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ABSTRACT

Graph contrastive learning (GCL) has recently gained substantial attention, lead-
ing to the development of various methodologies. In this work, we reveal that a
simple training-free propagation operator PROP, achieves competitive results over
dedicatedly designed GCL methods across diverse node classification benchmarks.
We elucidate PROP’s effectiveness by drawing connections with established graph
learning algorithms. By decoupling the propagation and transformation phases of
graph neural networks, we find that the transformation weights are inadequately
learned in GCL and perform no better than random . When
the contrastive and downstream objects are misaligned, the attendance of trans-
formation causes the overfitting to the contrastive loss and harms downstream
performance. In light of these insights, we remove the transformation entirely and
introduce an efficient GCL method termed PROPGCL. We provide theoretical
guarantees for PROPGCL and demonstrate its effectiveness through a comprehen-
sive evaluation of node classification tasks.

1 INTRODUCTION

Graph contrastive learning (GCL) has emerged as a promising paradigm for learning graph represen-
tations in an unsupervised manner. By leveraging inherent structural information, GCL has achieved
state-of-the-art performance on graph learning tasks (Velickovic et al.| 2019} [Zhang & Chen| 2018}
You et al.,[2020). However, GCL often involves intricate encoders and large-scale hyperparameter
tuning, raising the question of whether such complexity is necessary for effective learning.

In this work, we challenge the conventional wisdom that highly parameterized models are essential
for achieving strong performance in GCL. Instead, we explore a simple yet powerful
alternative: uniform propagation, abbreviated as PROP, which involves no trainable layers. Remark-
ably, PROP demonstrates competitive performance on various node classification benchmarks, often
matching or surpassing more complicated GCL methods. This raises two important questions:

1. How can the training-free PROP perform so well?
2. Why do some existing GCL methods exhibit suboptimal performance?

To understand why PROP can perform comparably to GCL, we position it as a non-parametric smooth-
ing mechanism on a rewired graph through iterative optimization. Additionally, we demonstrate
that PROP inherently performs alignment in contrastive learning by viewing multi-hop neighboring
representations as positive samples, which elucidates the core strength in enhancing feature clustering.
This analysis explains the success of PROP and highlights the potential of simpler models in GCL.

To figure out the reason behind existing GCLs’ deficiency, we adopt a decoupling perspective and
independently analyze the transformation and propagation phases within the GCL encoder. Our
extensive analysis reveals a key limitation that existing GCL methods often struggle
to learn meaningful transformation weights, which perform no better than random counterparts.
Moreover, transformation causes the learned representations to overfit to the contrastive loss. When
the contrastive objective misaligns with downstream tasks, the overfitting will cause downstream
degradation.
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Building on these insights, we propose an efficient method, PROPGCL, which eliminates all
transformation layers and extends the strength of PROP with graph-adaptive filters to learn flexi-
ble propagation coefficients. We provide theoretical guarantees for PROPGCL’s advantage in the
case where contrastive and downstream objectives are misaligned. To validate the effectiveness of
PROPGCL, we conduct extensive experiments across diverse node classification benchmarks, includ-
ing both homophilic and heterophilic datasets. Our results demonstrate that PROPGCL consistently
outperforms existing GCL methods with appreciably fewer computational resources.

The key contributions of this work are outlined as follows:

» We establish PROP, a training-free propagation operator, as a strong baseline in graph self-
supervised learning on node classification tasks. We explain its effectiveness by connecting
PROP with classical graph algorithms.

* From a decoupling perspective, we reveal that existing GCL methods often
struggle to learn effective transformation weights. The parameter-intensive transformation
causes overfitting to the contrastive loss and harms the performance when contrastive and
downstream objectives are misaligned.

* We propose PROPGCL, a simple method that removes the transformation entirely and
enhances PROP with graph-adaptive propagation coefficients. We provide theoretical
guarantees for PROPGCL’s effectiveness and rigorously evaluate PROPGCL across diverse
node classification benchmarks, demonstrating its superiority over current GCL methods in
terms of both accuracy and efficiency, particularly on heterophilic datasets.

2 RELATED WORKS

GCL Designing Principles. Popular GCL design approaches predominantly focus on three aspects:
augmentation generation, view selection, and contrastive objectives. Augmentation strategies have
been explored to enhance representation learning, such as topology-based, label-invariant, and spectral
augmentations (Zhu et al.,[2021b; [Li et al.| |2022b; [Trivedi et al., [2022} |Liu et al.| |2022). For view
selection, many works focus on hard negative mining (Robinson et al.| 2021} |Yang et al.| 2023} Niu
et al.,|2024)) and the necessity of positive pairs (Guo et al.,|2023b)). Meanwhile, contrastive objectives
are often grounded in the mutual information maximization principle (Velickovic et al., [2019) or
the information bottleneck principle (Xu et al.,2021). With the design complexity growing, we are
concerned about whether such intricacy is truly necessary for effective graph learning. In practice,
we find a training-free and propagation-only operator PROP achieves competitive results over many
GCL methods (although not all GCLs), and we provide reasonable insights into its effectiveness.

Simplifying GCL Architectures. Recent efforts have introduced various strategies to reduce the
complexity of existing methods. Some approaches remove the traditional augmentation process
by employing K-means clustering, adding noise to the embedding space, or introducing invariant-
discriminative losses (Yu et al.,|[2022; [Lee et al.| {2022} |Li et al., 2023al)). |[Zheng et al.[(2022) simplify
similarity computations by discriminating between two groups of summarized instances, rather than
comparing all nodes. |L1 et al.| (2023b) observe lower layers in deep networks suffer from degradation
and propose an efficient blockwise training strategy. Other works explore using simpler models like
MLPs or linear layers as the backbone encoder for GCL (Liu et al.,|2023;|Salha et al.,2019). However,
these methods continue to rely on transformation layers that introduce additional parameters. In
contrast, our method PROPGCL relies solely on a minimal-parameter propagation layer. This design
reduces complexity while maintaining plug-and-play adaptability across various GCL frameworks.

3 BACKGROUND

3.1 GRAPH CONTRASTIVE LEARNING PIPELINE

The GCL pipeline often includes two stages, pretraining and evaluation. In the pretraining stage,
graph views are first generated through augmentation approaches. The encoder f, usually defaulting
to Graph Neural Networks (GNNs), embeds the graph views into node-level or graph-level represen-
tations. GCL learns the encoder weights by maximizing representation consistency between different
views. The purpose of pretraining is to learn high-quality representations without relying on labeled
data. In the evaluation stage, a simple linear classifier g is trained in a supervised manner to map the
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pretrained representations to the downstream label space. This evaluation protocol is called linear
probing, which enables a fair comparison of representations learned by different GCL methods.

3.2 POLYNOMIAL GRAPH NEURAL NETWORKS

One of the foundational works of GNNs is GCN (Kipf & Welling| 2017), which propagates informa-
tion from local neighborhoods and then transforms the aggregated representation in each layer by

HHD) = O'(AH(Z)W(Z)), where H(®) = X denotes node features, A is the normalized adjacency
matrix, W is transformation weights in the [-th layer, and o is the activation function.

Decoupled GNNs. In GCN, propagating information and transforming representation are inherently
intertwined in each layer. However, this tight coupling of operations can lead to limitations, including
oversmoothing and scalability issues (Wu et al.}2019; |Liu et al., |2020; Dong et al.,[2021). Therefore,
simpler yet effective models are proposed by decoupling the two operations (Wu et al.,[2019;|Gasteiger
et al.,[2019a} He et al., 2020). For instance, SGC (Wu et al.}2019) composes two decoupled phases
of 1) propagation which uniformly aggregates information from K-hops neighboring nodes by

H' = AKX, and 2) transformation which transforms features by H = o(H'W).

Polynomial GNNs. Despite the simplicity of SGC and its follow-ups, the propagation procedure is
fixed and shows limited expressiveness on more complicated graph structures (Balcilar et al.,|2021; Nt
& Macehara, 2019;Zhu et al.,2021a). To solve this, polynomial GNNs replace the uniform propagation
with learnable combinations of polynomial basis functions to approximate arbitrary spectral filters
(Chien et al.| [2021}; [He et al., 2021} [2022)). Similarly, polynomial GNNs can be expressed in a unified
propagation and transformation framework,

K—1

Propagation: H; = Z Orgr(L)X, )
k=0

Transformation: H = oc(H{W), 2)

where @ € R¥ are learnable propagation coefficients, gi, (L) represents the polynomial basis functions
applied to the graph Laplacian matrix L, W is learnable transformation weights. Notably, the
flexibility of learning spectral filters helps polynomial GNNs capture intricate structures in heterophily
graphs where connected nodes tend to have different labels (He et al.| 2021 [2022} |Chien et al., 2021)).

4 PROPAGATION IS A STRONG BASELINE FOR GRAPH SELF-SUPERVISED
LEARNING

In this section, we demonstrate that even without trainable networks, the uniform propagation is
in itself a strong baseline for graph self-supervised learning (GSSL) on node classification. We
benchmark its performance on a wide range of datasets and reveal the rationale by connecting
propagation to established graph learning algorithms.

