL EXPERIMENTS IN SECTION 5

In the flip experiment, we first train the network parameters via GCL and save the learned trans-
formation weights WCL and propagation coefficients θCL. We then proceed with the following
experiments:

Experiment 1 (Fix-transformation). We initialize and freeze transformation weights with the
GCL-trained WCL, and only learn propagation coefficients θ through supervised learning.

Experiment 2 (Fix-propagation). We initialize and freeze propagation coefficients with the GCL-
trained θSL, and only learn transformation weights W through supervised learning.

Experiment 3 (All-one baseline). We further consider a baseline with GCL-trained transformation
weights WCL and a fixed all-one propagation coefficients 1.

As shown in Table 17, despite using the propagation coefficients learned via GCL, the model still
achieves satisfying performances of 77.57%, compared to the original supervised model with 80.41%.
However, after replacing the transformation weights with GCL-learned ones, the performance
deteriorates largely with an accuracy of only 65.01%. The results further confirm our conclusion in
Section 5.2 that GCL learns effectively during the propagation phase.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 17: Test accuracy (%) of node classification benchmarks. We freeze the propagation coefficients
with θCL (or the transformation weights with WCL), and learn the transformation weights (or
propagation coefficients) in the supervised setting. 1 denotes an all-one vector. Bold indicates the
best, while underlined represents the second-best choice.

Method θ W Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
SL Learn Learn 88.39 ± 0.74 79.67 ± 0.72 87.11 ± 0.25 49.34 ± 1.09 69.52 ± 0.96 89.67 ± 2.13 91.25 ± 2.75 88.36 ± 3.11 80.41
CL θCL WCL 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61 72.09

Fix-transformation Learn WCL 76.62 ± 2.12 76.25 ± 0.64 83.32 ± 0.46 36.56 ± 0.61 52.41 ± 2.06 60.16 ± 6.39 75.25 ± 4.38 59.51 ± 5.08 65.01

Fix-propagation θCL Learn 87.06 ± 0.53 79.55 ± 0.74 85.76 ± 0.23 41.44 ± 1.06 64.44 ± 0.74 87.38 ± 2.95 90.63 ± 3.00 84.26 ± 2.62 77.57

All-one baseline 1 Learn 71.74 ± 3.22 75.92 ± 0.61 79.38 ± 0.47 33.27 ± 0.61 42.32 ± 0.90 55.41 ± 4.43 74.13 ± 4.13 60.82 ± 6.56 61.65

K DETAILS ABOUT POLYNOMIAL GNNS

In this section, we introduce polynomial GNNs from the spectral perspective. Developed from graph
signal processing, graph convolution means transforming the graph signals to the Fourier domain and
then back to the vertex domain after suitable filtering, i.e., H = Ugθ(Λ)U⊤X, where gθ is the filter,
U is the matrix of eigenvectors of graph Laplacian L, Λ is the diagonal matrix of eigenvalues. The
problem arises when the parameters in gθ(Λ) are entirely unconstrained, leading to a lack of spatial
localization in the convolution and a high time complexity due to eigenvalue decomposition.

These issues can be overcome with the use of a polynomial filter gθ(Λ) =
∑K−1

k=0 θkΛ
k, where the

parameter θ ∈ RK is a vector of polynomial coefficients. Therefore, the graph convolution can be
reformulated as H = (

∑K−1
k=0 θkL

k)X. We call GNNs using the polynomial approximated filters as
polynomial GNNs. As one of the pioneer works, ChebNet (Defferrard et al., 2016) uses Chebyshev
polynomial parametrization to localize filters as gθ(Λ) =

∑K
k=0 θkTk(Λ̃), where Λ̃ = 2Λ/λmax−I,

θ is the Chebyshev coefficients, and Tk(Λ̃) is the Chebyshev polynomial of order k recursively
calculated by Tk(x) = 2xTk−1(x)− Tk−2(x) with T0(x) = 1 and T1(x) = x.

In Section 6, we consider three popular polynomial GNN variants. GPRGNN (Chien et al., 2021)
uses the monomial basis functions evaluated at Â, i.e., gθ(Λ) =

∑K−1
k=0 θk(I − L̂)k with θ as

learnable coefficients. BernNet (He et al., 2021) uses the Bernstein polynomial approximation,
i.e., gθ(Λ) =

∑K−1
k=0 θk

1
2k

(
K
k

)
(2I − L)K−kLk with θ as learnable coefficients. ChebNetII (He

et al., 2022) enhances the original Chebyshev polynomial approximation by Chebyshev interpolation,
formulated as gθ(Λ) = 2

K+1

∑K
k=0

∑K
j=0 θjTk(xj)Tk(L̂), where xj = cos((j + 1/2)π/(K + 1))

are the Chebyshev nodes of TK+1, and θ are learnable coefficients.

L BASIS POLYNOMIAL FUNCTIONS ANALYSIS OF PROPGCL

Polynomial GNNs variants mainly differ in the polynomial basis function choices, e.g., the monomial
basis in GPRGNN (Chien et al., 2021), the Bernstein basis in BernNet (He et al., 2021), and
the Chebyshev basis in ChebNetII (He et al., 2022). We have introduced detailed basis function
formulations in Appendix K.

In this section, we compare different basis polynomial functions used in PROPGCL. Here, we
consider the Chebyshev basis, Bernstein basis, and monomial basis. As shown in Table 18 and Table
19, the performance of PROPGCL is relatively robust in the choice of basis functions. For homophily
benchmarks, PROP-GRACE with Chebyshev basis and the PROP-DGI with monomial basis achieve
the best, surpassing the second slightly by 0.05% on average. For heterophily benchmarks, the best
PROP-DGI with the Chebyshev basis achieves 73.71% on average, and the Bernstein basis ranks
second. In general, the Chebyshev basis is preferred in PROPGCL.

M CLUSTERING QUALITY ESTIMATION

To exclude the impact of linear-probing, we also evaluate the clustering quality of raw features
and representations learned by GRACE and PROP-GRACE. We conduct KMeans on unsupervised
representations and esitimate two clustering metrics Clustering Accuracy and Normalized Mutual
Information (NMI). As shown in Table 20 and Table 21, PROP-GRACE outperforms both baselines

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 18: Test accuracy (%) of homophily node classification benchmarks, comparing different basis
polynomial functions in PROPGCL. Bold indicates the best method, while underlined represents the
second-best choice.

Method Basis Cora CiteSeer PubMed Photo Computers CS Mean

PROP-GRACE

Chebyshev 87.42 ± 0.95 81.56 ± 0.83 86.19 ± 0.35 93.32 ± 0.31 88.12 ± 0.23 95.95 ± 0.14 88.76
Bernstein 87.52 ± 1.20 81.69 ± 0.86 85.90 ± 0.25 93.42 ± 0.24 87.77 ± 0.22 95.97 ± 0.13 88.71

monomial 87.34 ± 1.13 81.86 ± 0.79 86.41 ± 0.23 93.19 ± 0.26 86.85 ± 0.34 95.91 ± 0.15 88.59

PROP-DGI

Chebyshev 86.19 ± 1.05 80.78 ± 0.65 85.14 ± 0.22 92.78 ± 0.37 89.81 ± 0.20 95.82 ± 0.18 88.42

Bernstein 86.49 ± 0.99 80.93 ± 0.72 85.80 ± 0.40 93.53 ± 0.26 89.77 ± 0.25 95.46 ± 0.16 88.66

monomial 86.86 ± 1.02 81.69 ± 0.86 86.56 ± 0.33 93.72 ± 0.25 88.18 ± 0.34 95.57 ± 0.14 88.76

Table 19: Test accuracy (%) of heterophily node classification benchmarks, comparing different basis
polynomial functions in PROPGCL. Bold indicates the best method, while underlined represents the
second-best choice.

