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ABSTRACT

Graph contrastive learning (GCL) has recently gained substantial attention, leading
to the development of various methodologies. In this work, we reveal that a
simple training-free propagation operator PROP achieves competitive results over
dedicatedly designed GCL methods across diverse node classification benchmarks.
We elucidate PROP’s effectiveness by drawing connections with established graph
learning algorithms. By decoupling the propagation and transformation phases of
graph neural networks, we find that the transformation weights are inadequately
learned in GCL and perform no better than random. When the contrastive and
downstream objects are misaligned, the attendance of transformation causes the
overfitting to the contrastive loss and harms downstream performance. In light of
these insights, we remove the transformation entirely and introduce an efficient
GCL method termed PROPGCL. We provide theoretical guarantees for PROPGCL
and demonstrate its effectiveness through a comprehensive evaluation of node
classification tasks.

1 INTRODUCTION

Graph contrastive learning (GCL) has emerged as a promising paradigm for learning graph represen-
tations in an unsupervised manner. By leveraging inherent structural information, GCL has achieved
state-of-the-art performance on graph learning tasks (Velickovic et al., 2019; Zhang & Chen, 2018;
You et al., 2020). However, GCL often involves intricate encoders and large-scale hyperparameter
tuning, raising the question of whether such complexity is necessary for effective learning.

In this work, we challenge the conventional wisdom that highly parameterized models are essential
for achieving strong performance in GCL. Instead, we explore a simple yet powerful alternative:
uniform propagation, abbreviated as PROP, which involves no trainable layers. Remarkably, PROP
demonstrates competitive performance on various node classification benchmarks, often matching or
surpassing more complicated GCL methods. This raises two important questions:

1. How can the training-free PROP perform so well?

2. Why do some existing GCL methods exhibit suboptimal performance?

To understand why PROP can perform comparably to GCL, we position it as a non-parametric smooth-
ing mechanism on a rewired graph through iterative optimization. Additionally, we demonstrate
that PROP inherently performs alignment in contrastive learning by viewing multi-hop neighboring
representations as positive samples, which elucidates the core strength in enhancing feature clustering.
This analysis explains the success of PROP and highlights the potential of simpler models in GCL.

To figure out the reason behind existing GCLs’ deficiency, we adopt a decoupling perspective and
independently analyze the transformation and propagation phases within the GCL encoder. Our ex-
tensive analysis reveals a key limitation that existing GCL methods often struggle to learn meaningful
transformation weights, which perform no better than random counterparts. Moreover, transformation
causes the learned representations to overfit to the contrastive loss. When the contrastive objective
misaligns with downstream tasks, the overfitting will cause downstream degradation.

Building on these insights, we propose an efficient method, PROPGCL, which eliminates all
transformation layers and extends the strength of PROP with graph-adaptive filters to learn flexi-
ble propagation coefficients. We provide theoretical guarantees for PROPGCL’s advantage in the
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case where contrastive and downstream objectives are misaligned. To validate the effectiveness of
PROPGCL, we conduct extensive experiments across diverse node classification benchmarks, includ-
ing both homophilic and heterophilic datasets. Our results demonstrate that PROPGCL consistently
outperforms existing GCL methods with appreciably fewer computational resources.

The key contributions of this work are outlined as follows:

• We establish PROP, a training-free propagation operator, as a strong baseline in graph self-
supervised learning on node classification tasks. We explain its effectiveness by connecting
PROP with classical graph algorithms.

• From a decoupling perspective, we reveal that existing GCL methods often struggle to learn
effective transformation weights. The parameter-intensive transformation causes overfit-
ting to the contrastive loss and harms the performance when contrastive and downstream
objectives are misaligned.

• We propose PROPGCL, a simple method that removes the transformation entirely and
enhances PROP with graph-adaptive propagation coefficients. We provide theoretical
guarantees for PROPGCL’s effectiveness and rigorously evaluate PROPGCL across diverse
node classification benchmarks, demonstrating its superiority over current GCL methods in
terms of both accuracy and efficiency, particularly on heterophilic datasets.

2 RELATED WORKS

GCL Designing Principles. Popular GCL design approaches predominantly focus on three aspects:
augmentation generation, view selection, and contrastive objectives. Augmentation strategies have
been explored to enhance representation learning, such as topology-based, label-invariant, and spectral
augmentations (Zhu et al., 2021b; Li et al., 2022b; Trivedi et al., 2022; Liu et al., 2022). For view
selection, many works focus on hard negative mining (Robinson et al., 2021; Yang et al., 2023; Niu
et al., 2024) and the necessity of positive pairs (Guo et al., 2023b). Meanwhile, contrastive objectives
are often grounded in the mutual information maximization principle (Velickovic et al., 2019) or
the information bottleneck principle (Xu et al., 2021). With the design complexity growing, we are
concerned about whether such intricacy is truly necessary for effective graph learning. In practice,
we find a training-free and propagation-only operator PROP achieves competitive results over many
GCL methods (although not all GCLs), and we provide reasonable insights into its effectiveness.

Simplifying GCL Architectures. Recent efforts have introduced various strategies to reduce the
complexity of existing methods. Some approaches remove the traditional augmentation process
by employing K-means clustering, adding noise to the embedding space, or introducing invariant-
discriminative losses (Yu et al., 2022; Lee et al., 2022; Li et al., 2023a). Zheng et al. (2022) simplify
similarity computations by discriminating between two groups of summarized instances, rather than
comparing all nodes. Li et al. (2023b) observe lower layers in deep networks suffer from degradation
and propose an efficient blockwise training strategy. Other works explore using simpler models like
MLPs or linear layers as the backbone encoder for GCL (Liu et al., 2023; Salha et al., 2019). However,
these methods continue to rely on transformation layers that introduce additional parameters. In
contrast, our method PROPGCL relies solely on a minimal-parameter propagation layer. This design
reduces complexity while maintaining plug-and-play adaptability across various GCL frameworks.

3 BACKGROUND

3.1 GRAPH CONTRASTIVE LEARNING PIPELINE

The GCL pipeline often includes two stages, pretraining and evaluation. In the pretraining stage,
graph views are first generated through augmentation approaches. The encoder f , usually defaulting
to Graph Neural Networks (GNNs), embeds the graph views into node-level or graph-level represen-
tations. GCL learns the encoder weights by maximizing representation consistency between different
views. The purpose of pretraining is to learn high-quality representations without relying on labeled
data. In the evaluation stage, a simple linear classifier g is trained in a supervised manner to map the
pretrained representations to the downstream label space. This evaluation protocol is called linear
probing, which enables a fair comparison of representations learned by different GCL methods.
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3.2 POLYNOMIAL GRAPH NEURAL NETWORKS

One of the foundational works of GNNs is GCN (Kipf & Welling, 2017), which propagates informa-
tion from local neighborhoods and then transforms the aggregated representation in each layer by
H(l+1) = σ(ÃH(l)W(l)), where H(0) = X denotes node features, Ã is the normalized adjacency
matrix, W(l) is transformation weights in the l-th layer, and σ is the activation function.

Decoupled GNNs. In GCN, propagating information and transforming representation are inherently
intertwined in each layer. However, this tight coupling of operations can lead to limitations including
oversmoothing and scalability issues (Wu et al., 2019; Liu et al., 2020; Dong et al., 2021). Therefore,
simpler yet effective models are proposed by decoupling the two operations (Wu et al., 2019; Gasteiger
et al., 2019a; He et al., 2020). For instance, SGC (Wu et al., 2019) composes two decoupled phases
of 1) propagation which uniformly aggregates information from K-hops neighboring nodes by
H′ = ÂKX, and 2) transformation which transforms features by H = σ(H′W).

Polynomial GNNs. Despite the simplicity of SGC and its follow-ups, the propagation procedure is
fixed and show limited expressiveness on more complicated graph structures (Balcilar et al., 2021; Nt
& Maehara, 2019; Zhu et al., 2021a). To solve this, polynomial GNNs replace the uniform propagation
with learnable combinations of polynomial basis functions to approximate arbitrary spectral filters
(Chien et al., 2021; He et al., 2021; 2022). Similarly, polynomial GNNs can be expressed in a unified
propagation and transformation framework,

Propagation: H1 =

K−1∑
k=0

θkgk(L)X, (1)

Transformation: H = σ(H1W), (2)

where θ ∈ RK are learnable propagation coefficients, gk(L) represents the polynomial basis functions
applied to the graph Laplacian matrix L, W is learnable transformation weights. Notably, the
flexibility of learning spectral filters helps polynomial GNNs capture intricate structures in heterophily
graphs where connected nodes tend to have different labels (He et al., 2021; 2022; Chien et al., 2021).

4 PROPAGATION IS A STRONG BASELINE FOR GRAPH SELF-SUPERVISED
LEARNING

In this section, we demonstrate that even without trainable networks, the uniform propagation is
in itself a strong baseline for graph self-supervised learning (GSSL) on node classification. We
benchmark its performance on a wide range of datasets and reveal the rationale by connecting
propagation to established graph learning algorithms.

4.1 BENCHMARK PROPAGATION AMONG GRAPH SELF-SUPERVISED LEARNING BASELINES

Method. We consider an operator PROP that aggregates features within K-hop neighbors:

HPROP = ÂKX, (3)

where Â = D′− 1
2A′D′− 1

2 with A′ = A+ I. Note that the formulation of PROP has no essential
difference from SGC. We name the method PROP instead of SGC to avoid confusion with the
common use of SGC in GCL literature, which often contains the transformation weights W and
serves as the encoder (Chen & Kou, 2023; Gao et al., 2023). Our goal is not to propose a new
formulation, but to establish it as a strong training-free baseline that has long been overlooked
in the GCL literature and explore the underlying rationale.

Datasets. For homophily benchmarks, we choose popular citation network datasets Cora, CiteSeer,
and PubMed (Sen et al., 2008; Namata et al., 2012), Amazon co-purchase datasets Photo, Computers
(Shchur et al., 2018). For heterophily benchmarks, we include Wikipedia datasets Squirrel, Chameleon
(Rozemberczki et al., 2021) and WebKB datasets Texas, Wisconsin, and Cornell (Pei et al., 2020).

Settings. We consider two categories of representative GSSL methods as baselines: traditional graph
embeddings and deep learning methods (graph autoencoders and contrastive learning). Given the
superiority of polynomial GNNs, we also compare GCLs with polynomial GNNs. In the pretraining
stage, we maintain consistency in the hyperparameter search space across methods as much as
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Table 1: Test accuracy (%) of PROP and graph self-supervised (GSSL) baselines on node classification
benchmarks, with blue indicating the best method, and orange the second-best.

Training Encoder Homophily Heterophily
Cora CiteSeer PubMed Computers Photo Mean Squirrel Chameleon Texas Wisconsin Cornell Mean

Supervised GCN 87.5 ± 1.0 80.2 ± 0.6 87.0 ± 0.3 88.4 ± 0.3 93.5 ± 0.4 87.3 47.6 ± 0.8 64.1 ± 1.6 76.4 ± 4.1 62.6 ± 2.8 64.4 ± 4.1 63.0

ChebNetII 87.2 ± 0.8 79.9 ± 0.8 88.5 ± 0.1 90.1 ± 0.3 94.9 ± 0.3 88.1 56.7 ± 1.3 72.3 ± 1.5 92.6 ± 1.8 89.3 ± 3.6 90.5 ± 1.6 80.3

Unsupervised Graph Embedding

DeepWalk Word2Vec 80.6 ± 0.8 63.1 ± 1.0 81.9 ± 0.2 87.3 ± 0.4 91.5 ± 0.5 80.9 43.3 ± 0.7 60.8 ± 1.3 53.4 ± 4.8 43.6 ± 4.1 44.6 ± 3.1 49.2

Node2Vec Word2Vec 80.2 ± 1.2 68.1 ± 0.9 80.7 ± 0.3 85.5 ± 0.4 90.3 ± 0.5 81.0 39.7 ± 1.0 59.2 ± 1.1 56.2 ± 4.6 43.6 ± 2.8 45.6 ± 2.8 48.9

GSSL with Vanilla GCN

GRACE GCN 86.9 ± 1.0 75.6 ± 0.7 85.3 ± 0.2 82.3 ± 0.2 90.1 ± 0.3 84.0 43.8 ± 1.0 62.3 ± 0.9 73.6 ± 4.3 67.0 ± 1.8 65.6 ± 9.0 62.5

DGI GCN 85.8 ± 1.0 78.6 ± 0.7 82.3 ± 0.3 79.6 ± 0.4 80.6 ± 1.2 81.4 37.1 ± 0.8 52.4 ± 1.3 82.6 ± 2.3 72.1 ± 2.4 80.3 ± 2.0 64.9

GAE GCN 84.9 ± 1.3 75.7 ± 0.8 84.7 ± 0.3 76.3 ± 0.5 90.5 ± 0.3 82.4 36.2 ± 0.9 56.8 ± 1.6 60.0 ± 4.3 56.9 ± 4.9 57.0 ± 6.7 53.4

VGAE GCN 85.1 ± 1.0 75.6 ± 0.7 84.6 ± 0.3 76.4 ± 0.5 88.3 ± 0.6 82.0 43.4 ± 0.6 61.4 ± 1.0 73.1 ± 3.4 60.8 ± 4.5 65.0 ± 7.4 60.8

MVGRL GCN 84.0 ± 1.0 74.5 ± 0.8 83.6 ± 0.4 83.5 ± 0.5 89.2 ± 0.4 83.0 31.3 ± 0.6 57.9 ± 1.6 77.7 ± 2.0 65.8 ± 3.5 67.5 ± 7.9 60.0

CCA-SSG GCN 86.7 ± 0.9 79.7 ± 0.6 84.8 ± 0.4 82.8 ± 0.3 91.2 ± 0.4 85.0 40.6 ± 0.7 57.8 ± 1.0 79.3 ± 3.1 71.1 ± 1.4 72.6 ± 4.9 64.3

BGRL GCN 85.1 ± 0.7 76.5 ± 0.9 84.0 ± 0.2 82.8 ± 0.4 86.1 ± 0.4 82.9 36.8 ± 0.7 55.5 ± 1.8 79.7 ± 3.6 67.5 ± 3.9 71.0 ± 10.3 62.1

GCA GCN 84.7 ± 1.0 76.5 ± 0.8 85.0 ± 0.2 79.3 ± 0.2 89.5 ± 0.3 83.0 41.0 ± 0.9 59.4 ± 1.1 78.0 ± 2.6 74.0 ± 2.1 66.9 ± 7.1 63.8

ProGCL GCN 84.6 ± 1.0 78.0 ± 0.5 86.9 ± 0.2 91.2 ± 0.5 84.3 ± 0.4 85.0 49.5 ± 0.6 67.5 ± 1.1 77.9 ± 3.8 71.4 ± 2.5 66.6 ± 11.3 66.6

GSSL with Polynomial GNNs

GRACE

ChebNetII 83.4 ± 0.9 74.8 ± 0.6 84.9 ± 0.3 84.1 ± 0.4 89.2 ± 0.5 83.3 37.9 ± 0.8 55.7 ± 1.0 77.9 ± 2.8 86.4 ± 3.6 75.7 ± 3.6 66.7
BernNet 82.8 ± 1.1 75.4 ± 0.9 84.2 ± 0.2 85.8 ± 0.4 89.7 ± 0.4 83.6 40.6 ± 0.7 54.7 ± 1.3 75.4 ± 3.6 88.3 ± 3.1 74.2 ± 4.1 66.7

GPRGNN 82.4 ± 1.0 75.4 ± 1.0 84.6 ± 0.3 81.0 ± 0.7 90.1 ± 0.5 82.7 38.2 ± 0.7 53.8 ± 1.4 78.7 ± 4.4 71.3 ± 3.9 77.7 ± 5.7 63.9

DGI

ChebNetII 83.4 ± 0.9 71.3 ± 1.2 81.9 ± 0.4 79.6 ± 0.3 78.7 ± 0.7 79.0 34.3 ± 0.6 51.0 ± 1.0 80.8 ± 2.1 81.8 ± 3.0 80.8 ± 1.6 65.7

BernNet 81.5 ± 1.0 73.4 ± 0.5 82.8 ± 0.2 79.2 ± 0.6 78.3 ± 0.5 79.1 32.4 ± 0.9 47.4 ± 1.8 82.8 ± 2.1 78.3 ± 2.3 83.6 ± 2.6 64.9

GPRGNN 82.4 ± 1.4 74.7 ± 1.0 80.9 ± 0.2 77.8 ± 0.6 77.8 ± 0.6 78.1 32.8 ± 0.6 51.0 ± 1.4 80.0 ± 2.0 70.0 ± 3.8 78.9 ± 3.8 62.5

Training-free Method

\ PROP 85.5 ± 0.8 78.9 ± 0.6 82.9 ± 0.5 87.5 ± 0.5 93.0 ± 0.3 85.6 58.5 ± 1.0 68.8 ± 1.4 86.2 ± 3.1 89.0 ± 3.3 86.2 ± 3.1 77.8

possible. In the evaluation stage, we adopt linear probing following Zhu et al. (2020b); Hassani &
Khasahmadi (2020). We follow Chien et al. (2021); Chen et al. (2024) to randomly split the nodes
into 60%, 20%, and 20%. Each experiment is repeated ten times with mean and standard deviation of
accuracy score reported. Experiments with public fixed splitting are also conducted in Appendix D.
We mainly evaluate transductive settings and also explore inductive settings on benchmarks Reddit
and PPI in Appendix C. See more experimental details in Appendix V.