4.1 BENCHMARK PROPAGATION AMONG GRAPH SELF-SUPERVISED LEARNING BASELINES
Method. We consider an operator PROP that aggregates features within K -hop neighbors:

Hprop = AXX, 3)
where A = D'~ A’D'~% with A’ = A + I. Note that the formulation of PROP has no essential
difference from SGC. We name the method PROP instead of SGC to avoid confusion with the
common use of SGC in GCL literature, which often contains the transformation weights W and
serves as the encoder (Chen & Kou, 2023} |Gao et al., [2023). Our goal is not to propose a new
formulation, but to establish it as a strong training-free baseline that has long been overlooked
in the GCL literature and explore the underlying rationale.

Datasets. For homophily benchmarks, we choose popular citation network datasets Cora, CiteSeer,
and PubMed (Sen et al.,2008; Namata et al.,|2012), Amazon co-purchase datasets Photo, Computers
(Shchur et al.,[2018)). For heterophily benchmarks, we include Wikipedia datasets Squirrel, Chameleon
(Rozemberczki et al.l |2021) and WebKB datasets Texas, Wisconsin, and Cornell (Pe1 et al., [2020).
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Table 1: Test accuracy (%) of PROP and graph self-supervised (GSSL) baselines on node classification
benchmarks, with blue indicating the best method, and orange the second-best.

Training Encoder Homophily Heterophily

Cora CiteSeer PubMed  Computers Photo Mean Squirrel ~ Chameleon Texas Wisconsin Cornell Mean

Supervised GCN 875+£10 802+06 87.0+03 884+03 935+04 873 |47.6+£08 64.1+1.6 764+£41 62628 644141 63.0

ChebNetll | 87.2+0.8 79.9+08 885+£0.1 90.1+£03 949+03 | 8.1 |[567+£13 723+15 926418 893+36 905+1.6 | 803
Unsupervised Graph Embedding

DeepWalk | Word2Vec | 80.6 £0.8 63.14+1.0 81.9+02 873+04 91.5+05 | 809 |433+£07 608+13 534+£48 43641 446+£3.1 49.2

Node2Vec | Word2Vec | 80212 68.14+09 80.7+03 855+04 903+05 | 81.0 | 39710 592+1.1 562+46 43.6+28 456+28 | 489

GSSL with Vanilla GCN
GRACE GCN 869+1.0 756+07 853+£02 823+£02 90.1+03 | 840 |[438£10 623+£09 736443 67.0+£18 65690 | 625

DGI GCN 858+ 1.0 786+0.7 823+03 79.6+04 806+12 814 |37.1+08 524+13 826+23 721+24 803+2.0 64.9
GAE GCN 849+ 13 757+08 847+03 763+05 905+03 | 824 |362+09 568+1.6 600+43 569+49 570+6.7 534
VGAE GCN 851+10 756+07 846+03 764+05 883+06 | 80 |434+£06 614+1.0 731+34 608+45 650+74 60.8
MVGRL GCN 840+10 745+08 83.6+04 835+05 892+04 | 80 |31.3+£06 579+16 77.7+£20 658+35 675+79 60.0
CCA-SSG GCN 86709 797+£0.6 848+04 828+03 91.2+04 | 850 | 40.6+07 578+10 793+3.1 TL.I1+£14 726+49 64.3
BGRL GCN 8514+0.7 765+09 840+02 828+04 86.1+04 | 829 |368+£07 555+18 797+£36 675+39 71.0+£103 | 62.1
GCA GCN 847+10 765+08 850+02 793+02 89.5+03 | 830 |41.0£09 594+11 780+26 740+21 669+7.1 63.8
ProGCL GCN 846+ 10 780+05 869+02 91.2+05 843+04 | 850 | 495+0.6 675+11 779+38 714+25 66.6+11.3 | 66.6

GSSL with Polynomial GNNs
ChebNetll | 83409 748+0.6 849+03 841+04 892405 833 |[379+£08 557+1.0 779+28 864+3.6 757+3.6 | 66.7
GRACE BernNet | 828+ 1.1 754+09 842+02 858+04 89.7+04 | 836 |406+07 547+13 754+36 883+31 742+4.1 | 66.7
GPRGNN | 824410 754410 846403 81.0+07 90.1+05]| 827 |382+0.7 538+14 787444 713439 77.7+57 63.9
ChebNetll | 83409 713+12 819+04 796+03 787407 | 79.0 | 343+£06 51.0+£10 808+21 818+3.0 808+1.6 | 657

DGI BernNet | 81.54 1.0 73.4+05 828+£02 792406 783+05 | 79.1 |324£09 474+18 828421 783+23 83.6+2.6 | 649

GPRGNN | 824+ 14 747410 809+02 778+06 778+0.6 | 781 |328+06 510414 800+£20 700438 789+£38 | 62.5
Training-free Method

\ PROP 855+08 789+0.6 829+05 875+05 93.0+03 856 |585+10 688+14 862+31 89.0+33 862+31 | 778

Settings. We consider two categories of representative GSSL methods as baselines: traditional graph
embeddings and deep learning methods (graph autoencoders and contrastive learning). Given the
superiority of polynomial GNNs, we also compare GCLs with polynomial GNNs. In the pretraining
stage, we maintain consistency in the hyperparameter search space across methods as much as
possible. In the evaluation stage, we adopt linear probing following Zhu et al.| (2020b); [Hassani &
Khasahmadi| (2020). We follow (Chien et al.|(2021)); /Chen et al.| (2024)) to randomly split the nodes
into 60%, 20%, and 20%. Each experiment is repeated ten times with mean and standard deviation of
accuracy score reported. Experiments with public fixed splitting are also conducted in Appendix
We mainly evaluate transductive settings and also explore inductive settings on benchmarks Reddit
and PPI in Appendix [C] See more experimental details in Appendix [V}

Results. As shown in Table[I] even without training, PROP maintains a superior performance
over competing methods. For homophily benchmarks, PROP achieves comparable performances
with GSSL baselines. PROP reaches an average of 85.6% while the best-performing GSSL methods
have 85.0%. For heterophilic benchmarks, PROP exceeds other methods by a large margin of over
10% on average performance, including GCLs with polynomial GNNs. We hypothesize that under
unsupervised signals, learning weights is more challenging for complex heterophily graphs. As further
shown in Section[5.1] the learned transformation weights tend to lose informativeness. Therefore,
PROP shows more improvement on heterophily graphs by removing the misleading weights. Notably,
GSSL baselines often require time-intensive training and extensive hyperparameter tuning, while
PROP operates without back-propagation and has only one hyperparameter, the propagation step.

4.2 UNDERSTANDING PROP FROM ESTABLISHED GRAPH LEARNING ALGORITHMS

Reviewing well-established graph algorithms, we can understand PROP’s effectiveness by connecting
it with the graph smoothing mechanism and graph alignment learning. See proofs in Appendix [H]

Propagation as non-parametric graph smoothing. By aggregating features from neighboring
nodes, cascaded propagation performs iterative representation updates. Inspired by|Zhu et al.| (2021a)),
we show in the following theorem that with an appropriate learning step, the Dirichlet energy of a
rewired k-hop graph is minimized by propagation and converges to zero for non-bipartite graphs.

Theorem 4.1. For a learning step size of o = 0.5, the propagation operator (Equation 3)) optimizes

the spectral energy objective L(H) = HT (I — A*)H, which represents the Dirichlet energy on a
rewired graph, where neighboring nodes are defined over k-hop connections.

Based on the iterative optimization, propagation alone can be regarded as a non-parametric approach
that smooths out the neighborhood over the k-hop graph, which helps explain the effectiveness



Under review as a conference paper at ICLR 2026

of PROP on graphs beyond just the homophilous category. Note that when the propagation step
approaches infinity, node representations converge to identical values, also known as over-smoothing
(Oono & Suzuki, 20205 (Cai & Wang| 2020). However, the total propagation step is practically limited
to a finite range, which provably improves the performance before oversmoothing kicks in (Keriven,
2022), as also supported by our experimental results.

Propagation as graph alignment learning. The propagation operator can also be understood as
a special alignment part in contrastive learning, where positive samples are randomly drawn from

neighboring nodes. We define the joint distribution of positive pairs as p(x;, ;) = A;;/ Do A,

where Aij denotes the normalized edge weight between node v; and node v; on the k-hop graph.
This neighboring-node view demonstrates competitive performance in real scenarios (Lee et al., 2022}
Shen et al.,2023)) with further illustration in Appendix |Gl Based on the definition, the alignment loss
is:

Latign(f) = —Eay s mp(wnmy) [f (@) T f ()] )

Intuitively, this alignment objective will bring the representation of neighboring nodes together. As
shown in the following theorem, propagation minimizes this alignment loss at its optimum, indicating
that propagation implicitly performs the alignment in contrastive learning.

Theorem 4.2. Let fi(x;) = Hgk),Vi € [N] be unit vectors, then limy,_, o0 Latign(fr) = —1.

4.3 FURTHER INSIGHTS INTO PROP

Below, we clarify the differences between
PROP and related methods and provide further insights.

PROP and raw node features. A training-free option is directly using raw node features, i.e., X.
However, feeding raw features into a downstream linear classifier sometimes results in degraded
performance, as shown in Appendix [E] We argue that propagation is essential for incorporating
structural information, even in heterophily graphs, and helps particularly when node features are
noisy or uninformative. See detailed discussions in Appendix [

PROP and random GNNs. Early works have shown the non-trivial ability of GNNs with random
weights (Kipt & Welling| [2017). The key distinction between PROP and random GNNss is whether
the transformation weights are incorporated. In the unsupervised setting, random introduces noise
under insufficient supervision signals. Empirically, in later sections, we reveal that incorporating
random weights in GCL performs worse than eliminating them.