Method Basis Squirrel Chameleon Actor Texas Wisconsin Cornell Mean

PROP-GRACE

Chebyshev 55.09 ± 0.81 71.73 ± 1.18 39.35 ± 0.81 89.84 ± 1.81 88.50 ± 3.63 86.72 ± 2.46 71.87

Bernstein 48.51 ± 0.85 70.02 ± 0.88 39.33 ± 0.81 90.16 ± 1.31 89.00 ± 3.25 88.52 ± 2.95 70.92

monomial 51.96 ± 0.69 69.28 ± 1.05 39.52 ± 0.89 84.43 ± 2.62 84.13 ± 4.50 88.20 ± 2.79 69.59

PROP-DGI

Chebyshev 60.53 ± 0.66 74.11 ± 0.96 39.53 ± 0.84 91.80 ± 2.30 88.88 ± 2.50 87.38 ± 2.62 73.71
Bernstein 53.08 ± 0.83 71.20 ± 0.81 39.48 ± 0.77 92.46 ± 1.48 91.63 ± 3.00 87.38 ± 2.63 72.54

monomial 56.65 ± 0.77 72.12 ± 0.72 37.80 ± 0.57 93.11 ± 1.80 83.63 ± 5.88 81.97 ± 2.95 70.88

on average, demonstrating better clustering effectiveness. Compared to the state-of-the-art perfor-
mance in linear probing, PROP-GRACE fails to consistently surpass GRACE across all benchmarks.
Therefore, we recommend adopting PROPGCL in a CL+linear-probing use case, i.e., training a
simple linear classifier on the unsupervised representations in downstream tasks.

Table 20: Clustering Accuracy (%) of node classification benchmarks, comparing Raw Features (RF),
GRACE, and PROP-GRACE. Bold indicates the best method, while underlined is the second-best.

Cora CiteSeer PubMed Squirrel Computers Photo Chameleon Texas Wisconsin Cornell Mean
RF 30.06 37.60 59.86 38.21 37.52 20.32 23.36 44.26 51.79 44.26 38.72

GRACE 43.24 56.36 64.68 31.06 47.22 24.51 26.75 46.45 43.03 32.24 41.55

PROP-GRACE 51.81 67.45 61.39 39.97 46.01 31.46 29.07 46.45 41.83 41.53 45.70

N ROBUSTNESS COMPARISON

N.1 NOISY FEATURES SENSITIVITY ANALYSIS

In Appendix F, we evaluate PROP’s performance under node feature perturbations. Here, we
extend this analysis to PROPGCL (using PROP-GRACE as a representative) and compare it against
two baselines: raw features (RF) and PROP. We examine two perturbation scenarios- 1). Noise
Perturbation: Gaussian noise is added to the original node features to generate noisy inputs; 2).
Masking Perturbation: Random channels of the node features are masked at varying ratios in 20%,
40%, 60%, and 80%.

As shown in Tables 22 and 23, PROP-GRACE exhibits significantly stronger robustness compared
to both RF and PROP. Specifically, it outperforms RF by >30% on noise-perturbed features and
maintains consistent improvements across all masking ratios. These results highlight the advantages
of PROP-GRACE’s on noisy or low-dimensional features.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 21: NMI of node classification benchmarks, comparing Raw Features (RF), GRACE, and
PROP-GRACE. Bold indicates the best method, while underlined is the second-best.

Cora CiteSeer PubMed Squirrel Computers Photo Chameleon Texas Wisconsin Cornell Mean
RF 0.1031 0.1504 0.3105 0.2231 0.2567 0.0040 0.0123 0.2018 0.3738 0.2018 0.1838

GRACE 0.3476 0.3166 0.2257 0.2179 0.4584 0.0150 0.0163 0.1897 0.2382 0.0345 0.2060

PROP-GRACE 0.3623 0.4136 0.3380 0.3071 0.4039 0.0818 0.0885 0.1491 0.1044 0.0536 0.2302

Table 22: Test accuracy (%) of noise-perturbed node classification benchmarks, comparing Raw
Features (RF), PROP and PROP-GRACE. We add noise from a normal distribution onto the original
features to generate randomly noisy node features. Bold indicates the best method.

Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon Mean
RF 39.90 ± 6.85 32.31 ± 8.47 57.28 ± 5.69 42.60 ± 7.57 54.57 ± 6.27 21.34 ± 1.03 25.47 ± 2.47 39.07

PROP 76.73 ± 2.02 69.25 ± 2.44 81.50 ± 2.00 73.76 ± 11.58 70.23 ± 7.74 48.94 ± 6.14 69.39 ± 2.15 69.97
PROP-GRACE 80.77 ± 0.92 70.85 ± 1.20 81.17 ± 0.29 80.07 ± 0.48 72.06 ± 0.67 58.47 ± 0.72 67.79 ± 1.20 73.03

N.2 HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we undertake a hyperparameter sensitivity analysis to compare PROPGCL with its
GCL backbone counterpart. The investigation entails manipulating a spectrum of hyperparameters to
assess their impact on performance metrics. Specifically, we focus on two pivotal hyperparameters
within the model architecture: the hidden dimension and the number of propagation steps. Figure
4 illustrates that the performance of DGI is notably sensitive to perturbations in hyperparameters.
For instance, on the Cora dataset, a reduction in the hidden dimension from 256 to 128 results in
a substantial accuracy decrement of approximately 40%. Conversely, as shown in Figure 5, the
robustness of PROP-DGI is evident across various hyperparameter configurations, with a sharp
decline only observed when using small neural networks.

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

78.54 59.11 78.92 78.78

80.49 61.11 79.97 76.73

77.56 55.25 78.11 48.88

50

55

60

65

70

75

80

(a) PubMed

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

81.59 43.86 77.04 31.15

83.19 40.94 80.20 31.99

83.04 43.86 81.41 38.44 40

50

60

70

80

(b) Cora

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

55.76 27.03 27.60 71.31

70.86 28.79 27.30 29.32

26.15 26.62 26.59 27.27
30

40

50

60

70

(c) CiteSeer

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

50.31 48.93 45.25 34.66

51.03 50.13 47.94 45.93

49.39 50.74 33.61 40.55
35.0

37.5

40.0

42.5

45.0

47.5

50.0

(d) Chameleon

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

34.20 32.56 27.24 28.66

34.30 33.44 29.67 28.71

29.86 34.27 33.65 28.33
28

29

30

31

32

33

34

(e) Squirrel

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

79.34 74.10 73.11 57.38

80.82 73.77 76.56 57.21

80.49 69.18 76.07 57.38
60

65

70

75

80

(f) Texas

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

75.41 75.74 74.10 58.03

79.18 76.56 77.54 57.87

77.70 71.15 78.85 58.36
60

65

70

75

(g) Cornell

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

58.00 62.75 81.75 57.25

68.00 72.00 81.25 67.25

62.25 74.00 81.25 57.62
60

65

70

75

80

(h) Wisconsin

Figure 4: Hyperparameter sensitivity analysis of DGI with ChebNetII as the encoder. We evaluate
the performances by varying the hidden dimension and propagation step.

O TRIALS IN THE FEW-SHOT LEARNING SETTING

In Section 5, we observe that GCL has the potential to learn good propagation coefficients given
well-trained transformation weights. It inspires methods in the few-shot scenario, where a model is
tasked with achieving effective generalization from a minimal number of labeled examples per class.

In this study, we examine the N -shot case, where N denotes the number of examples per class used
for training and is commonly chosen as 3 or 5. For our approach, we train the propagation coefficients
via GCL and then focus on optimizing the transformation weights supervisedly on the given support

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 23: Test accuracy (%) of modified node classification benchmarks, comparing Raw Features
(RF), PROP, and PROP-GRACE. We randomly mask a proportion of features to generate perturbed
node features. Bold indicates the best method, while underlined represents the second-best.