Results. As shown in Table 1, even without training, PROP maintains a superior performance
over competing methods. For homophily benchmarks, PROP achieves comparable performances
with GSSL baselines. PROP reaches an average of 85.6% while the best-performing GSSL methods
have 85.0%. For heterophilic benchmarks, PROP exceeds other methods by a large margin of over
10% on average performance, including GCLs with polynomial GNNs. We hypothesize that under
unsupervised signals, learning weights is more challenging for complex heterophily graphs. As further
shown in Section 5.1, the learned transformation weights tend to lose informativeness. Therefore,
PROP shows more improvement on heterophily graphs by removing the misleading weights. Notably,
GSSL baselines often require time-intensive training and extensive hyperparameter tuning, while
PROP operates without back-propagation and has only one hyperparameter, the propagation step.

4.2 UNDERSTANDING PROP FROM ESTABLISHED GRAPH LEARNING ALGORITHMS

Reviewing well-established graph algorithms, we can understand PROP’s effectiveness by connecting
it with the graph smoothing mechanism and graph alignment learning. See proofs in Appendix H.

Propagation as non-parametric graph smoothing. By aggregating features from neighboring
nodes, cascaded propagation performs iterative representation updates. Inspired by Zhu et al. (2021a),
we show in the following theorem that with an appropriate learning step, the Dirichlet energy of a
rewired k-hop graph is minimized by propagation and converges to zero for non-bipartite graphs.
Theorem 4.1. For a learning step size of α = 0.5, the propagation operator (Equation 3) optimizes
the spectral energy objective L(H) = H⊤(I− Âk)H, which represents the Dirichlet energy on a
rewired graph, where neighboring nodes are defined over k-hop connections.
Based on the iterative optimization, propagation alone can be regarded as a non-parametric approach
that smooths out the neighborhood over the k-hop graph, which helps explain the effectiveness
of PROP on graphs beyond just the homophilous category. Note that when the propagation step
approaches infinity, node representations converge to identical values, also known as over-smoothing
(Oono & Suzuki, 2020; Cai & Wang, 2020). However, the total propagation step is practically limited
to a finite range, which provably improves the performance before oversmoothing kicks in (Keriven,
2022), as also supported by our experimental results.
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Propagation as graph alignment learning. The propagation operator can also be understood as
a special alignment part in contrastive learning, where positive samples are randomly drawn from
neighboring nodes. We define the joint distribution of positive pairs as p(xi,xj) = Âij/

∑
i,j Âij ,

where Âij denotes the normalized edge weight between node vi and node vj on the k-hop graph.
This neighboring-node view demonstrates competitive performance in real scenarios (Lee et al., 2022;
Shen et al., 2023) with further illustration in Appendix G. Based on the definition, the alignment loss
is:

Lalign(f) = −Exi,xj∼p(xi,xj)[f(xi)
⊤f(xj)]. (4)

Intuitively, this alignment objective will bring the representation of neighboring nodes together. As
shown in the following theorem, propagation minimizes this alignment loss at its optimum, indicating
that propagation implicitly performs the alignment in contrastive learning.

Theorem 4.2. Let fk(xi) = H
(k)
i , ∀ i ∈ [N ] be unit vectors, then limk→∞ Lalign(fk) = −1.

4.3 FURTHER INSIGHTS INTO PROP

Below, we clarify the differences between PROP and related methods and provide further insights.

PROP and raw node features. A training-free option is directly using raw node features, i.e., X.
However, feeding raw features into a downstream linear classifier sometimes results in degraded
performance, as shown in Appendix E. We argue that propagation is essential for incorporating
structural information, even in heterophily graphs, and helps particularly when node features are
noisy or uninformative. See detailed discussions in Appendix F.

PROP and random GNNs. Early works have shown the non-trivial ability of GNNs with random
weights (Kipf & Welling, 2017). The key distinction between PROP and random GNNs is whether
the transformation weights are incorporated. In the unsupervised setting, random introduces noise
under insufficient supervision signals. Empirically, in later sections, we reveal that incorporating
random weights in GCL performs worse than eliminating them.

PROP and Graph-Augmented MLPs (GA-MLPs). GA-MLPs, like SGC and APPNP (Gasteiger
et al., 2019a), also adopt the decoupling perspective by preprocessing raw features with graph opera-
tors and then training an MLP in a supervised manner. The key difference is that the transformation
learns in this supervised paradigm is critical, whose removal will downgrade the performance. How-
ever, as further revealed in our work, the MLP weights are poorly learned under unsupervised settings
and harm the downstream task. From another perspective, if we combine PROP with downstream
linear-probing, they are formally equivalent to GA-MLPs. We will not resort to any wordplay on
this issue. However, our intention is not to claim PROP as a novel method, but rather to highlight its
value as a long-overlooked yet strong baseline in GCL literature.

PROP on graph classification task. We also benchmark PROP among GSSL baselines on the
graph classification task. As shown in Appendix B, PROP achieves an average performance gap of
2.82% relative to the best-performing methods, a notable result given its training-free nature. We
hypothesize that the slight gap arises because the single-node features do not directly map to the
global graph label, necessitating advanced transformation or pooling operations. The theoretical
understandings in our paper focus primarily on node connections within a single graph, aligning more
closely with node classification. While PROP demonstrates some promise in graph classification, its
potential in this area warrants further investigation.

5 DISSECTING THE LIMITATIONS OF GNNS IN GCL

To understand why existing GCL methods often fail to outperform PROP, we decouple the propagation
and transformation phases, a widely adopted perspective in designing GNNs (Gasteiger et al., 2019a;b;
Li et al., 2022a). Our analysis shows that GCL methods struggle to learn effective transformation
weights but have promising potential in the propagation phase. Moreover, the transformation causes
an overfitting on the CL objective, potentially degrading the downstream performance. This finding
reveals the limitations of GCL and paves the way for more effective GCL methods.

5.1 FEATURE TRANSFORMATION IS INEFFECTIVE IN GCL

5
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Figure 1: Characterization of the trans-
formation weights learned by SL and
GCL. Appendix T provides results of
more benchmarks and GCL methods.

We first empirically compare the characteristics of the
transformation weights learned by supervised learning
(SL) and GCL. As revealed in Figure 1, the SL weights
have a substantial variance across different neuron po-
sitions, while the GCL weights exhibit more uniform
smoothness, suggesting that specific neurons in SL play
pivotal roles in distinguishing features, whereas the GCL
transformation learning process appears overly general-
ized, diminishing the richness of feature representation.

To further verify the ineffectiveness of the transformation
weights learned by GCL, we conduct experiments by comparing them with random weights. In
practice, we consider a decoupled encoder H = σ(HPROPW) where W is the transformation
weights. We compare the weights learned through GCL with a random matrix whose element is
independently sampled from a Gaussian distribution. As shown in Table 2, the transformation
weights learned by GCL are not remarkably better than random counterparts. The model with
random weights attains an average performance of 73.43%, even surpassing the 72.86% reached by
the transformation weights learned through GCL. We conduct comprehensive experiments by varying
GCL backbones, propagators, and random initialization methods, and conclusions are consistent as
detailed in Appendix I. Notably, although random projection (Bingham & Mannila, 2001) is well-
established and proven effective in various works (Li et al., 2006; Freund et al., 2007; Bauw et al.,
2021), GCL should aim to learn weights tailored to data, rather than relying on a random matrix.
Therefore, the results indicate that many GCL methods fail to learn informative transformation
weights as expected.

Table 2: Test accuracy (%) of node classification benchmarks, comparing the transformation weights
learned through GCL with random weights. Blue indicates the best, while the underlined is the
second best. We present the DGI method and results for more GCL methods in Appendix I.

Training Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
GCL 83.23 ± 0.74 74.24 ± 0.55 82.10 ± 0.33 45.92 ± 0.65 64.00 ± 1.33 81.15 ± 2.13 71.88 ± 2.50 80.33 ± 1.80 72.86

Randomize W 83.02 ± 0.94 70.04 ± 0.82 83.87 ± 0.53 49.62 ± 0.99 67.94 ± 1.16 80.33 ± 1.81 72.25 ± 2.25 80.33 ± 1.97 73.43

5.2 LEARNING PROPAGATION IS PROMISING IN GCL

Now, we comprehensively examine both transformation and propagation phases. While polynomial
GNNs incorporate learnable parameters in both phases (Equation 1 and 2), GCLs with polynomial
GNNs tend to underperform, as shown in Table 1. This issue is often attributed to the mismatch
between the strong fitting capacity of polynomial filters and the lack of supervision signals (Chen
et al., 2022; 2024). However, our following experiments demonstrate that GCLs can effectively learn
polynomial filter coefficients.

From the decoupling perspective, there are three conjectures as to why polynomial GNNs under-
perform in GCL: (1) GCL learns ineffective transformation weights, (2) GCL learns suboptimal
propagation coefficients, or (3) a combination of both. To investigate the cause, we separately replace
the propagation coefficients θ and the transformation weights W with well-trained parameters from
the supervised setting. Specifically, we first train polynomial GNNs via supervised learning and
save the optimized parameters as WSL and θSL. We then proceed with the following experiments:
(1). Fix-propagation. Corresponding to the first conjecture, we initialize and freeze propagation
coefficients with the well-trained θSL, and only learn transformation weights W through GCL. (2).
Fix-transformation. Corresponding to the second conjecture, we initialize and freeze transformation
weights with the well-trained WSL, and only learn propagation coefficients θ through GCL. (3).
All-one baseline. We further consider a baseline with well-trained transformation weights WSL and
a fixed all-one propagation coefficient 1.

The experimental results are summarized in Table 3. For the first conjecture, the fix-propagation
model averages 72.19%, significantly lower than the supervised model’s 80.41%, and sometimes
even underperforms the original GCL method. It indicates that GCL struggles to learn effective
transformation weights (like WSL) even with strong filters. For the second conjecture, the fix-
transformation model achieves an average performance of 79.65%, closely matching that of the
supervised model. In contrast, the all-one baseline yields a lower accuracy of 75.56%, confirming that
the learned propagation coefficients are effective. Thus, GCL can learn informative propagation
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coefficients with well-trained transformation weights. For further validation of propagation
learning, in Appendix J, we conduct flip experiments by fixing parameters with GCL-trained ones
and get a similar conclusion, with the learned propagation coefficients presented in Appendix U.

The observation suggests potential few-shot learning applications with limited ground-truth labels
for training. In Appendix O, we initially explore training propagation coefficients via CL while
optimizing transformation weights with supervision. However, in unsupervised settings, optimal
transformation weights are unattainable. In later sections, we provide an effective GCL solution with
learnable propagation only.

Table 3: Test accuracy (%) of node classification benchmarks. We freeze propagation coefficients
with optimal θSL and learn transformation weights through GCL (or the opposite). 1 denotes an
all-one vector. Blue indicates the best, while underlined is the second-best.

θ W Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
SL θSL WSL 88.39 ± 0.74 79.67 ± 0.72 87.11 ± 0.25 49.34 ± 1.09 69.52 ± 0.96 89.67 ± 2.13 91.25 ± 2.75 88.36 ± 3.11 80.41

GCL Learn Learn 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61 72.09

Fix-propagation θSL Learn 80.26 ± 0.95 76.15 ± 0.80 82.41 ± 0.64 40.31 ± 0.60 59.06 ± 1.58 78.69 ± 4.75 87.88 ± 2.75 72.79 ± 5.57 72.19
Fix-transformation Learn WSL 87.47 ± 0.67 81.11 ± 0.55 87.69 ± 0.24 45.74 ± 1.57 64.95 ± 2.19 90.00 ± 2.46 91.38 ± 3.50 88.85 ± 4.10 79.65
All-one baseline 1 WSL 78.24 ± 0.92 78.72 ± 0.48 84.75 ± 0.33 35.98 ± 0.77 59.61 ± 1.07 89.34 ± 3.93 89.38 ± 2.25 88.49 ± 3.77 75.56

5.3 TRANSFORMATION ENHANCES OVERFITTING TO CL OBJECTIVE

To explore why the transformation phase brings ineffectiveness, we compare GCL with/without
transformation from the optimization perspective. We find that during training, transformation
weights incur an overfitting to the contrastive learning objective, while keeping only propagation
alleviates the overfitting. As demonstrated in Figure 2, GCL with transformation rapidly drives the
CL training loss to near zero. In contrast, GCL without transformation maintains a moderate loss
level, reflecting its resistance to over-optimizing the CL objective.
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Figure 2: Overfitting to the contrastive loss.
More examples are shown in Appendix P.

Optimizing the contrastive loss to its minimum is pre-
ferred if the pretext objective is well aligned with the
downstream tasks. However, when positive samples
misalign with intra-class samples, forcing InfoNCE
loss to the minimum could result in a poor down-
stream performance, as theoretically proved in Wang
et al. (2022). Lacking prior downstream knowledge,
it’s infeasible for GCL to select perfect positive sam-
ples, especially for heterophilic graphs with compli-
cated structures. Thus, the overfitting to contrastive
loss negatively transfers to downstream tasks.

While we employ early-stopping for all baselines in Table 1, our experiments show it fails to
resolve this overfitting issue. We also tried possible strategies, including l1 regularization, whitening
techniques (Bell & Sejnowski, 1997), and normalization methods (Hua et al., 2021; Guo et al.,
2023a), but find these approaches offer limited improvement in Appendix S. Meticulously designed
frameworks and advanced contrastive principles may overcome the limitations. However, for the
free-structured graph data, there are no precise or even intuitive definitions of semantic equivalence
(unlike images or text), bringing much difficulty into designing reasonable contrastive principles. In
the following section, we propose a simple solution by directly removing the transformation phase.
Although easy in formulation, the method demonstrates competitive performances across diverse
benchmarks, with a great advantage of efficiency.

6 PROPGCL: GRAPH CONTRASTIVE LEARNING THAT ONLY LEARNS
PROPAGATION

6.1 PROPGCL

PROP’s strong performance suggests that a simple model without transformation can achieve compet-
itive results. However, the fixed uniform propagation has limited effectiveness in complex scenarios
like heterophilic graphs. Therefore, we enhance PROP by introducing learnable graph-adaptive
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filter coefficients, leveraging GCL’s propagation-learning potential. Specifically, for a given GCL
framework, we replace the original encoder with the learnable spectral propagation,

HPROPGCL =

K−1∑
k=0

θkgk(L)X, (5)

where θ ∈ RK is learnable propagation coefficients, gk(L) represents polynomial basis functions.
For clarity, we denote the revised GCL framework with the prefix PROP, e.g., PROP-GRACE.