PROP and Graph-Augmented MLPs (GA-MLPs). GA-MLPs, like SGC and APPNP (Gasteiger
et al.| [2019a), also adopt the decoupling perspective by preprocessing raw features with graph opera-
tors and then training an MLP in a supervised manner. The key difference is that the transformation
learns in this supervised paradigm is critical, whose removal will downgrade the performance. How-
ever, as further revealed in our work, the MLP weights are poorly learned under unsupervised settings
and harm the downstream task. From another perspective, if we combine PROP with downstream
linear-probing, they are formally equivalent to GA-MLPs. We will not resort to any wordplay on
this issue. However, our intention is not to claim PROP as a novel method, but rather to highlight its
value as a long-overlooked yet strong baseline in GCL literature.

PROP on graph classification task. We also benchmark PROP among GSSL baselines on the
graph classification task. As shown in Appendix B} PROP achieves an average performance gap of
2.82% relative to the best-performing methods, a notable result given its training-free nature. We
hypothesize that the slight gap arises because the single-node features do not directly map to the
global graph label, necessitating advanced transformation or pooling operations. The theoretical
understandings in our paper focus primarily on node connections within a single graph, aligning more
closely with node classification. While PROP demonstrates some promise in graph classification, its
potential in this area warrants further investigation.
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5 DISSECTING THE LIMITATIONS OF GNNSs IN GCL

To understand why existing GCL methods often fail to outperform PROP, we decouple the propagation
and transformation phases, a widely adopted perspective in designing GNNs (Gasteiger et al.,|2019afjb;
Li et al.| 2022a)). Our analysis shows that GCL methods struggle to learn effective transformation
weights but have promising potential in the propagation phase. Moreover, the transformation causes
an overfitting on the CL objective, potentially degrading the downstream performance. This finding
reveals the limitations of GCL and paves the way for more effective GCL methods.

5.1 FEATURE TRANSFORMATION IS INEFFECTIVE IN GCL

We first empirically compare the characteristics of the SL Heatmap CL Heatmap
transformation weights learned by supervised learning ., I — I
(SL) and GCL. As revealed in Figure |l the SL weights ; °
have a substantial variance across different neuron po- :
sitions, while the GCL weights exhibit more uniform |- f-
smoothness, suggesting that specific neurons in SL play Input Neurons Input Neurons
pivotal roles in distinguishing features, whereas the GCL
transformation learning process appears overly general-
ized, diminishing the richness of feature representation.

Output Neurons
Output Neurons

Figure 1: Characterization of the trans-
formation weights learned by SL and
GCL. Appendix [1] provides results of
To further verify the ineffectiveness of the transformation more benchmarks and GCL methods.
weights learned by GCL, we conduct experiments by com-

paring them with random weights. In practice, we consider a decoupled encoder H = o(Hprop W)
where W is the transformation weights. We compare the weights learned through GCL with a
random matrix whose element is independently sampled from a Gaussian distribution. As shown in
Table 2] the transformation weights learned by GCL are not remarkably better than random
counterparts. The model with random weights attains an average performance of 73.43%, even
surpassing the 72.86% reached by the transformation weights learned through GCL. We conduct
comprehensive experiments by varying GCL backbones, propagators, and random initialization meth-
ods, and conclusions are consistent as detailed in Appendix [[} Notably, although random projection
(Bingham & Mannila, [2001])) is well-established and proven effective in various works (Li et al.| 2006}
Freund et al.| [2007; [Bauw et al.;, 2021), GCL should aim to learn weights tailored to data, rather than
relying on a random matrix. Therefore, the results indicate that many GCL methods fail to learn
informative transformation weights as expected.

Table 2: Test accuracy (%) of node classification benchmarks, comparing the transformation weights
learned through GCL with random weights. Blue indicates the best, while the underlined is the
second best. We present the DGI method and results for more GCL methods in Appendix

Training Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
GCL 8323 +£0.74 7424+0.55 82.10+£033 4592+0.65 64.00+133 81.15+2.13 71.88+250 80.33+1.80 72.86
Randomize W 83.02+0.94 70.04 +£0.82 83.87+0.53 49.62+0.99 6794+1.16 8033+ 1.81 7225+225 80334197 7343

5.2 LEARNING PROPAGATION IS PROMISING IN GCL

Now, we comprehensively examine both transformation and propagation phases. While polynomial
GNNG incorporate learnable parameters in both phases (Equation[I]and [2), GCLs with polynomial
GNNs tend to underperform, as shown in Table E} This issue is often attributed to the mismatch
between the strong fitting capacity of polynomial filters and the lack of supervision signals (Chen
et al.| 2022;|2024). However, our following experiments demonstrate that GCLs can effectively learn
polynomial filter coefficients.

From the decoupling perspective, there are three conjectures as to why polynomial GNNs under-
perform in GCL: (1) GCL learns ineffective transformation weights, (2) GCL learns suboptimal
propagation coefficients, or (3) a combination of both. To investigate the cause, we separately replace
the propagation coefficients 8 and the transformation weights W with well-trained parameters from
the supervised setting. Specifically, we first train polynomial GNNs via supervised learning and
save the optimized parameters as Wgp, and Os1,. We then proceed with the following experiments:
(1). Fix-propagation. Corresponding to the first conjecture, we initialize and freeze propagation
coefficients with the well-trained Ogy,, and only learn transformation weights W through GCL. (2).
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Fix-transformation. Corresponding to the second conjecture, we initialize and freeze transformation
weights with the well-trained Wgy,, and only learn propagation coefficients 8 through GCL. (3).
All-one baseline. We further consider a baseline with well-trained transformation weights Wy, and
a fixed all-one propagation coefficient 1.

The experimental results are summarized in Table[3] For the first conjecture, the fix-propagation
model averages 72.19%, significantly lower than the supervised model’s 80.41%, and sometimes
even underperforms the original GCL method. It indicates that GCL struggles to learn effective
transformation weights (like Wgr,) even with strong filters. For the second conjecture, the fix-
transformation model achieves an average performance of 79.65%, closely matching that of the
supervised model. In contrast, the all-one baseline yields a lower accuracy of 75.56%, confirming that
the learned propagation coefficients are effective. Thus, GCL can learn informative propagation
coefficients with well-trained transformation weights. For further validation of propagation
learning, in Appendix [J} we conduct flip experiments by fixing parameters with GCL-trained ones
and get a similar conclusion, with the learned propagation coefficients presented in Appendix

The observation suggests potential few-shot learning applications with limited ground-truth labels
for training. In Appendix [O] we initially explore training propagation coefficients via CL while
optimizing transformation weights with supervision. However, in unsupervised settings, optimal
transformation weights are unattainable. In later sections, we provide an effective GCL solution with
learnable propagation only.

Table 3: Test accuracy (%) of node classification benchmarks. We freeze propagation coefficients
with optimal gy, and learn transformation weights through GCL (or the opposite). 1 denotes an
all-one vector. Blue indicates the best, while underlined is the second-best.

6 w Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
SL Os1, W, 88394074 79.67+£0.72 87.11+025 4934 +£1.09 69.52+0.96 89.67+2.13 91254275 88.36+3.11 80.41
GCL Learn Learn 83424092 7479 +0.57 84924026 37.90+0.79 5567+096 77.87+279 86.38+3.63 7574+3.61 7209

Fix-propagation 05y, Learn 80.26 £0.95 76.15+0.80 8241+0.64 4031+£0.60 59.06+1.58 78.69+475 87.88+275 72.79+£557 72.19
Fix-transformation Learn Ws;, 8747 £0.67 81.11+0.55 87.69 +£0.24 4574+ 1.57 64.95+2.19 90.00+2.46 91.38+3.50 88.85+4.10 79.65
All-one baseline 1 W, 78244092 7872+048 84.75+0.33 3598 +0.77 59.61 +1.07 89.34+393 89.38+225 8849+3.77 7556

5.3 TRANSFORMATION ENHANCES OVERFITTING TO CL OBJECTIVE

To explore why the transformation phase brings ineffectiveness, we compare GCL with/without
transformation from the optimization perspective. We find that during training, transformation
weights incur an overfitting to the contrastive learning objective, while keeping only propagation
alleviates the overfitting. As demonstrated in Figure 2] GCL with transformation

rapidly drives the CL training loss to
near zero. In contrast, GCL without transformation maintains a moderate loss level, reflecting its
resistance to over-optimizing the CL objective.

