

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PROPGCL: UNLEASHING THE POWER OF PROPAGA- TION IN **NODE-LEVEL** GRAPH CONTRASTIVE LEARN- ING

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Graph contrastive learning (GCL) has recently gained substantial attention, lead-
014 ing to the development of various methodologies. In this work, we reveal that a
015 simple training-free propagation operator **PROP**, achieves competitive results over
016 dedicatedly designed GCL methods across diverse node classification benchmarks.
017 We elucidate **PROP**’s effectiveness by drawing connections with established graph
018 learning algorithms. By decoupling the propagation and transformation phases of
019 graph neural networks, we find that the transformation weights are inadequately
020 learned in GCL and perform no better than random **on node classification**. When
021 the contrastive and downstream objects are misaligned, the attendance of trans-
022 formation causes the overfitting to the contrastive loss and harms downstream
023 performance. In light of these insights, we remove the transformation entirely and
024 introduce an efficient GCL method termed **PROPGCL**. We provide theoretical
025 guarantees for PROPGCL and demonstrate its effectiveness through a comprehen-
026 sive evaluation of node classification tasks.

1 INTRODUCTION

030 Graph contrastive learning (GCL) has emerged as a promising paradigm for learning graph repres-
031 entations in an unsupervised manner. By leveraging inherent structural information, GCL has achieved
032 state-of-the-art performance on graph learning tasks (Veličković et al., 2019; Zhang & Chen, 2018;
033 You et al., 2020). However, GCL often involves intricate encoders and large-scale hyperparameter
034 tuning, raising the question of whether such complexity is necessary for effective learning.

035 In this work, we challenge the conventional wisdom that highly parameterized models are essential
036 for achieving strong performance in **node-level** GCL. Instead, we explore a simple yet powerful
037 alternative: uniform propagation, abbreviated as **PROP**, which involves no trainable layers. Remark-
038 ably, **PROP** demonstrates competitive performance on various node classification benchmarks, often
039 matching or surpassing more complicated GCL methods. This raises two important questions:

- 040 1. *How can the training-free **PROP** perform so well?*
- 041 2. *Why do some existing GCL methods exhibit suboptimal performance?*

042 To understand why **PROP** can perform comparably to GCL, we position it as a non-parametric smoothing
043 mechanism on a rewired graph through iterative optimization. Additionally, we demonstrate
044 that **PROP** inherently performs alignment in contrastive learning by viewing multi-hop neighboring
045 representations as positive samples, which elucidates the core strength in enhancing feature clustering.
046 This analysis explains the success of **PROP** and highlights the potential of simpler models in GCL.

047 To figure out the reason behind existing GCLs’ deficiency, we adopt a decoupling perspective and
048 independently analyze the transformation and propagation phases within the GCL encoder. Our
049 extensive analysis reveals a key limitation that existing **node-level** GCL methods often struggle
050 to learn meaningful *transformation* weights, which perform no better than random counterparts.
051 Moreover, transformation causes the learned representations to overfit to the contrastive loss. When
052 the contrastive objective misaligns with downstream tasks, the overfitting will cause downstream
053 degradation.

Building on these insights, we propose an efficient method, **PROPGCL**, which eliminates all transformation layers and extends the strength of PROP with graph-adaptive filters to learn flexible propagation coefficients. We provide theoretical guarantees for PROPGCL’s advantage in the case where contrastive and downstream objectives are misaligned. To validate the effectiveness of PROPGCL, we conduct extensive experiments across diverse node classification benchmarks, including both homophilic and heterophilic datasets. Our results demonstrate that PROPGCL consistently outperforms existing GCL methods with appreciably fewer computational resources.

The key contributions of this work are outlined as follows:

- We establish PROP, a training-free propagation operator, as a strong baseline in graph self-supervised learning on node classification tasks. We explain its effectiveness by connecting PROP with classical graph algorithms.
- From a decoupling perspective, we reveal that existing **node-level** GCL methods often struggle to learn effective transformation weights. The parameter-intensive transformation causes overfitting to the contrastive loss and harms the performance when contrastive and downstream objectives are misaligned.
- We propose PROPGCL, a simple method that removes the transformation entirely and enhances PROP with graph-adaptive propagation coefficients. We provide theoretical guarantees for PROPGCL’s effectiveness and rigorously evaluate PROPGCL across diverse node classification benchmarks, demonstrating its superiority over current GCL methods in terms of both accuracy and efficiency, particularly on heterophilic datasets.

2 RELATED WORKS

GCL Designing Principles. Popular GCL design approaches predominantly focus on three aspects: augmentation generation, view selection, and contrastive objectives. Augmentation strategies have been explored to enhance representation learning, such as topology-based, label-invariant, and spectral augmentations (Zhu et al., 2021b; Li et al., 2022b; Trivedi et al., 2022; Liu et al., 2022). For view selection, many works focus on hard negative mining (Robinson et al., 2021; Yang et al., 2023; Niu et al., 2024) and the necessity of positive pairs (Guo et al., 2023b). Meanwhile, contrastive objectives are often grounded in the mutual information maximization principle (Velickovic et al., 2019) or the information bottleneck principle (Xu et al., 2021). With the design complexity growing, we are concerned about whether such intricacy is truly necessary for effective graph learning. In practice, we find a training-free and propagation-only operator PROP achieves competitive results over many GCL methods (although not all GCLs), and we provide reasonable insights into its effectiveness.

Simplifying GCL Architectures. Recent efforts have introduced various strategies to reduce the complexity of existing methods. Some approaches remove the traditional augmentation process by employing K-means clustering, adding noise to the embedding space, or introducing invariant-discriminative losses (Yu et al., 2022; Lee et al., 2022; Li et al., 2023a). Zheng et al. (2022) simplify similarity computations by discriminating between two groups of summarized instances, rather than comparing all nodes. Li et al. (2023b) observe lower layers in deep networks suffer from degradation and propose an efficient blockwise training strategy. Other works explore using simpler models like MLPs or linear layers as the backbone encoder for GCL (Liu et al., 2023; Salha et al., 2019). However, these methods continue to rely on transformation layers that introduce additional parameters. In contrast, our method PROPGCL relies solely on a minimal-parameter propagation layer. This design reduces complexity while maintaining plug-and-play adaptability across various GCL frameworks.

3 BACKGROUND

3.1 GRAPH CONTRASTIVE LEARNING PIPELINE

The GCL pipeline often includes two stages, *pretraining* and *evaluation*. In the pretraining stage, graph views are first generated through augmentation approaches. The encoder f , usually defaulting to Graph Neural Networks (GNNs), embeds the graph views into node-level or graph-level representations. GCL learns the encoder weights by maximizing representation consistency between different views. The purpose of pretraining is to learn high-quality representations without relying on labeled data. In the evaluation stage, a simple linear classifier g is trained in a supervised manner to map the

108 pretrained representations to the downstream label space. This evaluation protocol is called *linear*
 109 *probing*, which enables a fair comparison of representations learned by different GCL methods.
 110

111 **3.2 POLYNOMIAL GRAPH NEURAL NETWORKS**
 112

113 One of the foundational works of GNNs is GCN (Kipf & Welling, 2017), which propagates information
 114 from local neighborhoods and then transforms the aggregated representation in each layer by
 115 $\mathbf{H}^{(l+1)} = \sigma(\hat{\mathbf{A}}\mathbf{H}^{(l)}\mathbf{W}^{(l)})$, where $\mathbf{H}^{(0)} = \mathbf{X}$ denotes node features, $\hat{\mathbf{A}}$ is the normalized adjacency
 116 matrix, $\mathbf{W}^{(l)}$ is transformation weights in the l -th layer, and σ is the activation function.
 117

118 **Decoupled GNNs.** In GCN, propagating information and transforming representation are inherently
 119 intertwined in each layer. However, this tight coupling of operations can lead to limitations, including
 120 oversmoothing and scalability issues (Wu et al., 2019; Liu et al., 2020; Dong et al., 2021). Therefore,
 121 simpler yet effective models are proposed by decoupling the two operations (Wu et al., 2019; Gasteiger
 122 et al., 2019a; He et al., 2020). For instance, SGC (Wu et al., 2019) composes two decoupled phases
 123 of 1) *propagation* which uniformly aggregates information from K -hops neighboring nodes by
 124 $\mathbf{H}' = \hat{\mathbf{A}}^K \mathbf{X}$, and 2) *transformation* which transforms features by $\mathbf{H} = \sigma(\mathbf{H}'\mathbf{W})$.
 125

126 **Polynomial GNNs.** Despite the simplicity of SGC and its follow-ups, the propagation procedure is
 127 fixed and shows limited expressiveness on more complicated graph structures (Balciar et al., 2021; Nt
 128 & Maehara, 2019; Zhu et al., 2021a). To solve this, *polynomial GNNs* replace the uniform propagation
 129 with learnable combinations of polynomial basis functions to approximate arbitrary spectral filters
 (Chien et al., 2021; He et al., 2021; 2022). Similarly, polynomial GNNs can be expressed in a unified
 propagation and transformation framework,
 130

$$\text{Propagation: } \mathbf{H}_1 = \sum_{k=0}^{K-1} \theta_k g_k(\mathbf{L}) \mathbf{X}, \quad (1)$$

$$\text{Transformation: } \mathbf{H} = \sigma(\mathbf{H}_1 \mathbf{W}), \quad (2)$$

131 where $\theta \in \mathbb{R}^K$ are learnable *propagation coefficients*, $g_k(\mathbf{L})$ represents the *polynomial basis functions*
 132 applied to the graph Laplacian matrix \mathbf{L} , \mathbf{W} is learnable *transformation weights*. Notably, the
 133 flexibility of learning spectral filters helps polynomial GNNs capture intricate structures in heterophily
 134 graphs where connected nodes tend to have different labels (He et al., 2021; 2022; Chien et al., 2021).
 135

136 **4 PROPAGATION IS A STRONG BASELINE FOR GRAPH SELF-SUPERVISED
 137 LEARNING**

138 In this section, we demonstrate that even without trainable networks, the uniform propagation is
 139 in itself a strong baseline for graph self-supervised learning (GSSL) on node classification. We
 140 benchmark its performance on a wide range of datasets and reveal the rationale by connecting
 141 propagation to established graph learning algorithms.
 142

143 **4.1 BENCHMARK PROPAGATION AMONG GRAPH SELF-SUPERVISED LEARNING BASELINES**

144 **Method.** We consider an operator **PROP** that aggregates features within K -hop neighbors:
 145

$$\mathbf{H}_{\text{PROP}} = \hat{\mathbf{A}}^K \mathbf{X}, \quad (3)$$

146 where $\hat{\mathbf{A}} = \mathbf{D}'^{-\frac{1}{2}} \mathbf{A}' \mathbf{D}'^{-\frac{1}{2}}$ with $\mathbf{A}' = \mathbf{A} + \mathbf{I}$. Note that the formulation of PROP has no essential
 147 difference from SGC. We name the method *PROP* instead of *SGC* to avoid confusion with the
 148 common use of SGC in GCL literature, which often contains the transformation weights \mathbf{W} and
 149 serves as the encoder (Chen & Kou, 2023; Gao et al., 2023). **Our goal is not to propose a new
 150 formulation, but to establish it as a strong training-free baseline that has long been overlooked
 151 in the GCL literature and explore the underlying rationale.**

152 **Datasets.** For homophily benchmarks, we choose popular citation network datasets Cora, CiteSeer,
 153 and PubMed (Sen et al., 2008; Namata et al., 2012), Amazon co-purchase datasets Photo, Computers
 154 (Shchur et al., 2018). For heterophily benchmarks, we include Wikipedia datasets Squirrel, Chameleon
 155 (Rozemberczki et al., 2021) and WebKB datasets Texas, Wisconsin, and Cornell (Pei et al., 2020).
 156

Table 1: Test accuracy (%) of PROP and graph self-supervised (GSSL) baselines on node classification benchmarks, with blue indicating the best method, and orange the second-best.

Training	Encoder	Homophily						Heterophily					
		Cora	CiteSeer	PubMed	Computers	Photo	Mean	Squirrel	Chameleon	Texas	Wisconsin	Cornell	Mean
Supervised	GCN	87.5 \pm 1.0	80.2 \pm 0.6	87.0 \pm 0.3	88.4 \pm 0.3	93.5 \pm 0.4	87.3	47.6 \pm 0.8	64.1 \pm 1.6	76.4 \pm 4.1	62.6 \pm 2.8	64.4 \pm 4.1	63.0
	ChebNetII	87.2 \pm 0.8	79.9 \pm 0.8	88.5 \pm 0.1	90.1 \pm 0.3	94.9 \pm 0.3	88.1	56.7 \pm 1.3	72.3 \pm 1.5	92.6 \pm 1.8	89.3 \pm 3.6	90.5 \pm 1.6	80.3
<i>Unsupervised Graph Embedding</i>													
DeepWalk	Word2Vec	80.6 \pm 0.8	63.1 \pm 1.0	81.9 \pm 0.2	87.3 \pm 0.4	91.5 \pm 0.5	80.9	43.3 \pm 0.7	60.8 \pm 1.3	53.4 \pm 4.8	43.6 \pm 4.1	44.6 \pm 3.1	49.2
Node2Vec	Word2Vec	80.2 \pm 1.2	68.1 \pm 0.9	80.7 \pm 0.3	85.5 \pm 0.4	90.3 \pm 0.5	81.0	39.7 \pm 1.0	59.2 \pm 1.1	56.2 \pm 4.6	43.6 \pm 2.8	45.6 \pm 2.8	48.9
<i>GSSL with Vanilla GCN</i>													
GRACE	GCN	86.9 \pm 1.0	75.6 \pm 0.7	85.3 \pm 0.2	82.3 \pm 0.2	90.1 \pm 0.3	84.0	43.8 \pm 1.0	62.3 \pm 0.9	73.6 \pm 4.3	67.0 \pm 1.8	65.6 \pm 9.0	62.5
DGI	GCN	85.8 \pm 1.0	78.6 \pm 0.7	82.3 \pm 0.3	79.6 \pm 0.4	80.6 \pm 1.2	81.4	37.1 \pm 0.8	52.4 \pm 1.3	82.6 \pm 2.3	72.1 \pm 2.4	80.3 \pm 2.0	64.9
GAE	GCN	84.9 \pm 1.3	75.7 \pm 0.8	84.7 \pm 0.3	76.3 \pm 0.5	90.5 \pm 0.3	82.4	36.2 \pm 0.9	56.8 \pm 1.6	60.0 \pm 4.3	56.9 \pm 4.9	57.0 \pm 6.7	53.4
VGAE	GCN	85.1 \pm 1.0	75.6 \pm 0.7	84.6 \pm 0.3	76.4 \pm 0.5	88.3 \pm 0.6	82.0	43.4 \pm 0.6	61.4 \pm 1.0	73.1 \pm 3.4	60.8 \pm 4.5	65.0 \pm 7.4	60.8
MVGRL	GCN	84.0 \pm 1.0	74.5 \pm 0.8	83.6 \pm 0.4	83.5 \pm 0.5	89.2 \pm 0.4	83.0	31.3 \pm 0.6	57.9 \pm 1.6	77.7 \pm 2.0	65.8 \pm 3.5	67.5 \pm 7.9	60.0
CCA-SSG	GCN	86.7 \pm 0.9	79.7 \pm 0.6	84.8 \pm 0.4	82.8 \pm 0.3	91.2 \pm 0.4	85.0	40.6 \pm 0.7	57.8 \pm 1.0	79.3 \pm 3.1	71.1 \pm 1.4	72.6 \pm 4.9	64.3
BGRL	GCN	85.1 \pm 0.7	76.5 \pm 0.9	84.0 \pm 0.2	82.8 \pm 0.4	86.1 \pm 0.4	82.9	36.8 \pm 0.7	55.5 \pm 1.8	79.7 \pm 3.6	67.5 \pm 3.9	71.0 \pm 10.3	62.1
GCA	GCN	84.7 \pm 1.0	76.5 \pm 0.8	85.0 \pm 0.2	79.3 \pm 0.2	89.5 \pm 0.3	83.0	41.0 \pm 0.9	59.4 \pm 1.1	78.0 \pm 2.6	74.0 \pm 2.1	66.9 \pm 7.1	63.8
ProGCL	GCN	84.6 \pm 1.0	78.0 \pm 0.5	86.9 \pm 0.2	91.2 \pm 0.5	84.3 \pm 0.4	85.0	49.5 \pm 0.6	67.5 \pm 1.1	77.9 \pm 3.8	71.4 \pm 2.5	66.6 \pm 11.3	66.6
<i>GSSL with Polynomial GNNs</i>													
GRACE	GCN	83.4 \pm 0.9	74.8 \pm 0.6	84.9 \pm 0.3	84.1 \pm 0.4	89.2 \pm 0.5	83.3	37.9 \pm 0.8	55.7 \pm 1.0	77.9 \pm 2.8	86.4 \pm 3.6	75.7 \pm 3.6	66.7
DGI	BernNet	82.8 \pm 1.1	75.4 \pm 0.9	84.2 \pm 0.2	85.8 \pm 0.4	89.7 \pm 0.4	83.6	40.6 \pm 0.7	54.7 \pm 1.3	75.4 \pm 3.6	88.3 \pm 3.1	74.2 \pm 4.1	66.7
	GPRGNN	82.4 \pm 1.0	75.4 \pm 1.0	84.6 \pm 0.3	81.0 \pm 0.7	90.1 \pm 0.5	82.7	38.2 \pm 0.7	53.8 \pm 1.4	78.7 \pm 4.4	71.3 \pm 3.9	77.7 \pm 5.7	63.9
	ChebNetII	83.4 \pm 0.9	71.3 \pm 1.2	81.9 \pm 0.4	79.6 \pm 0.3	78.7 \pm 0.7	79.0	34.3 \pm 0.6	51.0 \pm 1.0	80.8 \pm 2.1	81.8 \pm 3.0	80.8 \pm 1.6	65.7
	BernNet	81.5 \pm 1.0	73.4 \pm 0.5	82.8 \pm 0.2	79.2 \pm 0.6	78.3 \pm 0.5	79.1	32.4 \pm 0.9	47.4 \pm 1.8	82.8 \pm 2.1	78.3 \pm 2.3	83.6 \pm 2.6	64.9
	GPRGNN	82.4 \pm 1.4	74.7 \pm 1.0	80.9 \pm 0.2	77.8 \pm 0.6	77.8 \pm 0.6	78.1	32.8 \pm 0.6	51.0 \pm 1.4	80.0 \pm 2.0	70.0 \pm 3.8	78.9 \pm 3.8	62.5
<i>Training-free Method</i>													
	PROP	85.5 \pm 0.8	78.9 \pm 0.6	82.9 \pm 0.5	87.5 \pm 0.5	93.0 \pm 0.3	85.6	58.5 \pm 1.0	68.8 \pm 1.4	86.2 \pm 3.1	89.0 \pm 3.3	86.2 \pm 3.1	77.8

Settings. We consider two categories of representative GSSL methods as baselines: traditional graph embeddings and deep learning methods (graph autoencoders and contrastive learning). Given the superiority of polynomial GNNs, we also compare GCLs with polynomial GNNs. In the pretraining stage, we maintain consistency in the hyperparameter search space across methods as much as possible. In the evaluation stage, we adopt linear probing following Zhu et al. (2020b); Hassani & Khasahmadi (2020). We follow Chien et al. (2021); Chen et al. (2024) to randomly split the nodes into 60%, 20%, and 20%. Each experiment is repeated ten times with mean and standard deviation of accuracy score reported. Experiments with public fixed splitting are also conducted in Appendix D. We mainly evaluate transductive settings and also explore inductive settings on benchmarks Reddit and PPI in Appendix C. See more experimental details in Appendix V.

Results. As shown in Table 1, **even without training, PROP maintains a superior performance over competing methods.** For homophily benchmarks, PROP achieves comparable performances with GSSL baselines. PROP reaches an average of 85.6% while the best-performing GSSL methods have 85.0%. For heterophilic benchmarks, PROP exceeds other methods by a large margin of over 10% on average performance, including GCLs with polynomial GNNs. We hypothesize that under unsupervised signals, learning weights is more challenging for complex heterophilic graphs. As further shown in Section 5.1, the learned transformation weights tend to lose informativeness. Therefore, PROP shows more improvement on heterophilic graphs by removing the misleading weights. Notably, GSSL baselines often require time-intensive training and extensive hyperparameter tuning, while PROP operates without back-propagation and has only one hyperparameter, the propagation step.

4.2 UNDERSTANDING PROP FROM ESTABLISHED GRAPH LEARNING ALGORITHMS

Reviewing well-established graph algorithms, we can understand PROP’s effectiveness by connecting it with the graph smoothing mechanism and graph alignment learning. See proofs in Appendix H.