6.2 THEORETICAL ANALYSIS

We previously show that when the contrastive object misaligns with the downstream task, overfitting
to the CL loss will cause performance degradation. In the following analysis, we decompose such
imperfect CL loss into downstream-relevant and -irrelevant components, and prove that in such cases,
our PROPGCL is guaranteed to learn better representations than PROP and the backbone GCL.
Definition 6.1. (Optimal Propagation Decomposition) Let T ∗ = argminT LCL(T · X) be the
optimal operator for the contrastive learning loss. We decompose T ∗ = f + g, where f is the
downstream-relevant component and g is the downstream-irrelevant component.
Assumption 6.2. (Approximation Properties) We assume f corresponds to low-frequency signals
on the graph (e.g., features relevant to downstream tasks involving node similarity) and exhibits
smoothness, while g represents high-frequency noise or task-irrelevant random patterns. Based on
Chebyshev polynomial theory, low-frequency functions can be well approximated by low-order
polynomials: infθ ∥f −

∑
k θkA

k∥F ≤ ϵf = CfK
−s, where s > 0 and Cf is a constant. High-

frequency functions yield large polynomial approximation errors: infθ ∥g −
∑

k θkA
k∥F ≥ ϵg > 0,

where ϵg ≫ ϵf > 0.
Assumption 6.3. (Task Misalignment) When the contrastive learning objective is misaligned with
downstream tasks, we have ∥g∥F = α∥f∥F with α ̸= 1.

Based on the assumptions, we have the following theorem with proof in Appendix H.
Theorem 6.1. Under Assumptions 6.2 and 6.3, when α >

ϵf
∥f∥F

, we have:

∥HPROPGCL − fX∥F < min (∥HPROP − fX∥F , ∥HGCL − fX∥F ) .

The theory shows that when CL and downstream objectives are misaligned (large α), PROPGCL
performs better than both baselines. By learning representations that balance CL optimization
with downstream relevance, PROPGCL maintains higher CL loss than GCL while achieving better
downstream performance, which further explains the empirical observation in Figure 2.

6.3 EXPERIMENTAL RESULTS

Benchmarks. Besides previous benchmarks, we also consider a recently proposed heterophily
benchmark (Platonov et al., 2023b) and large OGB benchmarks ogbn-arxiv and ogbn-products (Hu
et al., 2020). Experimental settings are kept the same as Section 4.1.

Baselines. For the baseline, we include PROP, which outperforms well-known GSSL methods as
outlined in Section 4.1. Additionally, we consider GCL methods specifically designed for heterophilic
graphs, including PolyGCL (Chen et al., 2024), HGRL (Chen et al., 2022), GraphACL (Xiao et al.,
2024), SP-GCL (Wang et al., 2023), and DSSL (Xiao et al., 2022). Our approach builds upon
GRACE and DGI as main backbones and uses the scale-friendly method GGD (Zheng et al., 2022)
for large OGB graphs. We utilize the Chebyshev basis as the polynomial function and conduct an
ablation study of basis choices in Appendix L. We mainly adopt the linear-probing evaluation and
also estimate clustering quality of unsupervised representations detailed in Appendix M.

Results. The main results on node classification benchmarks are presented in Table 4. Our method
surpasses the PROP baseline and GCL methods on most benchmarks, especially for heterophily
datasets where many traditional GCL methods struggle. For homophily benchmarks, PROP-
GRACE achieves the highest average accuracy of 88.76%, with PROP-DGI securing the second-
highest at 88.42%. Our approach attains the best performance in 3 out of 6 benchmarks and performs
comparably to the best methods in the remaining cases. For heterophily benchmarks, PROP-DGI
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attains an average accuracy of 73.71%, surpassing the state-of-the-art PolyGCL by a margin of 4.23%.
Our method ranks first on 4 out of 6 benchmarks and second-best on the remaining two.

On the recent heterophily benchmark in Table 5, PROP-GRACE surpasses its backbone GRACE
by 3.99% on average, and PROP-DGI achieves the best results in 2 out of 5 benchmarks with an
average performance of 70.22%, second only to PolyGCL’s 71.68%. Notably, PolyGCL is designed
especially for heterophily graphs, whereas PROP-DGI builds on a more general DGI framework. On
large benchmarks in Table 6, our method performs comparably with the backbone method while
achieving higher efficiency. Remarkably, PROP-GGD outperforms GGD by 0.16% in accuracy on
ogbn-products, accompanied by a 25.44% reduction in training time. Moreover, PROPGCL also
presents better robustness on hyperparameters selection and noisy features (Appendix N).

Table 4: Test accuracy (%) of node classification benchmarks, comparing PROPGCL with PROP and
GCL baselines. Blue indicates the best method, while underlined represents the second-best choice.

Method Homophily Heterophily

Cora CiteSeer PubMed Photo Computers CS Mean Squirrel Chameleon Actor Texas Wisconsin Cornell Mean

PROP 85.48 ± 0.75 78.87 ± 0.63 82.89 ± 0.48 93.01 ± 0.28 87.54 ± 0.47 95.15 ± 0.19 87.16 58.48 ± 1.03 68.82 ± 1.42 39.36 ± 0.91 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11 71.35

GRACE 86.90 ± 1.03 75.60 ± 0.71 85.31 ± 0.23 90.10 ± 0.30 82.29 ± 0.23 92.99 ± 0.18 85.53 43.78 ± 0.99 62.30 ± 0.94 37.76 ± 0.77 73.61 ± 4.26 67.00 ± 1.75 65.57 ± 9.02 58.34

DGI 85.80 ± 0.95 78.58 ± 0.70 82.27 ± 0.31 80.63 ± 1.15 79.58 ± 0.39 93.48 ± 0.17 83.39 37.14 ± 0.80 52.38 ± 1.29 34.44 ± 0.45 82.62 ± 2.30 72.13 ± 2.38 80.33 ± 1.97 58.84

PolyGCL 86.19 ± 0.76 79.07 ± 0.82 86.69 ± 0.24 92.70 ± 0.18 88.91 ± 0.25 95.30 ± 0.07 88.14 56.09 ± 0.87 72.17 ± 1.12 40.50 ± 0.78 86.72 ± 2.13 85.50 ± 4.00 75.90 ± 2.46 69.48

SP-GCL 84.68 ± 0.81 76.43 ± 0.63 86.98 ± 0.23 92.65 ± 0.48 89.04 ± 0.35 91.95 ± 0.24 86.91 58.11 ± 0.70 70.98 ± 0.90 30.40 ± 1.11 81.97 ± 2.79 76.00 ± 3.75 65.74 ± 6.39 63.87

HGRL 85.39 ± 1.00 79.84 ± 0.91 85.12 ± 0.30 93.61 ± 0.22 85.89 ± 0.22 95.57 ± 0.12 87.57 38.89 ± 0.85 55.69 ± 1.03 37.09 ± 0.68 84.10 ± 4.75 86.13 ± 3.00 84.59 ± 4.27 64.57

GraphACL 87.41 ± 1.00 79.17 ± 0.55 85.71 ± 0.27 92.86 ± 0.33 86.43 ± 0.35 94.17 ± 0.16 87.63 53.77 ± 0.89 66.94 ± 1.05 38.73 ± 0.86 84.43 ± 1.80 80.00 ± 2.50 79.51 ± 1.80 67.23

DSSL 87.60 ± 1.18 79.52 ± 1.10 86.62 ± 0.24 93.15 ± 0.46 88.53 ± 0.38 94.10 ± 0.18 88.25 47.56 ± 0.98 68.85 ± 3.77 35.64 ± 0.51 85.90 ± 2.62 79.00 ± 2.75 80.98 ± 2.13 67.77

PROP-GRACE 87.42 ± 0.95 81.56 ± 0.83 86.19 ± 0.35 93.32 ± 0.31 88.12 ± 0.23 95.95 ± 0.14 88.76 55.09 ± 0.81 71.73 ± 1.18 39.35 ± 0.81 89.84 ± 1.81 88.50 ± 3.63 86.72 ± 2.46 71.87

PROP-DGI 86.19 ± 1.05 80.78 ± 0.65 85.14 ± 0.22 92.78 ± 0.37 89.81 ± 0.20 95.82 ± 0.18 88.42 60.53 ± 0.66 74.11 ± 0.96 39.53 ± 0.84 91.80 ± 2.30 88.88 ± 2.50 87.38 ± 2.62 73.71

Table 5: Test accuracy (%) of recent heterophily graph
benchmarks. Blue indicates the best method, while the
underlined represents the second-best.

Method roman empire amazon ratings minesweeper tolokers questions Mean
PROP 63.95 ± 0.33 40.22 ± 0.22 74.10 ± 0.58 71.74 ± 0.51 70.23 ± 0.59 64.05

DGI 62.64 ± 0.22 38.71 ± 0.23 80.01 ± 0.65 74.95 ± 0.58 68.05 ± 0.61 64.87

GRACE 59.04 ± 0.22 39.79 ± 0.28 75.89 ± 0.50 74.26 ± 0.73 72.15 ± 0.62 64.22

PolyGCL 71.11 ± 0.47 44.09 ± 0.31 86.11 ± 0.41 83.70 ± 0.59 73.41 ± 0.84 71.68
SP-GCL 55.72 ± 0.34 43.02 ± 0.38 72.38 ± 0.64 76.69 ± 0.60 73.91 ± 0.74 64.34

HGRL 63.31 ± 0.33 39.65 ± 0.32 52.14 ± 0.44 74.34 ± 0.45 OOM −
GraphACL 59.66 ± 0.37 42.68 ± 0.19 67.73 ± 0.72 74.93 ± 0.73 74.48 ± 0.51 63.90

DSSL 44.48 ± 0.33 40.44 ± 0.16 82.05 ± 0.50 73.88 ± 0.76 69.08 ± 0.82 61.99

PROP-GRACE 68.04 ± 0.25 42.76 ± 0.26 80.83 ± 0.58 77.51 ± 0.77 71.95 ± 0.92 68.21 (↑3.99)
PROP-DGI 74.66 ± 0.27 43.14 ± 0.28 80.50 ± 0.62 77.93 ± 0.54 74.88 ± 0.76 70.22 (↑5.35)

Table 6: Test accuracy (%) and training time
on large OGB benchmarks. Train time de-
notes the training time per epoch in seconds.

Benchmark Method Test Acc Train Time

ogbn-arxiv
GGD 70.26 ± 0.15 1.02

PROP-GGD 69.71 ± 0.06 (↓ 0.55) 0.78 (↓ 23.15%)

ogbn-products
GGD 75.71 ± 0.24 284.39

PROP-GGD 75.87 ± 0.20 (↑ 0.16) 212.05 (↓ 25.44%)

6.4 EFFICIENCY ANALYSIS

Table 7: Time and space efficiency comparison.
Improvement refers to the percentage increase in
speed or decrease in memory consumption.

Metric Method Photo Computers CS Squirrel Chameleon

Time

GRACE 0.2872 0.4639 1.5111 0.7004 0.2295

PROP-GRACE 0.2400 0.3626 0.2374 0.2581 0.1450

Improvement 16.44% 21.84% 84.29% 63.15% 36.82%

Memory

GRACE 2518.04 2562.04 2562.04 5206.04 5678.04

PROP-GRACE 5.86 6.04 6.04 16.36 18.21

Improvement 99.77% 99.76% 99.76% 99.69% 99.68%

Thanks to the elimination of transformation
weights, PROPGCL demonstrates apprecia-
ble improvements in efficiency compared
to its backbone methods, both in terms of
computational time and memory usage, as
shown in Table 7. For instance, PROP-GRACE
achieves an 84.29% reduction in training time
per epoch relative to GRACE on the CS dataset.
Regarding memory efficiency, PROP-GRACE
consumes over 99% less memory for the encoder
on various benchmarks. Evaluations on more benchmarks and basis functions consistently confirm
the efficiency gains in Appendix Q, where we also provide a detailed time complexity analysis.

7 CONCLUSION

In this work, we establish PROP, a training-free propagation operator, as a strong self-supervised
learning baseline for node classification, supported by linking it to established graph algorithms.
From a decoupling perspective, we observe that transformation weights learned via GCL exhibit
uninformative characteristics and cause an overfitting to the CL objective. To address this, we
introduce a novel approach PROPGCL that focuses solely on learning propagation coefficients
through GCL, achieving state-of-the-art performance across diverse node classification benchmarks.
We believe this work paves the way for developing lightweight and effective GCL methods, with
potential for advancing both research and practical applications in graph learning.
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A APPENDIX

THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, LLMs are primarily employed for polishing the language of the manuscript to ensure
grammatical correctness and coherence. Importantly, all conceptual development, theoretical analysis,
experimental design, and result interpretation are conducted independently by the authors. The use
of LLMs is strictly limited to auxiliary tasks, ensuring that the scientific contributions of this paper
remain entirely unaffected by such tools.

B EXPERIMENTS OF PROP ON THE GRAPH CLASSIFICATION TASK

Methods. To get the global graph representation, we first aggregate node features within K-hop
neighbors without any trainable weights, then average pool aggregated node features into a global
representation, i.e.,

HPROP =
1

N

∑
i

Hi, H = ÂKX, (6)

where N is the number of nodes, Hi is the representation of the node vi, Â = D′− 1
2A′D′− 1

2 with
A′ = A+ I.

Datasets. We choose molecules datasets MUTAG (Debnath et al., 1991) and NCI1 (Wale et al.,
2008), bioinformatics datasets PROTEINS (Borgwardt et al., 2005), and DD (Dobson & Doig, 2003),
social networks IMDB-BINARY, IMDB-MULTI (Yanardag & Vishwanathan, 2015), and COLLAB
(Yanardag & Vishwanathan, 2015).

Baselines. We consider three categories of representative methods as baselines: 1) graph kernel
methods including GL (Shervashidze et al., 2009), WL (Shervashidze et al., 2011), and DGK
(Yanardag & Vishwanathan, 2015), 2) traditional graph embedding methods including node2vec
(Grover & Leskovec, 2016), sub2vec (Adhikari et al., 2018), and graph2vec (Narayanan et al., 2017),
3) contrastive learning methods including InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020),
MVGRL (Hassani & Khasahmadi, 2020), JOAOv2 (You et al., 2021), ADGCL (Suresh et al., 2021).

Settings. Following You et al. (2020), we train the model in an unsupervised manner and feed the
learned representation into a downstream SVM classifier. To keep comparison fairness, we tune
hyperparameters in a unified combination, and keep the search space among methods as consistent as
possible. Details can be found in Appendix V.

Results. As shown in Table 8, PROP surpasses most graph kernels and traditional embeddings and
performs comparably with GCL methods. PROP achieves an average performance gap of 2.82%
relative to the best-performing methods, a notable result given its training-free nature. We hypothesize
that the slight gap arises because the single-node features do not directly map to the global graph label,
necessitating advanced transformation or pooling operations. Another optional choice is utilizing
Laplacian positional embeddings or random-walk embeddings as widely discussed in the literature of
Graph Transformers (Yun et al., 2019; Ying et al., 2021; Rampášek et al., 2022). We leave deeper
research on the graph classification task for future work.