Mask ratio Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon Mean

20%
RF 54.01 ± 3.40 60.34 ± 4.24 70.00 ± 4.66 65.87 ± 5.16 68.59 ± 4.98 28.37 ± 0.67 41.77 ± 2.78 55.56

PROP 76.19 ± 3.76 71.87 ± 2.68 83.85 ± 0.99 89.78 ± 1.51 83.37 ± 2.18 47.13 ± 4.50 64.40 ± 2.45 73.80

PROP-GRACE 80.36 ± 0.84 73.27 ± 0.66 82.12 ± 0.16 88.00 ± 0.42 79.19 ± 0.50 56.93 ± 0.48 67.37 ± 1.40 75.32

40%
RF 49.10 ± 2.61 44.68 ± 9.49 58.36 ± 5.81 50.62 ± 9.53 53.56 ± 9.74 25.67 ± 1.97 34.99 ± 4.88 45.28

PROP 61.25 ± 6.68 54.87 ± 10.25 76.85 ± 4.43 76.16 ± 10.29 64.66 ± 10.61 38.68 ± 5.98 53.90 ± 6.67 60.91

PROP-GRACE 80.79 ± 1.07 73.78 ± 0.86 81.55 ± 0.18 87.38 ± 0.50 71.29 ± 0.29 53.21 ± 0.53 64.38 ± 1.09 73.20

60%
RF 46.95 ± 5.67 36.10 ± 8.12 55.88 ± 4.87 44.29 ± 7.96 53.85 ± 7.58 23.22 ± 2.27 30.72 ± 4.09 41.57

PROP 54.47 ± 6.93 42.59 ± 10.70 63.68 ± 9.19 60.27 ± 14.32 60.69 ± 8.46 28.47 ± 6.50 41.03 ± 8.97 50.17

PROP-GRACE 78.39 ± 1.13 72.01 ± 1.11 79.13 ± 0.20 78.87 ± 0.50 70.06 ± 0.87 47.06 ± 0.85 63.76 ± 1.18 69.90

80%
RF 48.33 ± 3.69 30.18 ± 5.64 52.01 ± 3.18 41.47 ± 5.78 57.87 ± 2.63 21.93 ± 2.04 28.42 ± 3.13 40.03

PROP 49.06 ± 6.39 33.77 ± 9.83 57.89 ± 8.73 57.89 ± 8.73 60.37 ± 5.14 26.35 ± 5.38 34.64 ± 9.06 44.90

PROP-GRACE 60.20 ± 1.40 63.83 ± 1.13 65.29 ± 0.44 71.38 ± 1.04 64.85 ± 0.98 38.84 ± 1.13 55.80 ± 1.44 60.03

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

79.32 81.64 77.47 81.88

82.23 78.46 84.89 81.44

82.92 78.50 85.01 80.52
78

79

80

81

82

83

84

85

(a) PubMed

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

76.49 77.00 84.15 77.14

76.68 77.80 84.84 76.91

86.03 85.86 85.93 55.06 60

65

70

75

80

85

(b) Cora

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

79.51 74.52 76.21 74.46

78.72 73.04 76.48 74.72

80.78 66.26 77.05 74.52
68

70

72

74

76

78

80

(c) CiteSeer

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

64.09 74.11 73.74 73.76

70.33 70.31 62.06 70.35

72.14 69.45 72.08 50.33 55

60

65

70

(d) Chameleon

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

47.79 48.32 60.29 58.66

49.28 52.24 48.72 28.92

58.99 59.92 60.27 28.91

30

35

40

45

50

55

60

(e) Squirrel

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

89.84 89.34 83.93 83.61

90.82 91.80 81.80 81.48

90.16 87.38 82.30 86.56

82

84

86

88

90

(f) Texas

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

86.39 86.07 85.25 85.08

85.25 85.08 82.79 84.43

86.72 87.21 85.90 85.74

83

84

85

86

87

(g) Cornell

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n
St

ep

72.62 68.88 62.88 87.25

87.75 80.50 51.38 87.88

88.00 82.50 47.38 88.88
50

60

70

80

(h) Wisconsin

Figure 5: Hyperparameter sensitivity analysis of PROP-DGI with the Chebyshev basis. We evaluate
the performances by varying the hidden dimension and propagation step.

examples. The method is termed as Fix-prop SL. For the baseline, we consider the ChebNetII
models trained via supervised learning (SL) and contrastive learning (CL).

As illustrated in Table 24, this approach yields improvements on several benchmarks. For instance,
Fix-prop SL enhances SL accuracy from 57.51% to 72.60% on Cora in the 5-shot case, and from
39.19% to 65.39% in the 3-shot case. However, the Fix-prop SL approach has minimal impact
on the Squirrel and Chameleon datasets. The results demonstrate the potential of integrating SL
and CL from a decoupling perspective in the few-shot scenario. Notably, we keep hyperparameters
consistent across all training methods and benchmarks, leaving ample room for further exploration
beyond this initial investigation.

Table 24: , comparing models trained with SL, CL, and Fix-prop SL settings. Bold indicates the best,
while underlined represents the second-best choice.

Training Cora CiteSeer PubMed Squirrel Chameleon

5 Shot
SL 57.51 ± 2.29 43.11 ± 3.75 59.62 ± 2.56 20.15 ± 0.30 22.09 ± 1.60
CL 66.88 ± 2.29 55.02 ± 4.64 63.20 ± 2.64 28.41 ± 0.87 36.92 ± 2.52

Fix-prop SL 72.60 ± 1.43 53.26 ± 4.03 67.66 ± 2.58 20.60 ± 0.90 23.30 ± 1.91

3 Shot
SL 39.19 ± 3.96 37.52 ± 2.25 55.89 ± 2.55 20.27 ± 0.55 21.40 ± 1.26
CL 64.46 ± 4.34 55.85 ± 5.15 59.88 ± 3.49 25.89 ± 1.54 36.12 ± 1.34

Fix-prop SL 65.39 ± 2.15 46.90 ± 3.40 61.46 ± 5.49 20.38 ± 0.69 27.85 ± 3.02

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 L
os

s

GCL w. transformation

0 200 400 600 800 1000
Epoch

0.6910

0.6915

0.6920

0.6925

0.6930

Tr
ai

ni
ng

 L
os

s

GCL w.o transformation

Figure 6: Training Curve on Cora

0 200 400 600 800 1000
Epoch

0.6929

0.6930

0.6931

0.6932

0.6933

0.6934

Tr
ai

ni
ng

 L
os

s

GCL w.o transformation

Figure 7: Training Curve on CiteSeer

0 200 400 600 800 1000
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 L
os

s

GCL w. transformation

0 200 400 600 800 1000
Epoch

0.6918

0.6920

0.6922

0.6924

0.6926

0.6928

0.6930

0.6932

Tr
ai

ni
ng

 L
os

s

GCL w.o transformation

Figure 8: Training Curve on Computers

0 200 400 600 800 1000
Epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Tr
ai

ni
ng

 L
os

s

GCL w. transformation

0 200 400 600 800 1000
Epoch

0.689

0.690

0.691

0.692

0.693

Tr
ai

ni
ng

 L
os

s

GCL w.o transformation

Figure 9: Training Curve on Photo

P CONTRASTIVE TRAINING LOSS CURVES

As demonstrated in Figure 6 to Figure 9, across multiple benchmarks, GCL with transformation
rapidly drives the CL training loss to near zero. In contrast, GCL without transformation maintains
a moderate loss level, reflecting its resistance to over-optimizing the CL objective. It verifies the
conclusion in Section 5.3 that transformation leads to the overfitting to contrastive loss and may
negatively transfer to downstream tasks.

Q EFFICIENCY ANALYSIS OF PROPGCL

By excluding transformation weights, PROPGCL demonstrates greater efficiency than the baseline
models in both time and memory usage, as evidenced by Tables 25 to 27. For example, PROP-
GRACE reduces training time per epoch by 84.29% compared to GRACE with Chebyshev basis on
the CS dataset. In terms of memory consumption, PROP-GRACE reduces encoder memory usage
by over 99% across various benchmarks relative to the original baseline. Remarkably, PROP-GGD
achieves a 20% reduction in training time compared to GRACE on large-scale OGB benchmarks,
underscoring the scalability of PROPGCL for large-scale graph learning tasks.

In most real-world graph scenarios, PROPGCL demonstrates significantly higher time efficiency
compared to its backbone, even for large-scale graphs. For edge cases involving extremely dense
graphs and high feature dimensionality, we propose a lightweight solution—prepending a random
projection layer before propagation, whose efficacy is validated in Table 2.

Below, we provide a detailed time complexity analysis. For simplicity, consider a basic propagator
AX , with time complexity O(|E| × d), where d is the feature dimension and |E| is the edge number.
The transformation HW has complexity O(|V | × din × dout), where din = df is the input feature
dimension, dout is hidden dimension and |V | is node number. PROPGCL utilizes pure propagation
as O(|E| × df), while the backbone combines both, i.e., O(|V | × df × dout + |E| × dout). The
time improvement is ∆ = O(|V |(df (dout − s) + s × dout)), where s = |E|/|V | is the sparsity
factor. The key insights are (1) for typical graphs (low s, moderate df), PROPGCL’s gains grow with
df , as dout > s often holds for real-world sparse graphs, validated in Table 28. and (2) for dense
and high-dimensional cases, while gains may narrow, we can lightweightly fix it by prepending a
random projection layer before propagation. Table 2 verifies random projections’ efficacy, and their
no-training nature preserves efficiency. Therefore, PROPGCL’s speedup holds across most practical
settings.