Propagation as non-parametric graph smoothing. By aggregating features from neighboring nodes, cascaded propagation performs iterative representation updates. Inspired by Zhu et al. (2021a), we show in the following theorem that with an appropriate learning step, the Dirichlet energy of a rewired k -hop graph is minimized by propagation and converges to zero for non-bipartite graphs.

Theorem 4.1. *For a learning step size of $\alpha = 0.5$, the propagation operator (Equation 3) optimizes the spectral energy objective $\mathcal{L}(\mathbf{H}) = \mathbf{H}^\top (\mathbf{I} - \hat{\mathbf{A}}^k) \mathbf{H}$, which represents the Dirichlet energy on a rewired graph, where neighboring nodes are defined over k -hop connections.*

Based on the iterative optimization, propagation alone can be regarded as a *non-parametric* approach that smooths out the neighborhood over the k -hop graph, which helps explain the effectiveness

216 of PROP on graphs beyond just the homophilous category. Note that when the propagation step
 217 approaches infinity, node representations converge to identical values, also known as over-smoothing
 218 (Oono & Suzuki, 2020; Cai & Wang, 2020). However, the total propagation step is practically limited
 219 to a finite range, which provably improves the performance before oversmoothing kicks in (Keriven,
 220 2022), as also supported by our experimental results.

221 **Propagation as graph alignment learning.** The propagation operator can also be understood as
 222 a special alignment part in contrastive learning, where positive samples are randomly drawn from
 223 *neighboring* nodes. We define the joint distribution of positive pairs as $p(\mathbf{x}_i, \mathbf{x}_j) = \hat{A}_{ij} / \sum_{i,j} \hat{A}_{ij}$,
 224 where \hat{A}_{ij} denotes the normalized edge weight between node v_i and node v_j on the k -hop graph.
 225 This neighboring-node view demonstrates competitive performance in real scenarios (Lee et al., 2022;
 226 Shen et al., 2023) with further illustration in Appendix G. Based on the definition, the alignment loss
 227 is:
 228

$$\mathcal{L}_{\text{align}}(f) = -\mathbb{E}_{\mathbf{x}_i, \mathbf{x}_j \sim p(\mathbf{x}_i, \mathbf{x}_j)} [f(\mathbf{x}_i)^\top f(\mathbf{x}_j)]. \quad (4)$$

231 Intuitively, this alignment objective will bring the representation of neighboring nodes together. As
 232 shown in the following theorem, propagation minimizes this alignment loss at its optimum, indicating
 233 that propagation implicitly performs the alignment in contrastive learning.
 234

235 **Theorem 4.2.** *Let $f_k(\mathbf{x}_i) = \mathbf{H}_i^{(k)}$, $\forall i \in [N]$ be unit vectors, then $\lim_{k \rightarrow \infty} \mathcal{L}_{\text{align}}(f_k) = -1$.*
 236

238 4.3 FURTHER INSIGHTS INTO PROP 239

240 Through a systematic re-evaluation, we establish propagation as a strong baseline within the GCL
 241 literature. PROP does not evidence that the GCL paradigm is unnecessary, but rather evidence that
 242 many current parametric designs may be overcomplicated. Below, we clarify the differences between
 243 PROP and related methods and provide further insights.
 244

245 **PROP and raw node features.** A training-free option is directly using raw node features, *i.e.*, \mathbf{X} .
 246 However, feeding raw features into a downstream linear classifier sometimes results in degraded
 247 performance, as shown in Appendix E. We argue that propagation is essential for incorporating
 248 structural information, even in heterophily graphs, and helps particularly when node features are
 249 noisy or uninformative. See detailed discussions in Appendix F.
 250

251 **PROP and random GNNs.** Early works have shown the non-trivial ability of GNNs with random
 252 weights (Kipf & Welling, 2017). The key distinction between PROP and random GNNs is whether
 253 the transformation weights are incorporated. In the unsupervised setting, random introduces noise
 254 under insufficient supervision signals. Empirically, in later sections, we reveal that incorporating
 255 random weights in GCL performs worse than eliminating them.
 256

257 **PROP and Graph-Augmented MLPs (GA-MLPs).** GA-MLPs, like SGC and APPNP (Gasteiger
 258 et al., 2019a), also adopt the decoupling perspective by preprocessing raw features with graph operators
 259 and then training an MLP in a supervised manner. The key difference is that the transformation
 260 learns in this *supervised* paradigm is critical, whose removal will downgrade the performance. How-
 261 ever, as further revealed in our work, the MLP weights are poorly learned under *unsupervised* settings
 262 and harm the downstream task. From another perspective, if we combine PROP with downstream
 263 linear-probing, they are formally equivalent to GA-MLPs. We will not resort to any wordplay on
 264 this issue. However, our intention is not to claim PROP as a novel method, but rather to highlight its
 265 value as a long-overlooked yet strong baseline in GCL literature.
 266

267 **PROP on graph classification task.** We also benchmark PROP among GSSL baselines on the
 268 graph classification task. As shown in Appendix B, PROP achieves an average performance gap of
 269 2.82% relative to the best-performing methods, a notable result given its training-free nature. We
 270 hypothesize that the slight gap arises because the single-node features do not directly map to the
 271 global graph label, necessitating advanced transformation or pooling operations. The theoretical
 272 understandings in our paper focus primarily on node connections within a single graph, aligning more
 273 closely with node classification. While PROP demonstrates some promise in graph classification, its
 274 potential in this area warrants further investigation.
 275

270 5 DISSECTING THE LIMITATIONS OF GNNs IN GCL

272 To understand why existing GCL methods often fail to outperform PROP, we decouple the propagation
 273 and transformation phases, a widely adopted perspective in designing GNNs (Gasteiger et al., 2019a;b;
 274 Li et al., 2022a). Our analysis shows that GCL methods struggle to learn effective transformation
 275 weights but have promising potential in the propagation phase. Moreover, the transformation causes
 276 an overfitting on the CL objective, potentially degrading the downstream performance. This finding
 277 reveals the limitations of GCL and paves the way for more effective GCL methods.

278 5.1 FEATURE TRANSFORMATION IS INEFFECTIVE IN GCL

280 We first empirically compare the characteristics of the
 281 transformation weights learned by supervised learning
 282 (SL) and GCL. As revealed in Figure 1, the SL weights
 283 have a substantial variance across different neuron po-
 284 sitions, while the GCL weights exhibit more uniform
 285 smoothness, suggesting that specific neurons in SL play
 286 pivotal roles in distinguishing features, whereas the GCL
 287 transformation learning process appears overly general-
 288 ized, diminishing the richness of feature representation.

289 To further verify the ineffectiveness of the transformation
 290 weights learned by GCL, we conduct experiments by com-
 291 paring them with random weights. In practice, we consider a decoupled encoder $\mathbf{H} = \sigma(\mathbf{H}_{\text{PROP}} \mathbf{W})$
 292 where \mathbf{W} is the transformation weights. We compare the weights learned through GCL with a
 293 random matrix whose element is independently sampled from a Gaussian distribution. As shown in
 294 Table 2, **the transformation weights learned by GCL are not remarkably better than random**
 295 **counterparts**. The model with random weights attains an average performance of 73.43%, even
 296 surpassing the 72.86% reached by the transformation weights learned through GCL. We conduct
 297 comprehensive experiments by varying GCL backbones, propagators, and random initialization meth-
 298 ods, and conclusions are consistent as detailed in Appendix I. Notably, although *random projection*
 299 (Bingham & Mannila, 2001) is well-established and proven effective in various works (Li et al., 2006;
 300 Freund et al., 2007; Bauw et al., 2021), GCL should aim to *learn* weights tailored to data, rather than
 301 relying on a random matrix. Therefore, the results indicate that many GCL methods fail to learn
 302 informative transformation weights as expected.

302 Table 2: Test accuracy (%) of node classification benchmarks, comparing the transformation weights
 303 learned through GCL with random weights. Blue indicates the best, while the underlined is the
 304 second best. We present the DGI method and results for more GCL methods in Appendix I.

Training	Cora	CiteSeer	PubMed	Squirrel	Chameleon	Texas	Wisconsin	Cornell	Mean
GCL	83.23 ± 0.74	74.24 ± 0.55	82.10 ± 0.33	45.92 ± 0.65	64.00 ± 1.33	81.15 ± 2.13	71.88 ± 2.50	80.33 ± 1.80	72.86
Randomize \mathbf{W}	83.02 ± 0.94	70.04 ± 0.82	83.87 ± 0.53	49.62 ± 0.99	67.94 ± 1.16	80.33 ± 1.81	72.25 ± 2.25	80.33 ± 1.97	73.43

308 5.2 LEARNING PROPAGATION IS PROMISING IN GCL

311 Now, we comprehensively examine both transformation and propagation phases. While polynomial
 312 GNNs incorporate learnable parameters in both phases (Equation 1 and 2), GCLs with polynomial
 313 GNNs tend to underperform, as shown in Table 1. This issue is often attributed to the mismatch
 314 between the strong fitting capacity of polynomial filters and the lack of supervision signals (Chen
 315 et al., 2022; 2024). However, our following experiments demonstrate that GCLs can effectively learn
 316 polynomial filter coefficients.

317 From the decoupling perspective, there are three *conjectures* as to why polynomial GNNs under-
 318 perform in GCL: (1) GCL learns ineffective transformation weights, (2) GCL learns suboptimal
 319 propagation coefficients, or (3) a combination of both. To investigate the cause, we separately replace
 320 the propagation coefficients θ and the transformation weights \mathbf{W} with well-trained parameters from
 321 the supervised setting. Specifically, we first train polynomial GNNs via supervised learning and
 322 save the optimized parameters as \mathbf{W}_{SL} and θ_{SL} . We then proceed with the following experiments:
 323 (1). **Fix-propagation**. Corresponding to the first conjecture, we initialize and freeze propagation
 324 coefficients with the well-trained θ_{SL} , and only learn transformation weights \mathbf{W} through GCL. (2).

325 Figure 1: Characterization of the trans-
 326 formation weights learned by SL and
 327 GCL. Appendix T provides results of
 328 more benchmarks and GCL methods.

324 **Fix-transformation.** Corresponding to the second conjecture, we initialize and freeze transformation
 325 weights with the well-trained \mathbf{W}_{SL} , and only learn propagation coefficients θ through GCL. (3).
 326 **All-one baseline.** We further consider a baseline with well-trained transformation weights \mathbf{W}_{SL} and
 327 a fixed all-one propagation coefficient $\mathbb{1}$.

328 The experimental results are summarized in Table 3. For the first conjecture, the fix-propagation
 329 model averages 72.19%, significantly lower than the supervised model’s 80.41%, and sometimes
 330 even underperforms the original GCL method. It indicates that **GCL struggles to learn effective**
 331 **transformation weights (like \mathbf{W}_{SL}) even with strong filters.** For the second conjecture, the fix-
 332 transformation model achieves an average performance of 79.65%, closely matching that of the
 333 supervised model. In contrast, the all-one baseline yields a lower accuracy of 75.56%, confirming that
 334 the learned propagation coefficients are effective. Thus, **GCL can learn informative propagation**
 335 **coefficients with well-trained transformation weights.** For further validation of propagation
 336 learning, in Appendix J, we conduct flip experiments by fixing parameters with GCL-trained ones
 337 and get a similar conclusion, with the learned propagation coefficients presented in Appendix U.

338 The observation suggests potential *few-shot learning* applications with limited ground-truth labels
 339 for training. In Appendix O, we initially explore training propagation coefficients via CL while
 340 optimizing transformation weights with supervision. However, in unsupervised settings, optimal
 341 transformation weights are unattainable. In later sections, we provide an effective GCL solution with
 342 learnable propagation only.

343 Table 3: Test accuracy (%) of node classification benchmarks. We freeze propagation coefficients
 344 with optimal θ_{SL} and *learn* transformation weights through GCL (or the opposite). $\mathbb{1}$ denotes an
 345 all-one vector. Blue indicates the best, while underlined is the second-best.

	θ	\mathbf{W}	Cora	CiteSeer	PubMed	Squirrel	Chameleon	Texas	Wisconsin	Cornell	Mean
SL	θ_{SL}	\mathbf{W}_{SL}	<u>88.39</u> \pm <u>0.74</u>	79.67 \pm 0.72	87.11 \pm 0.25	<u>49.34</u> \pm <u>1.09</u>	<u>69.52</u> \pm <u>0.96</u>	89.67 \pm 2.13	91.25 \pm 2.75	88.36 \pm 3.11	<u>80.41</u>
GCL	<i>Learn</i>	<i>Learn</i>	83.42 \pm 0.92	74.79 \pm 0.57	84.92 \pm 0.26	37.90 \pm 0.79	55.67 \pm 0.96	77.87 \pm 2.79	86.38 \pm 3.63	75.74 \pm 3.61	72.09
Fix-propagation	θ_{SL}	<i>Learn</i>	80.26 \pm 0.95	76.15 \pm 0.80	82.41 \pm 0.64	40.31 \pm 0.60	59.06 \pm 1.58	78.69 \pm 4.75	87.88 \pm 2.75	72.79 \pm 5.57	72.19
Fix-transformation	<i>Learn</i>	\mathbf{W}_{SL}	<u>87.47</u> \pm <u>0.67</u>	<u>81.11</u> \pm <u>0.55</u>	<u>87.69</u> \pm <u>0.24</u>	<u>45.74</u> \pm <u>1.57</u>	<u>64.95</u> \pm <u>2.19</u>	<u>90.00</u> \pm <u>2.46</u>	<u>91.38</u> \pm <u>3.50</u>	<u>88.85</u> \pm <u>4.10</u>	<u>79.65</u>
All-one baseline	$\mathbb{1}$	\mathbf{W}_{SL}	78.24 \pm 0.92	78.72 \pm 0.48	84.75 \pm 0.33	35.98 \pm 0.77	59.61 \pm 1.07	89.34 \pm 3.93	89.38 \pm 2.25	88.49 \pm 3.77	75.56

351 5.3 TRANSFORMATION ENHANCES OVERTFITTING TO CL OBJECTIVE

354 To explore why the transformation phase brings ineffectiveness, we compare GCL with/without
 355 transformation from the optimization perspective. We find that during training, transformation
 356 weights incur an overfitting to the contrastive learning objective, while keeping only propagation
 357 alleviates the overfitting. As demonstrated in Figure 2, GCL with transformation (the ChebNet
 358 polynomial expansion is used as the propagation operator) rapidly drives the CL training loss to
 359 near zero. In contrast, GCL without transformation maintains a moderate loss level, reflecting its
 360 resistance to over-optimizing the CL objective.

361 Optimizing the contrastive loss to its minimum is pre-
 362 ferred if the pretext objective is well aligned with the
 363 downstream tasks. However, when positive samples
 364 misalign with intra-class samples, forcing InfoNCE
 365 loss to the minimum could result in a poor down-
 366 stream performance, as theoretically proved in Wang
 367 et al. (2022). Lacking prior downstream knowledge,
 368 it’s infeasible for GCL to select perfect positive sam-
 369 ples, especially for heterophilic graphs with compli-
 370 cated structures. Thus, the overfitting to contrastive
 371 loss negatively transfers to downstream tasks.

372 While we employ early-stopping for all baselines in

373 Table 1, our experiments show it fails to resolve this overfitting issue. We also tried possible strate-
 374 gies, including l_1 regularization, whitening techniques (Bell & Sejnowski, 1997), and normalization
 375 methods (Hua et al., 2021; Guo et al., 2023a), but find these approaches offer limited improvement in
 376 Appendix S. Meticulously designed frameworks and advanced contrastive principles may overcome
 377 the limitations. However, for the free-structured graph data, there are no precise or even intuitive
 378 definitions of semantic equivalence (unlike images or text), bringing much difficulty into design-
 379 ing reasonable contrastive principles. In the following section, we propose a simple solution by

371 Figure 2: **Overfitting to the contrastive loss.**
 372 More examples are shown in Appendix P.

378 directly removing the transformation phase. Although easy in formulation, the method demonstrates
 379 competitive performances across diverse benchmarks, with a great advantage of efficiency.
 380

381 **6 PROPGCL: GRAPH CONTRASTIVE LEARNING THAT ONLY LEARNS
 382 PROPAGATION**

384 **6.1 PROPGCL**

386 PROP’s strong performance suggests that a simple model without transformation can achieve competitive
 387 results. However, the fixed uniform propagation has limited effectiveness in complex scenarios
 388 like heterophilic graphs. Therefore, we enhance PROP by introducing learnable graph-adaptive
 389 filter coefficients, leveraging GCL’s propagation-learning potential. Specifically, for a given GCL
 390 framework, we replace the original encoder with the learnable spectral propagation,
 391

$$392 \mathbf{H}_{\text{PROPGCL}} = \sum_{k=0}^{K-1} \theta_k g_k(\mathbf{L}) \mathbf{X}, \quad (5)$$

395 where $\theta \in \mathbb{R}^K$ is learnable propagation coefficients, $g_k(\mathbf{L})$ represents polynomial basis functions.
 396 For clarity, we denote the revised GCL framework with the prefix *PROP*, e.g., PROP-GRACE.
 397

398 **6.2 THEORETICAL ANALYSIS**

400 We previously show that when the contrastive object misaligns with the downstream task, overfitting
 401 to the CL loss will cause performance degradation. In the following analysis, we decompose such
 402 imperfect CL loss into downstream-relevant and -irrelevant components, and prove that in such cases,
 403 our PROPGCL is guaranteed to learn better representations than PROP and the backbone GCL.
 404

405 **Definition 6.1.** (*Optimal Propagation Decomposition*) Let $T^* = \arg \min_T \mathcal{L}_{\text{CL}}(T \cdot X)$ be the
 406 optimal operator for the contrastive learning loss. We assume T^* is a function of bounded variation,
 407 i.e., $T^* \in BV(\Omega; \mathbb{R}^d)$. By the Jordan decomposition theorem for bounded variation mappings,
 408 $T^* = f + g$, where f is the continuous component and g is the discontinuous component.
 409

410 **Assumption 6.2.** (*Approximation Properties*) We assume the continuous f corresponds to the
 411 downstream-relevant component, e.g., informative signals on the graph, while the discontinuous g
 412 represents nuisance or disconnected signals. Based on Chebyshev polynomial theory, continuous
 413 functions can be well approximated by polynomials: $\inf_{\theta} \|f - \sum_k \theta_k A^k\|_F \leq \epsilon_f = C_f K^{-s}$, where
 414 $s > 0$ and C_f is a constant. Discontinuous noises yield large polynomial approximation errors:
 415 $\inf_{\theta} \|g - \sum_k \theta_k A^k\|_F \geq \epsilon_g > 0$, where $\epsilon_g \gg \epsilon_f > 0$.
 416

417 **Assumption 6.3.** (*Task Misalignment*) When the contrastive learning objective is misaligned with
 418 downstream tasks, we have $\|g\|_F = \alpha \|f\|_F$ with $\alpha \neq 1$.
 419

420 Based on the assumptions, we have the following theorem with proof in Appendix H.

421 **Theorem 6.1.** *Under Assumptions 6.2 and 6.3, when $\alpha > \frac{\epsilon_f}{\|f\|_F}$, we have:*

$$422 \|\mathbf{H}_{\text{PROPGCL}} - f \mathbf{X}\|_F < \min (\|\mathbf{H}_{\text{PROP}} - f \mathbf{X}\|_F, \|\mathbf{H}_{\text{GCL}} - f \mathbf{X}\|_F).$$

423 The theory shows that when CL and downstream objectives are misaligned (large α), PROPGCL
 424 performs better than both baselines. By learning representations that balance CL optimization
 425 with downstream relevance, PROPGCL maintains higher CL loss than GCL while achieving better
 426 downstream performance, which further explains the empirical observation in Figure 2.
 427

428 **6.3 EXPERIMENTAL RESULTS**

429 **Benchmarks.** Besides previous benchmarks, we also consider a recently proposed heterophily
 430 benchmark (Platonov et al., 2023b) and large OGB benchmarks ogbn-arxiv and ogbn-products (Hu
 et al., 2020). Experimental settings are kept the same as Section 4.1.

431 **Baselines.** For the baseline, we include PROP, which outperforms well-known GSSL methods as
 432 outlined in Section 4.1. Additionally, we consider GCL methods specifically designed for heterophilic

432 graphs, including PolyGCL (Chen et al., 2024), HGRL (Chen et al., 2022), GraphACL (Xiao et al.,
 433 2024), SP-GCL (Wang et al., 2023), and DSSL (Xiao et al., 2022). Our approach builds upon
 434 GRACE and DGI as main backbones and uses the scale-friendly method GGD (Zheng et al., 2022)
 435 for large OGB graphs. We utilize the Chebyshev basis as the polynomial function and conduct an
 436 ablation study of basis choices in Appendix L. We mainly adopt the linear-probing evaluation and
 437 also estimate clustering quality of unsupervised representations detailed in Appendix M.