Optimizing the contrastive loss to its minimum is pre-
ferred if the pretext objective is well aligned with the Il oess| {7 oo
downstream tasks. However, when positive samples l " ﬂ"‘w& @
misalign with intra-class samples, forcing InfoNCE \ *
loss to the minimum could result in a poor down- 4

h

2

Training Loss
2
a

Training Loss

stream performance, as theoretically proved in|Wang
et al.| (2022). Lacking prior downstream knowledge, v g G - e
it’s infeasible for GCL to select perfect positive sam- (a). GCL w. transformation (b). GCL w.o. transformation
ples, especially for heterophilic graphs with compli-

cated structures. Thus, the overfitting to contrastive Figure 2:

loss negatively transfers to downstream tasks. []

While we employ early-stopping for all baselines in

Table[T] our experiments show it fails to resolve this overfitting issue. We also tried possible strate-
gies, including /; regularization, whitening techniques (Bell & Sejnowski,|1997), and normalization
methods (Hua et al.l 2021} |Guo et al.,|2023a), but find these approaches offer limited improvement in
Appendix [S} Meticulously designed frameworks and advanced contrastive principles may overcome
the limitations. However, for the free-structured graph data, there are no precise or even intuitive
definitions of semantic equivalence (unlike images or text), bringing much difficulty into design-
ing reasonable contrastive principles. In the following section, we propose a simple solution by
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directly removing the transformation phase. Although easy in formulation, the method demonstrates
competitive performances across diverse benchmarks, with a great advantage of efficiency.

6 PROPGCL: GRAPH CONTRASTIVE LEARNING THAT ONLY LEARNS
PROPAGATION

6.1 PROPGCL

PROP’s strong performance suggests that a simple model without transformation can achieve compet-
itive results. However, the fixed uniform propagation has limited effectiveness in complex scenarios
like heterophilic graphs. Therefore, we enhance PROP by introducing learnable graph-adaptive
filter coefficients, leveraging GCL’s propagation-learning potential. Specifically, for a given GCL
framework, we replace the original encoder with the learnable spectral propagation,

K-1

HpropaeL = Y Okgr(L)X, ®)
k=0

where 6 € R¥ is learnable propagation coefficients, g (L) represents polynomial basis functions.
For clarity, we denote the revised GCL framework with the prefix PROP, e.g., PROP-GRACE.

6.2 THEORETICAL ANALYSIS

We previously show that when the contrastive object misaligns with the downstream task, overfitting
to the CL loss will cause performance degradation. In the following analysis, we decompose such
imperfect CL loss into downstream-relevant and -irrelevant components, and prove that in such cases,
our PROPGCL is guaranteed to learn better representations than PROP and the backbone GCL.

Definition 6.1.

Assumption 6.2.

Assumption 6.3. (Task Misalignment) When the contrastive learning objective is misaligned with
downstream tasks, we have ||g||r = o f| r with o # 1.

Based on the assumptions, we have the following theorem with proof in Appendix
Theorem 6.1. Under Assumptionsand H when o > H;ﬁ’ we have:

I Hprorcer — fX||rp < min (||[Hprop — fX| r, | Heer — fX||F) -

The theory shows that when CL and downstream objectives are misaligned (large «r), PROPGCL
performs better than both baselines. By learning representations that balance CL optimization
with downstream relevance, PROPGCL maintains higher CL loss than GCL while achieving better
downstream performance, which further explains the empirical observation in Figure[2]

6.3 EXPERIMENTAL RESULTS

Benchmarks. Besides previous benchmarks, we also consider a recently proposed heterophily
benchmark (Platonov et al., [2023b) and large OGB benchmarks ogbn-arxiv and ogbn-products (Hu
et al}[2020). Experimental settings are kept the same as Section [4.1]

Baselines. For the baseline, we include PROP, which outperforms well-known GSSL methods as
outlined in Section4.T] Additionally, we consider GCL methods specifically designed for heterophilic
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graphs, including PolyGCL (Chen et al.,[2024), HGRL (Chen et al., |[2022), GraphACL (Xiao et al.|
2024), SP-GCL (Wang et al., [2023)), and DSSL (Xiao et al.| [2022). Our approach builds upon
GRACE and DGI as main backbones and uses the scale-friendly method GGD (Zheng et al., 2022)
for large OGB graphs. We utilize the Chebyshev basis as the polynomial function and conduct an
ablation study of basis choices in Appendix|[[] We mainly adopt the linear-probing evaluation and
also estimate clustering quality of unsupervised representations detailed in Appendix [M]

Results. The main results on node classification benchmarks are presented in Table d Our method
surpasses the PROP baseline and GCL methods on most benchmarks, especially for heterophily
datasets where many traditional GCL methods struggle. For homophily benchmarks, PROP-
GRACE achieves the highest average accuracy of 88.76%, with PROP-DGI securing the second-
highest at 88.42%. Our approach attains the best performance in 3 out of 6 benchmarks and performs
comparably to the best methods in the remaining cases. For heterophily benchmarks, PROP-DGI
attains an average accuracy of 73.71%, surpassing the state-of-the-art PolyGCL by a margin of 4.23%.
Our method ranks first on 4 out of 6 benchmarks and second-best on the remaining two.

On the recent heterophily benchmark in Table [5] PROP-GRACE surpasses its backbone GRACE
by 3.99% on average, and PROP-DGI achieves the best results in 2 out of 5 benchmarks with an
average performance of 70.22%, second only to PolyGCL’s 71.68%. Notably, PolyGCL is designed
especially for heterophily graphs, whereas PROP-DGI builds on a more general DGI framework. On
large benchmarks in Table 6} our method performs comparably with the backbone method while
achieving higher efficiency. Remarkably, PROP-GGD outperforms GGD by 0.16% in accuracy on
ogbn-products, accompanied by a 25.44% reduction in training time. Moreover, PROPGCL also
presents better robustness on hyperparameters selection and noisy features (Appendix [N)).

Table 4: Test accuracy (%) of node classification benchmarks, comparing PROPGCL with PROP and
GCL baselines. Blue indicates the best method, while underlined represents the second-best choice.

Method Homophily Heterophily
Cora CiteSeer PubMed Photo Computers cs Mean | Squirel  Chameleon Actor Texas Wisconsin Comell  Mean

PROP 8548+ 075 78.87+0.63 8289+048 93.01+028 87.54+047 95.15+0.19 | 8716 | 5848+ 1.03 6882+ 142 3936091 86234311 89.00+325 8623=3.11 | 7135
GRACE 8690+ 1.03 75.60+0.71 8531023 90.10+£030 8229+023 92.99=0.18 | 8553 | 4378 £099 6230094 37.76+077 7361 +426 67.00+ 175 6557+9.02 | 5834
DGI 8580 £0.95 7858=070 8227+031 80.63+ 115 79.58=039 9348=0.17 | 8339 | 37.14£0.80 5238+ 129 3444045 8262+230 7213+238 8033+ 197 | 5884
PolyGCL | 86.19+£076 79.07+£082 86.69+£024 9270+0.18 8891025 9530007 | 88.14 | 56.09+ 087 7217+ 112 4050+0.78 8672+2.13 8550+4.00 7590246 | 6948
SP-GCL 84.68 £0.81 7643 +£0.63 8698023 92.65+048 89.04+035 9195024 | 8691 | 58114070 7098+£090 3040+ 111 8197+279 7600+375 6574+639 | 6387
HGRL 8539+£1.00 7984091 8512030 93.61+£022 8589+£022 9557+0.12 | 87.57 | 3889+ 085 5569+ 103 37094068 8410+475 86.13+3.00 8459+427 | 6457
GraphACL | 8741 £1.00 79.17+0.55 8571027 9286033 8643+£035 94.17£0.16 | 87.63 | 53774089 6694+ 105 3873+086 8443+180 80.00+250 7951+ 180 | 67.23
DSSI 87.60+ 118 79.52+ 110 86.62+024 93.15+046 88.53+038 O94.10+0.18 | 8825 | 47.56+ 098 68.85+3.77 35.64=051 85904262 79.00+275 8098+ 213 | 67.77

PROP-GRACE | 8742 +0.95 81.56 +0.83 86.19+035 93.32+0.31 88124023 9595+0.14 88.76 55.09+081 7173+ 1.18 3935+ 0.81 89.84+ 1.81 88.50+3.63 86.72+ 246 | 71.87
PROP-DGI 86.19 4+ 1.05 80.78 +0.65 85.14£0.22 9278 +0.37 89.81 £0.20 95.82+0.18 8842 | 60.53 +0.66 74.11 £0.96 39.53 +0.84 91.804+2.30 88.88 +2.50 87.38+2.62 73.71

Table 5: Test accuracy (%) of recent heterophily graph Table 6: Test accuracy (%) and training time
benchmarks. Blue indicates the best method, while the on large OGB benchmarks. Train time de-

underlined represents the second-best. notes the training time per epoch in seconds.
Method roman empire amazon ratings minesweeper  tolokers questions Mean
PROP 63.95 £+ 0.33 40224022 7410+ 058 7174 +0.51  70.23 £ 0.59 64.05 Benchmark Method Test Ace Train Time
DGI 62.64 +0.22 3871+£023 80.01 £0.65 7495+0.58 68.05+0.61 64.87 i GGD 70.26 + 0.15 1.02
GRACE 59.04 £ 0.22 39.79 £ 0.28 7589 £0.50 7426 +£0.73  72.15 £ 0.62 64.22 Ogbn*aFXlV
PolyGCL TLIL£047 4409031 86.11=041 8370 +059 7341 +0.84 71.68 PROP-GGD  69.71 +0.06 (1 0.55)  0.78 (| 23.15%)
SP-GCL 55724034 43024038 7238+064 76.69+060 73.91+074 6434 b | GGD 7571 4+ 0.24 284.39
y ogbn-products
HGRL 63.31 £0.33 39.65+032 52.14+044 7434+045 OOM -
PROP-GGD  75.87 +0.20 (1 0.16)  212.05 (| 25.44%)
GraphACL 59.66 + 0.37 4268 +0.19  67.73+0.72 7493 4+0.73 7448 +£0.51 63.90
DSSL. 44.48 +0.33 4044 £0.16 8205+ 0.50 73.88+0.76 69.08 4+ 0.82 61.99