To verify the feasibility of the random projector, we construct synthetic graphs using the Erdős–Rényi
model, consisting of 1000 nodes with a feature dimension of 10,000 and an edge probability of 0.5,
resulting in a dense graph with extremely high-dimensional features. To generate meaningful yet
non-trivial node features, we combine topological properties (degree, clustering coefficient) and
community structure (from spectral clustering). To prevent overly discriminative features, we further

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

corrupt them with Gaussian noise (std=1.0). Node labels are assigned based on communities, and the
data is split into train/validation/test sets following the paper’s settings. We evaluate three variants: (1)
DGI: vanilla GCL with spectral GNNs as the backbone, (2) PROP-DGI: the method proposed in the
paper, removing the transformation entirely, (3) PROP-DGI-RAND: extends PROP-DGI by adding
a frozen random projection layer before propagation. The results are shown in Table 29. Although
sacrificing a modest performance compared with PROP-DGI, PROP-DGI-RAND still significantly
improves over DGI on test accuracy (90.90% vs. 58.05%). Moreover, the random projection further
decreases the training time for PROP-DGI from 0.1918s to 0.0227s, demonstrating its efficiency on
high-dimensional dense graphs.

Table 25: Training time per epoch in seconds between PROP-GRACE and GRACE. Experiments
are all conducted on a single 24GB NVIDIA GeForce RTX 3090, except those denoted with ∗ on
48GB Nvidia A40 for out-of-memory. Improvement refers to the percentage increase in speed of the
-PROP version compared to the baseline, i.e., (tGRACE − tPROP−GRACE)/tGRACE.

Basis Method Cora CiteSeer PubMed Photo Computers CS Squirrel Chameleon Actor

Chebyshev GRACE 0.1611 0.1939 0.2795 0.2872 0.4639 1.5111* 0.7004 0.2295 0.2872
PROP-GRACE 0.1409 0.1478 0.2650 0.2400 0.3626 0.2374* 0.2581 0.1450 0.2073

Improvement 12.54% 23.79% 5.18% 16.44% 21.84% 84.29% 63.15% 36.82% 27.83%

Bernstein GRACE 0.1515 0.2215 0.2513 0.4878 0.9293 6.7666* 1.8997 0.4079 0.2619
PROP-GRACE 0.1226 0.1178 0.2334 0.3832 0.6968 0.6038* 0.5175 0.1653 0.1789

Improvement 19.03% 46.79% 7.10% 21.45% 25.02% 91.08% 72.76% 59.47% 31.69%

Monomial GRACE 0.1114 0.1023 0.1217 0.1606 0.2340 1.2487* 0.3714 0.1524 0.1202
PROP-GRACE 0.1024 0.1224 0.1221 0.1428 0.1928 0.1927* 0.1650 0.1151 0.1109

Improvement 8.06% 16.42% 0.31% 11.12% 17.61% 84.57% 55.56% 24.46% 7.74%

Table 26: Memory consumption of encoder in KBs between PROP-GRACE and GRACE. Improve-
ment refers to the percentage decrease in the memory consumption of the -PROP version compared
to the baseline. i.e., (mGRACE −mPROP−GRACE)/mGRACE.

Method Cora CiteSeer PubMed Photo Computers CS Squirrel Chameleon Actor
GRACE 3894.04 8434.04 2028.04 2518.04 2562.04 2562.04 5206.04 5678.04 2892.04

PROP-GRACE 11.24 28.97 3.95 5.86 6.04 6.04 16.36 18.21 7.32
Improvement 99.71% 99.66% 99.81% 99.77% 99.76% 99.76% 99.69% 99.68% 99.75%

Table 27: Training time per epoch in seconds and memory consumption of encoder in KBs between
GGD and PROP-GGD on OGB benchmarks. Experiments are conducted on a single 80GB NVIDIA
A100. Improvement refers to the percentage increase in speed or decrease in memory consumption.

Metric Method ogbn-arxiv ogbn-products

Time (Memory)

GGD 1.0270 (2324.00) 284.3968 (12740.00)

PROP-GGD 0.7892 (3.5) 212.0509 (3.52)

Improvement 23.15% (99.85%) 25.44% (99.97%)

We also include direct comparisons with an efficient GCL method SimGCL (Yu et al., 2022), which
is explicitly designed to reduce augmentation overhead. SimGCL reduces the cost of heavy graph
augmentations by replacing them with uniform embedding noise. In contrast, PROPGCL removes
transformation weights entirely, thus eliminating both forward and backward propagation associated
with parameterized transformations, which is the dominant computation in most GCL architectures.
Table 30 summarizes the time savings in epoch-level training: SimGCL reduces training time by
17.51% on average, while PROP-GRACE achieves a 61.05% reduction, largely due to the elimination
of transformation modules. This demonstrates that the core source of efficiency is different: SimGCL
optimizes augmentation, while PROPGCL fundamentally simplifies the representation operator itself,
leading to a deeper reduction in computation.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Table 28: The relationships of sparse factor s and hidden dimension dout in popular benchmarks

Dataset s dout in best practice Relationships

Cora 1.95 64-512 dout > s

CiteSeer 1.36 64-512 dout > s

PubMed 2.25 64-512 dout > s

Photo 15.57 64-512 dout > s

Computers 17.88 64-512 dout > s

Chameleon 15.85 64-512 dout > s

Squirrel 41.74 64-512 dout > s

Table 29: Test accuracy (%) and training time (seconds) on the high-dimensional dense graph.

Method Accuracy Training Time
DGI 58.05 ± 1.40 0.6293

PROP-DGI 100.00 ± 0.00 0.1918

PROP-DGI-RAND 90.90 ± 1.30 0.0227

R COMPARISON WITH SUPERVISED CONTRASTIVE LEARNING

We hypothesize that the failure partly of learning effective transformation weights stems from the
unsupervised nature of the contrastive task, which leads to inefficient optimization without sufficient
guidance. As an initial exploration, we devise a supervised contrastive loss by selecting positive and
negative pairs according to ground-truth labels, following the principles of supervised contrastive
learning (Khosla et al., 2020; Graf et al., 2021). We apply the modified loss to the GCA framework
(termed SUP-GCL) and compare the learned transformation weights with those of GCL and SL. As
shown in Figure ??, incorporating supervised signals slightly mitigates the smooth characteristic
of GCL weights, but can’t fully solve the limitations. We believe the intrinsic reasons behind the
ineffective learning of transformation weights remain to be further explored. Fortunately, we find
that GCL promisingly captures propagation coefficients and, building on this insight, we propose
removing the transformation while retaining only propagation.

S TRIALS ON LEARNING EFFECTIVE TRANSFORMATION WEIGHTS IN GCL

According to the analysis in Section 5.1, GCL learns uninformative weights that are excessively
smooth. Here we try three ways to solve this problem: 1) enforcing the sparsity of weights with l1
normalization; 2) using whitening methods (Bell & Sejnowski, 1997; Kessy et al., 2018); 3) using
normalization methods (Huang et al., 2018; Hua et al., 2021; Guo et al., 2023a).

l1 regularization. As a typical technique, the l1 regularization encourages sparsity by driving some
weights to zero and retaining the most relevant features. In practice, we add a penalty proportional
to the sum of the absolute values of the encoder parameters to the contrastive loss, i.e., Ltotal =
LCL + λ

∑
i |wi|, where LCL is the contrastive loss, λ is the regularization strength, and the wi

is the parameters of the encoder. We conduct experiments on ChebNetII with the l1 regularized
GRACE training objective, varying the regularization strength λ in [1× 10−4, 1× 10−5, 1× 10−6].
As shown in Table 31, the l1 regularization improves performance over the original GRACE on
the Squirrel, Chameleon, Texas, Wisconsin, and Cornell datasets, though it still lags behind PROP,
except on Wisconsin. However, for Cora, Citeseer, and PubMed, l1 regularization negatively impacts
performance.

Whitening methods. Whitening methods are used to decorrelate and normalize data. By making
dimensions mutually independent, whitening methods implicitly solve the representation collapse
problem. Here we consider the typical Zero-phase Component Analysis (ZCA) whitening (Kessy
et al., 2018), which transforms the input data such that it has zero mean and identity covariance
matrix, while also preserving data structure as much as possible. It is computed by multiplying
the data by the inverse square root of its covariance matrix, i.e., x̂ = VΛ− 1

2V⊤x, where V is the

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 30: Time efficiency comparison, with the percentage denoting the decrease of the epoch time
consumption (seconds).