C EXPERIMENTS OF PROP IN THE INDUCTIVE SETTING

We conducted experiments in the inductive setting on the single-graph dataset Reddit and the multiple-
graph dataset PPI. The experimental settings, including data splitting and training hyperparameters,
follow those in Hamilton et al. (2017). The results are summarized in Table 9. For PPI (a multi-graph
benchmark with 50-dimensional node features), PROP (K=2) achieves an F1 score of 0.7527, which
is comparable to GRACE’s score of 0.7548. For Reddit, PROP (K=2) achieves an F1 score of 0.8452,
outperforming GRACE which achieves 0.8185. These results validate the effectiveness of PROP in
node classification tasks under the inductive setting.
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Table 8: Test accuracy (%) of graph classification benchmarks, comparing PROP and GSSL methods.
The compared results are from published papers, and − indicates that results are unavailable. We
report the performance gap between one method and the best method, averaged across datasets in the
Mean Gap column. Bold indicates the best method, while underlined represents the second-best.

PROTEINS MUTAG DD NCI1 IMDB-B IMDB-M COLLAB Mean Gap ↓
Graph Kernel

GL − 81.66 ± 2.11 − − 65.87 ± 0.98 − − 7.60

WL 72.92 ± 0.56 80.72 ± 3.00 − 80.01 ± 0.50 72.30 ± 3.44 − − 2.88

DGK 73.30 ± 0.82 87.44 ± 2.72 − 80.31 ± 0.46 66.96 ± 0.56 − − 2.37

Traditional Graph Embedding

node2vec 57.49 ± 3.57 72.63 ± 10.20 − 54.89 ± 1.61 − − − 16.61

sub2vec 53.03 ± 5.55 61.05 ± 15.80 − 52.84 ± 1.47 55.26 ± 1.54 − − 19.79

graph2vec 73.30 ± 2.05 83.15 ± 9.25 − 73.22 ± 1.81 71.10 ± 0.54 − − 3.54

Graph Contrastive Learning

MVGRL − 75.40 ± 7.80 − − 63.60 ± 4.20 − − 11.87

InfoGraph 74.44 ± 0.31 89.01 ± 1.13 72.85 ± 1.78 76.20 ± 1.06 73.03 ± 0.87 48.66 ± 0.67 70.65 ± 1.13 2.07

GraphCL 74.39 ± 0.45 86.80 ± 1.34 78.62 ± 0.40 77.87 ± 0.41 71.14 ± 0.44 48.49 ± 0.63 71.36 ± 1.15 1.52
JOAOv2 74.07 ± 1.10 87.67 ± 0.79 77.40 ± 1.15 78.36 ± 0.53 70.83 ± 0.25 − 69.33 ± 0.34 1.78

ADGCL 73.81 ± 0.46 89.70 ± 1.03 75.10 ± 0.39 69.67 ± 0.51 72.33 ± 0.56 49.89 ± 0.66 73.32 ± 0.61 2.21

PROP 71.07 ± 0.30 87.44 ± 1.53 78.39 ± 0.37 75.24 ± 0.14 71.22 ± 0.28 47.11 ± 0.18 69.07 ± 0.05 2.82

Table 9: F1 score comparison of PROP and GRACE on benchmarks PPI and Reddit. Bold indicates
the best, while underlined represents the second-best choice.

Method F1 Score (PPI) F1 Score (Reddit)
GRACE 0.7548 0.8185
PROP (K = 0) 0.7076 0.5852
PROP (K = 1) 0.7493 0.8457
PROP (K = 2) 0.7527 0.8452

D EXPERIMENTS OF PROP WITH A FIXED PUBLIC-SPLITTING.

In Section 4.1, we evaluate PROP and graph self-supervised methods on the node classification task
with a random splitting. To ensure that the conclusion is not limited to a specific split setting, we
evaluate the models on the publicly available fixed splits following Zhu et al. (2021c); Zhang et al.
(2021). In practice, we use the public splitting introduced in Pei et al. (2020) for most datasets.
There is no available public splitting for Amazon-Photo and Amazon-Computers, so we randomly
split the dataset into 1/1/8 as the train/validation/test set, differing from the splitting in Section 4.1.
Other experimental settings are kept the same. As shown in Table 10, on 6 in 10 benchmarks PROP
performs the best among baselines and exceeds the runner-up ProGCL by 4.23% on average. The
results verify the effectiveness of PROP in different data-splitting cases.

E EXPERIMENTS OF PROP WITH DIFFERENT AGGREGATION STEPS

In this section, we present the accuracies of PROP with different propagation steps. We find the best
step choice varies among datasets, but a shallow propagation is enough in most cases. As shown in
Figure 3, only one-step propagation performs best in datasets including Cora, CiteSeer, Chameleon,
Squirrel, Computers, and Photo. For Texas, Wisconsin, Cornell, Actor, and CS, the raw features, (i.e.,
zero propagation step) are enough. Moreover, when the performance achieves the best, raising the
propagation step will cause a degradation.
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Table 10: Test accuracy (%) of PROP and other graph self-supervised methods on node classification
benchmarks with the public splitting. Bold indicates the best method, while underlined represents
the second-best choice.

Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon Texas Wisconsin Cornell Mean

DeepWalk 80.87 ± 1.07 63.14 ± 1.05 81.55 ± 0.27 84.66 ± 0.40 89.59 ± 0.18 43.32 ± 0.79 60.81 ± 1.27 53.44 ± 5.09 43.63 ± 4.25 44.59 ± 2.95 64.56

Node2Vec 84.27 ± 0.70 66.04 ± 1.83 81.33 ± 0.36 83.92 ± 0.31 89.31 ± 0.20 38.41 ± 1.19 59.50 ± 2.30 60.81 ± 1.89 55.10 ± 3.73 60.54 ± 3.24 67.92

GAE 85.96 ± 1.03 72.78 ± 1.11 85.06 ± 0.49 75.29 ± 0.53 89.50 ± 0.26 35.56 ± 1.27 56.51 ± 1.62 62.43 ± 4.86 61.18 ± 3.53 60.27 ± 3.51 68.45

VGAE 86.20 ± 0.76 73.26 ± 0.65 85.19 ± 0.43 72.17 ± 0.33 86.90 ± 0.38 42.38 ± 1.13 60.29 ± 1.05 63.78 ± 3.51 59.61 ± 2.75 60.54 ± 2.16 69.03

GRACE 84.10 ± 1.01 70.41 ± 0.92 84.79 ± 0.38 78.51 ± 0.44 87.80 ± 0.41 39.65 ± 0.87 55.83 ± 1.05 64.59 ± 4.59 58.82 ± 4.91 60.81 ± 2.16 68.53

DGI 87.20 ± 0.99 72.50 ± 1.49 82.55 ± 0.38 71.35 ± 0.57 80.43 ± 0.63 36.61 ± 1.05 52.02 ± 1.32 70.54 ± 2.97 63.53 ± 3.92 61.62 ± 2.16 67.84

MVGRL 83.44 ± 0.72 71.61 ± 0.73 82.48 ± 0.30 80.96 ± 0.67 86.87 ± 0.41 31.48 ± 0.83 58.77 ± 1.45 68.38 ± 2.98 62.94 ± 3.53 61.62 ± 2.16 68.86

CCA-SSG 87.71 ± 0.75 75.42 ± 0.80 85.55 ± 0.40 78.96 ± 0.33 90.91 ± 0.38 40.16 ± 0.74 54.98 ± 1.18 68.65 ± 3.78 64.12 ± 4.31 61.89 ± 2.43 70.84

BGRL 85.77 ± 0.89 72.66 ± 1.54 84.63 ± 0.49 74.43 ± 0.91 85.50 ± 0.59 37.20 ± 1.07 53.82 ± 1.67 67.03 ± 2.70 60.59 ± 3.14 60.81 ± 2.43 68.24

GCA 86.60 ± 0.79 74.71 ± 1.18 86.44 ± 0.34 75.63 ± 0.46 88.77 ± 0.54 41.33 ± 0.88 59.28 ± 1.54 69.46 ± 2.97 62.94 ± 2.75 61.89 ± 2.16 70.71

ProGCL 85.45 ± 0.85 73.61 ± 1.10 86.86 ± 0.41 81.64 ± 0.70 89.91 ± 0.31 50.23 ± 0.86 67.81 ± 1.47 69.46 ± 2.97 62.75 ± 2.75 61.35 ± 1.35 72.91

PROP 84.57 ± 0.82 74.55 ± 1.09 84.65 ± 0.24 84.78 ± 0.38 90.83 ± 0.34 57.20 ± 1.41 68.71 ± 1.18 71.35 ± 4.60 79.61 ± 3.14 75.14 ± 3.78 77.14
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Figure 3: Accuracy (%) of PROP with different propagation steps. We mark the best step choice with
a red star. Experiments are conducted ten times and the shadow denotes the derivation.

F COMPARISON BETWEEN PROP AND RAW FEATURES

F.1 GRAPH STRUCTURE AS EFFECTIVE SUPERVISED SIGNALS

The taxonomy of homophily and heterophily is commonly used to assess whether the graph structure
is informative for training GCN-like models. However, beyond this traditional dichotomy, recent
metrics characterizing graph properties have been proposed, showing a closer relationship with
GNN performance (Mao et al., 2023; Luan et al., 2023; Platonov et al., 2023a). For instance, Ma
et al. (2021) observe that the inter-class similarity on the Squirrel dataset is slightly higher than the
intra-class similarity for most classes, which helps explain the moderate performance of GCN on this
dataset.
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However, the performance of GCN-like models is influenced by the interplay between graph structure
and node features. Therefore, poor performance of GCN does not necessarily imply that the graph
structure is ineffective, nor does it imply the opposite. To verify this, we design experiments based
on the mutual information between labels and graph elements, including graph structure and node
features. To decouple the effects of structure and node features, we use an MLP instead of a GCN
as the training model, with node features X, adjacency matrix A, and their concatenation as inputs,
respectively.

The results are shown in Table 11. Surprisingly, for some heterophily datasets, MLPs using the
graph structure as input achieve satisfactory performance. For instance, on the Squirrel dataset,
which has a low homophily ratio of 0.22, the MLP based on the graph structure achieves an accuracy
of 73.58%. This suggests that, even with a low homophily ratio, the graph structure can still serve as
a highly effective supervision signal for label prediction.

Table 11: Test accuracy (%) of MLP with different input signals on node classification benchmarks.
H(G) denotes the edge homophily ratio introduced in Zhu et al. (2020a). Lower H(G) denotes
graphs with a high heterophily level. [, ] denotes concatenation. Bold indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Chameleon Squirrel Actor

H(G) 0.81 0.74 0.80 0.23 0.22 0.22

MLP(X) 73.64 70.72 85.75 49.34 35.06 36.51
MLP(A) 78.27 57.81 81.41 77.41 73.58 21.84

MLP([X,A]) 82.29 73.57 85.83 71.05 67.63 31.84

F.2 NODE FEATURE PERTURBATION EXPERIMENTS

PROP demonstrates significant advantages over Raw Features (RF), particularly in scenarios where
node features are noisy or uninformative. To illustrate this, we compare PROP and RF under noise-
perturbation and masking-perturbation settings. For noise-perturbation, Gaussian noise is added
to the original node features. For masking-perturbation, we randomly mask the channels of node
features with varying mask ratios in [20%, 40%, 60%, 80%]. As shown in Table 12 and Table 13,
PROP consistently outperforms RF across various benchmarks when node features are perturbed.
For instance, in the noise-perturbation setting, PROP achieves an average performance improvement
of over 33% compared to RF. Similarly, in the masking-perturbation setting, PROP maintains its
superiority even with a mask ratio as high as 80%.

Table 12: Test accuracy (%) of noise-perturbed node classification benchmarks, comparing PROP and
Raw Features (RF). We add noise from a normal distribution onto the original features to generate
randomly noisy node features. Bold indicates the best method.

Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon Mean
RF 39.90 ± 6.85 32.31 ± 8.47 57.28 ± 5.69 42.60 ± 7.57 54.57 ± 6.27 21.34 ± 1.03 25.47 ± 2.47 39.07

PROP 76.73 ± 2.02 69.25 ± 2.44 81.50 ± 2.00 73.76 ± 11.58 70.23 ± 7.74 48.94 ± 6.14 69.39 ± 2.15 69.97

G INTUITIVE ILLUSTRATION OF NEIGHBORING-NODE VIEW

Using neighboring nodes can be understood as a form of view generation in GCL. Formally, this
involves designing a permutation matrix P that transforms the graph such that A′ = P⊤AP and
X′ = PX. The same row of X (or A) and X′ (or A′) corresponds to neighboring nodes in the
original graph. This kind of view generation is also applied in previous works and shows satisfying
experimental performance (Lee et al., 2022; Shen et al., 2023).

Consider a simple example of a triangle graph with three nodes v1, v2, and v3, connected as (v1, v2),

(v1, v3) (v2, v3). A specific permutation P =

(
0 1 0
0 0 1
1 0 0

)
transforms the original graph’s adjacency
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Table 13: Test accuracy (%) of mask-perturbed node classification benchmarks, comparing PROP and
Raw Features (RF). We randomly mask a proportion of features to generate perturbed node features.
Bold indicates the best method.

Mask ratio Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon Mean

20%
RF 54.01 ± 3.40 60.34 ± 4.24 70.00 ± 4.66 65.87 ± 5.16 68.59 ± 4.98 28.37 ± 0.67 41.77 ± 2.78 55.56

PROP 76.19 ± 3.76 71.87 ± 2.68 83.85 ± 0.99 89.78 ± 1.51 83.37 ± 2.18 47.13 ± 4.50 64.40 ± 2.45 73.80

40%
RF 49.10 ± 2.61 44.68 ± 9.49 58.36 ± 5.81 50.62 ± 9.53 53.56 ± 9.74 25.67 ± 1.97 34.99 ± 4.88 45.28

PROP 61.25 ± 6.68 54.87 ± 10.25 76.85 ± 4.43 76.16 ± 10.29 64.66 ± 10.61 38.68 ± 5.98 53.90 ± 6.67 60.91

60%
RF 46.95 ± 5.67 36.10 ± 8.12 55.88 ± 4.87 44.29 ± 7.96 53.85 ± 7.58 23.22 ± 2.27 30.72 ± 4.09 41.57

PROP 54.47 ± 6.93 42.59 ± 10.70 63.68 ± 9.19 60.27 ± 14.32 60.69 ± 8.46 28.47 ± 6.50 41.03 ± 8.97 50.17

80%
RF 48.33 ± 3.69 30.18 ± 5.64 52.01 ± 3.18 41.47 ± 5.78 57.87 ± 2.63 21.93 ± 2.04 28.42 ± 3.13 40.03

PROP 49.06 ± 6.39 33.77 ± 9.83 57.89 ± 8.73 57.89 ± 8.73 60.37 ± 5.14 26.35 ± 5.38 34.64 ± 9.06 44.90

matrix A =

(
0 1 1
1 0 1
1 1 0

)
, X =

(
x1

x2

x3

)
into A′ = P⊤AP =

(
0 1 1
1 0 1
1 1 0

)
, X′ = PX =

(
x2

x3

x1

)
.

The corresponding nodes in G = (A,X) and G′ = (A′,X′) form positive pairs.

Based on random sampling, other choices of P are possible, such as transforming X = (x1,x2,x3)
⊤

to X′ = (x3,x1,x2)
⊤. For node v1, the probabilities of transferring to v2 and v3 are equal. When the

sampling process is repeated sufficiently, the positive samples (v1, v2) and (v1, v3) are sampled with
approximately equal frequency, corresponding to the neighboring set in the propagation procedure.

More formally, consider the alignment loss defined in the paper,

Lalign(f) = −Exi,xj∼p(xi,xj)[f(xi)
⊤f(xj)].

Here, the probability distribution p(xi,xj) = Âij/
∑

i,j Âij is defined as the normalized edge
weight between nodes vi and vj in the k-hop graph. When the sampling process is efficient, we can
approximate the neighbor sets in the propagation as positive pairs.

H PROOF OF THEOREMS

H.1 PROOF OF THEOREM 4.1

Here we present the proof of Theorem 4.1, restated for reference.
Theorem 4.1. For a learning step size of α = 0.5, the propagation operator (Equation 3) optimizes
the spectral energy objective L(H) = H⊤(I− Âk)H, which represents the Dirichlet energy on a
rewired graph, where neighboring nodes are defined over k-hop connections.