438 **Results.** The main results on node classification benchmarks are presented in Table 4. **Our method**
 439 **surpasses the PROP baseline and GCL methods on most benchmarks, especially for heterophily**
 440 **datasets where many traditional GCL methods struggle.** For homophily benchmarks, PROP-
 441 GRACE achieves the highest average accuracy of 88.76%, with PROP-DGI securing the second-
 442 highest at 88.42%. Our approach attains the best performance in 3 out of 6 benchmarks and performs
 443 comparably to the best methods in the remaining cases. For heterophily benchmarks, PROP-DGI
 444 attains an average accuracy of 73.71%, surpassing the state-of-the-art PolyGCL by a margin of 4.23%.
 445 Our method ranks first on 4 out of 6 benchmarks and second-best on the remaining two.

446 On the recent heterophily benchmark in Table 5, PROP-GRACE surpasses its backbone GRACE
 447 by 3.99% on average, and PROP-DGI achieves the best results in 2 out of 5 benchmarks with an
 448 average performance of 70.22%, second only to PolyGCL’s 71.68%. Notably, PolyGCL is designed
 449 especially for heterophily graphs, whereas PROP-DGI builds on a more general DGI framework. On
 450 large benchmarks in Table 6, our method performs comparably with the backbone method while
 451 achieving higher efficiency. Remarkably, PROP-GGD outperforms GGD by 0.16% in accuracy on
 452 ogbn-products, accompanied by a 25.44% reduction in training time. Moreover, PROPGCL also
 453 presents better robustness on hyperparameters selection and noisy features (Appendix N).

454 Table 4: Test accuracy (%) of node classification benchmarks, comparing PROPGCL with PROP and
 455 GCL baselines. Blue indicates the best method, while underlined represents the second-best choice.

Method	Homophily						Heterophily							
	Cora	CiteSeer	PubMed	Photo	Computers	CS	Mean	Squirrel	Chameleon	Actor	Texas	Wisconsin	Cornell	Mean
PROP	85.48 ± 0.75	78.87 ± 0.63	82.89 ± 0.48	93.01 ± 0.28	87.54 ± 0.47	95.15 ± 0.19	87.16	<u>58.48 ± 1.03</u>	68.82 ± 1.42	39.36 ± 0.91	86.23 ± 3.11	<u>89.00 ± 3.25</u>	86.23 ± 3.11	71.35
GRACE	86.90 ± 1.03	75.60 ± 0.71	85.31 ± 0.23	90.10 ± 0.30	82.29 ± 0.23	92.99 ± 0.18	85.53	43.78 ± 0.99	62.30 ± 0.94	37.76 ± 0.77	73.61 ± 4.26	67.00 ± 1.75	65.57 ± 9.02	58.34
DGI	85.80 ± 0.95	78.58 ± 0.70	82.27 ± 0.31	80.63 ± 1.15	79.58 ± 0.39	93.48 ± 0.17	83.39	37.14 ± 0.80	52.38 ± 1.29	34.44 ± 0.45	82.62 ± 2.30	72.13 ± 2.38	80.33 ± 1.97	58.84
PolyGCL	86.19 ± 0.76	79.07 ± 0.82	86.69 ± 0.24	92.70 ± 0.18	88.91 ± 0.25	95.30 ± 0.07	88.14	56.09 ± 0.87	<u>72.17 ± 1.12</u>	<u>40.50 ± 0.78</u>	86.72 ± 2.13	85.50 ± 4.00	75.90 ± 2.46	69.48
SP-GCL	84.68 ± 0.81	76.43 ± 0.63	<u>86.98 ± 0.23</u>	92.65 ± 0.48	89.04 ± 0.35	91.95 ± 0.24	86.91	58.11 ± 0.70	70.98 ± 0.90	30.40 ± 1.11	81.97 ± 2.79	76.00 ± 3.75	65.74 ± 6.39	63.87
HGRL	85.39 ± 1.00	79.84 ± 0.91	85.12 ± 0.30	<u>93.61 ± 0.22</u>	85.89 ± 0.22	95.57 ± 0.12	87.57	38.89 ± 0.85	55.69 ± 1.03	37.09 ± 0.68	84.10 ± 4.75	86.13 ± 3.00	84.59 ± 4.27	64.57
GraphACL	87.41 ± 1.00	79.17 ± 0.55	85.71 ± 0.27	92.86 ± 0.33	86.43 ± 0.35	94.17 ± 0.16	87.63	53.77 ± 0.89	66.94 ± 1.05	38.73 ± 0.86	84.43 ± 1.80	80.00 ± 2.50	79.51 ± 1.80	67.23
DSSL	<u>87.60 ± 1.18</u>	79.52 ± 1.10	86.62 ± 0.24	93.15 ± 0.46	88.53 ± 0.38	94.10 ± 0.18	88.25	47.56 ± 0.98	68.85 ± 3.77	35.64 ± 0.51	85.90 ± 2.62	79.00 ± 2.75	80.98 ± 2.13	67.77
PROP-GRACE	87.42 ± 0.95	<u>81.56 ± 0.83</u>	86.19 ± 0.35	93.32 ± 0.31	88.12 ± 0.23	<u>95.95 ± 0.14</u>	<u>88.76</u>	55.09 ± 0.81	71.73 ± 1.18	39.35 ± 0.81	<u>89.84 ± 1.81</u>	88.50 ± 3.63	86.72 ± 2.46	71.87
PROP-DGI	86.19 ± 1.05	80.78 ± 0.65	85.14 ± 0.22	92.78 ± 0.37	<u>89.81 ± 0.20</u>	95.82 ± 0.18	88.42	<u>60.53 ± 0.66</u>	<u>74.11 ± 0.96</u>	39.53 ± 0.84	<u>91.80 ± 2.30</u>	88.88 ± 2.50	<u>87.38 ± 2.62</u>	73.71

464 Table 5: Test accuracy (%) of recent heterophily graph
 465 benchmarks. Blue indicates the best method, while the
 466 underlined represents the second-best.

Method	roman empire	amazon ratings	minesweeper	tolokers	questions	Mean
PROP	63.95 ± 0.33	40.22 ± 0.22	74.10 ± 0.58	71.74 ± 0.51	70.23 ± 0.59	64.05
DGI	62.64 ± 0.22	38.71 ± 0.23	80.01 ± 0.65	74.95 ± 0.58	68.05 ± 0.61	64.87
GRACE	59.04 ± 0.22	39.79 ± 0.28	75.89 ± 0.50	74.26 ± 0.73	72.15 ± 0.62	64.22
PolyGCL	<u>71.11 ± 0.47</u>	<u>44.09 ± 0.31</u>	<u>86.11 ± 0.41</u>	<u>83.70 ± 0.59</u>	73.41 ± 0.84	<u>71.68</u>
SP-GCL	55.72 ± 0.34	43.02 ± 0.38	72.38 ± 0.64	76.69 ± 0.60	<u>73.91 ± 0.74</u>	64.34
HGRL	63.31 ± 0.33	39.65 ± 0.32	52.14 ± 0.44	74.34 ± 0.45	OOM	—
GraphACL	59.66 ± 0.37	42.68 ± 0.19	67.73 ± 0.72	74.93 ± 0.73	74.48 ± 0.51	63.90
DSSL	44.48 ± 0.33	40.44 ± 0.16	<u>82.05 ± 0.50</u>	73.88 ± 0.76	69.08 ± 0.82	61.99
PROP-GRACE	68.04 ± 0.25	42.76 ± 0.26	80.83 ± 0.58	77.51 ± 0.77	71.95 ± 0.92	68.21 (1.39)
PROP-DGI	<u>74.66 ± 0.27</u>	43.14 ± 0.28	80.50 ± 0.62	<u>77.93 ± 0.54</u>	<u>74.88 ± 0.76</u>	70.22 (1.35)

475 6.4 EFFICIENCY ANALYSIS

476 Thanks to the elimination of transformation
 477 weights, **PROPGCL demonstrates appreciable improvements in efficiency compared to its backbone methods, both in terms of computational time and memory usage**, as
 478 shown in Table 7. For instance, PROP-GRACE achieves an 84.29% reduction in training time
 479 per epoch relative to GRACE on the CS dataset. Regarding memory efficiency, PROP-GRACE
 480 consumes over 99% less memory for the encoder
 481

477 Table 6: Test accuracy (%) and training time
 478 on large OGB benchmarks. Train time denotes
 479 the training time per epoch in seconds.

Benchmark	Method	Test Acc	Train Time
ogbn-arxiv	GGD	70.26 ± 0.15	1.02
	PROP-GGD	69.71 ± 0.06 (1.05)	0.78 (1.23.15%)
ogbn-products	GGD	75.71 ± 0.24	284.39
	PROP-GGD	75.87 ± 0.20 (1.16)	212.05 (1.25.44%)

482 Table 7: Time and space efficiency comparison.
 483 Improvement refers to the percentage increase in
 484 speed or decrease in memory consumption.

Metric	Method	Photo	Computers	CS	Squirrel	Chameleon
Time	GRACE	0.2872	0.4639	1.5111	0.7004	0.2295
	PROP-GRACE	0.2400	0.3626	0.2374	0.2581	0.1450
	Improvement	16.44%	21.84%	84.29%	63.15%	36.82%
Memory	GRACE	2518.04	2562.04	2562.04	5206.04	5678.04
	PROP-GRACE	5.86	6.04	6.04	16.36	18.21
	Improvement	99.77%	99.76%	99.76%	99.69%	99.68%

486 on various benchmarks. Evaluations on more benchmarks and basis functions consistently confirm
 487 the efficiency gains in Appendix Q, where we also provide a detailed time complexity analysis.
 488

489 **7 CONCLUSION**
 490

491 In this work, we establish PROP, a training-free propagation operator, as a strong self-supervised
 492 learning baseline for node classification, supported by linking it to established graph algorithms.
 493 From a decoupling perspective, we observe that transformation weights learned via GCL exhibit
 494 uninformative characteristics and cause an overfitting to the CL objective. To address this, we
 495 introduce a novel approach PROPGCL that focuses solely on learning propagation coefficients
 496 through GCL, achieving state-of-the-art performance across diverse node classification benchmarks.
 497 We believe this work paves the way for developing lightweight and effective GCL methods, with
 498 potential for advancing both research and practical applications in graph learning.
 499

500 **REFERENCES**
 501

502 Bijaya Adhikari, Yao Zhang, Naren Ramakrishnan, and B Aditya Prakash. Sub2vec: Feature learning
 503 for subgraphs. In *PAKDD*, 2018.

504 Muhammet Balcilar, Guillaume Renon, Pierre Héroux, Benoit Gaüzère, Sébastien Adam, and Paul
 505 Honeine. Analyzing the expressive power of graph neural networks in a spectral perspective. In
 506 *ICLR*, 2021.

507 Martin Bauw, Santiago Velasco-Forero, Jesus Angulo, Claude Adnet, and Olivier Airiau. Deep
 508 random projection outlyingness for unsupervised anomaly detection. In *ICML Workshop on*
 509 *Uncertainty and Robustness in Deep Learning*, 2021.

511 Anthony J Bell and Terrence J Sejnowski. The “independent components” of natural scenes are edge
 512 filters. *Vision research*, 37(23):3327–3338, 1997.

513 Ella Bingham and Heikki Mannila. Random projection in dimensionality reduction: applications to
 514 image and text data. In *SIGKDD*, 2001.

516 Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan, Alex J Smola, and
 517 Hans-Peter Kriegel. Protein function prediction via graph kernels. *Bioinformatics*, 21(suppl_1):
 518 i47–i56, 2005.

519 Chen Cai and Yusu Wang. A note on over-smoothing for graph neural networks. In *ICML Graph*
 520 *Representation Learning workshop*, 2020.

522 Jialu Chen and Gang Kou. Attribute and structure preserving graph contrastive learning. In *AAAI*,
 523 2023.

524 Jingfan Chen, Guanghui Zhu, Yifan Qi, Chunfeng Yuan, and Yihua Huang. Towards self-supervised
 525 learning on graphs with heterophily. In *CIKM*, 2022.

527 Jingyu Chen, Runlin Lei, and Zhewei Wei. Polygcl: Graph contrastive learning via learnable spectral
 528 polynomial filters. In *ICLR*, 2024.

529 Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
 530 graph neural network. In *ICLR*, 2021.

532 Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shusterman, and Corwin
 533 Hansch. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds.
 534 correlation with molecular orbital energies and hydrophobicity. *Journal of medicinal chemistry*, 34
 535 (2):786–797, 1991.

536 Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
 537 graphs with fast localized spectral filtering. In *NeurIPS*, 2016.

538 Paul D Dobson and Andrew J Doig. Distinguishing enzyme structures from non-enzymes without
 539 alignments. *Journal of molecular biology*, 330(4):771–783, 2003.

540 Hande Dong, Jiawei Chen, Fuli Feng, Xiangnan He, Shuxian Bi, Zhaolin Ding, and Peng Cui. On
 541 the equivalence of decoupled graph convolution network and label propagation. In *WWW*, 2021.
 542

543 Yoav Freund, Sanjoy Dasgupta, Mayank Kabra, and Nakul Verma. Learning the structure of manifolds
 544 using random projections. In *NeurIPS*, 2007.

545 Yuan Gao, Xin Li, and Yan Hui. Rethinking graph contrastive learning: An efficient single-view
 546 approach via instance discrimination. *IEEE Transactions on Multimedia*, 26:3616–3625, 2023.
 547

548 Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
 549 neural networks meet personalized pagerank. In *ICLR*, 2019a.

550 Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph
 551 learning. In *NeurIPS*, 2019b.
 552

553 Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
 554 networks. In *AISTATS*, 2010.

555 Florian Graf, Christoph Hofer, Marc Niethammer, and Roland Kwitt. Dissecting supervised con-
 556 trastive learning. In *ICML*, 2021.

557 Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *SIGKDD*,
 558 2016.

560 Xiaojun Guo, Yifei Wang, Tianqi Du, and Yisen Wang. Contranorm: A contrastive learning
 561 perspective on oversmoothing and beyond. In *ICLR*, 2023a.

562 Xiaojun Guo, Yifei Wang, Zeming Wei, and Yisen Wang. Architecture matters: Uncovering implicit
 563 mechanisms in graph contrastive learning. In *NeurIPS*, 2023b.

565 Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
 566 *NeurIPS*, 2017.

567 Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
 568 graphs. In *ICML*, 2020.

570 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
 571 human-level performance on imagenet classification. In *ICCV*, 2015.

572 Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via
 573 bernstein approximation. In *NeurIPS*, 2021.

575 Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with
 576 chebyshev approximation, revisited. In *NeurIPS*, 2022.

577 Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgc: Simplifying
 578 and powering graph convolution network for recommendation. In *SIGIR*, 2020.

580 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
 581 and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. *arXiv*
 582 preprint *arXiv:2005.00687*, 2020.

584 Tianyu Hua, Wenxiao Wang, Zihui Xue, Sucheng Ren, Yue Wang, and Hang Zhao. On feature
 585 decorrelation in self-supervised learning. In *CVPR*, 2021.

586 Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. Decorrelated batch normalization. In *CVPR*, 2018.
 587

588 Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing internal covariate
 589 shift. *arXiv preprint arXiv:1502.03167*, 2015.

590 Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing. In
 591 *NeurIPS*, 2022.

592 Agnan Kessy, Alex Lewin, and Korbinian Strimmer. Optimal whitening and decorrelation. *The*
 593 *American Statistician*, 72(4):309–314, 2018.

594 Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
 595 Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In *NeurIPS*, 2020.
 596

597 Thomas N Kipf and Max Welling. Variational graph auto-encoders. In *NeurIPS Workshop on*
 598 *Bayesian Deep Learning*, 2016.

599 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
 600 In *ICLR*, 2017.

601

602 Namkyeong Lee, Junseok Lee, and Chanyoung Park. Augmentation-free self-supervised learning on
 603 graphs. In *AAAI*, 2022.

604

605 Haifeng Li, Jun Cao, Jiawei Zhu, Qinyao Luo, Silu He, and Xuying Wang. Augmentation-free graph
 606 contrastive learning of invariant-discriminative representations. *IEEE Transactions on Neural*
 607 *Networks and Learning Systems*, 2023a.

608

609 Jintang Li, Wangbin Sun, Ruofan Wu, Yuchang Zhu, Liang Chen, and Zibin Zheng. Oversmoothing:
 610 A nightmare for graph contrastive learning? *arXiv preprint arXiv:2306.02117*, 2023b.

611

612 Mingjie Li, Xiaojun Guo, Yifei Wang, Yisen Wang, and Zhouchen Lin. G²cn: Graph gaussian
 613 convolution networks with concentrated graph filters. In *ICML*, 2022a.

614

615 Ping Li, Trevor J Hastie, and Kenneth W Church. Very sparse random projections. In *SIGKDD*, 2006.

616

617 Sihang Li, Xiang Wang, An Zhang, Yingxin Wu, Xiangnan He, and Tat-Seng Chua. Let invariant
 618 rationale discovery inspire graph contrastive learning. In *ICML*, 2022b.

619

620 Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In *SIGKDD*,
 621 2020.

622

623 Nian Liu, Xiao Wang, Deyu Bo, Chuan Shi, and Jian Pei. Revisiting graph contrastive learning from
 624 the perspective of graph spectrum. In *NeurIPS*, 2022.

625

626 Yue Liu, Xihong Yang, Sihang Zhou, Xinwang Liu, Siwei Wang, Ke Liang, Wenxuan Tu, and Liang
 627 Li. Simple contrastive graph clustering. *IEEE Transactions on Neural Networks and Learning*
 628 *Systems*, 2023.

629

630 Sitao Luan, Chenching Hua, Minkai Xu, Qincheng Lu, Jiaqi Zhu, Xiao-Wen Chang, Jie Fu, Jure
 631 Leskovec, and Doina Precup. When do graph neural networks help with node classification:
 632 Investigating the homophily principle on node distinguishability. *arXiv preprint arXiv:2304.14274*,
 633 2023.

634

635 Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
 636 networks? *arXiv preprint arXiv:2106.06134*, 2021.

637

638 Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
 639 Demystifying structural disparity in graph neural networks: Can one size fit all? In *NeurIPS*, 2023.

640

641 Christopher Morris, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
 642 Neumann. Tudataset: A collection of benchmark datasets for learning with graphs. In *ICML 2020*
 643 *Workshop on Graph Representation Learning and Beyond*, 2020.

644

645 Galileo Namata, Ben London, Lise Getoor, Bert Huang, and UMD EDU. Query-driven active
 646 surveying for collective classification. In *MLG*, 2012.

647

648 Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu, and
 649 Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arxiv 2017. *arXiv*
 650 *preprint arXiv:1707.05005*, 2017.

651

652 Chaoxi Niu, Guansong Pang, and Ling Chen. Affinity uncertainty-based hard negative mining in
 653 graph contrastive learning. *IEEE Transactions on Neural Networks and Learning Systems*, 2024.

654

655 Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
 656 *arXiv preprint arXiv:1905.09550*, 2019.

648 Kenta Oono and Taiji Suzuki. Graph neural networks exponentially lose expressive power for node
 649 classification. In *ICLR*, 2020.

650

651 Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
 652 graph convolutional networks. In *ICLR*, 2020.

653

654 Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
 655 tions. In *SIGKDD*, 2014.

656

657 Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing
 658 graph datasets for node classification: Homophily-heterophily dichotomy and beyond. In *NeurIPS*,
 2023a.

659

660 Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
 661 critical look at the evaluation of gnns under heterophily: Are we really making progress? In *ICLR*,
 2023b.

662

663 Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
 664 Bengio, and Aaron Courville. On the spectral bias of neural networks. In *ICML*, 2019.

665

666 Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
 667 minique Beaini. Recipe for a general, powerful, scalable graph transformer. In *NeurIPS*, 2022.

668

669 Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with
 hard negative samples. In *ICLR*, 2021.

670

671 Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. *Journal
 672 of Complex Networks*, 9(2):cnab014, 2021.

673

674 Guillaume Salha, Romain Hennequin, and Michalis Vazirgiannis. Keep it simple: Graph autoencoders
 675 without graph convolutional networks. In *NeurIPS Graph Representation Learning Workshop*,
 2019.

676

677 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
 678 Collective classification in network data. *AI magazine*, 29(3):93–93, 2008.

679

680 Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
 681 of graph neural network evaluation. *arXiv preprint arXiv:1811.05868*, 2018.

682

683 Xiao Shen, Dewang Sun, Shirui Pan, Xi Zhou, and Laurence T Yang. Neighbor contrastive learning
 on learnable graph augmentation. In *AAAI*, 2023.

684

685 Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
 686 Efficient graphlet kernels for large graph comparison. In *AISTATS*, 2009.

687

688 Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
 689 Borgwardt. Weisfeiler-lehman graph kernels. *Journal of Machine Learning Research*, 12(9), 2011.

690

691 Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
 692 supervised graph-level representation learning via mutual information maximization. In *ICLR*,
 2020.

693

694 Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. Adversarial graph augmentation to improve
 695 graph contrastive learning. In *NeurIPS*, 2021.