Method Photo Computers CS Squirrel Chameleon Average

GRACE 0.2872 0.4639 1.5111 0.7004 0.2295 0.6384
SimGCL 0.2637 (↓8.18%) 0.3947 (↓14.91%) 1.0329 (↓31.64%) 0.6374 (↓8.99%) 0.1893 (↓17.51%) 0.5036 (↓21.11%)

PROP-GRECE 0.2400 (↓16.44%) 0.3626 (↓21.84%) 0.2374 (↓84.29%) 0.2581 (↓63.15%) 0.1450 (↓36.82%) 0.2486 (↓61.05%)

Table 31: Test accuracy (%) of node classification benchmarks. We train ChebNetII using the l1
regularized GRACE objective. λ denotes the regularization strength. Bold indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell

PROP 85.48 ± 0.76 78.87 ± 0.63 82.89 ± 0.48 58.48 ± 1.03 68.82 ± 1.42 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11
λ=0 (GRACE) 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61

λ=1e-4 53.71 ± 1.10 26.97 ± 0.50 81.20 ± 0.21 33.07 ± 0.89 48.60 ± 1.42 80.98 ± 2.30 70.00 ± 1.88 82.79 ± 2.46

λ=1e-5 78.87 ± 1.17 73.29 ± 0.63 84.17 ± 0.23 37.46 ± 0.89 56.37 ± 1.01 56.56 ± 1.97 91.88 ± 2.25 81.80 ± 2.30

λ=1e-6 77.75 ± 0.80 73.90 ± 0.74 84.16 ± 0.21 38.27 ± 1.02 56.91 ± 1.09 52.79 ± 4.76 86.88 ± 2.88 74.26 ± 7.38

matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues of the covariance matrix of x. We
conduct experiments under the GRACE framework with a ZCA whitening layer added to the encoder
ChebNetII. As shown in Table 32, the whitening improves performance over the original GRACE on
the PubMed and Chameleon datasets but drastically deteriorates most of the other datasets.

Table 32: Test accuracy (%) of node classification benchmarks. We train ChebNetII using GRACE
with the ZCA whitening. Bold indicates the best, while underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell

PROP 85.48 ± 0.76 78.87 ± 0.63 82.89 ± 0.48 58.48 ± 1.03 68.82 ± 1.42 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11
GRACE 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61

GRACE+ZCA 79.29 ± 1.71 47.29 ± 0.70 85.76 ± 0.29 36.72 ± 0.91 58.60 ± 1.07 43.77 ± 8.36 27.38 ± 3.63 38.52 ± 6.23

Normalization methods. For normalization methods, we consider the widely used Batch Nor-
malization (BN) (Ioffe, 2015), and the recently proposed Decorrelate ContraNorm (DCN) (Guo
et al., 2023a). Batch normalization scales and shifts the mini-batch of data to have a mean of zero
and a standard deviation of one, i.e., x̂ = (x − µB)/

√
σ2
B + ϵ, where µB and σ2

B are the mean
and variance of the mini-batch B, and ϵ is a small constant for numerical stability. DCN scatters
representations in the embedding space and leads to a more uniform distribution. The formulation of
DCN is x̂ = x− s×x× softmax(x⊤x), where s is the scale factor. We conduct experiments under
the GRACE framework with a BN or DCN layer added to the encoder ChebNetII. As shown in Table
33, BN and DCN both fail to bring substantial improvement over the original GRACE.

In summary, these techniques offer limited effectiveness for GCL with polynomial GNNs. We think
the possible reason is that the learning of transformation weights needs a high-quality supervision sig-
nal. Although these methods help prevent representation collapse, they do not carry extra information.
Therefore, GCL still fails to learn good transformation weights.

Table 33: Test accuracy (%) of node classification benchmarks. We train ChebNetII using GRACE
with BN or DCN normalization. s denotes the scale factor in DCN. Bold indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell

PROP 85.48 ± 0.76 78.87 ± 0.63 82.89 ± 0.48 58.48 ± 1.03 68.82 ± 1.42 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11
GRACE 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61

GRACE + BN 82.25 ± 1.00 72.78 ± 1.00 85.10 ± 0.24 39.56 ± 0.47 54.77 ± 0.74 76.07 ± 2.95 72.63 ± 4.75 75.90 ± 2.79

GRACE + DCN (s=0.5) 79.79 ± 0.99 73.86 ± 0.86 84.00 ± 0.37 38.17 ± 0.95 56.19 ± 1.03 71.15 ± 2.13 83.25 ± 2.50 71.64 ± 4.59

GRACE + DCN (s=1.0) 75.19 ± 1.08 74.91 ± 0.63 83.06 ± 0.22 38.28 ± 1.12 57.35 ± 0.98 74.26 ± 1.64 90.50 ± 1.50 76.72 ± 3.11

GRACE + DCN (s=5.0) 74.40 ± 1.15 74.46 ± 0.63 79.41 ± 0.35 38.01 ± 0.79 58.97 ± 1.33 72.95 ± 3.44 83.25 ± 2.75 73.44 ± 3.44

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

T CHARACTERIZATION OF LEARNED TRANSFORMATION WEIGHTS

In Section 5.1, we demonstrated the transformation weights learned by DGI and SL on the Cora
dataset. Here, we extend these findings by presenting comprehensive results across various bench-
marks and GCL methods including GRACE, GCA, BGRL. As depicted from Figure 10 to Figure
14, the weights learned by SL display diverse, data-dependent distributions, while those learned by
CL consistently follow a Gaussian-like distribution that centers at zero. Although we can’t exhaust
all GCL methods, these representative methods provide further evidence that GCL often struggles
to learn effective transformation weights. In Figure 15, we provide results of SUP-CL on more
benchmarks, verifying that the participation of supervision signals slightly mitigates the ineffective
transformation learning problem.

1 0 1 2 3
Transformation Weight Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fr
eq

ue
nc

y

SL
CL

(a) Cora

1 0 1 2 3
Transformation Weight Value

0

2

4

6

8

Fr
eq

ue
nc

y

SL
CL

(b) CiteSeer

2 1 0 1 2
Transformation Weight Value

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Fr
eq

ue
nc

y

SL
CL

(c) PubMed

2 1 0 1 2
Transformation Weight Value

0

2

4

6

8

Fr
eq

ue
nc

y

SL
CL

(d) Photo

1.0 0.5 0.0 0.5 1.0
Transformation Weight Value

0

2

4

6

8

10

12

Fr
eq

ue
nc

y

SL
CL

(e) Computers

4 3 2 1 0 1 2
Transformation Weight Value

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Fr
eq

ue
nc

y

SL
CL

(f) Chameleon

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Transformation Weight Value

0

1

2

3

4

5

6

7
Fr

eq
ue

nc
y

SL
CL

(g) Squirrel

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Transformation Weight Value

0
2
4
6
8

10
12
14
16

Fr
eq

ue
nc

y

SL
CL

(h) Cornell

Figure 10: Distribution of the transformation weights learned by GRACE and SL.

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Transformation Weight Value

0

2

4

6

8

10

12

14

16

Fr
eq

ue
nc

y

SL
CL

(a) Cora

0.2 0.1 0.0 0.1 0.2
Transformation Weight Value

0
2
4
6
8

10
12
14
16

Fr
eq

ue
nc

y

SL
CL

(b) CiteSeer

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Transformation Weight Value

0

2

4

6

8

10

12

Fr
eq

ue
nc

y

SL
CL

(c) PubMed

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Transformation Weight Value

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

SL
CL

(d) Photo

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Transformation Weight Value

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

SL
CL

(e) Computers

3 2 1 0 1 2 3
Transformation Weight Value

0

5

10

15

20

25

Fr
eq

ue
nc

y

SL
CL

(f) Chameleon

2 1 0 1 2
Transformation Weight Value

0

5

10

15

20

Fr
eq

ue
nc

y

SL
CL

(g) Squirrel

0.1000.0750.0500.0250.0000.0250.0500.0750.100
Transformation Weight Value

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Fr
eq

ue
nc

y

SL
CL

(h) Cornell

Figure 11: Distribution of the transformation weights learned by DGI and SL.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Transformation Weight Value

0

2

4

6

8

10

12

14

16

Fr
eq

ue
nc

y

SL
CL

(a) Cora

0.2 0.1 0.0 0.1 0.2
Transformation Weight Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
eq

ue
nc

y

SL
CL

(b) CiteSeer

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Transformation Weight Value

0

2

4

6

8

10

Fr
eq

ue
nc

y

SL
CL

(c) PubMed

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Transformation Weight Value

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

SL
CL

(d) Photo

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Transformation Weight Value

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

SL
CL

(e) Computers

3 2 1 0 1 2 3
Transformation Weight Value

0

5

10

15

20

Fr
eq

ue
nc

y

SL
CL

(f) Chameleon

2 1 0 1 2
Transformation Weight Value

0

5

10

15

20

Fr
eq

ue
nc

y

SL
CL

(g) Squirrel

0.08 0.06 0.04 0.020.00 0.02 0.04 0.06 0.08
Transformation Weight Value

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Fr
eq

ue
nc

y

SL
CL

(h) Cornell

Figure 12: Distribution of the transformation weights learned by GCA and SL.