Proof. We consider the rewired k-hop graph with the adjacency matrix denoted as Ã = Âk. The
Dirichlet energy on the k-hop graph is L(H) = H⊤L̃H, where L̃ = I− Ã. The gradient update of
the Dirichlet energy objective gives the following update rule of node features H,

H− α
∂L(H)

∂H
= H− 2αL̃H = ((1− 2α)I+ 2αÃ)H, (7)

where the α is the step size. When we choose the learning rate α = 0.5, we recover the propagation
operation in Equation 3, i.e., Hnew = ÃH = ÂkH.

H.2 PROOF OF THEOREM 4.2

Here we present the proof of Theorem 4.2, restated for reference.
Theorem 6.1. Under Assumptions 6.2 and 6.3, when α >

ϵf
∥f∥F

, we have:

∥HPROPGCL − fX∥F < min (∥HPROP − fX∥F , ∥HGCL − fX∥F ) .
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Proof. Again, we consider the rewired k-hop graph with the adjacency matrix denoted as Ã = Âk.
A key step is to notice that the alignment objective Equation 4 is closely relevant to the Dirichlet
energy when f(xi) = Hi, ∀ i ∈ [N ] :

Lalign(f) = −
∑
i,j

Ãij [H
⊤
i Hj ]/(

∑
i,j

Ãij) = H⊤ÃH/(
∑
i,j

Ãij) = H⊤(I− L̃)H/(
∑
i,j

Ãij). (8)

It is easy to see that graph convolution converges to identical vectors, known as oversmoothing.
Therefore, we have ∀ i, j, (H∞)i = (H∞)j . Therefore,

lim
k→∞

Lalign(fk) = H⊤
∞ÃH∞/(

∑
i,j

Ãij) = (
∑
i,j

Ãij)/(
∑
i,j

Ãij) = −1,

which concludes the proof.

H.3 PROOF OF THEOREM 6.1

Here we present the proof of Theorem 6.1, restated for reference.

Theorem 6.1. Under Assumptions 6.2 and 6.3, when α >
ϵf

∥f∥F
, we have:

∥HPROPGCL − fX∥F < min (∥HPROP − fX∥F , ∥HGCL − fX∥F ) .

Proof. Since GCL has sufficient capacity to fit T ∗ = f + g, at convergence we have:

∥HGCL − (f + g)X∥F ≈ 0.

However, for downstream performance, we care about proximity to fX , i.e.,

∥HGCL − fX∥F = ∥HGCL − (f + g)X+ gX∥F .

By applying the triangle inequality, we obtain:

∥HGCL − fX∥F ≥ ∥gX∥F − ∥HGCL − (f + g)X∥F .

When GCL overfits to the CL loss, it yields:

∥HGCL − fX∥F ≥ ∥gX∥F = α∥f∥F ∥X∥F . (9)

Due to spectral bias, PROPGCL preferentially learns the low-frequency component f over the high-
frequency component g (Xu et al., 2019; Rahaman et al., 2019). Let θ̂ be the learned parameters.
Then we have

∥HPROPGCL − fX∥F =

∥∥∥∥∥∑
k

θ̂kA
kX− fX

∥∥∥∥∥
F

≤ ϵf∥X∥F . (10)

PROP is a special case of PROPGCL by letting θK = 1, θi = 0, i ̸= K. Therefore, PROP satisfies∥∥Ak − f
∥∥
F
≥ δ with δ > ϵf , leading to:

∥HPROP − fX∥F =
∥∥AKX− fX

∥∥
F
≥ δ∥X∥F . (11)

From Equation 9, Equation 10, and Equation 11, we obtain that: For PROPGCL and PROP, we have
ϵf∥X∥F < δ∥X∥F . This holds since ϵf < δ.

For PROPGCL and GCL, we have ϵf∥X∥F < α∥f∥F ∥X∥F . This holds when α >
ϵf

∥f∥F
.

Therefore, under the stated conditions, we finally have:

∥HPROPGCL − fX∥F < min (∥HPROP − fX∥F , ∥HGCL − fX∥F ) ,

which ends the proof.
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I EXPERIMENTS ON GCL WITH RANDOM WEIGHTS

In Section 5.1, we show that in the DGI method, after replacing the trained transformation weights
with a random Gaussian matrix, the downstream performance does not deteriorate as expected. We
conclude that the transformation weights learned in GCL are not better than random. To enhance the
generalizability of our conclusion, we extended our experimental evaluations to include more GCL
methods, propagators, and initialization methods. The experimental settings are kept the same.

Variants on GCL methods. Table 14 shows the results using the GRACE and BGRL methods. For
GRACE, replacing the transformation weights with random weights raises the performance from
73.93% to 74.51% on average. For BGRL, the replacement brings an increase of more than 2% in
average performance.

Variants on initialization methods. We compare GCL weights with four random initializations:
Gaussian, Uniform, Kaiming (He et al., 2015), Xavier (Glorot & Bengio, 2010)). Table 15 shows
that all randomized weights perform comparably to (even slightly better than) GCL-trained weights,
confirming the GCL weights deficiency.

Variants on the propagators. We consider an alternative APPNP-like propagator (Gasteiger et al.,
2019a):

HAPPNP = (1− α)AkX+ αX,

where α is the teleport (or restart) probability. As shown in Table 16, for the APPNP propagator,
GCL-learned weights still show no significant advantage over different random weights.

Although we can not exhaustively try all GCL random variants, the results of representative variants
above are able to verify that many GCL methods fail to learn effective transformation weights.

Table 14: Test accuracy (%) of node classification benchmarks with GRACE and BGRL methods,
comparing the GCL-learned transformation weights and random weights. Bold indicates the best-
performing weights in each GCL method.

Method Weights Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean

GRACE GCL-learned 83.15 ± 0.82 74.97 ± 0.56 81.53 ± 0.25 48.46 ± 0.95 67.24 ± 1.42 84.75 ± 2.95 70.88 ± 2.00 80.49 ± 2.13 73.93

Randomize W 82.91 ± 0.72 69.93 ± 0.59 81.39 ± 0.40 53.82 ± 0.79 69.67 ± 1.01 84.59 ± 2.79 73.25 ± 1.38 80.49 ± 2.30 74.51

BGRL GCL-learned 83.27 ± 0.79 73.40 ± 0.93 81.36 ± 0.29 40.43 ± 0.77 65.07 ± 0.96 81.97 ± 3.11 73.38 ± 2.25 80.00 ± 2.13 72.36

Randomize W 82.43 ± 0.44 73.85 ± 0.74 80.77 ± 0.28 54.12 ± 0.67 71.40 ± 1.16 84.59 ± 3.11 71.38 ± 5.25 80.33 ± 1.97 74.86

Table 15: Test accuracy (%) of node classification benchmarks with DGI method, comparing the
transformation weights learned and random weights initialized in different methods. Bold indicates
the best method, while underlined is the second-best.

Training Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
GCL 83.23 ± 0.74 74.24 ± 0.55 82.10 ± 0.33 45.92 ± 0.65 64.00 ± 1.33 81.15 ± 2.13 71.88 ± 2.50 80.33 ± 1.80 72.86

Gaussian-random 83.02 ± 0.94 70.04 ± 0.82 83.87 ± 0.53 49.62 ± 0.99 67.94 ± 1.16 80.33 ± 1.81 72.25 ± 2.25 80.33 ± 1.97 73.43

Uniform-random 82.63 ± 1.05 70.63 ± 1.13 83.38 ± 0.50 44.49 ± 1.03 68.42 ± 0.92 82.62 ± 2.62 73.25 ± 2.25 80.82 ± 1.80 73.28

Kaiming-random 82.46 ± 0.71 69.09 ± 0.71 83.68 ± 0.32 44.99 ± 0.63 68.42 ± 1.53 82.46 ± 2.79 75.75 ± 3.38 80.66 ± 1.97 73.44
Xavier-random 82.45 ± 0.74 68.90 ± 0.74 83.56 ± 0.43 45.02 ± 0.64 68.34 ± 1.47 82.95 ± 2.30 75.13 ± 1.75 80.82 ± 1.97 73.40

Table 16: Test accuracy (%) of node classification benchmarks with DGI method and APPNP
propagator, comparing the GCL-learned transformation weights and different random weights. Bold
indicates the best method, while underlined is the second-best.

Training Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
GCL 84.79 ± 0.80 75.47 ± 0.76 82.25 ± 0.24 40.74 ± 0.61 58.99 ± 1.40 80.33 ± 1.97 87.00 ± 2.50 80.33 ± 1.80 73.74

Gaussian-random 85.42 ± 0.99 76.49 ± 0.55 84.85 ± 0.16 45.76 ± 0.69 58.95 ± 1.23 82.79 ± 3.28 88.50 ± 2.63 83.44 ± 3.61 75.78
Uniform-random 85.34 ± 0.84 76.81 ± 0.68 84.60 ± 0.24 43.87 ± 0.90 58.42 ± 0.96 78.69 ± 2.62 86.88 ± 1.25 78.52 ± 2.46 74.14

Kaiming-random 83.23 ± 1.00 75.68 ± 0.79 83.76 ± 0.15 39.31 ± 0.91 55.89 ± 1.44 81.15 ± 4.59 87.25 ± 3.25 81.15 ± 4.43 73.43

Xavier-random 83.02 ± 0.69 75.28 ± 0.61 83.10 ± 0.19 38.55 ± 0.86 55.60 ± 1.20 81.15 ± 4.10 87.63 ± 3.13 78.69 ± 6.23 72.88
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J FLIP CL-SL EXPERIMENTS IN SECTION 5

In the flip experiment, we first train the network parameters via GCL and save the learned trans-
formation weights WCL and propagation coefficients θCL. We then proceed with the following
experiments:

Experiment 1 (Fix-transformation). We initialize and freeze transformation weights with the
GCL-trained WCL, and only learn propagation coefficients θ through supervised learning.

Experiment 2 (Fix-propagation). We initialize and freeze propagation coefficients with the GCL-
trained θSL, and only learn transformation weights W through supervised learning.

Experiment 3 (All-one baseline). We further consider a baseline with GCL-trained transformation
weights WCL and a fixed all-one propagation coefficients 1.

As shown in Table 17, despite using the propagation coefficients learned via GCL, the model still
achieves satisfying performances of 77.57%, compared to the original supervised model with 80.41%.
However, after replacing the transformation weights with GCL-learned ones, the performance
deteriorates largely with an accuracy of only 65.01%. The results further confirm our conclusion in
Section 5.2 that GCL learns effectively during the propagation phase.

Table 17: Test accuracy (%) of node classification benchmarks. We freeze the propagation coefficients
with θCL (or the transformation weights with WCL), and learn the transformation weights (or
propagation coefficients) in the supervised setting. 1 denotes an all-one vector. Bold indicates the
best, while underlined represents the second-best choice.

Method θ W Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
SL Learn Learn 88.39 ± 0.74 79.67 ± 0.72 87.11 ± 0.25 49.34 ± 1.09 69.52 ± 0.96 89.67 ± 2.13 91.25 ± 2.75 88.36 ± 3.11 80.41
CL θCL WCL 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61 72.09

Fix-transformation Learn WCL 76.62 ± 2.12 76.25 ± 0.64 83.32 ± 0.46 36.56 ± 0.61 52.41 ± 2.06 60.16 ± 6.39 75.25 ± 4.38 59.51 ± 5.08 65.01

Fix-propagation θCL Learn 87.06 ± 0.53 79.55 ± 0.74 85.76 ± 0.23 41.44 ± 1.06 64.44 ± 0.74 87.38 ± 2.95 90.63 ± 3.00 84.26 ± 2.62 77.57

All-one baseline 1 Learn 71.74 ± 3.22 75.92 ± 0.61 79.38 ± 0.47 33.27 ± 0.61 42.32 ± 0.90 55.41 ± 4.43 74.13 ± 4.13 60.82 ± 6.56 61.65

K DETAILS ABOUT POLYNOMIAL GNNS

In this section, we introduce polynomial GNNs from the spectral perspective. Developed from graph
signal processing, graph convolution means transforming the graph signals to the Fourier domain and
then back to the vertex domain after suitable filtering, i.e., H = Ugθ(Λ)U⊤X, where gθ is the filter,
U is the matrix of eigenvectors of graph Laplacian L, Λ is the diagonal matrix of eigenvalues. The
problem arises when the parameters in gθ(Λ) are entirely unconstrained, leading to a lack of spatial
localization in the convolution and a high time complexity due to eigenvalue decomposition.

These issues can be overcome with the use of a polynomial filter gθ(Λ) =
∑K−1

k=0 θkΛ
k, where the

parameter θ ∈ RK is a vector of polynomial coefficients. Therefore, the graph convolution can be
reformulated as H = (

∑K−1
k=0 θkL

k)X. We call GNNs using the polynomial approximated filters as
polynomial GNNs. As one of the pioneer works, ChebNet (Defferrard et al., 2016) uses Chebyshev
polynomial parametrization to localize filters as gθ(Λ) =

∑K
k=0 θkTk(Λ̃), where Λ̃ = 2Λ/λmax−I,

θ is the Chebyshev coefficients, and Tk(Λ̃) is the Chebyshev polynomial of order k recursively
calculated by Tk(x) = 2xTk−1(x)− Tk−2(x) with T0(x) = 1 and T1(x) = x.

In Section 6, we consider three popular polynomial GNN variants. GPRGNN (Chien et al., 2021)
uses the monomial basis functions evaluated at Â, i.e., gθ(Λ) =

∑K−1
k=0 θk(I − L̂)k with θ as

learnable coefficients. BernNet (He et al., 2021) uses the Bernstein polynomial approximation,
i.e., gθ(Λ) =

∑K−1
k=0 θk

1
2k

(
K
k

)
(2I − L)K−kLk with θ as learnable coefficients. ChebNetII (He

et al., 2022) enhances the original Chebyshev polynomial approximation by Chebyshev interpolation,
formulated as gθ(Λ) = 2

K+1

∑K
k=0

∑K
j=0 θjTk(xj)Tk(L̂), where xj = cos((j + 1/2)π/(K + 1))

are the Chebyshev nodes of TK+1, and θ are learnable coefficients.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

L BASIS POLYNOMIAL FUNCTIONS ANALYSIS OF PROPGCL

Polynomial GNNs variants mainly differ in the polynomial basis function choices, e.g., the monomial
basis in GPRGNN (Chien et al., 2021), the Bernstein basis in BernNet (He et al., 2021), and
the Chebyshev basis in ChebNetII (He et al., 2022). We have introduced detailed basis function
formulations in Appendix K.

In this section, we compare different basis polynomial functions used in PROPGCL. Here we consider
the Chebyshev basis, Bernstein basis, and monomial basis. As shown in Table 18 and Table 19,
the performance of PROPGCL is relatively robust in the choice of basis functions. For homophily
benchmarks, PROP-GRACE with Chebyshev basis and the PROP-DGI with monomial basis achieve
the best, surpassing the second slightly by 0.05% on average. For heterophily benchmarks, the best
PROP-DGI with the Chebyshev basis achieves 73.71% on average, and the Bernstein basis ranks the
second. In general, the Chebyshev basis is preferred in PROPGCL.

Table 18: Test accuracy (%) of homophily node classification benchmarks, comparing different basis
polynomial functions in PROPGCL. Bold indicates the best method, while underlined represents the
second-best choice.