PROP-GRACE  68.04 £0.25 4276 £0.26 80.83+0.58 77.51+0.77 71.954+0.92 68.21(13.99)
PROP-DGI 74.66 + 0.27 43144028  80.50+0.62 77.93 +0.54 74.88+0.76 70.22 (15.35)

6.4 EFFICIENCY ANALYSIS

Thanks to the elimination of transformation Table 7: Time and space efﬁciency Comparison.
weights, PROPGCL demonstrates apprecia- [;mprovement refers to the percentage increase in

ble improvements in efficiency compared speed or decrease in memory consumption.
to its backbone methods, both in terms of

. . Metric Method Photo  Computers CS Squirrel  Chameleon
compu.tatlonal time ?nd memory usage, as GRACE 02872 04639 L5111 07004 02295
shown in Table[/| For instance, PROP-GRACE Time PROP-GRACE 02400 03626 02374 02581  0.1450
achieves an 84.29% reduction in training time Improvement  1644%  21.84%  8429% 63.15%  36.82%

. GRACE 251804 256204  2562.04 520604  5678.04
per epogh relative to GRACE on the CS dataset. Memory PROP-GRACE 586 604 604 163 1821
Regarding memory efficiency, PROP-GRACE Improvement  99.71%  99.76%  99.76% 99.69%  99.68%

consumes over 99% less memory for the encoder
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on various benchmarks. Evaluations on more benchmarks and basis functions consistently confirm
the efficiency gains in Appendix [Q} where we also provide a detailed time complexity analysis.

7 CONCLUSION

In this work, we establish PROP, a training-free propagation operator, as a strong self-supervised
learning baseline for node classification, supported by linking it to established graph algorithms.
From a decoupling perspective, we observe that transformation weights learned via GCL exhibit
uninformative characteristics and cause an overfitting to the CL objective. To address this, we
introduce a novel approach PROPGCL that focuses solely on learning propagation coefficients
through GCL, achieving state-of-the-art performance across diverse node classification benchmarks.
We believe this work paves the way for developing lightweight and effective GCL methods, with
potential for advancing both research and practical applications in graph learning.
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A APPENDIX

B EXPERIMENTS OF PROP ON THE GRAPH CLASSIFICATION TASK

Methods. To get the global graph representation, we first aggregate node features within K -hop
neighbors without any trainable weights, then average pool aggregated node features into a global
representation, i.e.,

1 .
Hprop = - ) H;, H=AMX, (6)
%

where N is the number of nodes, H; is the representation of the node v;, A =D'"3A'D'~ 3 with
A'=A+1L

Datasets. We choose molecules datasets MUTAG (Debnath et al., [1991) and NCI1 (Wale et al.|
2008)), bioinformatics datasets PROTEINS (Borgwardt et al., |2005), and DD (Dobson & Doig, [2003),
social networks IMDB-BINARY, IMDB-MULTI (Yanardag & Vishwanathan, 2015)), and COLLAB
(Yanardag & Vishwanathan, |2015)).

Baselines. We consider three categories of representative methods as baselines: 1) graph kernel
methods including GL (Shervashidze et al., 2009), WL (Shervashidze et al.| 2011), and DGK
(Yanardag & Vishwanathan, 2015), 2) traditional graph embedding methods including node2vec
(Grover & Leskovec| 2016), sub2vec (Adhikari et al.l 2018), and graph2vec (Narayanan et al.| [2017)),
3) contrastive learning methods including InfoGraph (Sun et al.| [2020), GraphCL (You et al.| 2020),
MVGRL (Hassani & Khasahmadi, 2020), JOAOv2 (You et al.,[2021), ADGCL (Suresh et al., 2021).

Settings. Following |You et al.|(2020), we train the model in an unsupervised manner and feed the
learned representation into a downstream SVM classifier. To keep comparison fairness, we tune
hyperparameters in a unified combination, and keep the search space among methods as consistent as
possible. Details can be found in Appendix [V]

Results. As shown in Table[8] PROP surpasses most graph kernels and traditional embeddings and
performs comparably with GCL methods. PROP achieves an average performance gap of 2.82%
relative to the best-performing methods, a notable result given its training-free nature. We hypothesize
that the slight gap arises because the single-node features do not directly map to the global graph label,
necessitating advanced transformation or pooling operations. Another optional choice is utilizing
Laplacian positional embeddings or random-walk embeddings as widely discussed in the literature of
Graph Transformers (Yun et al.} 2019; [Ying et al.| 2021} Rampasek et al.,|[2022). We leave deeper
research on the graph classification task for future work.

Table 8: Test accuracy (%) of graph classification benchmarks, comparing PROP and GSSL methods.
The compared results are from published papers, and — indicates that results are unavailable. We
report the performance gap between one method and the best method, averaged across datasets in the
Mean Gap column. Bold indicates the best method, while underlined represents the second-best.

PROTEINS MUTAG DD NCI1 IMDB-B IMDB-M COLLAB Mean Gap |
Graph Kernel
GL - 81.66 £ 2.11 - - 65.87 = 0.98 - - 7.60
WL 7292 +0.56  80.72 £3.00 - 80.01 +0.50 72.30 £3.44 - - 2.88
DGK 73.30+0.82 8744 £2.72 - 80.31 +£ 046 66.96 + 0.56 - - 2.37
Traditional Graph Embedding
node2vec  57.49 £3.57 72.63 +10.20 — 54.89 £ 1.61 — — - 16.61
sub2vec  53.03 +5.55 61.05+ 15.80 - 52.84 £ 147 5526+ 1.54 — - 19.79
graph2vec  73.30 +£2.05  83.15+9.25 - 7322 +£1.81 71.10+0.54 — - 3.54
Graph Contrastive Learning
MVGRL - 75.40 + 7.80 — - 63.60 £+ 4.20 — - 11.87
InfoGraph 74.44 £0.31 89.01 +£1.13 7285+1.78 7620+ 1.06 73.03+0.87 48.66+0.67 70.65+1.13 2.07
GraphCL 7439 +£0.45 86.80+1.34 78.62+0.40 77.87£041 71.14+£0.44 4849 +0.63 71.36£1.15 1.52
JOAOV2 7407 +1.10 87.67+0.79 7740+ 1.15 7836+0.53 70.83+0.25 — 69.33 £0.34 178
ADGCL  73.81 £046 89.70 £1.03 75.10+0.39 69.67 £0.51 72.33 £0.56 49.89 £ 0.66 73.32 £ 0.61 2.21
PROP 71.07 £030 87.44+1.53 7839+0.37 75244+0.14 7122+028 47.11+0.18 69.07 £+ 0.05 2.82
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C EXPERIMENTS OF PROP IN THE INDUCTIVE SETTING

We conduct experiments in the inductive setting on the single-graph dataset Reddit and the multiple-
graph dataset PPI. The experimental settings, including data splitting and training hyperparameters,
follow those in[Hamilton et al.| (2017). The results are summarized in Table E} For PPI (a multi-graph
benchmark with 50-dimensional node features), PROP (K=2) achieves an F1 score of 0.7527, which
is comparable to GRACE's score of 0.7548. For Reddit, PROP (K=2) achieves an F1 score of 0.8452,
outperforming GRACE which achieves 0.8185. These results validate the effectiveness of PROP in
node classification tasks under the inductive setting.

Table 9: F1 score comparison of PROP and GRACE on benchmarks PPI and Reddit. Bold indicates
the best, while underlined represents the second-best choice.

Method F1 Score (PPI) F1 Score (Reddit)
GRACE 0.7548 0.8185
PROP (K = 0) 0.7076 0.5852
PROP (K =1) 0.7493 0.8457
PROP (K = 2) 0.7527 0.8452

D EXPERIMENTS OF PROP WITH A FIXED PUBLIC-SPLITTING.

In Section 4.1 we evaluate PROP and graph self-supervised methods on the node classification task
with a random splitting. To ensure that the conclusion is not limited to a specific split setting, we
evaluate the models on the publicly available fixed splits following Zhu et al.| (2021c); |Zhang et al.
(2021). In practice, we use the public splitting introduced in |Pei et al.| (2020) for most datasets.
There is no available public splitting for Amazon-Photo and Amazon-Computers, so we randomly
split the dataset into 1/1/8 as the train/validation/test set, differing from the splitting in Section @.1]
Other experimental settings are kept the same. As shown in Table[I0] on 6 in 10 benchmarks, PROP
performs the best among baselines and exceeds the runner-up ProGCL by 4.23% on average. The
results verify the effectiveness of PROP in different data-splitting cases.

Table 10: Test accuracy (%) of PROP and other graph self-supervised methods on node classification
benchmarks with the public splitting. Bold indicates the best method, while underlined represents
the second-best choice.

Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon Texas Wisconsin Cornell Mean

DeepWalk  80.87 +£1.07 63.14 +1.05 81.55+0.27 84.66+0.40 89.59+0.18 43.32+0.79 60.81£1.27 53444509 43.63£4.25 4459+295 64.56
Node2Vec  84.27+£0.70 66.04 £1.83 81.33+0.36 8392+0.31 89.314+020 3841+1.19 59.50+230 60.81+1.89 55104373 60.54+3.24 67.92

GAE 8596 +1.03 7278 £ 1.11  85.06+0.49 7529 +£0.53 89.50+0.26 3556+ 127 56.51+1.62 6243+£486 61.18+3.53 60.27+3.51 6845
VGAE 86.20 £0.76 7326 £0.65 85.19+043 72.17+£0.33 8690+ 038 4238+ 1.13 6029+ 1.05 63.78£3.51 59.61 £2.75 60.54 £2.16 69.03
GRACE 84.10+ 1.01 70.41 £0.92 84.79+0.38 7851 +044 87804041 39.65+0.87 5583+105 6459+459 58824491 60.81+2.16 6853
DGI 87.204+0.99 7250 +£1.49 82554038 71.35+£0.57 80434+0.63 36.61 £1.05 52.02+132 70.54+297 6353+392 61.62+2.16 67.84
MVGRL 83.44+0.72 71.61 £0.73 8248 +£0.30 80.96+0.67 86.87+0.41 31.48+0.83 5877+145 6838+298 62944353 61.62+2.16 6886
CCA-SSG  87.71+0.75 7542+ 0.80 85.55+0.40 7896+0.33 90.91+0.38 40.16+0.74 5498+ 1.18 68.65+3.78 64.124+431 61.89+£243 70.84
BGRL 85.77+0.89 72.66 £1.54 84.63+049 7443+£091 85504059 37.20+1.07 53.82+1.67 67.03+£2.70 60.59+3.14 60.81 £2.43 6824
GCA 86.60 +0.79 7471 £1.18 86.44+0.34 7563 +£046 88774054 41.33+0.88 5928+ 154 69.46+297 62944275 61.89+2.16 70.71
ProGCL 8545+ 085 7361 £1.10 86.86+0.41 81.64+0.70 89.914+031 50.23+0.86 67814147 69.46+297 6275+275 61.35+1.35 7291

PROP 84574082 7455+£1.09 84.65+024 84.78+£0.38 90.83+034 57.20+141 68.71+1.18 71.35+£4.60 79.61+3.14 7514+£3.78 77.14

E EXPERIMENTS OF PROP WITH DIFFERENT AGGREGATION STEPS

In this section, we present the accuracy of PROP with different propagation steps. We find that the
best step choice varies among datasets, but a shallow propagation is enough in most cases. As shown
in Figure[3] only one-step propagation performs best in datasets including Cora, CiteSeer, Chameleon,
Squirrel, Computers, and Photo. For Texas, Wisconsin, Cornell, Actor, and CS, the raw features, (i.e.,
zero propagation step) are enough. Moreover, when the performance achieves its best, raising the
propagation step will cause a degradation.
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Figure 3: Accuracy (%) of PROP with different propagation steps. We mark the best step choice with
ared star. Experiments are conducted ten times and the shadow denotes the derivation.

F COMPARISON BETWEEN PROP AND RAW FEATURES

F.1 GRAPH STRUCTURE AS EFFECTIVE SUPERVISED SIGNALS

The taxonomy of homophily and heterophily is commonly used to assess whether the graph structure
is informative for training GCN-like models. However, beyond this traditional dichotomy, recent
metrics characterizing graph properties have been proposed, showing a closer relationship with
GNN performance (Mao et al.| 2023} [Luan et al.| 2023}, [Platonov et al.,|2023a). For instance, Ma
et al.|(2021)) observe that the inter-class similarity on the Squirrel dataset is slightly higher than the
intra-class similarity for most classes, which helps explain the moderate performance of GCN on this
dataset.

However, the performance of GCN-like models is influenced by the interplay between graph structure
and node features. Therefore, poor performance of GCN does not necessarily imply that the graph
structure is ineffective, nor does it imply the opposite. To verify this, we design experiments based
on the mutual information between labels and graph elements, including graph structure and node
features. To decouple the effects of structure and node features, we use an MLP instead of a GCN
as the training model, with node features X, adjacency matrix A, and their concatenation as inputs,
respectively.

The results are shown in Table[T1] Surprisingly, for some heterophily datasets, MLPs using the
graph structure as input achieve satisfactory performance. For instance, on the Squirrel dataset,
which has a low homophily ratio of 0.22, the MLP based on the graph structure achieves an accuracy
of 73.58%. This suggests that, even with a low homophily ratio, the graph structure can still serve as
a highly effective supervision signal for label prediction.

F.2 NODE FEATURE PERTURBATION EXPERIMENTS
PROP demonstrates significant advantages over Raw Features (RF), particularly in scenarios where

node features are noisy or uninformative. To illustrate this, we compare PROP and RF under noise-
perturbation and masking-perturbation settings. For noise-perturbation, Gaussian noise is added
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Table 11: Test accuracy (%) of MLP with different input signals on node classification benchmarks.
‘H(G) denotes the edge homophily ratio introduced in Zhu et al|(2020a). Lower H(G) denotes
graphs with a high heterophily level. [,] denotes concatenation. Bold indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Chameleon Squirrel Actor

H(G) 081 074 0.80 023 022 022
MLP(X) 7364 7072 8575 49.34 3506 36.51
MLP(A) 7827  57.81 81.41 7741 7358  21.84
MLP(X,A]) 8229 7357  85.83 71.05 67.63 31.84

to the original node features. For masking-perturbation, we randomly mask the channels of node
features with varying mask ratios in [20%, 40%, 60%, 80%]. As shown in Table @] and Table @
PROP consistently outperforms RF across various benchmarks when node features are perturbed.
For instance, in the noise-perturbation setting, PROP achieves an average performance improvement
of over 33% compared to RF. Similarly, in the masking-perturbation setting, PROP maintains its
superiority even with a mask ratio as high as 80%.

Table 12: Test accuracy (%) of noise-perturbed node classification benchmarks, comparing PROP and
Raw Features (RF). We add noise from a normal distribution onto the original features to generate
randomly noisy node features. Bold indicates the best method.

Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon ~ Mean
RF 39.90 +6.85 32314847 57284569 42.60+757 54574627 21.34+1.03 2547+247 39.07
PROP  76.73 +£2.02 69.25+2.44 81.50+2.00 73.76+11.58 70.23+7.74 48.94+6.14 69.39 +2.15 69.97

Table 13: Test accuracy (%) of mask-perturbed node classification benchmarks, comparing PROP and
Raw Features (RF). We randomly mask a proportion of features to generate perturbed node features.
Bold indicates the best method.

Mask ratio Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon ~ Mean
RF 5401340 6034 +£424 70.00+4.66 6587516 6859+498 2837067 41.77+278 5556
PROP  76.19 +3.76 71.87 =2.68 83.85+0.99 89.78+1.51 83.37 +2.18 47.13+4.50 64.40+245 73.80

20%

RF 49.10 £2.61 44.684+949 5836+£5.81 50.62+953 5356 +£9.74 25674197 34.99+4.88 4528
PROP  61.25+6.68 54.87 +£10.25 76.85+4.43 76.16 +10.29 64.66+10.61 38.68 =598 53.90+6.67 60.91
RF 4695 £5.67 36.10£8.12 5588 +4.87 4429+£796 5385+7.58 23224227 30.72+4.09 41.57
PROP 5447 £6.93 42.59 +£10.70 63.68 +9.19 60.27 +14.32  60.69 +8.46 28.47 + 6.50 41.03 +8.97 50.17

40%

60%

RF 48.33+£3.69 30.18+5.64 52.01+3.18 41.47+£578 5787+2.63 21.93+2.04 2842+3.13 40.03
PROP  49.06 £ 6.39 33.77+£9.83 57.89+873 57.89+8.73 6037514 26.35+538 34.64+9.06 44.90

80%

G INTUITIVE ILLUSTRATION OF NEIGHBORING-NODE VIEW

Using neighboring nodes can be understood as a form of view generation in GCL. Formally, this
involves designing a permutation matrix P that transforms the graph such that A’ = PT AP and
X’ = PX. The same row of X (or A) and X’ (or A’) corresponds to neighboring nodes in the
original graph. This kind of view generation is also applied in previous works and shows satisfying
experimental performance (Lee et al., {2022} |Shen et al., [2023]).

Consider a simple example of a triangle graph with three nodes vy, v2, and v3, connected as (vy, v2),

0 1 0
(v1,v3) (va,v3). A specific permutation P = [ 0 0 1 ] transforms the original graph’s adjacency
100
0 1 1 1 0 1 1 o
matrix A= [1 0 1], X= (x| intoA’=PTAP=(1 0 1|, X =PX = |x3
1 1 0 T3 1 1 0 T

The corresponding nodes in G = (A, X) and G’ = (A’, X’) form positive pairs.
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Based on random sampling, other choices of P are possible, such as transforming X = (x1, T2, x3) "
to X' = (x3, 1, x2) . For node vy, the probabilities of transferring to vy and v3 are equal. When the
sampling process is repeated sufficiently, the positive samples (v1,v2) and (v1,v3) are sampled with
approximately equal frequency, corresponding to the neighboring set in the propagation procedure.

More formally, consider the alignment loss defined in the paper,
Latign(f) = —Eay o mp(@san Lf (@) f(25)].

Here, the probability distribution p(z;, z;) = A;;/ > A,j is defined as the normalized edge
weight between nodes v; and v; in the k-hop graph. When the sampling process is efficient, we can
approximate the neighbor sets in the propagation as positive pairs.