0.4 0.2 0.0 0.2 0.4
Transformation Weight Value

0
2
4
6
8

10
12
14
16

Fr
eq

ue
nc

y

SL
CL

(a) Cora

0.2 0.1 0.0 0.1 0.2
Transformation Weight Value

0

5

10

15

20

25

30

Fr
eq

ue
nc

y

SL
CL

(b) CiteSeer

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Transformation Weight Value

0

2

4

6

8

10

Fr
eq

ue
nc

y

SL
CL

(c) PubMed

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Transformation Weight Value

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

SL
CL

(d) Photo

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Transformation Weight Value

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

SL
CL

(e) Computers

3 2 1 0 1 2 3
Transformation Weight Value

0

5

10

15

20

Fr
eq

ue
nc

y

SL
CL

(f) Chameleon

2 1 0 1 2
Transformation Weight Value

0

5

10

15

20

Fr
eq

ue
nc

y

SL
CL

(g) Squirrel

0.4 0.2 0.0 0.2 0.4
Transformation Weight Value

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Fr
eq

ue
nc

y

SL
CL

(h) Cornell

Figure 13: Distribution of the transformation weights learned by BGRL and SL.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

SL Heatmap

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

CL Heatmap

1.5

1.0

0.5

0.0

0.5

1.0

1.5

1.0
0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6

(a) PubMed

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

SL Heatmap

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

CL Heatmap

0.4

0.2

0.0

0.2

0.4

1.0

0.5

0.0

0.5

1.0

(b) Cora

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

SL Heatmap

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

CL Heatmap

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.5

1.0

1.5

(c) CiteSeer

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

SL Heatmap

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

CL Heatmap

0.15

0.10

0.05

0.00

0.05

0.10

0.15

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

(d) Chameleon

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

SL Heatmap

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

CL Heatmap

0.15

0.10

0.05

0.00

0.05

0.10

0.15

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

(e) Squirrel

Input Neurons

Ou
tp

ut
 N

eu
ro

ns
SL Heatmap

Input Neurons

Ou
tp

ut
 N

eu
ro

ns

CL Heatmap

0.2

0.1

0.0

0.1

0.2

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

(f) Cornell

Figure 14: Heatmap of the transformation weights learned by GRACE and SL.

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Transformation Weight Value

0

2

4

6

8

10

12

14

16

Fr
eq

ue
nc

y

SL
CL
SUP-CL

(a) Cora

0.3 0.2 0.1 0.0 0.1 0.2
Transformation Weight Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
eq

ue
nc

y

SL
CL
SUP-CL

(b) CiteSeer

2.0 1.5 1.0 0.5 0.0 0.5 1.0
Transformation Weight Value

0

2

4

6

8

10

Fr
eq

ue
nc

y

SL
CL
SUP-CL

(c) PubMed

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
Transformation Weight Value

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

SL
CL
SUP-CL

(d) Photo

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
Transformation Weight Value

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

SL
CL
SUP-CL

(e) Computers

3 2 1 0 1 2 3
Transformation Weight Value

0

5

10

15

20

Fr
eq

ue
nc

y

SL
CL
SUP-CL

(f) Chameleon

2 1 0 1 2
Transformation Weight Value

0

5

10

15

20

Fr
eq

ue
nc

y

SL
CL
SUP-CL

(g) Squirrel

0.08 0.06 0.04 0.020.00 0.02 0.04 0.06 0.08
Transformation Weight Value

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Fr
eq

ue
nc

y

SL
CL
SUP-CL

(h) Cornell

Figure 15: Distribution of the transformation weights learned by GCA, SUP-GCA, and SL.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

U CHARACTERIZATION OF LEARNED PROPAGATION COEFFICIENTS

In section 5.2, we find after fixing the transformation weights with supervised ones, the model trained
via GCL performs as well as in a supervised manner. To verify that given well-trained transformation
weights, GCL can learn effective propagation coefficients. We compare the propagation coefficients
learned by SL, GCL, and the fix-transformation GCL. As shown in Figure 16, compared with CL, the
propagation coefficients learned by fix-transformation GCL are closer to those in SL, demonstrating
that GCL can learn effective propagation coefficients fitting the given transformation weights.

0 1 2
Step IndexA

gg
re

ga
tio

n
C

oe
ffi

ci
en

ts

2.69

1.54

0.96

2.44

1.70
1.28

2.19 2.13
1.76

Method
SL fix-trans CL CL

(a) PubMed

0 1 2
Step IndexA

gg
re

ga
tio

n
C

oe
ffi

ci
en

ts

2.73

1.46

0.60

2.91

1.83

1.12

2.22
1.75

1.19

Method
SL fix-trans CL CL

(b) Cora

0 1 2
Step IndexA

gg
re

ga
tio

n
C

oe
ffi

ci
en

ts

3.34

0.41

1.37

3.25

1.27
0.98

3.41

0.82
0.44

Method
SL fix-trans CL CL

(c) CiteSeer

0 1 2
Step IndexA

gg
re

ga
tio

n
C

oe
ffi

ci
en

ts

3.33

4.00

1.14

3.91
3.50

0.58

2.22
2.78

1.16

Method
SL fix-trans CL CL

(d) Chameleon

0 1 2
Step IndexA

gg
re

ga
tio

n
C

oe
ffi

ci
en

ts

4.69
5.55

3.98
3.15

4.45

2.78
2.17

3.29

1.58

Method
SL fix-trans CL CL

(e) Squirrel

0 1 2
Step IndexA

gg
re

ga
tio

n
C

oe
ffi

ci
en

ts

2.73

1.46

0.60

2.91

1.83

1.12

2.22
1.75

1.19

Method
SL fix-trans CL CL

(f) Cornell

Figure 16: Propagation coefficients of supervised learning (SL), contrastive learning (CL), and
fix-transformation contrastive learning (fix-trans CL) introduced in Section 5.2. We show the first
three propagation coefficients for the space limit.

V EXPERIMENTAL DETAILS OF PROP AND PROPGCL

V.1 BENCHMARKS

Node classification benchmarks. 1) Citation Networks (Sen et al., 2008; Namata et al., 2012). Cora,
CiteSeer, and PubMed are three popular citation graph datasets. In these graphs, nodes represent
papers and edges correspond to the citation relationship between two papers. Nodes are classified
according to academic topics. 2) Amazon Co-purchase Networks (Shchur et al., 2018). Photo and
Computers are collected by crawling Amazon websites. Goods are represented as nodes and the
co-purchase relationships are denoted as edges. Node features are the bag-of-words representation
of product reviews. Each node is labeled with the category of goods. 3) Wikipedia Networks
(Rozemberczki et al., 2021). Squirrel and Chameleon are collected from the English Wikipedia,
representing page-page networks on specific topics. Nodes represent articles and edges are mutual
links between them. 4) WebKB Networks (Pei et al., 2020). In Texas, Wisconsin, and Cornell datasets,
nodes represent web pages and edges represent hyperlinks between them. Node features are the bag-
of-words representation of web pages. 5) Actor Networks Pei et al. (2020). Each node corresponds to
an actor, and the edge between two nodes denotes co-occurrence on the same Wikipedia page. Node
features correspond to some keywords on the Wikipedia pages. Statistics of datasets are shown in
Table 34.

Graph Classification benchmarks. 1) Molecules. MUTAG (Debnath et al., 1991) is a dataset of
nitroaromatic compounds and the goal is to predict their mutagenicity on Salmonella Typhimurium.
NCI1 (Wale et al., 2008) is a dataset of chemical molecules that are annotated based on their activity
against non-small cell lung cancer and ovarian cancer cell lines. 2) Bioinformatics. PROTEINS
(Borgwardt et al., 2005) is a dataset of proteins that are classified as enzymes or non-enzymes.
Nodes represent the amino acids and two nodes are connected by an edge if they are less than 6
Angstroms apart. DD (Dobson & Doig, 2003) consists of protein structures with nodes corresponding

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

to amino acids and edges indicating that two amino acids are within a certain number of angstroms. 3)
Social Networks. IMDB-BINARY and IMDB-MULTI (Yanardag & Vishwanathan, 2015) are movie
collaboration datasets consisting of a network of 1,000 actors/actresses who played roles in movies in
IMDB. In each graph, nodes represent actors/actresses; corresponding nodes are connected if they
appear in the same movie. COLLAB (Yanardag & Vishwanathan, 2015) is derived from three public
collaboration datasets representing scientific collaborations between authors. For all benchmarks, we
use collections from TUDataset (Morris et al., 2020). Statistics of datasets are shown in Table 35.