696

697 Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou, Eva L Dyer, Remi
 698 Munos, Petar Veličković, and Michal Valko. Large-scale representation learning on graphs via
 699 bootstrapping. In *ICLR*, 2022.

700

701 Puja Trivedi, Ekdeep S Lubana, Mark Heimann, Danai Koutra, and Jayaraman Thiagarajan. Analyzing
 702 data-centric properties for graph contrastive learning. In *NeurIPS*, 2022.

703

704 Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
 705 Hjelm. Deep graph infomax. In *ICLR*, 2019.

702 Nikil Wale, Ian A Watson, and George Karypis. Comparison of descriptor spaces for chemical
 703 compound retrieval and classification. *Knowledge and Information Systems*, 14:347–375, 2008.
 704

705 Haonan Wang, Jieyu Zhang, Qi Zhu, Wei Huang, Kenji Kawaguchi, and Xiaokui Xiao. Single-pass
 706 contrastive learning can work for both homophilic and heterophilic graph. In *TMLR*, 2023.
 707

708 Yifei Wang, Qi Zhang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Chaos is a ladder: A new
 709 theoretical understanding of contrastive learning via augmentation overlap. In *ICLR*, 2022.
 710

711 Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
 712 ing graph convolutional networks. In *ICML*, 2019.
 713

714 Jun Xia, Lirong Wu, Ge Wang, and Stan Z. Li. Progcl: Rethinking hard negative mining in graph
 715 contrastive learning. In *ICML*, 2022.
 716

717 Teng Xiao, Zhengyu Chen, Zhimeng Guo, Zeyang Zhuang, and Suhang Wang. Decoupled self-
 718 supervised learning for graphs. In *NeurIPS*, 2022.
 719

720 Teng Xiao, Huaisheng Zhu, Zhengyu Chen, and Suhang Wang. Simple and asymmetric graph
 721 contrastive learning without augmentations. In *NeurIPS*, 2024.
 722

723 Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang. Infogcl: Information-
 724 aware graph contrastive learning. In *NeurIPS*, 2021.
 725

726 Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle:
 727 Fourier analysis sheds light on deep neural networks. *arXiv preprint arXiv:1901.06523*, 2019.
 728

729 Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In *SIGKDD*, 2015.
 730

731 Haoran Yang, Hongxu Chen, Sixiao Zhang, Xiangguo Sun, Qian Li, Xiangyu Zhao, and Guandong
 732 Xu. Generating counterfactual hard negative samples for graph contrastive learning. In *WWW*,
 733 2023.
 734

735 Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
 736 Tie-Yan Liu. Do transformers really perform badly for graph representation? In *NeurIPS*, 2021.
 737

738 Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
 739 contrastive learning with augmentations. In *NeurIPS*, 2020.
 740

741 Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning automated.
 742 In *ICML*, 2021.
 743

744 Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen. Are graph
 745 augmentations necessary? simple graph contrastive learning for recommendation. In *SIGIR*, 2022.
 746

747 Seongjun Yun, Minbyul Jeong, Raehyun Kim, Jaewoo Kang, and Hyunwoo J Kim. Graph transformer
 748 networks. In *NeurIPS*, 2019.
 749

750 Hengrui Zhang, Qitian Wu, Junchi Yan, David Wipf, and Philip S Yu. From canonical correlation
 751 analysis to self-supervised graph neural networks. In *NeurIPS*, 2021.
 752

753 Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In *NeurIPS*, 2018.
 754

755 Yizhen Zheng, Shirui Pan, Vincent Lee, Yu Zheng, and Philip S Yu. Rethinking and scaling up graph
 756 contrastive learning: An extremely efficient approach with group discrimination. In *NeurIPS*,
 757 2022.
 758

759 Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
 760 homophily in graph neural networks: Current limitations and effective designs. In *NeurIPS*, 2020a.
 761

762 Meiqi Zhu, Xiao Wang, Chuan Shi, Houye Ji, and Peng Cui. Interpreting and unifying graph neural
 763 networks with an optimization framework. In *WWW*, 2021a.
 764

765 Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Deep Graph Contrastive
 766 Representation Learning. In *ICML Workshop on Graph Representation Learning and Beyond*,
 767 2020b.
 768

756 Yanqiao Zhu, Yichen Xu, Qiang Liu, and Shu Wu. An empirical study of graph contrastive learning.
757 In *NeurIPS Track on Datasets and Benchmarks.*, 2021b.
758
759 Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph contrastive learning
760 with adaptive augmentation. In *WWW*, 2021c.
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 **ETHICS STATEMENT**
811812 We are not aware of any specific ethical concerns related to this work. All experiments are conducted
813 on publicly available or synthetic datasets, without the use of sensitive or proprietary information.
814815 **REPRODUCIBILITY STATEMENT**
816817 We provide complete details of our methods, hyperparameters, datasets, and evaluation metrics in
818 both the main paper and the appendix. To further support transparency and reproducibility, we will
819 release our code upon acceptance.
820821 **THE USE OF LARGE LANGUAGE MODELS (LLMs)**
822823 In this work, LLMs are primarily employed for polishing the language of the manuscript to ensure
824 grammatical correctness and coherence. Importantly, all conceptual development, theoretical analysis,
825 experimental design, and result interpretation are conducted independently by the authors. The use
826 of LLMs is strictly limited to auxiliary tasks, ensuring that the scientific contributions of this paper
827 remain entirely unaffected by such tools.
828829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864 **A APPENDIX**865 **B EXPERIMENTS OF PROP ON THE GRAPH CLASSIFICATION TASK**

866 **Methods.** To get the global graph representation, we first aggregate node features within K -hop
 867 neighbors without any trainable weights, then average pool aggregated node features into a global
 870 representation, *i.e.*,

$$871 \quad \mathbf{H}_{\text{PROP}} = \frac{1}{N} \sum_i \mathbf{H}_i, \quad \mathbf{H} = \hat{\mathbf{A}}^K \mathbf{X}, \quad (6)$$

874 where N is the number of nodes, \mathbf{H}_i is the representation of the node v_i , $\hat{\mathbf{A}} = \mathbf{D}'^{-\frac{1}{2}} \mathbf{A}' \mathbf{D}'^{-\frac{1}{2}}$ with
 875 $\mathbf{A}' = \mathbf{A} + \mathbf{I}$.

876 **Datasets.** We choose molecules datasets MUTAG (Debnath et al., 1991) and NCI1 (Wale et al.,
 877 2008), bioinformatics datasets PROTEINS (Borgwardt et al., 2005), and DD (Dobson & Doig, 2003),
 878 social networks IMDB-BINARY, IMDB-MULTI (Yanardag & Vishwanathan, 2015), and COLLAB
 879 (Yanardag & Vishwanathan, 2015).

880 **Baselines.** We consider three categories of representative methods as baselines: 1) graph kernel
 881 methods including GL (Shervashidze et al., 2009), WL (Shervashidze et al., 2011), and DGK
 882 (Yanardag & Vishwanathan, 2015), 2) traditional graph embedding methods including node2vec
 883 (Grover & Leskovec, 2016), sub2vec (Adhikari et al., 2018), and graph2vec (Narayanan et al., 2017),
 884 3) contrastive learning methods including InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020),
 885 MVGRL (Hassani & Khasahmadi, 2020), JOAOv2 (You et al., 2021), ADGCL (Suresh et al., 2021).

886 **Settings.** Following You et al. (2020), we train the model in an unsupervised manner and feed the
 887 learned representation into a downstream SVM classifier. To keep comparison fairness, we tune
 888 hyperparameters in a unified combination, and keep the search space among methods as consistent as
 889 possible. Details can be found in Appendix V.

890 **Results.** As shown in Table 8, PROP surpasses most graph kernels and traditional embeddings and
 891 performs comparably with GCL methods. PROP achieves an average performance gap of 2.82%
 892 relative to the best-performing methods, a notable result given its training-free nature. We hypothesize
 893 that the slight gap arises because the single-node features do not directly map to the global graph label,
 894 necessitating advanced transformation or pooling operations. Another optional choice is utilizing
 895 Laplacian positional embeddings or random-walk embeddings as widely discussed in the literature of
 896 Graph Transformers (Yun et al., 2019; Ying et al., 2021; Rampásek et al., 2022). We leave deeper
 897 research on the graph classification task for future work.

898 Table 8: Test accuracy (%) of graph classification benchmarks, comparing PROP and GSSL methods.
 899 The compared results are from published papers, and – indicates that results are unavailable. We
 900 report the performance gap between one method and the best method, averaged across datasets in the
 901 **Mean Gap** column. **Bold** indicates the best method, while underlined represents the second-best.

	PROTEINS	MUTAG	DD	NCI1	IMDB-B	IMDB-M	COLLAB	Mean Gap ↓
<i>Graph Kernel</i>								
GL	–	81.66 ± 2.11	–	–	65.87 ± 0.98	–	–	7.60
WL	72.92 ± 0.56	80.72 ± 3.00	–	80.01 ± 0.50	72.30 ± 3.44	–	–	2.88
DGK	73.30 ± 0.82	87.44 ± 2.72	–	80.31 ± 0.46	66.96 ± 0.56	–	–	2.37
<i>Traditional Graph Embedding</i>								
node2vec	57.49 ± 3.57	72.63 ± 10.20	–	54.89 ± 1.61	–	–	–	16.61
sub2vec	53.03 ± 5.55	61.05 ± 15.80	–	52.84 ± 1.47	55.26 ± 1.54	–	–	19.79
graph2vec	73.30 ± 2.05	83.15 ± 9.25	–	73.22 ± 1.81	71.10 ± 0.54	–	–	3.54
<i>Graph Contrastive Learning</i>								
MVGRL	–	75.40 ± 7.80	–	–	63.60 ± 4.20	–	–	11.87
InfoGraph	74.44 ± 0.31	<u>89.01 ± 1.13</u>	72.85 ± 1.78	76.20 ± 1.06	73.03 ± 0.87	48.66 ± 0.67	70.65 ± 1.13	2.07
GraphCL	<u>74.39 ± 0.45</u>	86.80 ± 1.34	78.62 ± 0.40	77.87 ± 0.41	71.14 ± 0.44	<u>48.49 ± 0.63</u>	<u>71.36 ± 1.15</u>	1.52
JOAOv2	74.07 ± 1.10	87.67 ± 0.79	77.40 ± 1.15	78.36 ± 0.53	70.83 ± 0.25	–	69.33 ± 0.34	<u>1.78</u>
ADGCL	73.81 ± 0.46	89.70 ± 1.03	75.10 ± 0.39	69.67 ± 0.51	<u>72.33 ± 0.56</u>	49.89 ± 0.66	<u>73.32 ± 0.61</u>	2.21
PROP	71.07 ± 0.30	87.44 ± 1.53	<u>78.39 ± 0.37</u>	75.24 ± 0.14	71.22 ± 0.28	47.11 ± 0.18	69.07 ± 0.05	2.82

918 **C EXPERIMENTS OF PROP IN THE INDUCTIVE SETTING**
919

920 We conduct experiments in the inductive setting on the single-graph dataset Reddit and the multiple-
921 graph dataset PPI. The experimental settings, including data splitting and training hyperparameters,
922 follow those in Hamilton et al. (2017). The results are summarized in Table 9. For PPI (a multi-graph
923 benchmark with 50-dimensional node features), PROP (K=2) achieves an F1 score of 0.7527, which
924 is comparable to GRACE’s score of 0.7548. For Reddit, PROP (K=2) achieves an F1 score of 0.8452,
925 outperforming GRACE which achieves 0.8185. These results validate the effectiveness of PROP in
926 node classification tasks under the inductive setting.

927 Table 9: F1 score comparison of PROP and GRACE on benchmarks PPI and Reddit. **Bold** indicates
928 the best, while underlined represents the second-best choice.

930

Method	F1 Score (PPI)	F1 Score (Reddit)
GRACE	0.7548	0.8185
PROP ($K = 0$)	0.7076	0.5852
PROP ($K = 1$)	0.7493	<u>0.8457</u>
PROP ($K = 2$)	<u>0.7527</u>	0.8452

938 **D EXPERIMENTS OF PROP WITH A FIXED PUBLIC-SPLITTING.**
939

940 In Section 4.1, we evaluate PROP and graph self-supervised methods on the node classification task
941 with a random splitting. To ensure that the conclusion is not limited to a specific split setting, we
942 evaluate the models on the publicly available fixed splits following Zhu et al. (2021c); Zhang et al.
943 (2021). In practice, we use the public splitting introduced in Pei et al. (2020) for most datasets.
944 There is no available public splitting for Amazon-Photo and Amazon-Computers, so we randomly
945 split the dataset into 1/1/8 as the train/validation/test set, differing from the splitting in Section 4.1.
946 Other experimental settings are kept the same. As shown in Table 10, on 6 in 10 benchmarks, PROP
947 performs the best among baselines and exceeds the runner-up ProGCL by 4.23% on average. The
948 results verify the effectiveness of PROP in different data-splitting cases.

949 Table 10: Test accuracy (%) of PROP and other graph self-supervised methods on node classification
950 benchmarks with the public splitting. **Bold** indicates the best method, while underlined represents
951 the second-best choice.

952

Method	Cora	CiteSeer	PubMed	Photo	Computers	Squirrel	Chameleon	Texas	Wisconsin	Cornell	Mean
DeepWalk	80.87 \pm 1.07	63.14 \pm 1.05	81.55 \pm 0.27	<u>84.66 \pm 0.40</u>	89.59 \pm 0.18	43.32 \pm 0.79	60.81 \pm 1.27	53.44 \pm 5.09	43.63 \pm 4.25	44.59 \pm 2.95	64.56
Node2Vec	84.27 \pm 0.70	66.04 \pm 1.83	81.33 \pm 0.36	83.92 \pm 0.31	89.31 \pm 0.20	38.41 \pm 1.19	59.50 \pm 2.30	60.81 \pm 1.89	55.10 \pm 3.73	60.54 \pm 3.24	67.92
GAE	85.96 \pm 1.03	72.78 \pm 1.11	85.06 \pm 0.49	75.29 \pm 0.53	89.50 \pm 0.26	35.56 \pm 1.27	56.51 \pm 1.62	62.43 \pm 4.86	61.18 \pm 3.53	60.27 \pm 3.51	68.45
VGAE	86.20 \pm 0.76	73.26 \pm 0.65	85.19 \pm 0.43	72.17 \pm 0.33	86.90 \pm 0.38	42.38 \pm 1.13	60.29 \pm 1.05	63.78 \pm 3.51	59.61 \pm 2.75	60.54 \pm 2.16	69.03
GRACE	84.10 \pm 1.01	70.41 \pm 0.92	84.79 \pm 0.38	78.51 \pm 0.44	87.80 \pm 0.41	39.65 \pm 0.87	55.83 \pm 1.05	64.59 \pm 4.59	58.82 \pm 4.91	60.81 \pm 2.16	68.53
DGI	87.20 \pm 0.99	72.50 \pm 1.49	82.55 \pm 0.38	71.35 \pm 0.57	80.43 \pm 0.63	36.61 \pm 1.05	52.02 \pm 1.32	<u>70.54 \pm 2.97</u>	63.53 \pm 3.92	61.62 \pm 2.16	67.84
MVGRL	83.44 \pm 0.72	71.61 \pm 0.73	82.48 \pm 0.30	80.96 \pm 0.67	86.87 \pm 0.41	31.48 \pm 0.83	58.77 \pm 1.45	68.38 \pm 2.98	62.94 \pm 3.53	61.62 \pm 2.16	68.86
CCA-SSG	87.71 \pm 0.75	75.42 \pm 0.80	85.55 \pm 0.40	78.96 \pm 0.33	90.91 \pm 0.38	40.16 \pm 0.74	54.98 \pm 1.18	68.65 \pm 3.78	<u>64.12 \pm 4.31</u>	61.89 \pm 2.43	70.84
BGRL	85.77 \pm 0.89	72.66 \pm 1.54	84.63 \pm 0.49	74.43 \pm 0.91	85.50 \pm 0.59	37.20 \pm 1.07	53.82 \pm 1.67	67.03 \pm 2.70	60.59 \pm 3.14	60.81 \pm 2.43	68.24
GCA	86.60 \pm 0.79	<u>74.71 \pm 1.18</u>	<u>86.44 \pm 0.34</u>	75.63 \pm 0.46	88.77 \pm 0.54	41.33 \pm 0.88	59.28 \pm 1.54	69.46 \pm 2.97	62.94 \pm 2.75	<u>61.89 \pm 2.16</u>	70.71
ProGCL	85.45 \pm 0.85	73.61 \pm 1.10	86.86 \pm 0.41	81.64 \pm 0.70	89.91 \pm 0.31	<u>50.23 \pm 0.86</u>	<u>67.81 \pm 1.47</u>	69.46 \pm 2.97	62.75 \pm 2.75	61.35 \pm 1.35	<u>72.91</u>
PROP	84.57 \pm 0.82	74.55 \pm 1.09	84.65 \pm 0.24	84.78 \pm 0.38	<u>90.83 \pm 0.34</u>	57.20 \pm 1.41	<u>68.71 \pm 1.18</u>	71.35 \pm 4.60	79.61 \pm 3.14	75.14 \pm 3.78	77.14

964 **E EXPERIMENTS OF PROP WITH DIFFERENT AGGREGATION STEPS**
965

966 In this section, we present the accuracy of PROP with different propagation steps. We find that the
967 best step choice varies among datasets, but a shallow propagation is enough in most cases. As shown
968 in Figure 3, only one-step propagation performs best in datasets including Cora, CiteSeer, Chameleon,
969 Squirrel, Computers, and Photo. For Texas, Wisconsin, Cornell, Actor, and CS, the raw features, (*i.e.*,
970 zero propagation step) are enough. Moreover, when the performance achieves its best, raising the
971 propagation step will cause a degradation.

Figure 3: Accuracy (%) of PROP with different propagation steps. We mark the best step choice with a red star. Experiments are conducted ten times and the shadow denotes the derivation.

F COMPARISON BETWEEN PROP AND RAW FEATURES

F.1 GRAPH STRUCTURE AS EFFECTIVE SUPERVISED SIGNALS

The taxonomy of homophily and heterophily is commonly used to assess whether the graph structure is informative for training GCN-like models. However, beyond this traditional dichotomy, recent metrics characterizing graph properties have been proposed, showing a closer relationship with GNN performance (Mao et al., 2023; Luan et al., 2023; Platonov et al., 2023a). For instance, Ma et al. (2021) observe that the inter-class similarity on the Squirrel dataset is slightly higher than the intra-class similarity for most classes, which helps explain the moderate performance of GCN on this dataset.

However, the performance of GCN-like models is influenced by the interplay between graph structure and node features. Therefore, poor performance of GCN does not necessarily imply that the graph structure is ineffective, nor does it imply the opposite. To verify this, we design experiments based on the mutual information between labels and graph elements, including graph structure and node features. To decouple the effects of structure and node features, we use an MLP instead of a GCN as the training model, with node features \mathbf{X} , adjacency matrix \mathbf{A} , and their concatenation as inputs, respectively.

The results are shown in Table 11. Surprisingly, **for some heterophily datasets, MLPs using the graph structure as input achieve satisfactory performance**. For instance, on the Squirrel dataset, which has a low homophily ratio of 0.22, the MLP based on the graph structure achieves an accuracy of 73.58%. This suggests that, even with a low homophily ratio, the graph structure can still serve as a highly effective supervision signal for label prediction.

F.2 NODE FEATURE PERTURBATION EXPERIMENTS

PROP demonstrates significant advantages over Raw Features (RF), particularly in scenarios where node features are noisy or uninformative. To illustrate this, we compare PROP and RF under noise-perturbation and masking-perturbation settings. For noise-perturbation, Gaussian noise is added

1026 Table 11: Test accuracy (%) of MLP with different input signals on node classification benchmarks.
 1027 $\mathcal{H}(G)$ denotes the edge homophily ratio introduced in Zhu et al. (2020a). Lower $\mathcal{H}(G)$ denotes
 1028 graphs with a high heterophily level. [,] denotes concatenation. **Bold** indicates the best, while
 1029 underlined represents the second-best choice.

1030

	Cora	CiteSeer	PubMed	Chameleon	Squirrel	Actor
$\mathcal{H}(G)$	0.81	0.74	0.80	0.23	0.22	0.22
MLP(\mathbf{X})	73.64	<u>70.72</u>	<u>85.75</u>	49.34	35.06	36.51
MLP(\mathbf{A})	<u>78.27</u>	57.81	81.41	77.41	73.58	21.84
MLP($[\mathbf{X}, \mathbf{A}]$)	82.29	73.57	85.83	71.05	<u>67.63</u>	31.84

1036

1037

1038 to the original node features. For masking-perturbation, we randomly mask the channels of node
 1039 features with varying mask ratios in [20%, 40%, 60%, 80%]. As shown in Table 12 and Table 13,
 1040 PROP consistently outperforms RF across various benchmarks when node features are perturbed.
 1041 For instance, in the noise-perturbation setting, PROP achieves an average performance improvement
 1042 of over 33% compared to RF. Similarly, in the masking-perturbation setting, PROP maintains its
 1043 superiority even with a mask ratio as high as 80%.