Method Basis Cora CiteSeer PubMed Photo Computers CS Mean

PROP-GRACE

Chebyshev 87.42 ± 0.95 81.56 ± 0.83 86.19 ± 0.35 93.32 ± 0.31 88.12 ± 0.23 95.95 ± 0.14 88.76
Bernstein 87.52 ± 1.20 81.69 ± 0.86 85.90 ± 0.25 93.42 ± 0.24 87.77 ± 0.22 95.97 ± 0.13 88.71

monomial 87.34 ± 1.13 81.86 ± 0.79 86.41 ± 0.23 93.19 ± 0.26 86.85 ± 0.34 95.91 ± 0.15 88.59

PROP-DGI

Chebyshev 86.19 ± 1.05 80.78 ± 0.65 85.14 ± 0.22 92.78 ± 0.37 89.81 ± 0.20 95.82 ± 0.18 88.42

Bernstein 86.49 ± 0.99 80.93 ± 0.72 85.80 ± 0.40 93.53 ± 0.26 89.77 ± 0.25 95.46 ± 0.16 88.66

monomial 86.86 ± 1.02 81.69 ± 0.86 86.56 ± 0.33 93.72 ± 0.25 88.18 ± 0.34 95.57 ± 0.14 88.76

Table 19: Test accuracy (%) of heterophily node classification benchmarks, comparing different basis
polynomial functions in PROPGCL. Bold indicates the best method, while underlined represents the
second-best choice.

Method Basis Squirrel Chameleon Actor Texas Wisconsin Cornell Mean

PROP-GRACE

Chebyshev 55.09 ± 0.81 71.73 ± 1.18 39.35 ± 0.81 89.84 ± 1.81 88.50 ± 3.63 86.72 ± 2.46 71.87

Bernstein 48.51 ± 0.85 70.02 ± 0.88 39.33 ± 0.81 90.16 ± 1.31 89.00 ± 3.25 88.52 ± 2.95 70.92

monomial 51.96 ± 0.69 69.28 ± 1.05 39.52 ± 0.89 84.43 ± 2.62 84.13 ± 4.50 88.20 ± 2.79 69.59

PROP-DGI

Chebyshev 60.53 ± 0.66 74.11 ± 0.96 39.53 ± 0.84 91.80 ± 2.30 88.88 ± 2.50 87.38 ± 2.62 73.71
Bernstein 53.08 ± 0.83 71.20 ± 0.81 39.48 ± 0.77 92.46 ± 1.48 91.63 ± 3.00 87.38 ± 2.63 72.54

monomial 56.65 ± 0.77 72.12 ± 0.72 37.80 ± 0.57 93.11 ± 1.80 83.63 ± 5.88 81.97 ± 2.95 70.88

M CLUSTERING QUALITY ESTIMATION

To exclude the impact of linear-probing, we also evaluate the clustering quality of raw features
and representations learned by GRACE and PROP-GRACE. We conduct KMeans on unsupervised
representations and esitimate two clustering metrics Clustering Accuracy and Normalized Mutual
Information (NMI). As shown in Table 20 and Table 21, PROP-GRACE outperforms both baselines
on average, demonstrating better clustering effectiveness. Compared to the state-of-the-art perfor-
mance in linear probing, PROP-GRACE fails to consistently surpass GRACE across all benchmarks.
Therefore, we recommend adopting PROPGCL in a CL+linear-probing use case, i.e., training a
simple linear classifier on the unsupervised representations in downstream tasks.

N ROBUSTNESS COMPARISON

N.1 NOISY FEATURES SENSITIVITY ANALYSIS

In Appendix F, we evaluate PROP’s performance under node feature perturbations. Here, we
extend this analysis to PROPGCL (using PROP-GRACE as a representative) and compare it against
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Table 20: Clustering Accuracy (%) of node classification benchmarks, comparing Raw Features (RF),
GRACE, and PROP-GRACE. Bold indicates the best method, while underlined is the second-best.

Cora CiteSeer PubMed Squirrel Computers Photo Chameleon Texas Wisconsin Cornell Mean
RF 30.06 37.60 59.86 38.21 37.52 20.32 23.36 44.26 51.79 44.26 38.72

GRACE 43.24 56.36 64.68 31.06 47.22 24.51 26.75 46.45 43.03 32.24 41.55

PROP-GRACE 51.81 67.45 61.39 39.97 46.01 31.46 29.07 46.45 41.83 41.53 45.70

Table 21: NMI of node classification benchmarks, comparing Raw Features (RF), GRACE, and
PROP-GRACE. Bold indicates the best method, while underlined is the second-best.

Cora CiteSeer PubMed Squirrel Computers Photo Chameleon Texas Wisconsin Cornell Mean
RF 0.1031 0.1504 0.3105 0.2231 0.2567 0.0040 0.0123 0.2018 0.3738 0.2018 0.1838

GRACE 0.3476 0.3166 0.2257 0.2179 0.4584 0.0150 0.0163 0.1897 0.2382 0.0345 0.2060

PROP-GRACE 0.3623 0.4136 0.3380 0.3071 0.4039 0.0818 0.0885 0.1491 0.1044 0.0536 0.2302

two baselines: raw features (RF) and PROP. We examine two perturbation scenarios- 1). Noise
Perturbation: Gaussian noise is added to the original node features to generate noisy inputs; 2).
Masking Perturbation: Random channels of the node features are masked at varying ratios in 20%,
40%, 60%, and 80%.

As shown in Tables 22 and 23, PROP-GRACE exhibits significantly stronger robustness compared
to both RF and PROP. Specifically, it outperforms RF by >30% on noise-perturbed features and
maintains consistent improvements across all masking ratios. These results highlight the advantages
of PROP-GRACE’s on noisy or low-dimensional features.

Table 22: Test accuracy (%) of noise-perturbed node classification benchmarks, comparing Raw
Features (RF), PROP and PROP-GRACE. We add noise from a normal distribution onto the original
features to generate randomly noisy node features. Bold indicates the best method.

Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon Mean
RF 39.90 ± 6.85 32.31 ± 8.47 57.28 ± 5.69 42.60 ± 7.57 54.57 ± 6.27 21.34 ± 1.03 25.47 ± 2.47 39.07

PROP 76.73 ± 2.02 69.25 ± 2.44 81.50 ± 2.00 73.76 ± 11.58 70.23 ± 7.74 48.94 ± 6.14 69.39 ± 2.15 69.97
PROP-GRACE 80.77 ± 0.92 70.85 ± 1.20 81.17 ± 0.29 80.07 ± 0.48 72.06 ± 0.67 58.47 ± 0.72 67.79 ± 1.20 73.03

N.2 HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we undertake a hyperparameter sensitivity analysis to compare PROPGCL with its
GCL backbone counterpart. The investigation entails manipulating a spectrum of hyperparameters to
assess their impact on performance metrics. Specifically, we focus on two pivotal hyperparameters
within the model architecture: the hidden dimension and the number of propagation steps. Figure
4 illustrates that the performance of DGI is notably sensitive to perturbations in hyperparameters.
For instance, on the Cora dataset, a reduction in the hidden dimension from 256 to 128 results in
a substantial accuracy decrement of approximately 40%. Conversely, as shown in Figure 5, the
robustness of PROP-DGI is evident across various hyperparameter configurations, with a sharp
decline only observed when using small neural networks.

O TRIALS IN THE FEW-SHOT LEARNING SETTING

In Section 5, we observe that GCL has the potential to learn good propagation coefficients given
well-trained transformation weights. It inspires methods in the few-shot scenario, where a model is
tasked with achieving effective generalization from a minimal number of labeled examples per class.

In this study, we examine the N -shot case, where N denotes the number of examples per class used
for training and is commonly chosen as 3 or 5. For our approach, we train the propagation coefficients
via GCL and then focus on optimizing the transformation weights supervisedly on the given support
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Table 23: Test accuracy (%) of modified node classification benchmarks, comparing Raw Features
(RF), PROP, and PROP-GRACE. We randomly mask a proportion of features to generate perturbed
node features. Bold indicates the best method, while underlined represents the second-best.

Mask ratio Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon Mean

20%
RF 54.01 ± 3.40 60.34 ± 4.24 70.00 ± 4.66 65.87 ± 5.16 68.59 ± 4.98 28.37 ± 0.67 41.77 ± 2.78 55.56

PROP 76.19 ± 3.76 71.87 ± 2.68 83.85 ± 0.99 89.78 ± 1.51 83.37 ± 2.18 47.13 ± 4.50 64.40 ± 2.45 73.80

PROP-GRACE 80.36 ± 0.84 73.27 ± 0.66 82.12 ± 0.16 88.00 ± 0.42 79.19 ± 0.50 56.93 ± 0.48 67.37 ± 1.40 75.32

40%
RF 49.10 ± 2.61 44.68 ± 9.49 58.36 ± 5.81 50.62 ± 9.53 53.56 ± 9.74 25.67 ± 1.97 34.99 ± 4.88 45.28

PROP 61.25 ± 6.68 54.87 ± 10.25 76.85 ± 4.43 76.16 ± 10.29 64.66 ± 10.61 38.68 ± 5.98 53.90 ± 6.67 60.91

PROP-GRACE 80.79 ± 1.07 73.78 ± 0.86 81.55 ± 0.18 87.38 ± 0.50 71.29 ± 0.29 53.21 ± 0.53 64.38 ± 1.09 73.20

60%
RF 46.95 ± 5.67 36.10 ± 8.12 55.88 ± 4.87 44.29 ± 7.96 53.85 ± 7.58 23.22 ± 2.27 30.72 ± 4.09 41.57

PROP 54.47 ± 6.93 42.59 ± 10.70 63.68 ± 9.19 60.27 ± 14.32 60.69 ± 8.46 28.47 ± 6.50 41.03 ± 8.97 50.17

PROP-GRACE 78.39 ± 1.13 72.01 ± 1.11 79.13 ± 0.20 78.87 ± 0.50 70.06 ± 0.87 47.06 ± 0.85 63.76 ± 1.18 69.90

80%
RF 48.33 ± 3.69 30.18 ± 5.64 52.01 ± 3.18 41.47 ± 5.78 57.87 ± 2.63 21.93 ± 2.04 28.42 ± 3.13 40.03

PROP 49.06 ± 6.39 33.77 ± 9.83 57.89 ± 8.73 57.89 ± 8.73 60.37 ± 5.14 26.35 ± 5.38 34.64 ± 9.06 44.90

PROP-GRACE 60.20 ± 1.40 63.83 ± 1.13 65.29 ± 0.44 71.38 ± 1.04 64.85 ± 0.98 38.84 ± 1.13 55.80 ± 1.44 60.03

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n 
St

ep

78.54 59.11 78.92 78.78

80.49 61.11 79.97 76.73

77.56 55.25 78.11 48.88

50

55

60

65

70

75

80

(a) PubMed

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n 
St

ep

81.59 43.86 77.04 31.15

83.19 40.94 80.20 31.99

83.04 43.86 81.41 38.44 40

50

60

70

80

(b) Cora

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n 
St

ep

55.76 27.03 27.60 71.31

70.86 28.79 27.30 29.32

26.15 26.62 26.59 27.27
30

40

50

60

70

(c) CiteSeer

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n 
St

ep

50.31 48.93 45.25 34.66

51.03 50.13 47.94 45.93

49.39 50.74 33.61 40.55
35.0

37.5

40.0

42.5

45.0

47.5

50.0

(d) Chameleon

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n 
St

ep

34.20 32.56 27.24 28.66

34.30 33.44 29.67 28.71

29.86 34.27 33.65 28.33
28

29

30

31

32

33

34

(e) Squirrel

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n 
St

ep

79.34 74.10 73.11 57.38

80.82 73.77 76.56 57.21

80.49 69.18 76.07 57.38
60

65

70

75

80

(f) Texas

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n 
St

ep

75.41 75.74 74.10 58.03

79.18 76.56 77.54 57.87

77.70 71.15 78.85 58.36
60

65

70

75

(g) Cornell

256 128 64 32
Hidden dimension

10
5

2
Ag

gr
eg

at
io

n 
St

ep

58.00 62.75 81.75 57.25

68.00 72.00 81.25 67.25

62.25 74.00 81.25 57.62
60

65

70

75

80

(h) Wisconsin

Figure 4: Hyperparameter sensitivity analysis of DGI with ChebNetII as the encoder. We evaluate
the performances by varying the hidden dimension and propagation step.
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Figure 5: Hyperparameter sensitivity analysis of PROP-DGI with the Chebyshev basis. We evaluate
the performances by varying the hidden dimension and propagation step.

examples. The method is termed as Fix-prop SL. For the baseline, we consider the ChebNetII
models trained via supervised learning (SL) and contrastive learning (CL).
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Figure 6: Training Curve on Cora
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Figure 7: Training Curve on CiteSeer
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Figure 8: Training Curve on Computers
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Figure 9: Training Curve on Photo

As illustrated in Table 24, this approach yields improvements on several benchmarks. For instance,
Fix-prop SL enhances SL accuracy from 57.51% to 72.60% on Cora in the 5-shot case, and from
39.19% to 65.39% in the 3-shot case. However, the Fix-prop SL approach has minimal impact
on the Squirrel and Chameleon datasets. The results demonstrate the potential of integrating SL
and CL from a decoupling perspective in the few-shot scenario. Notably, we keep hyperparameters
consistent across all training methods and benchmarks, leaving ample room for further exploration
beyond this initial investigation.

Table 24: Test accuracy (%) of node classification benchmarks in the 3-shot and 5-shot scenarios,
comparing models trained with SL, CL, and Fix-prop SL settings. Bold indicates the best, while
underlined represents the second-best choice.

Training Cora CiteSeer PubMed Squirrel Chameleon

5 Shot
SL 57.51 ± 2.29 43.11 ± 3.75 59.62 ± 2.56 20.15 ± 0.30 22.09 ± 1.60
CL 66.88 ± 2.29 55.02 ± 4.64 63.20 ± 2.64 28.41 ± 0.87 36.92 ± 2.52

Fix-prop SL 72.60 ± 1.43 53.26 ± 4.03 67.66 ± 2.58 20.60 ± 0.90 23.30 ± 1.91

3 Shot
SL 39.19 ± 3.96 37.52 ± 2.25 55.89 ± 2.55 20.27 ± 0.55 21.40 ± 1.26
CL 64.46 ± 4.34 55.85 ± 5.15 59.88 ± 3.49 25.89 ± 1.54 36.12 ± 1.34

Fix-prop SL 65.39 ± 2.15 46.90 ± 3.40 61.46 ± 5.49 20.38 ± 0.69 27.85 ± 3.02

P CONTRASTIVE TRAINING LOSS CURVES

As demonstrated in Figure 6 to Figure 9, across multiple benchmarks, GCL with transformation
rapidly drives the CL training loss to near zero. In contrast, GCL without transformation maintains
a moderate loss level, reflecting its resistance to over-optimizing the CL objective. It verifies the
conclusion in Section 5.3 that transformation leads to the overfitting to contrastive loss and may
negatively transfers to downstream tasks.

Q EFFICIENCY ANALYSIS OF PROPGCL

By excluding transformation weights, PROPGCL demonstrates greater efficiency than the baseline
models in both time and memory usage, as evidenced by Tables 25 to 27. For example, PROP-
GRACE reduces training time per epoch by 84.29% compared to GRACE with Chebyshev basis on
the CS dataset. In terms of memory consumption, PROP-GRACE reduces encoder memory usage
by over 99% across various benchmarks relative to the original baseline. Remarkably, PROP-GGD
achieves a 20% reduction in training time compared to GRACE on large-scale OGB benchmarks,
underscoring the scalability of PROPGCL for large-scale graph learning tasks.
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In most real-world graph scenarios, PROPGCL demonstrates significantly higher time efficiency
compared to its backbone, even for large-scale graphs. For edge cases involving extremely dense
graphs and high feature dimensionality, we propose a lightweight solution—prepending a random
projection layer before propagation, whose efficacy is validated in Table 2.