Table 34: Statistics of node classification benchmarks. H(G) denotes the edge homophily ratio
introduced in Zhu et al. (2020a).

Homo / Hetero Category Dataset # Nodes # Edges # Features # Classes H(G)

Homophily

Citation

Cora 2,708 5,278 1,433 7 0.81

CiteSeer 3,327 4,552 3,703 6 0.74

PubMed 19,717 44,338 500 3 0.80

Co-purchase Photo 7,650 119,081 745 8 0.83

Computers 13,752 245,861 767 10 0.78

Heterophily

Wikipedia Chameleon 2,277 36,101 2,325 6 0.23

Squirrel 5,201 217,073 2,089 4 0.22

WebKB

Texas 183 279 1703 5 0.11

Wisconsin 251 466 1703 5 0.21

Cornell 183 277 1703 5 0.30

Film-actor Actor 7,600 30,019 932 5 0.22

Table 35: Statistics of graph classification benchmarks. We report average numbers of nodes, edges,
and features across graphs in graph classification datasets.

Category Dataset #Graphs # Nodes # Edges # Features # Classes

Moleculars
MUTAG 188 17.9 39.6 7 2

NCI1 4110 29.87 32.30 37 2

Proteins
PROTEINS 1113 39.1 145.6 0 2

DD 1178 284.32 715.66 89 2

Social Networks
IMDB-BINARY 1000 19.8 193.1 0 2
IMDB-MULTI 1500 13.0 131.9 0 3

COLLAB 5000 74.49 2457.78 0 3

V.2 BASELINES

We categorize baselines for the node classification task into 1) traditional graph embedding al-
gorithms DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover & Leskovec, 2016); 2) graph
autoencoders GAE (Kipf & Welling, 2016), VGAE (Kipf & Welling, 2016); 3) graph contrastive
methods GRACE (Zhu et al., 2020b), DGI (Velickovic et al., 2019), GCA (Zhu et al., 2021c), MV-
GRL (Hassani & Khasahmadi, 2020), ProGCL (Xia et al., 2022); 4) graph non-contrastive methods
CCA-SSG (Zhang et al., 2021) and BGRL (Thakoor et al., 2022), 5) heterophily baselines compared
in Section 6.3, PolyGCL (Chen et al., 2024), HGRL (Chen et al., 2022), GraphACL (Xiao et al.,
2024), SP-GCL (Wang et al., 2023), DSSL (Xiao et al., 2022).The design details are as follows.

1) Traditional graph embeddings.

• DeepWalk (Perozzi et al., 2014). DeepWalk leverages truncated random walks to capture
local network structures. The algorithm treats the random walks as sequences of nodes, akin
to sentences in language models. It learns latent representations by applying skip-gram to
maximize the co-occurrence probabilities of nodes appearing in these random walks.

• Node2Vec (Grover & Leskovec, 2016). Node2Vec is built on DeepWalk by introducing a
flexible biased random walk strategy to explore network neighborhoods. The key innovation
is balancing breadth-first sampling (BFS) and depth-first sampling (DFS). This allows

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Node2Vec to capture both homophily and structural equivalence, making the learned node
embeddings more expressive.

2) Graph autoencoders.

• GAE (Kipf & Welling, 2016). GAE involves an encoder-decoder architecture, where the
encoder is a GCN that transforms node features into latent embeddings by aggregating
information from neighboring nodes. The embeddings are then used by the decoder, which
typically applies a simple inner product operation to reconstruct the graph structure, such as
predicting edges between nodes.

• VGAE (Kipf & Welling, 2016). VGAE extends GAE by introducing a probabilistic frame-
work using a variational autoencoder (VAE) setup. It models latent variables with Gaussian
distributions, enabling the generation of node embeddings that capture uncertainty. This
design improves the model’s ability to capture complex structures in graphs, especially in
tasks like link prediction.

3) Graph contrastive methods.

The mode of GCL has three mainstreams: local-to-local, global-to-global, and global-to-local (Zhu
et al., 2021b). A classic example of local-to-local is GRACE (Zhu et al., 2020b), which generates
two graph views by augmentations and the same nodes in augmented views are positive while all
the other node pairs are negative. Global-to-global mode is often used with multiple graphs in
the graph classification task, with GraphCL (You et al., 2020) as an early but influential trial. For
the global-to-local perspective, positive pairs are taken as the global representation and nodes of
augmented views, and negative pairs are the global representation and nodes of corrupted views. DGI
(Velickovic et al., 2019) is a typical example.

• GRACE (Zhu et al., 2020b). GRACE generates two graph views by corruption and learns
node representations by maximizing the agreement of node representations in these two
views. To provide diverse node contexts for the contrastive objective, GRACE proposes a
hybrid scheme for generating graph views on both structure and attribute levels.

• GCA (Zhu et al., 2021c). GCA proposes adaptive augmentation that incorporates various
priors for topological and semantic aspects of the graph. On the topology level, GCA designs
augmentation schemes based on node centrality measures, while on the node attribute level,
GCA corrupts node features by adding more noise to unimportant node features.

• DGI (Velickovic et al., 2019). DGI relies on maximizing mutual information between
patch representations and corresponding high-level summaries of graphs—both derived
using established graph convolutional network architectures. The learned patch representa-
tions summarize subgraphs centered around nodes of interest, and can thus be reused for
downstream node-wise learning tasks.

• MVGRL (Hassani & Khasahmadi, 2020). MVGRL introduces a self-supervised approach
for learning node and graph-level representations by contrasting structural views of graphs.
MVGRL shows that contrasting multi-scale encodings does not improve performance, and
the best performance is achieved by contrasting encodings from first-order neighbors and
graph diffusion.

• ProGCL (Xia et al., 2022). ProGCL observes limited benefits when adopting existing
hard negative mining techniques of other domains in graph contrastive learning. ProGCL
proposes an effective method to estimate the probability of a negative being true and devises
two schemes to boost the performance of GCL.

4) Non-contrastive methods.

• CCA-SSG (Zhang et al., 2021). CCA-SSG optimizes a novel feature-level objective
that aligns features across different graph augmentations. It uses decorrelation to prevent
degenerate solutions, allowing the model to learn invariant node representations. The model
avoids a mutual information estimator or negative samples, which simplifies training and
reduces computational complexity.

• BGRL (Thakoor et al., 2022). BGRL avoids the use of negative samples by predicting
different augmentations of the input graph. BGRL relies on a bootstrapping mechanism,

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

where one branch predicts the output of another branch that is not updated by gradient de-
scent. This method eliminates the complexity of contrastive learning and negative sampling,
making it more scalable.

5) Heterophily baselines.

• PolyGCL (Chen et al., 2024). PolyGCL integrates spectral polynomial filters into graph
contrastive learning, enabling it to handle both homophilic and heterophilic graphs. The
method generates different spectral views using polynomials and incorporates high-pass
information into the contrastive objective.

• HGRL (Chen et al., 2022). HGRL introduces self-supervised learning for heterophilic
graphs by capturing distant neighbors and preserving original node features. It achieves
this through carefully designed pretext tasks optimized via high-order mutual information,
avoiding reliance on labels.

• GraphACL (Xiao et al., 2024). GraphACL focuses on an asymmetric view of neighboring
nodes. The algorithm captures both one-hop local neighborhood information and two-hop
monophily similarity, crucial for modeling heterophilic structures.

• SP-GCL (Wang et al., 2023). SP-GCL introduces a single-pass graph contrastive learning
method without augmentations. It theoretically guarantees performance across both ho-
mophilic and heterophilic graphs by studying the concentration property of features obtained
through neighborhood propagation.

• DSSL (Xiao et al., 2022). DSSL decouples neighborhood semantics in self-supervised
learning for node representation. It introduces a latent variable model that decouples node
and link generation, making it flexible to different graph structures. The method utilizes
variational inference for scalable optimization, improving downstream performance without
relying on homophily assumptions.