1044

1045

1046

1047 Table 12: Test accuracy (%) of noise-perturbed node classification benchmarks, comparing PROP and
 1048 Raw Features (RF). We add noise from a normal distribution onto the original features to generate
 1049 randomly noisy node features. **Bold** indicates the best method.

1050

1051

Method	Cora	CiteSeer	PubMed	Photo	Computers	Squirrel	Chameleon	Mean
RF	39.90 ± 6.85	32.31 ± 8.47	57.28 ± 5.69	42.60 ± 7.57	54.57 ± 6.27	21.34 ± 1.03	25.47 ± 2.47	39.07
PROP	76.73 ± 2.02	69.25 ± 2.44	81.50 ± 2.00	73.76 ± 11.58	70.23 ± 7.74	48.94 ± 6.14	69.39 ± 2.15	69.97

1052

1053

1054

1055 Table 13: Test accuracy (%) of mask-perturbed node classification benchmarks, comparing PROP and
 1056 Raw Features (RF). We randomly mask a proportion of features to generate perturbed node features.
 1057 **Bold** indicates the best method.

1058

1059

1060

1061

1062

1063

1064

1065

Mask ratio	Method	Cora	CiteSeer	PubMed	Photo	Computers	Squirrel	Chameleon	Mean
20%	RF	54.01 ± 3.40	60.34 ± 4.24	70.00 ± 4.66	65.87 ± 5.16	68.59 ± 4.98	28.37 ± 0.67	41.77 ± 2.78	55.56
	PROP	76.19 ± 3.76	71.87 ± 2.68	83.85 ± 0.99	89.78 ± 1.51	83.37 ± 2.18	47.13 ± 4.50	64.40 ± 2.45	73.80
40%	RF	49.10 ± 2.61	44.68 ± 9.49	58.36 ± 5.81	50.62 ± 9.53	53.56 ± 9.74	25.67 ± 1.97	34.99 ± 4.88	45.28
	PROP	61.25 ± 6.68	54.87 ± 10.25	76.85 ± 4.43	76.16 ± 10.29	64.66 ± 10.61	38.68 ± 5.98	53.90 ± 6.67	60.91
60%	RF	46.95 ± 5.67	36.10 ± 8.12	55.88 ± 4.87	44.29 ± 7.96	53.85 ± 7.58	23.22 ± 2.27	30.72 ± 4.09	41.57
	PROP	54.47 ± 6.93	42.59 ± 10.70	63.68 ± 9.19	60.27 ± 14.32	60.69 ± 8.46	28.47 ± 6.50	41.03 ± 8.97	50.17
80%	RF	48.33 ± 3.69	30.18 ± 5.64	52.01 ± 3.18	41.47 ± 5.78	57.87 ± 2.63	21.93 ± 2.04	28.42 ± 3.13	40.03
	PROP	49.06 ± 6.39	33.77 ± 9.83	57.89 ± 8.73	57.89 ± 8.73	60.37 ± 5.14	26.35 ± 5.38	34.64 ± 9.06	44.90

G INTUITIVE ILLUSTRATION OF NEIGHBORING-NODE VIEW

1066

1067

1068

Using neighboring nodes can be understood as a form of view generation in GCL. Formally, this involves designing a permutation matrix \mathbf{P} that transforms the graph such that $\mathbf{A}' = \mathbf{P}^\top \mathbf{A} \mathbf{P}$ and $\mathbf{X}' = \mathbf{P} \mathbf{X}$. The same row of \mathbf{X} (or \mathbf{A}) and \mathbf{X}' (or \mathbf{A}') corresponds to neighboring nodes in the original graph. This kind of view generation is also applied in previous works and shows satisfying experimental performance (Lee et al., 2022; Shen et al., 2023).

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Consider a simple example of a triangle graph with three nodes v_1 , v_2 , and v_3 , connected as (v_1, v_2) ,

(v_1, v_3) (v_2, v_3) . A specific permutation $\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ transforms the original graph's adjacency

matrix $\mathbf{A} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix}$ into $\mathbf{A}' = \mathbf{P}^\top \mathbf{A} \mathbf{P} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$, $\mathbf{X}' = \mathbf{P} \mathbf{X} = \begin{pmatrix} \mathbf{x}_2 \\ \mathbf{x}_3 \\ \mathbf{x}_1 \end{pmatrix}$.

The corresponding nodes in $\mathcal{G} = (\mathbf{A}, \mathbf{X})$ and $\mathcal{G}' = (\mathbf{A}', \mathbf{X}')$ form positive pairs.

1080 Based on random sampling, other choices of \mathbf{P} are possible, such as transforming $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)^\top$
 1081 to $\mathbf{X}' = (\mathbf{x}_3, \mathbf{x}_1, \mathbf{x}_2)^\top$. For node v_1 , the probabilities of transferring to v_2 and v_3 are equal. When the
 1082 sampling process is repeated sufficiently, the positive samples (v_1, v_2) and (v_1, v_3) are sampled with
 1083 approximately equal frequency, corresponding to the neighboring set in the propagation procedure.
 1084

1085 More formally, consider the alignment loss defined in the paper,

$$1086 \mathcal{L}_{\text{align}}(f) = -\mathbb{E}_{\mathbf{x}_i, \mathbf{x}_j \sim p(\mathbf{x}_i, \mathbf{x}_j)} [f(\mathbf{x}_i)^\top f(\mathbf{x}_j)].$$

1088 Here, the probability distribution $p(\mathbf{x}_i, \mathbf{x}_j) = \hat{A}_{ij} / \sum_{i,j} \hat{A}_{ij}$ is defined as the normalized edge
 1089 weight between nodes v_i and v_j in the k -hop graph. When the sampling process is efficient, we can
 1090 approximate the neighbor sets in the propagation as positive pairs.
 1091

1092 H PROOF OF THEOREMS

1093 H.1 PROOF OF THEOREM 4.1

1097 Here we present the proof of Theorem 4.1, restated for reference.

1098 **Theorem 4.1.** *For a learning step size of $\alpha = 0.5$, the propagation operator (Equation 3) optimizes
 1099 the spectral energy objective $\mathcal{L}(\mathbf{H}) = \mathbf{H}^\top (\mathbf{I} - \hat{\mathbf{A}}^k) \mathbf{H}$, which represents the Dirichlet energy on a
 1100 rewired graph, where neighboring nodes are defined over k -hop connections.*

1102 *Proof.* We consider the rewired k -hop graph with the adjacency matrix denoted as $\tilde{\mathbf{A}} = \hat{\mathbf{A}}^k$. The
 1103 Dirichlet energy on the k -hop graph is $\mathcal{L}(\mathbf{H}) = \mathbf{H}^\top \tilde{\mathbf{L}} \mathbf{H}$, where $\tilde{\mathbf{L}} = \mathbf{I} - \tilde{\mathbf{A}}$. The gradient update of
 1104 the Dirichlet energy objective gives the following update rule of node features \mathbf{H} ,

$$1107 \mathbf{H} - \alpha \frac{\partial \mathcal{L}(\mathbf{H})}{\partial \mathbf{H}} = \mathbf{H} - 2\alpha \tilde{\mathbf{L}} \mathbf{H} = ((1 - 2\alpha)\mathbf{I} + 2\alpha \tilde{\mathbf{A}}) \mathbf{H}, \quad (7)$$

1109 where the α is the step size. When we choose the learning rate $\alpha = 0.5$, we recover the propagation
 1110 operation in Equation 3, *i.e.*, $\mathbf{H}_{\text{new}} = \tilde{\mathbf{A}} \mathbf{H} = \hat{\mathbf{A}}^k \mathbf{H}$. □

1113 H.2 PROOF OF THEOREM 4.2

1116 Here we present the proof of Theorem 4.2, restated for reference.

1117 **Theorem 6.1.** *Under Assumptions 6.2 and 6.3, when $\alpha > \frac{\epsilon_f}{\|f\|_F}$, we have:*

$$1119 \|\mathbf{H}_{\text{PROPGCL}} - f \mathbf{X}\|_F < \min (\|\mathbf{H}_{\text{PROP}} - f \mathbf{X}\|_F, \|\mathbf{H}_{\text{GCL}} - f \mathbf{X}\|_F).$$

1122 *Proof.* Again, we consider the rewired k -hop graph with the adjacency matrix denoted as $\tilde{\mathbf{A}} = \hat{\mathbf{A}}^k$.
 1123 A key step is to notice that the alignment objective Equation 4 is closely relevant to the Dirichlet
 1124 energy when $f(\mathbf{x}_i) = \mathbf{H}_i, \forall i \in [N]$:

$$1125 \mathcal{L}_{\text{align}}(f) = -\sum_{i,j} \tilde{A}_{ij} [\mathbf{H}_i^\top \mathbf{H}_j] / (\sum_{i,j} \tilde{A}_{ij}) = \mathbf{H}^\top \tilde{\mathbf{A}} \mathbf{H} / (\sum_{i,j} \tilde{A}_{ij}) = \mathbf{H}^\top (\mathbf{I} - \tilde{\mathbf{L}}) \mathbf{H} / (\sum_{i,j} \tilde{A}_{ij}). \quad (8)$$

1128 It is easy to see that graph convolution converges to identical vectors, known as oversmoothing.
 1129 Therefore, we have $\forall i, j, (\mathbf{H}_\infty)_i = (\mathbf{H}_\infty)_j$. Therefore,

$$1131 \lim_{k \rightarrow \infty} \mathcal{L}_{\text{align}}(f_k) = \mathbf{H}_\infty^\top \tilde{\mathbf{A}} \mathbf{H}_\infty / (\sum_{i,j} \tilde{A}_{ij}) = (\sum_{i,j} \tilde{A}_{ij}) / (\sum_{i,j} \tilde{A}_{ij}) = -1,$$

1133 which concludes the proof. □

1134 H.3 PROOF OF THEOREM 6.1
1135

1136 Here we present the proof of Theorem 6.1, restated for reference.

1137 **Theorem 6.1.** *Under Assumptions 6.2 and 6.3, when $\alpha > \frac{\epsilon_f}{\|f\|_F}$, we have:*

1139
$$\|\mathbf{H}_{PROPGCL} - f\mathbf{X}\|_F < \min(\|\mathbf{H}_{PROP} - f\mathbf{X}\|_F, \|\mathbf{H}_{GCL} - f\mathbf{X}\|_F).$$

1140

1141 *Proof.* Since GCL has sufficient capacity to fit $T^* = f + g$, at convergence we have:

1142
$$\|\mathbf{H}_{GCL} - (f + g)\mathbf{X}\|_F \approx 0.$$

1143

1144 However, for downstream performance, we care about proximity to $f\mathbf{X}$, i.e.,

1145
$$\|\mathbf{H}_{GCL} - f\mathbf{X}\|_F = \|\mathbf{H}_{GCL} - (f + g)\mathbf{X} + g\mathbf{X}\|_F.$$

1146

1147 By applying the triangle inequality, we obtain:

1148
$$\|\mathbf{H}_{GCL} - f\mathbf{X}\|_F \geq \|g\mathbf{X}\|_F - \|\mathbf{H}_{GCL} - (f + g)\mathbf{X}\|_F.$$

1149

1150 When GCL overfits to the CL loss, it yields:

1151
$$\|\mathbf{H}_{GCL} - f\mathbf{X}\|_F \geq \|g\mathbf{X}\|_F = \alpha\|f\|_F\|\mathbf{X}\|_F. \quad (9)$$

1152

1153 According to the Chebyshev approximation theory, continuous functions admit exponentially fast
1154 polynomial approximation, while discontinuous mappings incur large approximation error (Xu et al.,
1155 2019; Rahaman et al., 2019). Let $\hat{\theta}$ be the learned parameters. Then we have

1156
$$\|\mathbf{H}_{PROPGCL} - f\mathbf{X}\|_F = \left\| \sum_k \hat{\theta}_k \mathbf{A}^k \mathbf{X} - f\mathbf{X} \right\|_F \leq \epsilon_f \|\mathbf{X}\|_F. \quad (10)$$

1157

1158 PROPGCL is a special case of PROPGCL by letting $\theta_K = 1, \theta_i = 0, i \neq K$. Therefore, PROPGCL satisfies
1159 $\|\mathbf{A}^k - f\|_F \geq \delta$ with $\delta > \epsilon_f$, leading to:

1160
$$\|\mathbf{H}_{PROPGCL} - f\mathbf{X}\|_F = \|\mathbf{A}^K \mathbf{X} - f\mathbf{X}\|_F \geq \delta \|\mathbf{X}\|_F. \quad (11)$$

1161

1162 From Equation 9, Equation 10, and Equation 11, we obtain that: For PROPGCL and PROPGCL, we have
1163 $\epsilon_f \|\mathbf{X}\|_F < \delta \|\mathbf{X}\|_F$. This holds since $\epsilon_f < \delta$.1164 For PROPGCL and GCL, we have $\epsilon_f \|\mathbf{X}\|_F < \alpha \|f\|_F \|\mathbf{X}\|_F$. This holds when $\alpha > \frac{\epsilon_f}{\|f\|_F}$.

1165 Therefore, under the stated conditions, we finally have:

1166
$$\|\mathbf{H}_{PROPGCL} - f\mathbf{X}\|_F < \min(\|\mathbf{H}_{PROP} - f\mathbf{X}\|_F, \|\mathbf{H}_{GCL} - f\mathbf{X}\|_F),$$

1167

1168 which ends the proof. \square

1169 I EXPERIMENTS ON GCL WITH RANDOM WEIGHTS

1170 In Section 5.1, we show that in the DGI method, after replacing the trained transformation weights
1171 with a random Gaussian matrix, the downstream performance does not deteriorate as expected. We
1172 conclude that the transformation weights learned in GCL are not better than random. To enhance the
1173 generalizability of our conclusion, we extended our experimental evaluations to include more GCL
1174 methods, propagators, and initialization methods. The experimental settings are kept the same.1175 **Variants on GCL methods.** Table 14 shows the results using the GRACE and BGRL methods. For
1176 GRACE, replacing the transformation weights with random weights raises the performance from
1177 73.93% to 74.51% on average. For BGRL, the replacement brings an increase of more than 2% in
1178 average performance.1179 **Variants on initialization methods.** We compare GCL weights with four random initializations:
1180 Gaussian, Uniform, Kaiming (He et al., 2015), Xavier (Glorot & Bengio, 2010)). Table 15 shows
1181 that all randomized weights perform comparably to (even slightly better than) GCL-trained weights,
1182 confirming the GCL weights deficiency.

1188 **Variants on the propagators.** We consider an alternative APPNP-like propagator (Gasteiger et al.,
 1189 2019a):

$$\mathbf{H}_{\text{APPNP}} = (1 - \alpha) \mathbf{A}^k \mathbf{X} + \alpha \mathbf{X},$$

1191 where α is the teleport (or restart) probability. As shown in Table 16, for the APPNP propagator,
 1192 GCL-learned weights still show no significant advantage over different random weights.

1193 Although we can not exhaustively try all GCL random variants, the results of representative variants
 1194 above are able to verify that many GCL methods fail to learn effective transformation weights.
 1195

1196 Table 14: Test accuracy (%) of node classification benchmarks with GRACE and BGRL methods,
 1197 comparing the GCL-learned transformation weights and random weights. **Bold** indicates the best-
 1198 performing weights in each GCL method.

Method	Weights	Cora	CiteSeer	PubMed	Squirrel	Chameleon	Texas	Wisconsin	Cornell	Mean
GRACE	GCL-learned	83.15 ± 0.82	74.97 ± 0.56	81.53 ± 0.25	48.46 ± 0.95	67.24 ± 1.42	84.75 ± 2.95	70.88 ± 2.00	80.49 ± 2.13	73.93
	Randomize \mathbf{W}	82.91 ± 0.72	69.93 ± 0.59	81.39 ± 0.40	53.82 ± 0.79	69.67 ± 1.01	84.59 ± 2.79	73.25 ± 1.38	80.49 ± 2.30	74.51
BGRL	GCL-learned	83.27 ± 0.79	73.40 ± 0.93	81.36 ± 0.29	40.43 ± 0.77	65.07 ± 0.96	81.97 ± 3.11	73.38 ± 2.25	80.00 ± 2.13	72.36
	Randomize \mathbf{W}	82.43 ± 0.44	73.85 ± 0.74	80.77 ± 0.28	54.12 ± 0.67	71.40 ± 1.16	84.59 ± 3.11	71.38 ± 5.25	80.33 ± 1.97	74.86

1205 Table 15: Test accuracy (%) of node classification benchmarks with DGI method, comparing the
 1206 transformation weights learned and random weights initialized in different methods. **Bold** indicates
 1207 the best method, while underlined is the second-best.

Training	Cora	CiteSeer	PubMed	Squirrel	Chameleon	Texas	Wisconsin	Cornell	Mean
GCL	83.23 ± 0.74	74.24 ± 0.55	82.10 ± 0.33	<u>45.92 ± 0.65</u>	64.00 ± 1.33	81.15 ± 2.13	71.88 ± 2.50	80.33 ± 1.80	72.86
Gaussian-random	<u>83.02 ± 0.94</u>	70.04 ± 0.82	83.87 ± 0.53	49.62 ± 0.99	67.94 ± 1.16	80.33 ± 1.81	72.25 ± 2.25	80.33 ± 1.97	<u>73.43</u>
Uniform-random	82.63 ± 1.05	<u>70.63 ± 1.13</u>	83.38 ± 0.50	44.49 ± 1.03	68.42 ± 0.92	<u>82.62 ± 2.62</u>	73.25 ± 2.25	80.82 ± 1.80	73.28
Kaiming-random	82.46 ± 0.71	69.09 ± 0.71	<u>83.68 ± 0.32</u>	44.99 ± 0.63	<u>68.42 ± 1.53</u>	82.46 ± 2.79	75.75 ± 3.38	80.66 ± 1.97	73.44
Xavier-random	82.45 ± 0.74	68.90 ± 0.74	83.56 ± 0.43	45.02 ± 0.64	68.34 ± 1.47	82.95 ± 2.30	<u>75.13 ± 1.75</u>	80.82 ± 1.97	73.40

1215 Table 16: Test accuracy (%) of node classification benchmarks with DGI method and APPNP
 1216 propagator, comparing the GCL-learned transformation weights and different random weights. **Bold**
 1217 indicates the best method, while underlined is the second-best.

Training	Cora	CiteSeer	PubMed	Squirrel	Chameleon	Texas	Wisconsin	Cornell	Mean
GCL	84.79 ± 0.80	75.47 ± 0.76	82.25 ± 0.24	40.74 ± 0.61	58.99 ± 1.40	80.33 ± 1.97	87.00 ± 2.50	80.33 ± 1.80	73.74
Gaussian-random	85.42 ± 0.99	<u>76.49 ± 0.55</u>	84.85 ± 0.16	45.76 ± 0.69	<u>58.95 ± 1.23</u>	82.79 ± 3.28	88.50 ± 2.63	83.44 ± 3.61	75.78
Uniform-random	<u>85.34 ± 0.84</u>	76.81 ± 0.68	<u>84.60 ± 0.24</u>	<u>43.87 ± 0.90</u>	58.42 ± 0.96	78.69 ± 2.62	86.88 ± 1.25	78.52 ± 2.46	<u>74.14</u>
Kaiming-random	83.23 ± 1.00	75.68 ± 0.79	83.76 ± 0.15	39.31 ± 0.91	55.89 ± 1.44	81.15 ± 4.59	87.25 ± 3.25	<u>81.15 ± 4.43</u>	73.43
Xavier-random	83.02 ± 0.69	75.28 ± 0.61	83.10 ± 0.19	38.55 ± 0.86	55.60 ± 1.20	<u>81.15 ± 4.10</u>	<u>87.63 ± 3.13</u>	78.69 ± 6.23	72.88

J FLIP CL-SL EXPERIMENTS IN SECTION 5

1228 In the flip experiment, we first train the network parameters via GCL and save the learned trans-
 1229 formation weights \mathbf{W}_{CL} and propagation coefficients θ_{CL} . We then proceed with the following
 1230 experiments:

1231 **Experiment 1 (Fix-transformation).** We initialize and freeze transformation weights with the
 1232 GCL-trained \mathbf{W}_{CL} , and only learn propagation coefficients θ through supervised learning.

1233 **Experiment 2 (Fix-propagation).** We initialize and freeze propagation coefficients with the GCL-
 1234 trained θ_{SL} , and only learn transformation weights \mathbf{W} through supervised learning.

1235 **Experiment 3 (All-one baseline).** We further consider a baseline with GCL-trained transformation
 1236 weights \mathbf{W}_{CL} and a fixed all-one propagation coefficients $\mathbf{1}$.