Below, we provide a detailed time complexity analysis. For simplicity, consider a basic propagator
AX , with time complexity O(|E| × d), where d is the feature dimension and |E| is the edge number.
The transformation HW has complexity O(|V | × din × dout), where din = df is the input feature
dimension, dout is hidden dimension and |V | is node number. PROPGCL utilizes pure propagation
as O(|E| × df ), while the backbone combines both, i.e., O(|V | × df × dout + |E| × dout). The
time improvement is ∆ = O(|V |(df (dout − s) + s × dout)), where s = |E|/|V | is the sparsity
factor. The key insights are (1) for typical graphs (low s, moderate df ), PROPGCL’s gains grow with
df , as dout > s often holds for real-world sparse graphs, validated in Table 28. and (2) for dense
and high-dimensional cases, while gains may narrow, we can lightweightly fix it by prepending a
random projection layer before propagation. Table 2 verifies random projections’ efficacy, and their
no-training nature preserves efficiency. Therefore, PROPGCL’s speedup holds across most practical
settings.

To verify the feasibility of the random projector, we construct synthetic graphs using the Erdős–Rényi
model, consisting of 1000 nodes with a feature dimension of 10,000 and an edge probability of 0.5,
resulting in a dense graph with extremely high-dimensional features. To generate meaningful yet
non-trivial node features, we combine topological properties (degree, clustering coefficient) and
community structure (from spectral clustering). To prevent overly discriminative features, we further
corrupt them with Gaussian noise (std=1.0). Node labels are assigned based on communities, and the
data is split into train/validation/test sets following the paper’s settings. We evaluate three variants: (1)
DGI: vanilla GCL with spectral GNNs as the backbone, (2) PROP-DGI: the method proposed in the
paper, removing the transformation entirely, (3) PROP-DGI-RAND: extends PROP-DGI by adding
a frozen random projection layer before propagation. The results are shown in Table 29. Although
sacrificing a modest performance compared with PROP-DGI, PROP-DGI-RAND still significantly
improves over DGI on test accuracy (90.90% vs. 58.05%). Moreover, the random projection further
decreases the training time for PROP-DGI from 0.1918s to 0.0227s, demonstrating its efficiency on
high-dimensional dense graphs..

Table 25: Training time per epoch in seconds between PROP-GRACE and GRACE. Experiments
are all conducted on a single 24GB NVIDIA GeForce RTX 3090, except those denoted with ∗ on
48GB Nvidia A40 for out-of-memory. Improvement refers to the percentage increase in speed of the
-PROP version compared to the baseline, i.e., (tGRACE − tPROP−GRACE)/tGRACE.

Basis Method Cora CiteSeer PubMed Photo Computers CS Squirrel Chameleon Actor

Chebyshev GRACE 0.1611 0.1939 0.2795 0.2872 0.4639 1.5111* 0.7004 0.2295 0.2872
PROP-GRACE 0.1409 0.1478 0.2650 0.2400 0.3626 0.2374* 0.2581 0.1450 0.2073

Improvement 12.54% 23.79% 5.18% 16.44% 21.84% 84.29% 63.15% 36.82% 27.83%

Bernstein GRACE 0.1515 0.2215 0.2513 0.4878 0.9293 6.7666* 1.8997 0.4079 0.2619
PROP-GRACE 0.1226 0.1178 0.2334 0.3832 0.6968 0.6038* 0.5175 0.1653 0.1789

Improvement 19.03% 46.79% 7.10% 21.45% 25.02% 91.08% 72.76% 59.47% 31.69%

Monomial GRACE 0.1114 0.1023 0.1217 0.1606 0.2340 1.2487* 0.3714 0.1524 0.1202
PROP-GRACE 0.1024 0.1224 0.1221 0.1428 0.1928 0.1927* 0.1650 0.1151 0.1109

Improvement 8.06% 16.42% 0.31% 11.12% 17.61% 84.57% 55.56% 24.46% 7.74%

Table 26: Memory consumption of encoder in KBs between PROP-GRACE and GRACE. Improve-
ment refers to the percentage decrease in the memory consumption of the -PROP version compared
to the baseline. i.e., (mGRACE −mPROP−GRACE)/mGRACE.

Method Cora CiteSeer PubMed Photo Computers CS Squirrel Chameleon Actor
GRACE 3894.04 8434.04 2028.04 2518.04 2562.04 2562.04 5206.04 5678.04 2892.04

PROP-GRACE 11.24 28.97 3.95 5.86 6.04 6.04 16.36 18.21 7.32
Improvement 99.71% 99.66% 99.81% 99.77% 99.76% 99.76% 99.69% 99.68% 99.75%
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Table 27: Training time per epoch in seconds and memory consumption of encoder in KBs between
GGD and PROP-GGD on OGB benchmarks. Experiments are conducted on a single 80GB NVIDIA
A100. Improvement refers to the percentage increase in speed or decrease in memory consumption.

Metric Method ogbn-arxiv ogbn-products

Time (Memory)

GGD 1.0270 (2324.00) 284.3968 (12740.00)

PROP-GGD 0.7892 (3.5) 212.0509 (3.52)

Improvement 23.15% (99.85%) 25.44% (99.97%)

Table 28: The relationships of sparse factor s and hidden dimension dout in popular benchmarks

Dataset s dout in best practice Relationships

Cora 1.95 64-512 dout > s

CiteSeer 1.36 64-512 dout > s

PubMed 2.25 64-512 dout > s

Photo 15.57 64-512 dout > s

Computers 17.88 64-512 dout > s

Chameleon 15.85 64-512 dout > s

Squirrel 41.74 64-512 dout > s

R COMPARISON WITH SUPERVISED CONTRASTIVE LEARNING

We hypothesize that the failure partly of learning effective transformation weights stems from the
unsupervised nature of the contrastive task, which leads to inefficient optimization without sufficient
guidance. As an initial exploration, we devise a supervised contrastive loss by selecting positive and
negative pairs according to ground-truth labels, following the principles of supervised contrastive
learning (Khosla et al., 2020; Graf et al., 2021). We apply the modified loss to the GCA framework
(termed SUP-GCL) and compare the learned transformation weights with those of GCL and SL. As
shown in Figure ??, incorporating supervised signals slightly mitigates the smooth characteristic
of GCL weights, but can’t fully solve the limitations. We believe the intrinsic reasons behind the
ineffective learning of transformation weights remain to be further explored. Fortunately, we find
that GCL promisingly captures propagation coefficients and, building on this insight, we propose
removing the transformation while retaining only propagation.

S TRIALS ON LEARNING EFFECTIVE TRANSFORMATION WEIGHTS IN GCL

According to the analysis in Section 5.1, GCL learns uninformative weights that are excessively
smooth. Here we try three ways to solve this problem: 1) enforcing the sparsity of weights with l1
normalization; 2) using whitening methods (Bell & Sejnowski, 1997; Kessy et al., 2018); 3) using
normalization methods (Huang et al., 2018; Hua et al., 2021; Guo et al., 2023a).

l1 regularization. As a typical technique, the l1 regularization encourages sparsity by driving some
weights to zero and retaining the most relevant features. In practice, we add a penalty proportional
to the sum of the absolute values of the encoder parameters to the contrastive loss, i.e., Ltotal =
LCL + λ

∑
i |wi|, where LCL is the contrastive loss, λ is the regularization strength, and the wi

is the parameters of the encoder. We conduct experiments on ChebNetII with the l1 regularized
GRACE training objective, varying the regularization strength λ in [1× 10−4, 1× 10−5, 1× 10−6].
As shown in Table 30, the l1 regularization improves performance over the original GRACE on
the Squirrel, Chameleon, Texas, Wisconsin, and Cornell datasets, though it still lags behind PROP,
except on Wisconsin. However, for Cora, Citeseer, and PubMed, l1 regularization negatively impacts
performance.

Whitening methods. Whitening methods are used to decorrelate and normalize data. By making
dimensions mutually independent, whitening methods implicitly solve the representation collapse
problem. Here we consider the typical Zero-phase Component Analysis (ZCA) whitening (Kessy
et al., 2018), which transforms the input data such that it has zero mean and identity covariance
matrix, while also preserving data structure as much as possible. It is computed by multiplying
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Table 29: Test accuracy (%) and training time (seconds) on the high-dimensional dense graph.

Method Accuracy Training Time
DGI 58.05 ± 1.40 0.6293

PROP-DGI 100.00 ± 0.00 0.1918

PROP-DGI-RAND 90.90 ± 1.30 0.0227

Table 30: Test accuracy (%) of node classification benchmarks. We train ChebNetII using the l1
regularized GRACE objective. λ denotes the regularization strength. Bold indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell

PROP 85.48 ± 0.76 78.87 ± 0.63 82.89 ± 0.48 58.48 ± 1.03 68.82 ± 1.42 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11
λ=0 (GRACE) 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61

λ=1e-4 53.71 ± 1.10 26.97 ± 0.50 81.20 ± 0.21 33.07 ± 0.89 48.60 ± 1.42 80.98 ± 2.30 70.00 ± 1.88 82.79 ± 2.46

λ=1e-5 78.87 ± 1.17 73.29 ± 0.63 84.17 ± 0.23 37.46 ± 0.89 56.37 ± 1.01 56.56 ± 1.97 91.88 ± 2.25 81.80 ± 2.30

λ=1e-6 77.75 ± 0.80 73.90 ± 0.74 84.16 ± 0.21 38.27 ± 1.02 56.91 ± 1.09 52.79 ± 4.76 86.88 ± 2.88 74.26 ± 7.38

the data by the inverse square root of its covariance matrix, i.e., x̂ = VΛ− 1
2V⊤x, where V is the

matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues of the covariance matrix of x. We
conduct experiments under the GRACE framework with a ZCA whitening layer added to the encoder
ChebNetII. As shown in Table 31, the whitening improves performance over the original GRACE on
the PubMed and Chameleon datasets but drastically deteriorates most of the other datasets.

Table 31: Test accuracy (%) of node classification benchmarks. We train ChebNetII using GRACE
with the ZCA whitening. Bold indicates the best, while underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell

PROP 85.48 ± 0.76 78.87 ± 0.63 82.89 ± 0.48 58.48 ± 1.03 68.82 ± 1.42 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11
GRACE 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61

GRACE+ZCA 79.29 ± 1.71 47.29 ± 0.70 85.76 ± 0.29 36.72 ± 0.91 58.60 ± 1.07 43.77 ± 8.36 27.38 ± 3.63 38.52 ± 6.23

Normalization methods. For normalization methods, we consider the widely used Batch Nor-
malization (BN) (Ioffe, 2015), and the recently proposed Decorrelate ContraNorm (DCN) (Guo
et al., 2023a). Batch normalization scales and shifts the mini-batch of data to have a mean of zero
and a standard deviation of one, i.e., x̂ = (x − µB)/

√
σ2
B + ϵ, where µB and σ2

B are the mean
and variance of the mini-batch B, and ϵ is a small constant for numerical stability. DCN scatters
representations in the embedding space and leads to a more uniform distribution. The formulation of
DCN is x̂ = x− s×x× softmax(x⊤x), where s is the scale factor. We conduct experiments under
the GRACE framework with a BN or DCN layer added to the encoder ChebNetII. As shown in Table
32, BN and DCN both fail to bring substantial improvement over the original GRACE.

In summary, these techniques offer limited effectiveness for GCL with polynomial GNNs. We think
the possible reason is that the learning of transformation weights needs a high-quality supervision sig-
nal. Although these methods help prevent representation collapse, they do not carry extra information.
Therefore, GCL still fails to learn good transformation weights.

T CHARACTERIZATION OF LEARNED TRANSFORMATION WEIGHTS

In Section 5.1, we demonstrated the transformation weights learned by DGI and SL on the Cora
dataset. Here, we extend these findings by presenting comprehensive results across various bench-
marks and GCL methods including GRACE, GCA, BGRL. As depicted from Figure 10 to Figure
14, the weights learned by SL display diverse, data-dependent distributions, while those learned by
CL consistently follow a Gaussian-like distribution that centers at zero. Although we can’t exhaust
all GCL methods, these representative methods provide further evidence that GCL often struggles
to learn effective transformation weights. In Figure 15, we provide results of SUP-CL on more
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Table 32: Test accuracy (%) of node classification benchmarks. We train ChebNetII using GRACE
with BN or DCN normalization. s denotes the scale factor in DCN. Bold indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell

PROP 85.48 ± 0.76 78.87 ± 0.63 82.89 ± 0.48 58.48 ± 1.03 68.82 ± 1.42 86.23 ± 3.11 89.00 ± 3.25 86.23 ± 3.11
GRACE 83.42 ± 0.92 74.79 ± 0.57 84.92 ± 0.26 37.90 ± 0.79 55.67 ± 0.96 77.87 ± 2.79 86.38 ± 3.63 75.74 ± 3.61

GRACE + BN 82.25 ± 1.00 72.78 ± 1.00 85.10 ± 0.24 39.56 ± 0.47 54.77 ± 0.74 76.07 ± 2.95 72.63 ± 4.75 75.90 ± 2.79

GRACE + DCN (s=0.5) 79.79 ± 0.99 73.86 ± 0.86 84.00 ± 0.37 38.17 ± 0.95 56.19 ± 1.03 71.15 ± 2.13 83.25 ± 2.50 71.64 ± 4.59

GRACE + DCN (s=1.0) 75.19 ± 1.08 74.91 ± 0.63 83.06 ± 0.22 38.28 ± 1.12 57.35 ± 0.98 74.26 ± 1.64 90.50 ± 1.50 76.72 ± 3.11

GRACE + DCN (s=5.0) 74.40 ± 1.15 74.46 ± 0.63 79.41 ± 0.35 38.01 ± 0.79 58.97 ± 1.33 72.95 ± 3.44 83.25 ± 2.75 73.44 ± 3.44

benchmarks, verifying that the participation of supervision signals slightly mitigates the ineffective
transformation learning problem.
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Figure 10: Distribution of the transformation weights learned by GRACE and SL.
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Figure 11: Distribution of the transformation weights learned by DGI and SL.
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Figure 12: Distribution of the transformation weights learned by GCA and SL.
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Figure 13: Distribution of the transformation weights learned by BGRL and SL.
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Figure 14: Heatmap of the transformation weights learned by GRACE and SL.
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Figure 15: Distribution of the transformation weights learned by GCA, SUP-GCA, and SL.
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U CHARACTERIZATION OF LEARNED PROPAGATION COEFFICIENTS

In section 5.2, we find after fixing the transformation weights with supervised ones, the model trained
via GCL performs as well as in a supervised manner. To verify that given well-trained transformation
weights, GCL can learn effective propagation coefficients. We compare the propagation coefficients
learned by SL, GCL, and the fix-transformation GCL. As shown in Figure 16, compared with CL, the
propagation coefficients learned by fix-transformation GCL are closer to those in SL, demonstrating
that GCL can learn effective propagation coefficients fitting the given transformation weights.
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Figure 16: Propagation coefficients of supervised learning (SL), contrastive learning (CL), and
fix-transformation contrastive learning (fix-trans CL) introduced in Section 5.2. We show the first
three propagation coefficients for the space limit.

V EXPERIMENTAL DETAILS OF PROP AND PROPGCL

V.1 BENCHMARKS

Node classification benchmarks. 1) Citation Networks (Sen et al., 2008; Namata et al., 2012). Cora,
CiteSeer, and PubMed are three popular citation graph datasets. In these graphs, nodes represent
papers and edges correspond to the citation relationship between two papers. Nodes are classified
according to academic topics. 2) Amazon Co-purchase Networks (Shchur et al., 2018). Photo and
Computers are collected by crawling Amazon websites. Goods are represented as nodes and the
co-purchase relationships are denoted as edges. Node features are the bag-of-words representation
of product reviews. Each node is labeled with the category of goods. 3) Wikipedia Networks
(Rozemberczki et al., 2021). Squirrel and Chameleon are collected from the English Wikipedia,
representing page-page networks on specific topics. Nodes represent articles and edges are mutual
links between them. 4) WebKB Networks (Pei et al., 2020). In Texas, Wisconsin, and Cornell datasets,
nodes represent web pages and edges represent hyperlinks between them. Node features are the bag-
of-words representation of web pages. 5) Actor Networks Pei et al. (2020). Each node corresponds to
an actor, and the edge between two nodes denotes co-occurrence on the same Wikipedia page. Node
features correspond to some keywords on the Wikipedia pages. Statistics of datasets are shown in
Table 33.