H PROOF OF THEOREMS

H.1 PROOF OF THEOREM [4.1]

Here we present the proof of Theorem[.1] restated for reference.

Theorem 4.1. For a learning step size of o = 0.5, the propagation operator (Equation[3) optimizes

the spectral energy objective L(H) = HT (I — Ak)H which represents the Dirichlet energy on a
rewired graph, where neighboring nodes are defined over k-hop connections.

Proof. We consider the rewired k-hop graph with the adjacency matrix denoted as A = A*. The
Dirichlet energy on the k-hop graph is £(H) = HTLH, where L = I — A. The gradient update of
the Dirichlet energy objective gives the following update rule of node features H,

OL(H)
oH

where the « is the step size. When we choose the learning rate o = 0.5, we recover the propagation
operation in Equation ie,Hyw = AH = AFH.

H-«o

=H - 20LH = ((1 — 2a)I + 2aA)H, @)

O

H.2 PROOF OF THEOREM [4.2]

Here we present the proof of Theorem[{.2] restated for reference.
. €f .
Theorem 6.1. Under Assumptlonsand when o > 7 e have:

Hprorcer — fX||r < min (|[Hpror — fX||F, [|[Heer — fX||F) -

Proof. Again, we consider the rewired k-hop graph with the adjacency matrix denoted as A = Ak,
A key step is to notice that the alignment objective Equation []is closely relevant to the Dirichlet
energy when f(x;) = H;,Vi € [N]:

Lalign (f) = — Z Ay [H:Hﬂ/(z Ajj) = HTAH/(Z Ajj)=HT(I- I:)H/(Z: Aij). ®)

It is easy to see that graph convolution converges to identical vectors, known as oversmoothing.
Therefore, we have V 7, j, (Hy); = (Hs);. Therefore,

i Lajign (fir) = H AH. /() Ay) = (izj Aij)/(izj Aij) =1,

.9

which concludes the proof. O
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H.3 PROOF OF THEOREMI[6.]]

Here we present the proof of Theorem [6.1] restated for reference.
. Gf .
Theorem 6.1. Under Assumptzonsand ﬁ when o > T e have:

Hprorcer — fX||r < min (|[Hpror — fX||r, [|[Heer — fX||F) -

Proof. Since GCL has sufficient capacity to fit 7" = f + g, at convergence we have:
[Hoer — (f + 9)X|[r =~ 0.
However, for downstream performance, we care about proximity to fX, i.e.,
[Hoer — fX||F = [Hoer — (f + 9)X + gX]|F.

By applying the triangle inequality, we obtain:

[Hoer — fX|[r 2 l9X|lr — [Hoer — (f + 9)X]| 7.
When GCL overfits to the CL loss, it yields:

[Heew — fX|r = [l9X|[r = all fl7[X][ . ©)

According to the Chebyshev approximation theory, continuous functions admit exponentially fast
polynomial approximation, while discontinuous mappings incur large approximation error (Xu et al.|

2019;[Rahaman et al.,[2019)). Let 0 be the learned parameters. Then we have

|| Hpropcer — [X|| 7 = < ef|IX]|F. (10)

F

> 0eAFX - X
k

PROP is a special case of PROPGCL by letting 0 = 1,60; = 0,7 # K. Therefore, PROP satisfies
|A* — f||F > § with § > €, leading to:

[Hprop — fX||r = ||AKX = fX|| . = 6|1 X]|p- (11)
From Equation 9] Equation[I0] and Equation [T} we obtain that: For PROPGCL and PROP, we have
er||X||r < 6||X]| . This holds since €5 < 6.

For PROPGCL and GCL, we have ¢;||X||r < a| f||¢||X]| 7. This holds when o > ”;ﬁF.

Therefore, under the stated conditions, we finally have:

[Hpropcer — fX|[r < min ([[Hpror — fX||F, [|[Haoer — fX||F),
which ends the proof. O

I EXPERIMENTS ON GCL WITH RANDOM WEIGHTS

In Section[5.1] we show that in the DGI method, after replacing the trained transformation weights
with a random Gaussian matrix, the downstream performance does not deteriorate as expected. We
conclude that the transformation weights learned in GCL are not better than random. To enhance the
generalizability of our conclusion, we extended our experimental evaluations to include more GCL
methods, propagators, and initialization methods. The experimental settings are kept the same.

Variants on GCL methods. Table|14|shows the results using the GRACE and BGRL methods. For
GRACE, replacing the transformation weights with random weights raises the performance from
73.93% to 74.51% on average. For BGRL, the replacement brings an increase of more than 2% in
average performance.

Variants on initialization methods. We compare GCL weights with four random initializations:
Gaussian, Uniform, Kaiming (He et al.} 20135)), Xavier (Glorot & Bengio, [2010)). Table shows
that all randomized weights perform comparably to (even slightly better than) GCL-trained weights,
confirming the GCL weights deficiency.
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Variants on the propagators. We consider an alternative APPNP-like propagator (Gasteiger et al.,
2019a):

Happne = (1 — a)APX +aX,
where « is the teleport (or restart) probability. As shown in Table [I6] for the APPNP propagator,
GCL-learned weights still show no significant advantage over different random weights.

Although we can not exhaustively try all GCL random variants, the results of representative variants
above are able to verify that many GCL methods fail to learn effective transformation weights.

Table 14: Test accuracy (%) of node classification benchmarks with GRACE and BGRL methods,
comparing the GCL-learned transformation weights and random weights. Bold indicates the best-
performing weights in each GCL method.

Method Weights Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
GCL-learned  83.15+ 0.82 74.97 £0.56 81.53+0.25 4846+0.95 67.24+142 8475+295 7088+£2.00 8049+2.13 7393
Randomize W 8291 +0.72 69.93+0.59 81.39+040 53.82+0.79 69.67+1.01 8459 +2.79 7325+1.38 80.49+230 74.51
GCL-learned  83.27 +£0.79 73.40+093 81.36 £0.29 4043 +0.77 65.07+0.96 81.97+3.11 73384225 80.00+2.13 7236
Randomize W 8243 +£0.44 73.85+0.74 80.77+0.28 54.12+0.67 71.40+1.16 84.59+3.11 71384525 80.33+1.97 74.86

GRACE

BGRL

Table 15: Test accuracy (%) of node classification benchmarks with DGI method, comparing the
transformation weights learned and random weights initialized in different methods. Bold indicates
the best method, while underlined is the second-best.

Training Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
GCL 8323 +0.74 7424+055 8210+0.33 459240.65 64.00+1.33 81.15+2.13 71.88+2.50 80334180 72.86
Gaussian-random  83.02+0.94 70.04 £0.82 83.87 = 0.53 49.62+0.99 6794+ 1.16 8033+181 7225+225 8033+197 7343
Uniform-random  82.63 + 1.05 70.63 £1.13 8338 +0.50 44.49+1.03 6842+0.92 82.624+2.62 73.25+225 80.82+1.80 7328
Kaiming-random  82.46 £0.71 69.09 +£0.71 83.68 £0.32 4499 +0.63 6842+ 153 8246279 75.75+£3.38 80.66+1.97 73.44
Xavier-random 8245+ 0.74 68.90 £0.74 83.56 £0.43 45.02 £0.64 6834+ 147 8295+230 75134175 80.82+£197 7340

Table 16: Test accuracy (%) of node classification benchmarks with DGI method and APPNP
propagator, comparing the GCL-learned transformation weights and different random weights. Bold
indicates the best method, while underlined is the second-best.

Training Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell Mean
GCL 8479+ 0.80 7547 +£0.76 8225+0.24 40.74+0.61 58.99+1.40 8033 +1.97 87.00+2.50 80.33+1.80 73.74
Gaussian-random  85.42 +0.99 7649 4+ 0.55 84.85+0.16 4576 +0.69 58.95+ 1.23 82.79 +3.28 88.50 +2.63 83.44+3.61 75.78
Uniform-random  85.34 +0.84 76.81 = 0.68 84.60 +0.24 43.87 £0.90 5842+ 0.96 78.69 £2.62 86.88+ 1.25 78.52+246 74.14
Kaiming-random  83.23 £1.00 75.68+0.79 83.76 £0.15 39.31+0.91 5589 +144 81.15+4.59 87.25+325 81.15+443 7343
Xavier-random  83.024+0.69 7528 £0.61 83.10+0.19 3855+086 55604120 81.15+4.10 87.634+3.13 78.69+623 7288

J  FLIP CL-SL EXPERIMENTS IN SECTION[3

In the flip experiment, we first train the network parameters via GCL and save the learned trans-
formation weights W¢r, and propagation coefficients O¢r,. We then proceed with the following
experiments:

Experiment 1 (Fix-transformation). We initialize and freeze transformation weights with the
GCL-trained W ¢y, and only learn propagation coefficients 8 through supervised learning.

Experiment 2 (Fix-propagation). We initialize and freeze propagation coefficients with the GCL-
trained Og;,, and only learn transformation weights W' through supervised learning.

Experiment 3 (All-one baseline). We further consider a baseline with GCL-trained transformation
weights Wy, and a fixed all-one propagation coefficients 1.