1237 As shown in Table 17, despite using the propagation coefficients learned via GCL, the model still
 1238 achieves satisfying performances of 77.57%, compared to the original supervised model with 80.41%.
 1239 However, after replacing the transformation weights with GCL-learned ones, the performance
 1240 deteriorates largely with an accuracy of only 65.01%. The results further confirm our conclusion in
 1241 Section 5.2 that GCL learns effectively during the propagation phase.

Table 17: Test accuracy (%) of node classification benchmarks. We freeze the propagation coefficients with θ_{CL} (or the transformation weights with \mathbf{W}_{CL}), and *learn* the transformation weights (or propagation coefficients) in the supervised setting. $\mathbf{1}$ denotes an all-one vector. **Bold** indicates the best, while underlined represents the second-best choice.

Method	θ	\mathbf{W}	Cora	CiteSeer	PubMed	Squirrel	Chameleon	Texas	Wisconsin	Cornell	Mean
SL	Learn	Learn	88.39 ± 0.74	79.67 ± 0.72	87.11 ± 0.25	49.34 ± 1.09	69.52 ± 0.96	89.67 ± 2.13	91.25 ± 2.75	88.36 ± 3.11	80.41
CL	θ_{CL}	\mathbf{W}_{CL}	83.42 ± 0.92	74.79 ± 0.57	84.92 ± 0.26	37.90 ± 0.79	55.67 ± 0.96	77.87 ± 2.79	86.38 ± 3.63	75.74 ± 3.61	72.09
Fix-transformation	Learn	\mathbf{W}_{CL}	76.62 ± 2.12	76.25 ± 0.64	83.32 ± 0.46	36.56 ± 0.61	52.41 ± 2.06	60.16 ± 6.39	75.25 ± 4.38	59.51 ± 5.08	65.01
Fix-propagation	θ_{CL}	Learn	87.06 ± 0.53	79.55 ± 0.74	85.76 ± 0.23	41.44 ± 1.06	64.44 ± 0.74	87.38 ± 2.95	90.63 ± 3.00	84.26 ± 2.62	77.57
All-one baseline	$\mathbf{1}$	Learn	71.74 ± 3.22	75.92 ± 0.61	79.38 ± 0.47	33.27 ± 0.61	42.32 ± 0.90	55.41 ± 4.43	74.13 ± 4.13	60.82 ± 6.56	61.65

K DETAILS ABOUT POLYNOMIAL GNNS

In this section, we introduce polynomial GNNS from the spectral perspective. Developed from graph signal processing, *graph convolution* means transforming the graph signals to the Fourier domain and then back to the vertex domain after suitable filtering, *i.e.*, $\mathbf{H} = \mathbf{U}g_{\theta}(\mathbf{\Lambda})\mathbf{U}^{\top}\mathbf{X}$, where g_{θ} is the filter, \mathbf{U} is the matrix of eigenvectors of graph Laplacian \mathbf{L} , $\mathbf{\Lambda}$ is the diagonal matrix of eigenvalues. The problem arises when the parameters in $g_{\theta}(\mathbf{\Lambda})$ are entirely unconstrained, leading to a lack of spatial localization in the convolution and a high time complexity due to eigenvalue decomposition.

These issues can be overcome with the use of a polynomial filter $g_{\theta}(\mathbf{\Lambda}) = \sum_{k=0}^{K-1} \theta_k \mathbf{\Lambda}^k$, where the parameter $\theta \in \mathbb{R}^K$ is a vector of polynomial coefficients. Therefore, the graph convolution can be reformulated as $\mathbf{H} = (\sum_{k=0}^{K-1} \theta_k \mathbf{L}^k)\mathbf{X}$. We call GNNS using the polynomial approximated filters as *polynomial GNNS*. As one of the pioneer works, ChebNet (Defferrard et al., 2016) uses Chebyshev polynomial parametrization to localize filters as $g_{\theta}(\mathbf{\Lambda}) = \sum_{k=0}^K \theta_k T_k(\tilde{\mathbf{\Lambda}})$, where $\tilde{\mathbf{\Lambda}} = 2\mathbf{\Lambda}/\lambda_{\max} - \mathbf{I}$, θ is the Chebyshev coefficients, and $T_k(\tilde{\mathbf{\Lambda}})$ is the Chebyshev polynomial of order k recursively calculated by $T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$ with $T_0(x) = 1$ and $T_1(x) = x$.

In Section 6, we consider three popular polynomial GNN variants. GPRGNN (Chien et al., 2021) uses the monomial basis functions evaluated at $\hat{\mathbf{\Lambda}}$, *i.e.*, $g_{\theta}(\mathbf{\Lambda}) = \sum_{k=0}^{K-1} \theta_k (\mathbf{I} - \hat{\mathbf{L}})^k$ with θ as learnable coefficients. BernNet (He et al., 2021) uses the Bernstein polynomial approximation, *i.e.*, $g_{\theta}(\mathbf{\Lambda}) = \sum_{k=0}^{K-1} \theta_k \frac{1}{2^k} \binom{K}{k} (2\mathbf{I} - \mathbf{L})^{K-k} \mathbf{L}^k$ with θ as learnable coefficients. ChebNetII (He et al., 2022) enhances the original Chebyshev polynomial approximation by Chebyshev interpolation, formulated as $g_{\theta}(\mathbf{\Lambda}) = \frac{2}{K+1} \sum_{k=0}^K \sum_{j=0}^K \theta_j T_k(x_j) T_k(\hat{\mathbf{L}})$, where $x_j = \cos((j+1/2)\pi/(K+1))$ are the Chebyshev nodes of T_{K+1} , and θ are learnable coefficients.

L BASIS POLYNOMIAL FUNCTIONS ANALYSIS OF PROPGCL

Polynomial GNNS variants mainly differ in the polynomial basis function choices, *e.g.*, the monomial basis in GPRGNN (Chien et al., 2021), the Bernstein basis in BernNet (He et al., 2021), and the Chebyshev basis in ChebNetII (He et al., 2022). We have introduced detailed basis function formulations in Appendix K.

In this section, we compare different basis polynomial functions used in PROPGCL. Here, we consider the Chebyshev basis, Bernstein basis, and monomial basis. As shown in Table 18 and Table 19, the performance of PROPGCL is relatively robust in the choice of basis functions. For homophily benchmarks, PROP-GRACE with Chebyshev basis and the PROP-DGI with monomial basis achieve the best, surpassing the second slightly by 0.05% on average. For heterophily benchmarks, the best PROP-DGI with the Chebyshev basis achieves 73.71% on average, and the Bernstein basis ranks second. In general, the Chebyshev basis is preferred in PROPGCL.

M CLUSTERING QUALITY ESTIMATION

To exclude the impact of linear-probing, we also evaluate the clustering quality of raw features and representations learned by GRACE and PROP-GRACE. We conduct KMeans on unsupervised representations and estimate two clustering metrics *Clustering Accuracy* and *Normalized Mutual Information (NMI)*. As shown in Table 20 and Table 21, PROP-GRACE outperforms both baselines

1296 Table 18: Test accuracy (%) of homophily node classification benchmarks, comparing different basis
 1297 polynomial functions in PROPGCL. **Bold** indicates the best method, while underlined represents the
 1298 second-best choice.

1300	Method	Basis	Cora	CiteSeer	PubMed	Photo	Computers	CS	Mean
1301	PROP-GRACE	Chebyshev	<u>87.42</u> \pm 0.95	81.56 \pm 0.83	86.19 \pm 0.35	93.32 \pm 0.31	88.12 \pm 0.23	<u>95.95</u> \pm 0.14	88.76
		Bernstein	87.52 \pm 1.20	<u>81.69</u> \pm 0.86	85.90 \pm 0.25	93.42 \pm 0.24	87.77 \pm 0.22	95.97 \pm 0.13	88.71
		monomial	87.34 \pm 1.13	81.86 \pm 0.79	<u>86.41</u> \pm 0.23	93.19 \pm 0.26	86.85 \pm 0.34	95.91 \pm 0.15	88.59
1304	PROP-DGI	Chebyshev	86.19 \pm 1.05	80.78 \pm 0.65	85.14 \pm 0.22	92.78 \pm 0.37	89.81 \pm 0.20	95.82 \pm 0.18	88.42
		Bernstein	86.49 \pm 0.99	80.93 \pm 0.72	85.80 \pm 0.40	<u>93.53</u> \pm 0.26	<u>89.77</u> \pm 0.25	95.46 \pm 0.16	88.66
		monomial	86.86 \pm 1.02	81.69 \pm 0.86	86.56 \pm 0.33	93.72 \pm 0.25	88.18 \pm 0.34	95.57 \pm 0.14	88.76

1307
 1308 Table 19: Test accuracy (%) of heterophily node classification benchmarks, comparing different basis
 1309 polynomial functions in PROPGCL. **Bold** indicates the best method, while underlined represents the
 1310 second-best choice.

1312	Method	Basis	Squirrel	Chameleon	Actor	Texas	Wisconsin	Cornell	Mean
1313	PROP-GRACE	Chebyshev	55.09 \pm 0.81	71.73 \pm 1.18	39.35 \pm 0.81	89.84 \pm 1.81	88.50 \pm 3.63	86.72 \pm 2.46	71.87
		Bernstein	48.51 \pm 0.85	70.02 \pm 0.88	39.33 \pm 0.81	90.16 \pm 1.31	<u>89.00</u> \pm 3.25	88.52 \pm 2.95	70.92
		monomial	51.96 \pm 0.69	69.28 \pm 1.05	<u>39.52</u> \pm 0.89	84.43 \pm 2.62	84.13 \pm 4.50	<u>88.20</u> \pm 2.79	69.59
1317	PROP-DGI	Chebyshev	60.53 \pm 0.66	74.11 \pm 0.96	39.53 \pm 0.84	91.80 \pm 2.30	88.88 \pm 2.50	87.38 \pm 2.62	73.71
		Bernstein	53.08 \pm 0.83	71.20 \pm 0.81	39.48 \pm 0.77	<u>92.46</u> \pm 1.48	91.63 \pm 3.00	87.38 \pm 2.63	<u>72.54</u>
		monomial	<u>56.65</u> \pm 0.77	<u>72.12</u> \pm 0.72	37.80 \pm 0.57	93.11 \pm 1.80	83.63 \pm 5.88	81.97 \pm 2.95	70.88

1319
 1320
 1321 on average, demonstrating better clustering effectiveness. Compared to the state-of-the-art performance
 1322 in linear probing, PROP-GRACE fails to consistently surpass GRACE across all benchmarks.
 1323 Therefore, we recommend adopting PROPGCL in a CL+linear-probing use case, *i.e.*, training a
 1324 simple linear classifier on the unsupervised representations in downstream tasks.

1325
 1326 Table 20: Clustering Accuracy (%) of node classification benchmarks, comparing Raw Features (RF),
 1327 GRACE, and PROP-GRACE. **Bold** indicates the best method, while underlined is the second-best.

1330	Cora	CiteSeer	PubMed	Squirrel	Computers	Photo	Chameleon	Texas	Wisconsin	Cornell	Mean
1331	RF	30.06	37.60	59.86	<u>38.21</u>	37.52	20.32	23.36	44.26	51.79	44.26
1332	GRACE	<u>43.24</u>	<u>56.36</u>	64.68	31.06	47.22	<u>24.51</u>	<u>26.75</u>	46.45	<u>43.03</u>	32.24
1333	PROP-GRACE	51.81	67.45	<u>61.39</u>	39.97	<u>46.01</u>	31.46	29.07	46.45	41.83	<u>41.53</u>

1336 N ROBUSTNESS COMPARISON

1339 N.1 NOISY FEATURES SENSITIVITY ANALYSIS

1341 In Appendix F, we evaluate PROP’s performance under node feature perturbations. Here, we
 1342 extend this analysis to PROPGCL (using PROP-GRACE as a representative) and compare it against
 1343 two baselines: raw features (RF) and PROP. We examine two perturbation scenarios- 1). *Noise*
 1344 *Perturbation*: Gaussian noise is added to the original node features to generate noisy inputs; 2).
 1345 *Masking Perturbation*: Random channels of the node features are masked at varying ratios in 20%,
 1346 40%, 60%, and 80%.

1347 As shown in Tables 22 and 23, PROP-GRACE exhibits significantly stronger robustness compared
 1348 to both RF and PROP. Specifically, it outperforms RF by >30% on noise-perturbed features and
 1349 maintains consistent improvements across all masking ratios. These results highlight the advantages
 of PROP-GRACE’s on noisy or low-dimensional features.

1350 Table 21: NMI of node classification benchmarks, comparing Raw Features (RF), GRACE, and
 1351 PROP-GRACE. **Bold** indicates the best method, while underlined is the second-best.

	Cora	CiteSeer	PubMed	Squirrel	Computers	Photo	Chameleon	Texas	Wisconsin	Cornell	Mean
RF	0.1031	0.1504	<u>0.3105</u>	<u>0.2231</u>	0.2567	0.0040	0.0123	0.2018	0.3738	0.2018	0.1838
GRACE	<u>0.3476</u>	<u>0.3166</u>	0.2257	0.2179	0.4584	<u>0.0150</u>	0.0163	<u>0.1897</u>	<u>0.2382</u>	<u>0.0345</u>	0.2060
PROP-GRACE	0.3623	0.4136	0.3380	0.3071	<u>0.4039</u>	0.0818	0.0885	0.1491	0.1044	0.0536	0.2302

1358 Table 22: Test accuracy (%) of noise-perturbed node classification benchmarks, comparing Raw
 1359 Features (RF), PROP and PROP-GRACE. We add noise from a normal distribution onto the original
 1360 features to generate randomly noisy node features. **Bold** indicates the best method.

Method	Cora	CiteSeer	PubMed	Photo	Computers	Squirrel	Chameleon	Mean
RF	39.90 ± 6.85	32.31 ± 8.47	57.28 ± 5.69	42.60 ± 7.57	54.57 ± 6.27	21.34 ± 1.03	25.47 ± 2.47	39.07
PROP	76.73 ± 2.02	69.25 ± 2.44	81.50 ± 2.00	73.76 ± 11.58	70.23 ± 7.74	48.94 ± 6.14	69.39 ± 2.15	69.97
PROP-GRACE	80.77 ± 0.92	70.85 ± 1.20	81.17 ± 0.29	80.07 ± 0.48	72.06 ± 0.67	58.47 ± 0.72	67.79 ± 1.20	73.03

N.2 HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we undertake a hyperparameter sensitivity analysis to compare PROPGCL with its GCL backbone counterpart. The investigation entails manipulating a spectrum of hyperparameters to assess their impact on performance metrics. Specifically, we focus on two pivotal hyperparameters within the model architecture: the hidden dimension and the number of propagation steps. Figure 4 illustrates that the performance of DGI is notably sensitive to perturbations in hyperparameters. For instance, on the Cora dataset, a reduction in the hidden dimension from 256 to 128 results in a substantial accuracy decrement of approximately 40%. Conversely, as shown in Figure 5, the robustness of PROP-DGI is evident across various hyperparameter configurations, with a sharp decline only observed when using small neural networks.

Figure 4: Hyperparameter sensitivity analysis of DGI with ChebNetII as the encoder. We evaluate the performances by varying the hidden dimension and propagation step.

O TRIALS IN THE FEW-SHOT LEARNING SETTING

In Section 5, we observe that GCL has the potential to learn good propagation coefficients given well-trained transformation weights. It inspires methods in the *few-shot* scenario, where a model is tasked with achieving effective generalization from a minimal number of labeled examples per class.

In this study, we examine the N -shot case, where N denotes the number of examples per class used for training and is commonly chosen as 3 or 5. For our approach, we train the propagation coefficients via GCL and then focus on optimizing the transformation weights supervisedly on the given support

Table 23: Test accuracy (%) of modified node classification benchmarks, comparing Raw Features (RF), PROP, and PROP-GRACE. We randomly mask a proportion of features to generate perturbed node features. **Bold** indicates the best method, while underlined represents the second-best.

Mask ratio	Method	Cora	CiteSeer	PubMed	Photo	Computers	Squirrel	Chameleon	Mean
20%	RF	54.01 \pm 3.40	60.34 \pm 4.24	70.00 \pm 4.66	65.87 \pm 5.16	68.59 \pm 4.98	28.37 \pm 0.67	41.77 \pm 2.78	55.56
	PROP	76.19 \pm 3.76	71.87 \pm 2.68	83.85 \pm 0.99	89.78 \pm 1.51	83.37 \pm 2.18	47.13 \pm 4.50	64.40 \pm 2.45	<u>73.80</u>
	PROP-GRACE	80.36 \pm 0.84	73.27 \pm 0.66	<u>82.12 \pm 0.16</u>	88.00 \pm 0.42	79.19 \pm 0.50	56.93 \pm 0.48	67.37 \pm 1.40	75.32
40%	RF	49.10 \pm 2.61	44.68 \pm 9.49	58.36 \pm 5.81	50.62 \pm 9.53	53.56 \pm 9.74	25.67 \pm 1.97	34.99 \pm 4.88	45.28
	PROP	61.25 \pm 6.68	<u>54.87 \pm 10.25</u>	76.85 \pm 4.43	76.16 \pm 10.29	64.66 \pm 10.61	38.68 \pm 5.98	53.90 \pm 6.67	60.91
	PROP-GRACE	80.79 \pm 1.07	73.78 \pm 0.86	81.55 \pm 0.18	87.38 \pm 0.50	71.29 \pm 0.29	53.21 \pm 0.53	64.38 \pm 1.09	73.20
60%	RF	46.95 \pm 5.67	36.10 \pm 8.12	55.88 \pm 4.87	44.29 \pm 7.96	53.85 \pm 7.58	23.22 \pm 2.27	30.72 \pm 4.09	41.57
	PROP	54.47 \pm 6.93	<u>42.59 \pm 10.70</u>	63.68 \pm 9.19	60.27 \pm 14.32	60.69 \pm 8.46	28.47 \pm 6.50	41.03 \pm 8.97	<u>50.17</u>
	PROP-GRACE	78.39 \pm 1.13	72.01 \pm 1.11	79.13 \pm 0.20	78.87 \pm 0.50	70.06 \pm 0.87	47.06 \pm 0.85	63.76 \pm 1.18	69.90
80%	RF	48.33 \pm 3.69	30.18 \pm 5.64	52.01 \pm 3.18	41.47 \pm 5.78	57.87 \pm 2.63	21.93 \pm 2.04	28.42 \pm 3.13	40.03
	PROP	49.06 \pm 6.39	<u>33.77 \pm 9.83</u>	57.89 \pm 8.73	57.89 \pm 8.73	60.37 \pm 5.14	26.35 \pm 5.38	34.64 \pm 9.06	<u>44.90</u>
	PROP-GRACE	60.20 \pm 1.40	63.83 \pm 1.13	65.29 \pm 0.44	71.38 \pm 1.04	64.85 \pm 0.98	38.84 \pm 1.13	55.80 \pm 1.44	60.03

Figure 5: Hyperparameter sensitivity analysis of PROP-DGI with the Chebyshev basis. We evaluate the performances by varying the hidden dimension and propagation step.

examples. The method is termed as **Fix-prop SL**. For the baseline, we consider the ChebNetII models trained via supervised learning (SL) and contrastive learning (CL).

As illustrated in Table 24, this approach yields improvements on several benchmarks. For instance, **Fix-prop SL** enhances SL accuracy from 57.51% to 72.60% on Cora in the 5-shot case, and from 39.19% to 65.39% in the 3-shot case. However, the **Fix-prop SL** approach has minimal impact on the Squirrel and Chameleon datasets. The results demonstrate the potential of integrating SL and CL from a decoupling perspective in the few-shot scenario. Notably, we keep hyperparameters consistent across all training methods and benchmarks, leaving ample room for further exploration beyond this initial investigation.

Table 24: , comparing models trained with SL, CL, and Fix-prop SL settings. **Bold** indicates the best, while underlined represents the second-best choice.

Training		Cora	CiteSeer	PubMed	Squirrel	Chameleon
5 Shot	SL	57.51 \pm 2.29	43.11 \pm 3.75	59.62 \pm 2.56	20.15 \pm 0.30	22.09 \pm 1.60
	CL	<u>66.88 \pm 2.29</u>	55.02 \pm 4.64	<u>63.20 \pm 2.64</u>	28.41 \pm 0.87	36.92 \pm 2.52
	Fix-prop SL	72.60 \pm 1.43	53.26 \pm 4.03	67.66 \pm 2.58	<u>20.60 \pm 0.90</u>	<u>23.30 \pm 1.91</u>
3 Shot	SL	39.19 \pm 3.96	37.52 \pm 2.25	55.89 \pm 2.55	20.27 \pm 0.55	21.40 \pm 1.26
	CL	<u>64.46 \pm 4.34</u>	55.85 \pm 5.15	<u>59.88 \pm 3.49</u>	25.89 \pm 1.54	36.12 \pm 1.34
	Fix-prop SL	65.39 \pm 2.15	46.90 \pm 3.40	61.46 \pm 5.49	<u>20.38 \pm 0.69</u>	<u>27.85 \pm 3.02</u>

Figure 6: Training Curve on Cora

Figure 8: Training Curve on Computers

Figure 7: Training Curve on CiteSeer

Figure 9: Training Curve on Photo

P CONTRASTIVE TRAINING LOSS CURVES

As demonstrated in Figure 6 to Figure 9, across multiple benchmarks, GCL with transformation rapidly drives the CL training loss to near zero. In contrast, GCL without transformation maintains a moderate loss level, reflecting its resistance to over-optimizing the CL objective. It verifies the conclusion in Section 5.3 that transformation leads to the overfitting to contrastive loss and may negatively transfer to downstream tasks.