We categorize the baselines in the graph classification task into 1) graph kernel methods including
GL (Shervashidze et al., 2009), WL (Shervashidze et al., 2011), and DGK (Yanardag & Vishwanathan,
2015), 2) traditional graph embedding methods including node2vec (Grover & Leskovec, 2016),
sub2vec (Adhikari et al., 2018), and graph2vec (Narayanan et al., 2017), 3) contrastive learning
methods including InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020), MVGRL (Hassani &
Khasahmadi, 2020), JOAOv2 (You et al., 2021), ADGCL (Suresh et al., 2021) as introduced in recent
works. The design details are as follows.

1) Graph kernel methods.

• Graphlet Kernel (GL) (Shervashidze et al., 2009). GL works by counting the number
of small subgraphs (known as graphlets) of a fixed size that appear in each graph. The
comparison of these counts across graphs allows the kernel to capture the local topological
structures of the graphs, making it useful for tasks such as graph classification.

• Weisfeiler-Lehman Sub-tree Kernel (WL) (Shervashidze et al., 2011). WL extends the
concept of graph kernels by applying the Weisfeiler-Lehman test of isomorphism on graphs.
It involves iteratively relabeling the nodes of the graphs based on the labels of their neighbors
and then using these relabelings to define a kernel, typically counting matching sub-trees.

• Deep Graph Kernel (DGK) (Yanardag & Vishwanathan, 2015). DGK combines deep
learning techniques with graph kernels. It first learns a low-dimensional representation
of the graphs through unsupervised learning (often using a form of graph embedding or
autoencoders), then applies traditional kernel methods to these representations.

2) Traditional graph embeddings.

• Node2Vec (Grover & Leskovec, 2016). Node2Vec is built on DeepWalk by introducing a
flexible biased random walk strategy to explore network neighborhoods. The key innovation
is balancing BFS and DFS. This allows Node2Vec to capture both homophily and structural
equivalence, making the learned node embeddings more expressive.

• Sub2Vec (Adhikari et al., 2018). Inspired by the word2vec model, sub2vec learns vector
representations for subgraphs in a graph. It treats each subgraph as a "word" and the

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

entire graph as a "document" to learn embeddings that capture the structural and contextual
properties of subgraphs.

• Graph2Vec (Narayanan et al., 2017). Similar to sub2vec, graph2vec is designed to learn
embeddings for entire graphs. By treating each graph as a "document" and graph sub-
structures as "words," graph2vec employs a document embedding approach to learn a
fixed-size vector representation for each graph.

3) Graph contrastive methods.

• GraphCL (You et al., 2020). GraphCL designs four types of graph augmentations to
incorporate various priors and learns graph-level representations by maximizing the global
representations of two views for a graph.

• InfoGraph (Sun et al., 2020). InfoGraph maximizes the mutual information between the
graph-level representation and the representations of substructures of different scales (e.g.,
nodes, edges, triangles). By doing so, the graph-level representations encode aspects of the
data that are shared across different scales of substructures.

• ADGCL (Suresh et al., 2021). ADGCL proposes a novel principle, adversarial GCL, which
enables GNNs to avoid capturing redundant information during training by optimizing
adversarial graph augmentation strategies used in GCL.

• JOAO (You et al., 2021). JOAO proposes a unified bi-level optimization framework to
automatically, adaptively, and dynamically select data augmentations when performing
GraphCL on specific graph data.

V.3 SETTINGS

For the node classification task, following Zhu et al. (2020b); Velickovic et al. (2019); Hassani &
Khasahmadi (2020), we use linear evaluation protocol, where the model is trained in an unsupervised
manner and feeds the learned representation into a linear logistic regression classifier. In the evaluation
procedure, we randomly split each dataset with a training ratio of 0.8 and a test ratio of 0.1, and
hyperparameters are fixed the same way for all the experiments. Each experiment is repeated ten
times with mean and standard derivation of accuracy score.

For the graph classification task, we use Adam SGD optimizer with the learning rate selected
in {10−3, 10−4, 10−5} and the number of epochs in {20, 100}. For PROP, we only search the
propagation step K in the range of [0, 1, 2, 3, 5, 10]. Following Sun et al. (2020); You et al. (2020),
we feed the generated graph embeddings into a linear Support Vector Machine (SVM) classifier,
and the parameters of the downstream classifier are independently tuned by cross-validation. The
C parameter is tuned in {10−3, 10−2, · · · , 102, 103}. We report the mean 10-fold cross-validation
accuracy with standard deviation. All experiments are conducted on a single 24GB NVIDIA GeForce
RTX 3090.

V.4 HYPERPARAMETER

For all methods, we train the linear classifier for 2000 epochs with a learning rate of 0.01 and
no weight decay. For hyperparameters of the model architecture and the unsupervised training
procedure, we maintain consistency in the hyperparameter search space across methods as much
as possible. Specifically, for GRACE, we search the temperature τ in [0.1, 0.5, 1.0], the projector
hidden dimension in [128, 256, 512], the learning rate in [0.01, 0.001], fix the patience as 50, and all
augmentation rates as 0.2. For DGI, we search the learning rate in [0.01, 0.001], the early-stopping
patience in [50, 100], and the hidden dimension in [128, 256, 512]. For CCA-SSG, we search the
training epochs in [20, 50, 100], λ in [1e-3, 5e-4], the hidden dimension in [128, 256, 512], and fix
all augmentation ratios as 0.2. For GCA, we search the temperature τ in [0.1, 0.5, 1.0], the projector
hidden dimension in [128, 256, 512], the drop scheme in [pr, degree, evc], and fix the early-stopping
patience as 50, the learning rate as 0.01, and all augmentation ratios as 0.2. For BGRL, we search the
predictor hidden dimension in [128, 256, 512], the learning rate in [1e-4, 1e-5], the weight decay in [0,
1e-5], fix the learning rate warmup epochs as 1000, the momentum moving as 0.99. For DeepWalk,
we search the vector dimension in [128, 256, 512], the context window size in [5, 10], the walk
number in [10, 20], and the walk length in [40, 80]. For Node2Vec, we search the vector dimension
in [128, 256, 512], the walk number in [10, 20], the probability p in [0.5, 1.0], q in [0.5, 1.0], and

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

fix the context window size as 10, and the walk length as 80. For MVGRL, we search the learning
rate in [0.01, 0.001], the early stopping patience in [50, 100], and the hidden dimension in [128, 256,
512]. For GAE and VGAE, we search the learning rate in [0.01, 0.001], the early stopping patience
in [50, 100], and the hidden dimension in [128, 256, 512]. For the heterophily baselines in 6.3, we
use the optimal hyperparameter combinations provided in the original papers.

40

	Introduction
	Related Works
	Background
	Graph Contrastive Learning Pipeline
	Polynomial Graph Neural Networks

	Propagation is A Strong Baseline for Graph Self-supervised Learning
	Benchmark Propagation among Graph Self-supervised Learning Baselines
	Understanding PROP from Established Graph Learning Algorithms
	Further Insights into PROP

	Dissecting the Limitations of GNNs in GCL
	Feature transformation is ineffective in GCL
	Learning Propagation is Promising in GCL
	Transformation enhances overfitting to CL Objective

	PROPGCL: Graph Contrastive Learning that Only Learns Propagation
	PROPGCL
	Theoretical analysis
	Experimental Results
	Efficiency Analysis

	Conclusion
	Appendix
	Experiments of PROP on the Graph Classification Task
	Experiments of PROP in the Inductive Setting
	Experiments of PROP with a Fixed Public-splitting.
	Experiments of PROP with Different Aggregation Steps
	Comparison between PROP and Raw Features
	Graph structure as effective supervised signals
	Node feature perturbation experiments

	Intuitive Illustration of Neighboring-node View
	Proof of Theorems
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 6.1

	Experiments on GCL with Random Weights
	Flip CL-SL experiments in Section 5
	Details about Polynomial GNNs
	Basis Polynomial Functions Analysis of PROPGCL
	Clustering Quality Estimation
	Robustness Comparison
	Noisy Features Sensitivity Analysis
	Hyperparameter Sensitivity Analysis

	Trials in the Few-shot Learning Setting
	Contrastive Training Loss Curves
	Efficiency Analysis of PROPGCL
	Comparison with Supervised Contrastive Learning
	Trials on Learning Effective Transformation Weights in GCL
	Characterization of Learned Transformation Weights
	Characterization of Learned Propagation Coefficients
	Experimental Details of PROP and PROPGCL
	Benchmarks
	Baselines
	Settings
	Hyperparameter