Graph Classification benchmarks. 1) Molecules. MUTAG (Debnath et al., 1991) is a dataset of
nitroaromatic compounds and the goal is to predict their mutagenicity on Salmonella Typhimurium.
NCI1 (Wale et al., 2008) is a dataset of chemical molecules that are annotated based on their activity
against non-small cell lung cancer and ovarian cancer cell lines. 2) Bioinformatics. PROTEINS
(Borgwardt et al., 2005) is a dataset of proteins that are classified as enzymes or non-enzymes.
Nodes represent the amino acids and two nodes are connected by an edge if they are less than 6
Angstroms apart. DD (Dobson & Doig, 2003) consists of protein structures with nodes corresponding
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to amino acids and edges indicating that two amino acids are within a certain number of angstroms. 3)
Social Networks. IMDB-BINARY and IMDB-MULTI (Yanardag & Vishwanathan, 2015) are movie
collaboration datasets consisting of a network of 1,000 actors/actresses who played roles in movies in
IMDB. In each graph, nodes represent actors/actresses; corresponding nodes are connected if they
appear in the same movie. COLLAB (Yanardag & Vishwanathan, 2015) is derived from three public
collaboration datasets representing scientific collaborations between authors. For all benchmarks, we
use collections from TUDataset (Morris et al., 2020). Statistics of datasets are shown in Table 34.

Table 33: Statistics of node classification benchmarks. H(G) denotes the edge homophily ratio
introduced in Zhu et al. (2020a).

Homo / Hetero Category Dataset # Nodes # Edges # Features # Classes H(G)

Homophily

Citation

Cora 2,708 5,278 1,433 7 0.81

CiteSeer 3,327 4,552 3,703 6 0.74

PubMed 19,717 44,338 500 3 0.80

Co-purchase Photo 7,650 119,081 745 8 0.83

Computers 13,752 245,861 767 10 0.78

Heterophily

Wikipedia Chameleon 2,277 36,101 2,325 6 0.23

Squirrel 5,201 217,073 2,089 4 0.22

WebKB

Texas 183 279 1703 5 0.11

Wisconsin 251 466 1703 5 0.21

Cornell 183 277 1703 5 0.30

Film-actor Actor 7,600 30,019 932 5 0.22

Table 34: Statistics of graph classification benchmarks. We report average numbers of nodes, edges,
and features across graphs in graph classification datasets.

Category Dataset #Graphs # Nodes # Edges # Features # Classes

Moleculars
MUTAG 188 17.9 39.6 7 2

NCI1 4110 29.87 32.30 37 2

Proteins
PROTEINS 1113 39.1 145.6 0 2

DD 1178 284.32 715.66 89 2

Social Networks
IMDB-BINARY 1000 19.8 193.1 0 2
IMDB-MULTI 1500 13.0 131.9 0 3

COLLAB 5000 74.49 2457.78 0 3

V.2 BASELINES

We categorize baselines for the node classification task into 1) traditional graph embedding al-
gorithms DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover & Leskovec, 2016); 2) graph
autoencoders GAE (Kipf & Welling, 2016), VGAE (Kipf & Welling, 2016); 3) graph contrastive
methods GRACE (Zhu et al., 2020b), DGI (Velickovic et al., 2019), GCA (Zhu et al., 2021c), MV-
GRL (Hassani & Khasahmadi, 2020), ProGCL (Xia et al., 2022); 4) graph non-contrastive methods
CCA-SSG (Zhang et al., 2021) and BGRL (Thakoor et al., 2022), 5) heterophily baselines compared
in Section 6.3, PolyGCL (Chen et al., 2024), HGRL (Chen et al., 2022), GraphACL (Xiao et al.,
2024), SP-GCL (Wang et al., 2023), DSSL (Xiao et al., 2022).The design details are as follows.

1) Traditional graph embeddings.

• DeepWalk (Perozzi et al., 2014). DeepWalk leverages truncated random walks to capture
local network structures. The algorithm treats the random walks as sequences of nodes, akin
to sentences in language models. It learns latent representations by applying skip-gram to
maximize the co-occurrence probabilities of nodes appearing in these random walks.

• Node2Vec (Grover & Leskovec, 2016). Node2Vec is built on DeepWalk by introducing a
flexible biased random walk strategy to explore network neighborhoods. The key innovation
is balancing breadth-first sampling (BFS) and depth-first sampling (DFS). This allows
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Node2Vec to capture both homophily and structural equivalence, making the learned node
embeddings more expressive.

2) Graph autoencoders.

• GAE (Kipf & Welling, 2016). GAE involves an encoder-decoder architecture, where the
encoder is a GCN that transforms node features into latent embeddings by aggregating
information from neighboring nodes. The embeddings are then used by the decoder, which
typically applies a simple inner product operation to reconstruct the graph structure, such as
predicting edges between nodes.

• VGAE (Kipf & Welling, 2016). VGAE extends GAE by introducing a probabilistic frame-
work using a variational autoencoder (VAE) setup. It models latent variables with Gaussian
distributions, enabling the generation of node embeddings that capture uncertainty. This
design improves the model’s ability to capture complex structures in graphs, especially in
tasks like link prediction.

3) Graph contrastive methods.

The mode of GCL has three mainstreams: local-to-local, global-to-global, and global-to-local (Zhu
et al., 2021b). A classic example of local-to-local is GRACE (Zhu et al., 2020b), which generates
two graph views by augmentations and the same nodes in augmented views are positive while all
the other node pairs are negative. Global-to-global mode is often used with multiple graphs in
the graph classification task, with GraphCL (You et al., 2020) as an early but influential trial. For
the global-to-local perspective, positive pairs are taken as the global representation and nodes of
augmented views, and negative pairs are the global representation and nodes of corrupted views. DGI
(Velickovic et al., 2019) is a typical example.

• GRACE (Zhu et al., 2020b). GRACE generates two graph views by corruption and learns
node representations by maximizing the agreement of node representations in these two
views. To provide diverse node contexts for the contrastive objective, GRACE proposes a
hybrid scheme for generating graph views on both structure and attribute levels.

• GCA (Zhu et al., 2021c). GCA proposes adaptive augmentation that incorporates various
priors for topological and semantic aspects of the graph. On the topology level, GCA designs
augmentation schemes based on node centrality measures, while on the node attribute level,
GCA corrupts node features by adding more noise to unimportant node features.

• DGI (Velickovic et al., 2019). DGI relies on maximizing mutual information between
patch representations and corresponding high-level summaries of graphs—both derived
using established graph convolutional network architectures. The learned patch representa-
tions summarize subgraphs centered around nodes of interest, and can thus be reused for
downstream node-wise learning tasks.

• MVGRL (Hassani & Khasahmadi, 2020). MVGRL introduces a self-supervised approach
for learning node and graph-level representations by contrasting structural views of graphs.
MVGRL shows that contrasting multi-scale encodings does not improve performance, and
the best performance is achieved by contrasting encodings from first-order neighbors and
graph diffusion.

• ProGCL (Xia et al., 2022). ProGCL observes limited benefits when adopting existing
hard negative mining techniques of other domains in graph contrastive learning. ProGCL
proposes an effective method to estimate the probability of a negative being true and devises
two schemes to boost the performance of GCL.

4) Non-contrastive methods.

• CCA-SSG (Zhang et al., 2021). CCA-SSG optimizes a novel feature-level objective
that aligns features across different graph augmentations. It uses decorrelation to prevent
degenerate solutions, allowing the model to learn invariant node representations. The model
avoids a mutual information estimator or negative samples, which simplifies training and
reduces computational complexity.

• BGRL (Thakoor et al., 2022). BGRL avoids the use of negative samples by predicting
different augmentations of the input graph. BGRL relies on a bootstrapping mechanism,
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where one branch predicts the output of another branch that is not updated by gradient de-
scent. This method eliminates the complexity of contrastive learning and negative sampling,
making it more scalable.

5) Heterophily baselines.

• PolyGCL (Chen et al., 2024). PolyGCL integrates spectral polynomial filters into graph
contrastive learning, enabling it to handle both homophilic and heterophilic graphs. The
method generates different spectral views using polynomials and incorporates high-pass
information into the contrastive objective.

• HGRL (Chen et al., 2022). HGRL introduces self-supervised learning for heterophilic
graphs by capturing distant neighbors and preserving original node features. It achieves
this through carefully designed pretext tasks optimized via high-order mutual information,
avoiding reliance on labels.

• GraphACL (Xiao et al., 2024). GraphACL focuses on an asymmetric view of neighboring
nodes. The algorithm captures both one-hop local neighborhood information and two-hop
monophily similarity, crucial for modeling heterophilic structures.

• SP-GCL (Wang et al., 2023). SP-GCL introduces a single-pass graph contrastive learning
method without augmentations. It theoretically guarantees performance across both ho-
mophilic and heterophilic graphs by studying the concentration property of features obtained
through neighborhood propagation.

• DSSL (Xiao et al., 2022). DSSL decouples neighborhood semantics in self-supervised
learning for node representation. It introduces a latent variable model that decouples node
and link generation, making it flexible to different graph structures. The method utilizes
variational inference for scalable optimization, improving downstream performance without
relying on homophily assumptions.

We categorize the baselines in the graph classification task into 1) graph kernel methods including
GL (Shervashidze et al., 2009), WL (Shervashidze et al., 2011), and DGK (Yanardag & Vishwanathan,
2015), 2) traditional graph embedding methods including node2vec (Grover & Leskovec, 2016),
sub2vec (Adhikari et al., 2018), and graph2vec (Narayanan et al., 2017), 3) contrastive learning
methods including InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020), MVGRL (Hassani &
Khasahmadi, 2020), JOAOv2 (You et al., 2021), ADGCL (Suresh et al., 2021) as introduced in recent
works. The design details are as follows.

1) Graph kernel methods.

• Graphlet Kernel (GL) (Shervashidze et al., 2009). GL works by counting the number
of small subgraphs (known as graphlets) of a fixed size that appear in each graph. The
comparison of these counts across graphs allows the kernel to capture the local topological
structures of the graphs, making it useful for tasks such as graph classification.

• Weisfeiler-Lehman Sub-tree Kernel (WL) (Shervashidze et al., 2011). WL extends the
concept of graph kernels by applying the Weisfeiler-Lehman test of isomorphism on graphs.
It involves iteratively relabeling the nodes of the graphs based on the labels of their neighbors
and then using these relabelings to define a kernel, typically counting matching sub-trees.

• Deep Graph Kernel (DGK) (Yanardag & Vishwanathan, 2015). DGK combines deep
learning techniques with graph kernels. It first learns a low-dimensional representation
of the graphs through unsupervised learning (often using a form of graph embedding or
autoencoders), then applies traditional kernel methods to these representations.

2) Traditional graph embeddings.

• Node2Vec (Grover & Leskovec, 2016). Node2Vec is built on DeepWalk by introducing a
flexible biased random walk strategy to explore network neighborhoods. The key innovation
is balancing BFS and DFS. This allows Node2Vec to capture both homophily and structural
equivalence, making the learned node embeddings more expressive.

• Sub2Vec (Adhikari et al., 2018). Inspired by the word2vec model, sub2vec learns vector
representations for subgraphs in a graph. It treats each subgraph as a "word" and the
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entire graph as a "document" to learn embeddings that capture the structural and contextual
properties of subgraphs.

• Graph2Vec (Narayanan et al., 2017). Similar to sub2vec, graph2vec is designed to learn
embeddings for entire graphs. By treating each graph as a "document" and graph sub-
structures as "words," graph2vec employs a document embedding approach to learn a
fixed-size vector representation for each graph.

3) Graph contrastive methods.

• GraphCL (You et al., 2020). GraphCL designs four types of graph augmentations to
incorporate various priors and learns graph-level representations by maximizing the global
representations of two views for a graph.

• InfoGraph (Sun et al., 2020). InfoGraph maximizes the mutual information between the
graph-level representation and the representations of substructures of different scales (e.g.,
nodes, edges, triangles). By doing so, the graph-level representations encode aspects of the
data that are shared across different scales of substructures.

• ADGCL (Suresh et al., 2021). ADGCL proposes a novel principle, adversarial GCL, which
enables GNNs to avoid capturing redundant information during training by optimizing
adversarial graph augmentation strategies used in GCL.

• JOAO (You et al., 2021). JOAO proposes a unified bi-level optimization framework to
automatically, adaptively, and dynamically select data augmentations when performing
GraphCL on specific graph data.

V.3 SETTINGS

For the node classification task, following Zhu et al. (2020b); Velickovic et al. (2019); Hassani &
Khasahmadi (2020), we use linear evaluation protocol, where the model is trained in an unsupervised
manner and feeds the learned representation into a linear logistic regression classifier. In the evaluation
procedure, we randomly split each dataset with a training ratio of 0.8 and a test ratio of 0.1, and
hyperparameters are fixed the same way for all the experiments. Each experiment is repeated ten
times with mean and standard derivation of accuracy score.

For the graph classification task, we use Adam SGD optimizer with the learning rate selected
in {10−3, 10−4, 10−5} and the number of epochs in {20, 100}. For PROP, we only search the
propagation step K in the range of [0, 1, 2, 3, 5, 10]. Following Sun et al. (2020); You et al. (2020),
we feed the generated graph embeddings into a linear Support Vector Machine (SVM) classifier,
and the parameters of the downstream classifier are independently tuned by cross-validation. The
C parameter is tuned in {10−3, 10−2, · · · , 102, 103}. We report the mean 10-fold cross-validation
accuracy with standard deviation. All experiments are conducted on a single 24GB NVIDIA GeForce
RTX 3090.

V.4 HYPERPARAMETER

For all methods, we train the linear classifier for 2000 epochs with a learning rate of 0.01 and
no weight decay. For hyperparameters of the model architecture and the unsupervised training
procedure, we maintain consistency in the hyperparameter search space across methods as much
as possible. Specifically, for GRACE, we search the temperature τ in [0.1, 0.5, 1.0], the projector
hidden dimension in [128, 256, 512], the learning rate in [0.01, 0.001], fix the patience as 50, and all
augmentation rates as 0.2. For DGI, we search the learning rate in [0.01, 0.001], the early-stopping
patience in [50, 100], and the hidden dimension in [128, 256, 512]. For CCA-SSG, we search the
training epochs in [20, 50, 100], λ in [1e-3, 5e-4], the hidden dimension in [128, 256, 512], and fix
all augmentation ratios as 0.2. For GCA, we search the temperature τ in [0.1, 0.5, 1.0], the projector
hidden dimension in [128, 256, 512], the drop scheme in [pr, degree, evc], and fix the early-stopping
patience as 50, the learning rate as 0.01, and all augmentation ratios as 0.2. For BGRL, we search the
predictor hidden dimension in [128, 256, 512], the learning rate in [1e-4, 1e-5], the weight decay in [0,
1e-5], fix the learning rate warmup epochs as 1000, the momentum moving as 0.99. For DeepWalk,
we search the vector dimension in [128, 256, 512], the context window size in [5, 10], the walk
number in [10, 20], and the walk length in [40, 80]. For Node2Vec, we search the vector dimension
in [128, 256, 512], the walk number in [10, 20], the probability p in [0.5, 1.0], q in [0.5, 1.0], and
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fix the context window size as 10, and the walk length as 80. For MVGRL, we search the learning
rate in [0.01, 0.001], the early stopping patience in [50, 100], and the hidden dimension in [128, 256,
512]. For GAE and VGAE, we search the learning rate in [0.01, 0.001], the early stopping patience
in [50, 100], and the hidden dimension in [128, 256, 512]. For the heterophily baselines in 6.3, we
use the optimal hyperparameter combinations provided in the original papers.
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