Q EFFICIENCY ANALYSIS OF PROPGCL

By excluding transformation weights, PROPGCL demonstrates greater efficiency than the baseline models in both time and memory usage, as evidenced by Tables 25 to 27. For example, PROP-GRACE reduces training time per epoch by 84.29% compared to GRACE with Chebyshev basis on the CS dataset. In terms of memory consumption, PROP-GRACE reduces encoder memory usage by over 99% across various benchmarks relative to the original baseline. Remarkably, PROP-GGD achieves a 20% reduction in training time compared to GRACE on large-scale OGB benchmarks, underscoring the scalability of PROPGCL for large-scale graph learning tasks.

In most real-world graph scenarios, PROPGCL demonstrates significantly higher time efficiency compared to its backbone, even for large-scale graphs. For edge cases involving extremely dense graphs and high feature dimensionality, we propose a lightweight solution—prepending *a random projection layer* before propagation, whose efficacy is validated in Table 2.

Below, we provide a detailed time complexity analysis. For simplicity, consider a basic propagator \mathbf{AX} , with time complexity $O(|E| \times d)$, where d is the feature dimension and $|E|$ is the edge number. The transformation \mathbf{HW} has complexity $O(|V| \times d_{in} \times d_{out})$, where $d_{in} = d_f$ is the input feature dimension, d_{out} is hidden dimension and $|V|$ is node number. PROPGCL utilizes pure propagation as $O(|E| \times d_f)$, while the backbone combines both, *i.e.*, $O(|V| \times d_f \times d_{out} + |E| \times d_{out})$. The time improvement is $\Delta = O(|V|(d_f(d_{out} - s) + s \times d_{out}))$, where $s = |E|/|V|$ is the sparsity factor. The key insights are (1) for *typical graphs* (low s , moderate d_f), PROPGCL's gains grow with d_f , as $d_{out} > s$ often holds for real-world sparse graphs, validated in Table 28. and (2) for *dense and high-dimensional cases*, while gains may narrow, we can lightweightly fix it by prepending a random projection layer before propagation. Table 2 verifies random projections' efficacy, and their no-training nature preserves efficiency. Therefore, PROPGCL's speedup holds across most practical settings.

To verify the feasibility of the random projector, we construct synthetic graphs using the Erdős–Rényi model, consisting of 1000 nodes with a feature dimension of 10,000 and an edge probability of 0.5, resulting in a dense graph with extremely high-dimensional features. To generate meaningful yet non-trivial node features, we combine topological properties (degree, clustering coefficient) and community structure (from spectral clustering). To prevent overly discriminative features, we further

1512 corrupt them with Gaussian noise (std=1.0). Node labels are assigned based on communities, and the
 1513 data is split into train/validation/test sets following the paper’s settings. We evaluate three variants: (1)
 1514 DGI: vanilla GCL with spectral GNNs as the backbone, (2) PROP-DGI: the method proposed in the
 1515 paper, removing the transformation entirely, (3) PROP-DGI-RAND: extends PROP-DGI by adding
 1516 a frozen random projection layer before propagation. The results are shown in Table 29. Although
 1517 sacrificing a modest performance compared with PROP-DGI, PROP-DGI-RAND still significantly
 1518 improves over DGI on test accuracy (90.90% vs. 58.05%). Moreover, the random projection further
 1519 decreases the training time for PROP-DGI from 0.1918s to 0.0227s, demonstrating its efficiency on
 1520 high-dimensional dense graphs.
 1521

1522 Table 25: Training time per epoch in seconds between PROP-GRACE and GRACE. Experiments
 1523 are all conducted on a single 24GB NVIDIA GeForce RTX 3090, except those denoted with * on
 1524 48GB Nvidia A40 for out-of-memory. **Improvement** refers to the percentage increase in speed of the
 1525 -PROP version compared to the baseline, *i.e.*, $(t_{\text{GRACE}} - t_{\text{PROP-GRACE}})/t_{\text{GRACE}}$.

Basis	Method	Cora	CiteSeer	PubMed	Photo	Computers	CS	Squirrel	Chameleon	Actor
Chebyshev	GRACE	0.1611	0.1939	0.2795	0.2872	0.4639	1.5111*	0.7004	0.2295	0.2872
	PROP-GRACE	0.1409	0.1478	0.2650	0.2400	0.3626	0.2374*	0.2581	0.1450	0.2073
Improvement		12.54%	23.79%	5.18%	16.44%	21.84%	84.29%	63.15%	36.82%	27.83%
Bernstein	GRACE	0.1515	0.2215	0.2513	0.4878	0.9293	6.7666*	1.8997	0.4079	0.2619
	PROP-GRACE	0.1226	0.1178	0.2334	0.3832	0.6968	0.6038*	0.5175	0.1653	0.1789
Improvement		19.03%	46.79%	7.10%	21.45%	25.02%	91.08%	72.76%	59.47%	31.69%
Monomial	GRACE	0.1114	0.1023	0.1217	0.1606	0.2340	1.2487*	0.3714	0.1524	0.1202
	PROP-GRACE	0.1024	0.1224	0.1221	0.1428	0.1928	0.1927*	0.1650	0.1151	0.1109
Improvement		8.06%	16.42%	0.31%	11.12%	17.61%	84.57%	55.56%	24.46%	7.74%

1536
 1537 Table 26: Memory consumption of encoder in KBs between PROP-GRACE and GRACE. **Improvement**
 1538 refers to the percentage decrease in the memory consumption of the -PROP version compared
 1539 to the baseline. *i.e.*, $(m_{\text{GRACE}} - m_{\text{PROP-GRACE}})/m_{\text{GRACE}}$.
 1540

Method	Cora	CiteSeer	PubMed	Photo	Computers	CS	Squirrel	Chameleon	Actor
GRACE	3894.04	8434.04	2028.04	2518.04	2562.04	2562.04	5206.04	5678.04	2892.04
PROP-GRACE	11.24	28.97	3.95	5.86	6.04	6.04	16.36	18.21	7.32
Improvement	99.71%	99.66%	99.81%	99.77%	99.76%	99.76%	99.69%	99.68%	99.75%

1546
 1547 Table 27: Training time per epoch in seconds and memory consumption of encoder in KBs between
 1548 GGD and PROP-GGD on OGB benchmarks. Experiments are conducted on a single 80GB NVIDIA
 1549 A100. **Improvement** refers to the percentage increase in speed or decrease in memory consumption.
 1550

Metric	Method	ogbn-arxiv	ogbn-products
		GGD	1.0270 (2324.00)
Time (Memory)	PROP-GGD	0.7892 (3.5)	212.0509 (3.52)
	Improvement	23.15% (99.85%)	25.44% (99.97%)

1557 We also include direct comparisons with an efficient GCL method SimGCL (Yu et al., 2022), which
 1558 is explicitly designed to reduce augmentation overhead. SimGCL reduces the cost of heavy graph
 1559 augmentations by replacing them with uniform embedding noise. In contrast, PROPGCL removes
 1560 transformation weights entirely, thus eliminating both forward and backward propagation associated
 1561 with parameterized transformations, which is the dominant computation in most GCL architectures.
 1562 Table 30 summarizes the time savings in epoch-level training: SimGCL reduces training time by
 1563 17.51% on average, while PROP-GRACE achieves a 61.05% reduction, largely due to the elimination
 1564 of transformation modules. This demonstrates that the core source of efficiency is different: SimGCL
 1565 optimizes augmentation, while PROPGCL fundamentally simplifies the representation operator itself,
 leading to a deeper reduction in computation.

1566 Table 28: The relationships of sparse factor s and hidden dimension d_{out} in popular benchmarks
1567

Dataset	s	d_{out} in best practice	Relationships
Cora	1.95	64-512	$d_{out} > s$
CiteSeer	1.36	64-512	$d_{out} > s$
PubMed	2.25	64-512	$d_{out} > s$
Photo	15.57	64-512	$d_{out} > s$
Computers	17.88	64-512	$d_{out} > s$
Chameleon	15.85	64-512	$d_{out} > s$
Squirrel	41.74	64-512	$d_{out} > s$

1577 Table 29: Test accuracy (%) and training time (seconds) on the high-dimensional dense graph.
1578

Method	Accuracy	Training Time
DGI	58.05 ± 1.40	0.6293
PROP-DGI	100.00 ± 0.00	0.1918
PROP-DGI-RAND	90.90 ± 1.30	0.0227

1585 R COMPARISON WITH SUPERVISED CONTRASTIVE LEARNING

1588 We hypothesize that the failure *partly* of learning effective transformation weights stems from the
1589 unsupervised nature of the contrastive task, which leads to inefficient optimization without sufficient
1590 guidance. As an initial exploration, we devise a supervised contrastive loss by selecting positive and
1591 negative pairs according to ground-truth labels, following the principles of *supervised contrastive*
1592 learning (Khosla et al., 2020; Graf et al., 2021). We apply the modified loss to the GCA framework
1593 (termed SUP-GCL) and compare the learned transformation weights with those of GCL and SL. As
1594 shown in Figure ??, incorporating supervised signals slightly mitigates the smooth characteristic
1595 of GCL weights, but can't fully solve the limitations. We believe the intrinsic reasons behind the
1596 ineffective learning of transformation weights remain to be further explored. Fortunately, we find
1597 that GCL promisingly captures propagation coefficients and, building on this insight, we propose
1598 removing the transformation while retaining only propagation.

1599 S TRIALS ON LEARNING EFFECTIVE TRANSFORMATION WEIGHTS IN GCL
1600

1601 According to the analysis in Section 5.1, GCL learns uninformative weights that are excessively
1602 smooth. Here we try three ways to solve this problem: 1) enforcing the sparsity of weights with l_1
1603 normalization; 2) using whitening methods (Bell & Sejnowski, 1997; Kessy et al., 2018); 3) using
1604 normalization methods (Huang et al., 2018; Hua et al., 2021; Guo et al., 2023a).

1605 **l_1 regularization.** As a typical technique, the l_1 regularization encourages sparsity by driving some
1606 weights to zero and retaining the most relevant features. In practice, we add a penalty proportional
1607 to the sum of the absolute values of the encoder parameters to the contrastive loss, *i.e.*, $\mathcal{L}_{\text{total}} =$
1608 $\mathcal{L}_{\text{CL}} + \lambda \sum_i |\mathbf{w}_i|$, where \mathcal{L}_{CL} is the contrastive loss, λ is the regularization strength, and the \mathbf{w}_i
1609 is the parameters of the encoder. We conduct experiments on ChebNetII with the l_1 regularized
1610 GRACE training objective, varying the regularization strength λ in $[1 \times 10^{-4}, 1 \times 10^{-5}, 1 \times 10^{-6}]$.
1611 As shown in Table 31, the l_1 regularization improves performance over the original GRACE on
1612 the Squirrel, Chameleon, Texas, Wisconsin, and Cornell datasets, though it still lags behind PROP,
1613 except on Wisconsin. However, for Cora, Citeseer, and PubMed, l_1 regularization negatively impacts
1614 performance.

1615 **Whitening methods.** Whitening methods are used to decorrelate and normalize data. By making
1616 dimensions mutually independent, whitening methods implicitly solve the representation collapse
1617 problem. Here we consider the typical Zero-phase Component Analysis (ZCA) whitening (Kessy
1618 et al., 2018), which transforms the input data such that it has zero mean and identity covariance
1619 matrix, while also preserving data structure as much as possible. It is computed by multiplying
the data by the inverse square root of its covariance matrix, *i.e.*, $\hat{\mathbf{x}} = \mathbf{V}\Lambda^{-\frac{1}{2}}\mathbf{V}^\top \mathbf{x}$, where \mathbf{V} is the

1620 Table 30: Time efficiency comparison, with the percentage denoting the decrease of the epoch time
1621 consumption (seconds).

Method	Photo	Computers	CS	Squirrel	Chameleon	Average
GRACE	0.2872	0.4639	1.5111	0.7004	0.2295	0.6384
SimGCL	0.2637 (↓8.18%)	0.3947 (↓14.91%)	1.0329 (↓31.64%)	0.6374 (↓8.99%)	0.1893 (↓17.51%)	0.5036 (↓21.11%)
PROP-GRECE	0.2400 (↓16.44%)	0.3626 (↓21.84%)	0.2374 (↓84.29%)	0.2581 (↓63.15%)	0.1450 (↓36.82%)	0.2486 (↓61.05%)

1627 Table 31: Test accuracy (%) of node classification benchmarks. We train ChebNetII using the l_1
1628 regularized GRACE objective. λ denotes the regularization strength. **Bold** indicates the best, while
1629 underlined represents the second-best choice.

	Cora	CiteSeer	PubMed	Squirrel	Chameleon	Texas	Wisconsin	Cornell
PROP	85.48 ± 0.76	78.87 ± 0.63	82.89 ± 0.48	58.48 ± 1.03	68.82 ± 1.42	86.23 ± 3.11	<u>89.00 ± 3.25</u>	86.23 ± 3.11
$\lambda=0$ (GRACE)	<u>83.42 ± 0.92</u>	<u>74.79 ± 0.57</u>	84.92 ± 0.26	37.90 ± 0.79	55.67 ± 0.96	77.87 ± 2.79	86.38 ± 3.63	75.74 ± 3.61
$\lambda=1e-4$	53.71 ± 1.10	26.97 ± 0.50	81.20 ± 0.21	33.07 ± 0.89	48.60 ± 1.42	<u>80.98 ± 2.30</u>	70.00 ± 1.88	<u>82.79 ± 2.46</u>
$\lambda=1e-5$	78.87 ± 1.17	73.29 ± 0.63	<u>84.17 ± 0.23</u>	37.46 ± 0.89	56.37 ± 1.01	56.56 ± 1.97	91.88 ± 2.25	81.80 ± 2.30
$\lambda=1e-6$	77.75 ± 0.80	73.90 ± 0.74	84.16 ± 0.21	<u>38.27 ± 1.02</u>	<u>56.91 ± 1.09</u>	52.79 ± 4.76	86.88 ± 2.88	74.26 ± 7.38

1638 matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues of the covariance matrix of \mathbf{x} . We
1639 conduct experiments under the GRACE framework with a ZCA whitening layer added to the encoder
1640 ChebNetII. As shown in Table 32, the whitening improves performance over the original GRACE on
1641 the PubMed and Chameleon datasets but drastically deteriorates most of the other datasets.

1643 Table 32: Test accuracy (%) of node classification benchmarks. We train ChebNetII using GRACE
1644 with the ZCA whitening. **Bold** indicates the best, while underlined represents the second-best choice.

	Cora	CiteSeer	PubMed	Squirrel	Chameleon	Texas	Wisconsin	Cornell
PROP	85.48 ± 0.76	78.87 ± 0.63	82.89 ± 0.48	58.48 ± 1.03	68.82 ± 1.42	86.23 ± 3.11	<u>89.00 ± 3.25</u>	86.23 ± 3.11
GRACE	<u>83.42 ± 0.92</u>	<u>74.79 ± 0.57</u>	<u>84.92 ± 0.26</u>	<u>37.90 ± 0.79</u>	55.67 ± 0.96	<u>77.87 ± 2.79</u>	<u>86.38 ± 3.63</u>	<u>75.74 ± 3.61</u>
GRACE+ZCA	79.29 ± 1.71	47.29 ± 0.70	85.76 ± 0.29	36.72 ± 0.91	<u>58.60 ± 1.07</u>	43.77 ± 8.36	27.38 ± 3.63	38.52 ± 6.23

1650 **Normalization methods.** For normalization methods, we consider the widely used Batch
1651 Normalization (BN) (Ioffe, 2015), and the recently proposed Decorrelate ContraNorm (DCN) (Guo
1652 et al., 2023a). Batch normalization scales and shifts the mini-batch of data to have a mean of zero
1653 and a standard deviation of one, *i.e.*, $\hat{\mathbf{x}} = (\mathbf{x} - \mu_B)/\sqrt{\sigma_B^2 + \epsilon}$, where μ_B and σ_B^2 are the mean
1654 and variance of the mini-batch B , and ϵ is a small constant for numerical stability. DCN scatters
1655 representations in the embedding space and leads to a more uniform distribution. The formulation of
1656 DCN is $\hat{\mathbf{x}} = \mathbf{x} - s \times \mathbf{x} \times \text{softmax}(\mathbf{x}^\top \mathbf{x})$, where s is the scale factor. We conduct experiments under
1657 the GRACE framework with a BN or DCN layer added to the encoder ChebNetII. As shown in Table
1658 33, BN and DCN both fail to bring substantial improvement over the original GRACE.

1659 In summary, these techniques offer limited effectiveness for GCL with polynomial GNNs. We think
1660 the possible reason is that the learning of transformation weights needs a high-quality supervision signal.
1661 Although these methods help prevent representation collapse, they do not carry extra information.
1662 Therefore, GCL still fails to learn good transformation weights.

1664 Table 33: Test accuracy (%) of node classification benchmarks. We train ChebNetII using GRACE
1665 with BN or DCN normalization. s denotes the scale factor in DCN. **Bold** indicates the best, while
1666 underlined represents the second-best choice.

	Cora	CiteSeer	PubMed	Squirrel	Chameleon	Texas	Wisconsin	Cornell
PROP	85.48 ± 0.76	78.87 ± 0.63	82.89 ± 0.48	58.48 ± 1.03	68.82 ± 1.42	86.23 ± 3.11	<u>89.00 ± 3.25</u>	86.23 ± 3.11
GRACE	<u>83.42 ± 0.92</u>	<u>74.79 ± 0.57</u>	<u>84.92 ± 0.26</u>	37.90 ± 0.79	55.67 ± 0.96	<u>77.87 ± 2.79</u>	<u>86.38 ± 3.63</u>	<u>75.74 ± 3.61</u>
GRACE + BN	82.25 ± 1.00	72.78 ± 1.00	85.10 ± 0.24	<u>39.56 ± 0.47</u>	54.77 ± 0.74	76.07 ± 2.95	72.63 ± 4.75	75.90 ± 2.79
GRACE + DCN ($s=0.5$)	79.79 ± 0.99	73.86 ± 0.86	84.00 ± 0.37	38.17 ± 0.95	56.19 ± 1.03	71.15 ± 2.13	83.25 ± 2.50	71.64 ± 4.59
GRACE + DCN ($s=1.0$)	75.19 ± 1.08	74.91 ± 0.63	83.06 ± 0.22	38.28 ± 1.12	57.35 ± 0.98	74.26 ± 1.64	90.50 ± 1.50	<u>76.72 ± 3.11</u>
GRACE + DCN ($s=5.0$)	74.40 ± 1.15	74.46 ± 0.63	79.41 ± 0.35	38.01 ± 0.79	<u>58.97 ± 1.33</u>	72.95 ± 3.44	83.25 ± 2.75	73.44 ± 3.44

1674 T CHARACTERIZATION OF LEARNED TRANSFORMATION WEIGHTS
1675

1676 In Section 5.1, we demonstrated the transformation weights learned by DGI and SL on the Cora
1677 dataset. Here, we extend these findings by presenting comprehensive results across various bench-
1678 marks and GCL methods including GRACE, GCA, BGRL. As depicted from Figure 10 to Figure
1679 14, the weights learned by SL display diverse, data-dependent distributions, while those learned by
1680 CL consistently follow a Gaussian-like distribution that centers at zero. Although we can't exhaust
1681 all GCL methods, these representative methods provide further evidence that GCL often struggles
1682 to learn effective transformation weights. In Figure 15, we provide results of SUP-CL on more
1683 benchmarks, verifying that the participation of supervision signals slightly mitigates the ineffective
1684 transformation learning problem.

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

Figure 10: Distribution of the transformation weights learned by GRACE and SL.

1719 1720 1721 1722 1723 1724 1725 1726 1727

Figure 11: Distribution of the transformation weights learned by DGI and SL.

1728

1729

1730

1731

1732

1733

1734

(a) Cora

(b) CiteSeer

(c) PubMed

(d) Photo

(e) Computers

(f) Chameleon

(g) Squirrel

(h) Cornell

1741

1742

1743

1744

1745

1746

1747

1748

Figure 12: Distribution of the transformation weights learned by GCA and SL.

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

(a) Cora

(b) CiteSeer

(c) PubMed

(d) Photo

(e) Computers

(f) Chameleon

(g) Squirrel

(h) Cornell

1776

1777

1778

1779

1780

1781

Figure 13: Distribution of the transformation weights learned by BGRL and SL.

Figure 14: Heatmap of the transformation weights learned by GRACE and SL.

Figure 15: Distribution of the transformation weights learned by GCA, SUP-GCA, and SL.

1836 U CHARACTERIZATION OF LEARNED PROPAGATION COEFFICIENTS

1838 In section 5.2, we find after fixing the transformation weights with supervised ones, the model trained
 1839 via GCL performs as well as in a supervised manner. To verify that given well-trained transformation
 1840 weights, GCL can learn effective propagation coefficients. We compare the propagation coefficients
 1841 learned by SL, GCL, and the fix-transformation GCL. As shown in Figure 16, compared with CL, the
 1842 propagation coefficients learned by fix-transformation GCL are closer to those in SL, demonstrating
 1843 that GCL can learn effective propagation coefficients fitting the given transformation weights.

1861 Figure 16: Propagation coefficients of supervised learning (SL), contrastive learning (CL), and
 1862 fix-transformation contrastive learning (fix-trans CL) introduced in Section 5.2. We show the first
 1863 three propagation coefficients for the space limit.

1865 V EXPERIMENTAL DETAILS OF PROP AND PROPGCL

1868 V.1 BENCHMARKS

1870 **Node classification benchmarks.** 1) *Citation Networks* (Sen et al., 2008; Namata et al., 2012). Cora,
 1871 CiteSeer, and PubMed are three popular citation graph datasets. In these graphs, nodes represent
 1872 papers and edges correspond to the citation relationship between two papers. Nodes are classified
 1873 according to academic topics. 2) *Amazon Co-purchase Networks* (Shchur et al., 2018). Photo and
 1874 Computers are collected by crawling Amazon websites. Goods are represented as nodes and the
 1875 co-purchase relationships are denoted as edges. Node features are the bag-of-words representation
 1876 of product reviews. Each node is labeled with the category of goods. 3) *Wikipedia Networks*
 1877 (Rozemberczki et al., 2021). Squirrel and Chameleon are collected from the English Wikipedia,
 1878 representing page-page networks on specific topics. Nodes represent articles and edges are mutual
 1879 links between them. 4) *WebKB Networks* (Pei et al., 2020). In Texas, Wisconsin, and Cornell datasets,
 1880 nodes represent web pages and edges represent hyperlinks between them. Node features are the bag-
 1881 of-words representation of web pages. 5) *Actor Networks* Pei et al. (2020). Each node corresponds to
 1882 an actor, and the edge between two nodes denotes co-occurrence on the same Wikipedia page. Node
 1883 features correspond to some keywords on the Wikipedia pages. Statistics of datasets are shown in
 Table 34.

1884 **Graph Classification benchmarks.** 1) *Molecules*. MUTAG (Debnath et al., 1991) is a dataset of
 1885 nitroaromatic compounds and the goal is to predict their mutagenicity on *Salmonella Typhimurium*.
 1886 NCI1 (Wale et al., 2008) is a dataset of chemical molecules that are annotated based on their activity
 1887 against non-small cell lung cancer and ovarian cancer cell lines. 2) *Bioinformatics*. PROTEINS
 1888 (Borgwardt et al., 2005) is a dataset of proteins that are classified as enzymes or non-enzymes.
 1889 Nodes represent the amino acids and two nodes are connected by an edge if they are less than 6
 Angstroms apart. DD (Dobson & Doig, 2003) consists of protein structures with nodes corresponding

1890 to amino acids and edges indicating that two amino acids are within a certain number of angstroms. 3)
 1891 *Social Networks*. IMDB-BINARY and IMDB-MULTI (Yanardag & Vishwanathan, 2015) are movie
 1892 collaboration datasets consisting of a network of 1,000 actors/actresses who played roles in movies in
 1893 IMDB. In each graph, nodes represent actors/actresses; corresponding nodes are connected if they
 1894 appear in the same movie. COLLAB (Yanardag & Vishwanathan, 2015) is derived from three public
 1895 collaboration datasets representing scientific collaborations between authors. For all benchmarks, we
 1896 use collections from TUDataset (Morris et al., 2020). Statistics of datasets are shown in Table 35.

1897
 1898 Table 34: Statistics of node classification benchmarks. $\mathcal{H}(G)$ denotes the edge homophily ratio
 1899 introduced in Zhu et al. (2020a).

Homo / Hetero	Category	Dataset	# Nodes	# Edges	# Features	# Classes	$\mathcal{H}(G)$
Homophily	Citation	Cora	2,708	5,278	1,433	7	0.81
		CiteSeer	3,327	4,552	3,703	6	0.74
	Co-purchase	PubMed	19,717	44,338	500	3	0.80
		Photo	7,650	119,081	745	8	0.83
	Wikipedia	Computers	13,752	245,861	767	10	0.78
		Chameleon	2,277	36,101	2,325	6	0.23
Heterophily	WebKB	Squirrel	5,201	217,073	2,089	4	0.22
		Texas	183	279	1703	5	0.11
	Cornell	Wisconsin	251	466	1703	5	0.21
		Cornell	183	277	1703	5	0.30
	Film-actor	Actor	7,600	30,019	932	5	0.22

1913
 1914 Table 35: Statistics of graph classification benchmarks. We report average numbers of nodes, edges,
 1915 and features across graphs in graph classification datasets.

Category	Dataset	#Graphs	# Nodes	# Edges	# Features	# Classes
Moleculars	MUTAG	188	17.9	39.6	7	2
	NCI1	4110	29.87	32.30	37	2
Proteins	PROTEINS	1113	39.1	145.6	0	2
	DD	1178	284.32	715.66	89	2
Social Networks	IMDB-BINARY	1000	19.8	193.1	0	2
	IMDB-MULTI	1500	13.0	131.9	0	3
	COLLAB	5000	74.49	2457.78	0	3

1926 V.2 BASELINES

1927 We categorize baselines for the **node classification task** into 1) traditional graph embedding al-
 1928 gorithms DeepWalk (Perozzi et al., 2014) and Node2Vec (Grover & Leskovec, 2016); 2) graph
 1929 autoencoders GAE (Kipf & Welling, 2016), VGAE (Kipf & Welling, 2016); 3) graph contrastive
 1930 methods GRACE (Zhu et al., 2020b), DGI (Velickovic et al., 2019), GCA (Zhu et al., 2021c), MV-
 1931 GRL (Hassani & Khasahmadi, 2020), ProGCL (Xia et al., 2022); 4) graph non-contrastive methods
 1932 CCA-SSG (Zhang et al., 2021) and BGRL (Thakoor et al., 2022), 5) heterophily baselines compared
 1933 in Section 6.3, PolyGCL (Chen et al., 2024), HGRL (Chen et al., 2022), GraphACL (Xiao et al.,
 1934 2024), SP-GCL (Wang et al., 2023), DSSL (Xiao et al., 2022). The design details are as follows.

1935 1) Traditional graph embeddings.

- 1936 • **DeepWalk** (Perozzi et al., 2014). DeepWalk leverages truncated random walks to capture
 1937 local network structures. The algorithm treats the random walks as sequences of nodes, akin
 1938 to sentences in language models. It learns latent representations by applying skip-gram to
 1939 maximize the co-occurrence probabilities of nodes appearing in these random walks.
- 1940 • **Node2Vec** (Grover & Leskovec, 2016). Node2Vec is built on DeepWalk by introducing a
 1941 flexible biased random walk strategy to explore network neighborhoods. The key innovation
 1942 is balancing breadth-first sampling (BFS) and depth-first sampling (DFS). This allows

1944 Node2Vec to capture both homophily and structural equivalence, making the learned node
 1945 embeddings more expressive.
 1946

1947 *2) Graph autoencoders.*

1948

- **GAE** (Kipf & Welling, 2016). GAE involves an encoder-decoder architecture, where the
 1949 encoder is a GCN that transforms node features into latent embeddings by aggregating
 1950 information from neighboring nodes. The embeddings are then used by the decoder, which
 1951 typically applies a simple inner product operation to reconstruct the graph structure, such as
 1952 predicting edges between nodes.
- **VGAE** (Kipf & Welling, 2016). VGAE extends GAE by introducing a probabilistic frame-
 1953 work using a variational autoencoder (VAE) setup. It models latent variables with Gaussian
 1954 distributions, enabling the generation of node embeddings that capture uncertainty. This
 1955 design improves the model’s ability to capture complex structures in graphs, especially in
 1956 tasks like link prediction.

1957 *3) Graph contrastive methods.*

1958 The mode of GCL has three mainstreams: local-to-local, global-to-global, and global-to-local (Zhu
 1959 et al., 2021b). A classic example of local-to-local is GRACE (Zhu et al., 2020b), which generates
 1960 two graph views by augmentations and the same nodes in augmented views are positive while all
 1961 the other node pairs are negative. Global-to-global mode is often used with multiple graphs in
 1962 the graph classification task, with GraphCL (You et al., 2020) as an early but influential trial. For
 1963 the global-to-local perspective, positive pairs are taken as the global representation and nodes of
 1964 augmented views, and negative pairs are the global representation and nodes of corrupted views. DGI
 1965 (Velickovic et al., 2019) is a typical example.

1966

- **GRACE** (Zhu et al., 2020b). GRACE generates two graph views by corruption and learns
 1967 node representations by maximizing the agreement of node representations in these two
 1968 views. To provide diverse node contexts for the contrastive objective, GRACE proposes a
 1969 hybrid scheme for generating graph views on both structure and attribute levels.
- **GCA** (Zhu et al., 2021c). GCA proposes adaptive augmentation that incorporates various
 1970 priors for topological and semantic aspects of the graph. On the topology level, GCA designs
 1971 augmentation schemes based on node centrality measures, while on the node attribute level,
 1972 GCA corrupts node features by adding more noise to unimportant node features.
- **DGI** (Velickovic et al., 2019). DGI relies on maximizing mutual information between
 1973 patch representations and corresponding high-level summaries of graphs—both derived
 1974 using established graph convolutional network architectures. The learned patch representa-
 1975 tions summarize subgraphs centered around nodes of interest, and can thus be reused for
 1976 downstream node-wise learning tasks.
- **MVGRL** (Hassani & Khasahmadi, 2020). MVGRL introduces a self-supervised approach
 1977 for learning node and graph-level representations by contrasting structural views of graphs.
 1978 MVGRL shows that contrasting multi-scale encodings does not improve performance, and
 1979 the best performance is achieved by contrasting encodings from first-order neighbors and
 1980 graph diffusion.
- **ProGCL** (Xia et al., 2022). ProGCL observes limited benefits when adopting existing
 1981 hard negative mining techniques of other domains in graph contrastive learning. ProGCL
 1982 proposes an effective method to estimate the probability of a negative being true and devises
 1983 two schemes to boost the performance of GCL.

1984 *4) Non-contrastive methods.*

1985

- **CCA-SSG** (Zhang et al., 2021). CCA-SSG optimizes a novel feature-level objective
 1986 that aligns features across different graph augmentations. It uses decorrelation to prevent
 1987 degenerate solutions, allowing the model to learn invariant node representations. The model
 1988 avoids a mutual information estimator or negative samples, which simplifies training and
 1989 reduces computational complexity.
- **BGRL** (Thakoor et al., 2022). BGRL avoids the use of negative samples by predicting
 1990 different augmentations of the input graph. BGRL relies on a bootstrapping mechanism,

1998 where one branch predicts the output of another branch that is not updated by gradient de-
 1999 scent. This method eliminates the complexity of contrastive learning and negative sampling,
 2000 making it more scalable.
 2001

2002 5) *Heterophily baselines.*

2003

- 2004 • **PolyGCL** (Chen et al., 2024). PolyGCL integrates spectral polynomial filters into graph
 2005 contrastive learning, enabling it to handle both homophilic and heterophilic graphs. The
 2006 method generates different spectral views using polynomials and incorporates high-pass
 2007 information into the contrastive objective.
- 2008 • **HGRL** (Chen et al., 2022). HGRL introduces self-supervised learning for heterophilic
 2009 graphs by capturing distant neighbors and preserving original node features. It achieves
 2010 this through carefully designed pretext tasks optimized via high-order mutual information,
 2011 avoiding reliance on labels.
- 2012 • **GraphACL** (Xiao et al., 2024). GraphACL focuses on an asymmetric view of neighboring
 2013 nodes. The algorithm captures both one-hop local neighborhood information and two-hop
 2014 monophily similarity, crucial for modeling heterophilic structures.
- 2015 • **SP-GCL** (Wang et al., 2023). SP-GCL introduces a single-pass graph contrastive learning
 2016 method without augmentations. It theoretically guarantees performance across both ho-
 2017 mophilic and heterophilic graphs by studying the concentration property of features obtained
 2018 through neighborhood propagation.
- 2019 • **DSSL** (Xiao et al., 2022). DSSL decouples neighborhood semantics in self-supervised
 2020 learning for node representation. It introduces a latent variable model that decouples node
 2021 and link generation, making it flexible to different graph structures. The method utilizes
 2022 variational inference for scalable optimization, improving downstream performance without
 2023 relying on homophily assumptions.

2024 We categorize the baselines in the **graph classification task** into 1) graph kernel methods including
 2025 GL (Shervashidze et al., 2009), WL (Shervashidze et al., 2011), and DGK (Yanardag & Vishwanathan,
 2026 2015), 2) traditional graph embedding methods including node2vec (Grover & Leskovec, 2016),
 2027 sub2vec (Adhikari et al., 2018), and graph2vec (Narayanan et al., 2017), 3) contrastive learning
 2028 methods including InfoGraph (Sun et al., 2020), GraphCL (You et al., 2020), MVGRL (Hassani &
 2029 Khasahmadi, 2020), JOAOv2 (You et al., 2021), ADGCL (Suresh et al., 2021) as introduced in recent
 2030 works. The design details are as follows.

2031 1) *Graph kernel methods.*

2032

- 2033 • **Graphlet Kernel** (GL) (Shervashidze et al., 2009). GL works by counting the number
 2034 of small subgraphs (known as graphlets) of a fixed size that appear in each graph. The
 2035 comparison of these counts across graphs allows the kernel to capture the local topological
 2036 structures of the graphs, making it useful for tasks such as graph classification.
- 2037 • **Weisfeiler-Lehman Sub-tree Kernel** (WL) (Shervashidze et al., 2011). WL extends the
 2038 concept of graph kernels by applying the Weisfeiler-Lehman test of isomorphism on graphs.
 2039 It involves iteratively relabeling the nodes of the graphs based on the labels of their neighbors
 2040 and then using these relabelings to define a kernel, typically counting matching sub-trees.
- 2041 • **Deep Graph Kernel** (DGK) (Yanardag & Vishwanathan, 2015). DGK combines deep
 2042 learning techniques with graph kernels. It first learns a low-dimensional representation
 2043 of the graphs through unsupervised learning (often using a form of graph embedding or
 2044 autoencoders), then applies traditional kernel methods to these representations.

2045 2) *Traditional graph embeddings.*

2046

- 2047 • **Node2Vec** (Grover & Leskovec, 2016). Node2Vec is built on DeepWalk by introducing a
 2048 flexible biased random walk strategy to explore network neighborhoods. The key innovation
 2049 is balancing BFS and DFS. This allows Node2Vec to capture both homophily and structural
 2050 equivalence, making the learned node embeddings more expressive.
- 2051 • **Sub2Vec** (Adhikari et al., 2018). Inspired by the word2vec model, sub2vec learns vector
 2052 representations for subgraphs in a graph. It treats each subgraph as a "word" and the

2052 entire graph as a "document" to learn embeddings that capture the structural and contextual
 2053 properties of subgraphs.

2054

- 2055 • **Graph2Vec** (Narayanan et al., 2017). Similar to sub2vec, graph2vec is designed to learn
 2056 embeddings for entire graphs. By treating each graph as a "document" and graph sub-
 2057 structures as "words," graph2vec employs a document embedding approach to learn a
 2058 fixed-size vector representation for each graph.

2059 **3) Graph contrastive methods.**

2060

- 2061 • **GraphCL** (You et al., 2020). GraphCL designs four types of graph augmentations to
 2062 incorporate various priors and learns graph-level representations by maximizing the global
 2063 representations of two views for a graph.
- 2064 • **InfoGraph** (Sun et al., 2020). InfoGraph maximizes the mutual information between the
 2065 graph-level representation and the representations of substructures of different scales (e.g.,
 2066 nodes, edges, triangles). By doing so, the graph-level representations encode aspects of the
 2067 data that are shared across different scales of substructures.
- 2068 • **ADGCL** (Suresh et al., 2021). ADGCL proposes a novel principle, adversarial GCL, which
 2069 enables GNNs to avoid capturing redundant information during training by optimizing
 2070 adversarial graph augmentation strategies used in GCL.
- 2071 • **JOAO** (You et al., 2021). JOAO proposes a unified bi-level optimization framework to
 2072 automatically, adaptively, and dynamically select data augmentations when performing
 2073 GraphCL on specific graph data.

2074 **V.3 SETTINGS**

2075 For the node classification task, following Zhu et al. (2020b); Velickovic et al. (2019); Hassani &
 2076 Khasahmadi (2020), we use linear evaluation protocol, where the model is trained in an unsupervised
 2077 manner and feeds the learned representation into a linear logistic regression classifier. In the evaluation
 2078 procedure, we randomly split each dataset with a training ratio of 0.8 and a test ratio of 0.1, and
 2079 hyperparameters are fixed the same way for all the experiments. Each experiment is repeated ten
 2080 times with mean and standard derivation of accuracy score.

2081 For the graph classification task, we use Adam SGD optimizer with the learning rate selected
 2082 in $\{10^{-3}, 10^{-4}, 10^{-5}\}$ and the number of epochs in $\{20, 100\}$. For PROP, we only search the
 2083 propagation step K in the range of $[0, 1, 2, 3, 5, 10]$. Following Sun et al. (2020); You et al. (2020),
 2084 we feed the generated graph embeddings into a linear Support Vector Machine (SVM) classifier,
 2085 and the parameters of the downstream classifier are independently tuned by cross-validation. The
 2086 C parameter is tuned in $\{10^{-3}, 10^{-2}, \dots, 10^2, 10^3\}$. We report the mean 10-fold cross-validation
 2087 accuracy with standard deviation. All experiments are conducted on a single 24GB NVIDIA GeForce
 2088 RTX 3090.

2089 **V.4 HYPERPARAMETER**

2090 For all methods, we train the linear classifier for 2000 epochs with a learning rate of 0.01 and
 2091 no weight decay. For hyperparameters of the model architecture and the unsupervised training
 2092 procedure, we maintain consistency in the hyperparameter search space across methods as much
 2093 as possible. Specifically, for GRACE, we search the temperature τ in $[0.1, 0.5, 1.0]$, the projector
 2094 hidden dimension in $[128, 256, 512]$, the learning rate in $[0.01, 0.001]$, fix the patience as 50, and all
 2095 augmentation rates as 0.2. For DGI, we search the learning rate in $[0.01, 0.001]$, the early-stopping
 2096 patience in $[50, 100]$, and the hidden dimension in $[128, 256, 512]$. For CCA-SSG, we search the
 2097 training epochs in $[20, 50, 100]$, λ in $[1e-3, 5e-4]$, the hidden dimension in $[128, 256, 512]$, and fix
 2098 all augmentation ratios as 0.2. For GCA, we search the temperature τ in $[0.1, 0.5, 1.0]$, the projector
 2099 hidden dimension in $[128, 256, 512]$, the drop scheme in $[pr, degree, evc]$, and fix the early-stopping
 2100 patience as 50, the learning rate as 0.01, and all augmentation ratios as 0.2. For BGRL, we search the
 2101 predictor hidden dimension in $[128, 256, 512]$, the learning rate in $[1e-4, 1e-5]$, the weight decay in $[0,$
 2102 $1e-5]$, fix the learning rate warmup epochs as 1000, the momentum moving as 0.99. For DeepWalk,
 2103 we search the vector dimension in $[128, 256, 512]$, the context window size in $[5, 10]$, the walk
 2104 number in $[10, 20]$, and the walk length in $[40, 80]$. For Node2Vec, we search the vector dimension
 2105 in $[128, 256, 512]$, the walk number in $[10, 20]$, the probability p in $[0.5, 1.0]$, q in $[0.5, 1.0]$, and

2106 fix the context window size as 10, and the walk length as 80. For MVGRL, we search the learning
2107 rate in [0.01, 0.001], the early stopping patience in [50, 100], and the hidden dimension in [128, 256,
2108 512]. For GAE and VGAE, we search the learning rate in [0.01, 0.001], the early stopping patience
2109 in [50, 100], and the hidden dimension in [128, 256, 512]. For the heterophily baselines in 6.3, we
2110 use the optimal hyperparameter combinations provided in the original papers.

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159