As shown in Table[I7} despite using the propagation coefficients learned via GCL, the model still
achieves satisfying performances of 77.57%, compared to the original supervised model with 80.41%.
However, after replacing the transformation weights with GCL-learned ones, the performance
deteriorates largely with an accuracy of only 65.01%. The results further confirm our conclusion in
Section[5.2]that GCL learns effectively during the propagation phase.
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Table 17: Test accuracy (%) of node classification benchmarks. We freeze the propagation coefficients
with B¢y, (or the transformation weights with W), and learn the transformation weights (or
propagation coefficients) in the supervised setting. 1 denotes an all-one vector. Bold indicates the
best, while underlined represents the second-best choice.

Method o w Cora CiteSeer PubMed Squirrel Chameleon Texas ‘Wisconsin Cornell Mean
SL Learn Learn 8839 +0.74 79.67 £0.72 87.11+0.25 49.34+1.09 69.52+0.96 89.67+2.13 91.25+2.75 88.36+3.11 8041
CL Oc;, Wgr 8342+092 7479+057 8492+0.26 37.90+0.79 55.67+096 77.87+2.79 8638+3.63 75.74+3.61 72.09

Fix-transformation Learn W,  76.62 £2.12 7625+ 0.64 8332+£046 36.56+0.61 5241+206 60.16+6.39 7525+£438 59.51+508 65.01
Fix-propagation Ocr,  Learn 87.06+0.53 79.55+0.74 8576+023 4144+106 6444+0.74 8738+£295 90.634+3.00 84.264+2.62 77.57
All-one baseline 1 Learn 71.74 £322 7592+0.61 79.38+047 3327+0.61 4232+090 5541+443 7413+4.13 60824656 61.65

K DETAILS ABOUT POLYNOMIAL GNNS

In this section, we introduce polynomial GNNs from the spectral perspective. Developed from graph
signal processing, graph convolution means transforming the graph signals to the Fourier domain and
then back to the vertex domain after suitable filtering, i.e., H = Ugyg (A)UTX, where gy is the filter,
U is the matrix of eigenvectors of graph Laplacian L, A is the diagonal matrix of eigenvalues. The
problem arises when the parameters in gg(A) are entirely unconstrained, leading to a lack of spatial
localization in the convolution and a high time complexity due to eigenvalue decomposition.

These issues can be overcome with the use of a polynomial filter go(A) = f:iol 0, A*, where the
parameter @ € RX is a vector of polynomial coefficients. Therefore, the graph convolution can be
reformulated as H = ( kK:_Ol 0, L*)X. We call GNNs using the polynomial approximated filters as
polynomial GNNs. As one of the pioneer works, ChebNet (Defferrard et al.,|2016) uses Chebyshev
polynomial parametrization to localize filters as gg(A) = Zfzo 0T} (A) where A = 2A /Amax — L,
0 is the Chebyshev coefficients, and T} (A) is the Chebyshev polynomial of order k recursively
calculated by Ty (z) = 22Ti—1(x) — Tp—o(z) with Ty(z) = L and T3 (z) = .

In Section[6] we consider three popular polynomial GNN variants. GPRGNN (Chien et al., 2021)
uses the monomial basis functions evaluated at A, i.e., gg(A) = 2:01 0, (I — L) with 6 as
learnable coefficients. BernNet (He et al. [2021) uses the Bernstein polynomial approximation,
ie., go(A) = Sr o O (X) (21 — L)X*L* with 6 as learnable coefficients. ChebNetll (He
et al.,|2022)) enhances the original Chebyshev polynomial approximation by Chebyshev interpolation,
formulated as go(A) = KLH Ef:o Zﬁio 0, Ty ()T, (L), where ; = cos((j + 1/2)7/(K + 1))
are the Chebyshev nodes of Tk 1, and @ are learnable coefficients.

L  BASIS POLYNOMIAL FUNCTIONS ANALYSIS OF PROPGCL

Polynomial GNNs variants mainly differ in the polynomial basis function choices, e.g., the monomial
basis in GPRGNN (Chien et al.l 2021), the Bernstein basis in BernNet (He et al., |2021)), and
the Chebyshev basis in ChebNetlI (He et al.l [2022)). We have introduced detailed basis function
formulations in Appendix [K]

In this section, we compare different basis polynomial functions used in PROPGCL. Here, we
consider the Chebyshev basis, Bernstein basis, and monomial basis. As shown in Table @] and Table
[I9] the performance of PROPGCL is relatively robust in the choice of basis functions. For homophily
benchmarks, PROP-GRACE with Chebyshev basis and the PROP-DGI with monomial basis achieve
the best, surpassing the second slightly by 0.05% on average. For heterophily benchmarks, the best
PROP-DGI with the Chebyshev basis achieves 73.71% on average, and the Bernstein basis ranks
second. In general, the Chebyshev basis is preferred in PROPGCL.

M CLUSTERING QUALITY ESTIMATION

To exclude the impact of linear-probing, we also evaluate the clustering quality of raw features
and representations learned by GRACE and PROP-GRACE. We conduct KMeans on unsupervised
representations and esitimate two clustering metrics Clustering Accuracy and Normalized Mutual
Information (NMI). As shown in Table [20|and Table PROP-GRACE outperforms both baselines
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Table 18: Test accuracy (%) of homophily node classification benchmarks, comparing different basis
polynomial functions in PROPGCL. Bold indicates the best method, while underlined represents the
second-best choice.

Method Basis Cora CiteSeer PubMed Photo Computers CS Mean
Chebyshev  87.42+£0.95 81.56+0.83 86.19+0.35 93.32+031 88.12+0.23 9595+0.14 88.76

PROP-GRACE Bernstein ~ 87.52 +£1.20 81.69+0.86 8590+0.25 93.42+024 87.77+0.22 9597+0.13 88.71
monomial 87.34 £1.13  81.86 £0.79 86.41+0.23 93.19+026 86.85+0.34 9591 +0.15 88.59

Chebyshev  86.19 £ 1.05 80.78 £0.65 85.14+0.22 92.78+0.37 89.81 £0.20 95.82+0.18 88.42

PROP-DGI Bernstein 8649 £0.99 80.93+0.72 8580+0.40 93534026 89.77+£0.25 9546+0.16 88.66
monomial  86.86 £1.02 81.69 +0.86 86.56 +0.33 93.72+0.25 88.18 £0.34 9557 +0.14 88.76

Table 19: Test accuracy (%) of heterophily node classification benchmarks, comparing different basis
polynomial functions in PROPGCL. Bold indicates the best method, while underlined represents the
second-best choice.

Method Basis Squirrel Chameleon Actor Texas Wisconsin Cornell Mean
Chebyshev  55.09 £0.81 71.73 +£1.18 3935+0.81 89.84+1.81 8850+3.63 86.72+246 71.87

PROP-GRACE Bernstein  48.51 £0.85 70.024+0.88 39.33+0.81 90.16+ 131 89.00+3.25 88.52+2.95 70.92
monomial  51.96 £ 0.69 69.28 £1.05 39.52+0.89 8443 +2.62 84.13+£4.50 88.20+2.79 69.59

Chebyshev  60.53 + 0.66 74.11 £0.96 39.53 +0.84 91.80+230 88.88+250 87.38+2.62 73.71

PROP-DGI Bernstein ~ 53.08 £ 0.83 71.20 £0.81 3948 +0.77 9246+ 1.48 91.63 £3.00 87.38+2.63 72.54
monomial  56.654+0.77 72.12+£0.72 37.80+0.57 93.11+1.80 83.63 £5.88 81.97+295 70.88

on average, demonstrating better clustering effectiveness. Compared to the state-of-the-art perfor-
mance in linear probing, PROP-GRACE fails to consistently surpass GRACE across all benchmarks.
Therefore, we recommend adopting PROPGCL in a CL+linear-probing use case, i.e., training a
simple linear classifier on the unsupervised representations in downstream tasks.

Table 20: Clustering Accuracy (%) of node classification benchmarks, comparing Raw Features (RF),
GRACE, and PROP-GRACE. Bold indicates the best method, while underlined is the second-best.

Cora CiteSeer PubMed Squirrel Computers Photo Chameleon Texas Wisconsin Cornell Mean

RF 30.06  37.60 59.86 38.21 37.52 20.32 23.36 44.26 51.79 44.26  38.72
GRACE 4324  56.36 64.68 31.06 47.22 2451 26.75 46.45 43.03 3224 41.55
PROP-GRACE 51.81 67.45 61.39 39.97 46.01 31.46 29.07 46.45 41.83 41.53  45.70

N ROBUSTNESS COMPARISON

N.1 NoiIsYy FEATURES SENSITIVITY ANALYSIS

In Appendix [F} we evaluate PROP’s performance under node feature perturbations. Here, we
extend this analysis to PROPGCL (using PROP-GRACE as a representative) and compare it against
two baselines: raw features (RF) and PROP. We examine two perturbation scenarios- 1). Noise
Perturbation: Gaussian noise is added to the original node features to generate noisy inputs; 2).
Masking Perturbation: Random channels of the node features are masked at varying ratios in 20%,
40%, 60%, and 80%.

As shown in Tables [22|and PROP-GRACE exhibits significantly stronger robustness compared
to both RF and PROP. Specifically, it outperforms RF by >30% on noise-perturbed features and
maintains consistent improvements across all masking ratios. These results highlight the advantages
of PROP-GRACE’s on noisy or low-dimensional features.
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Table 21: NMI of node classification benchmarks, comparing Raw Features (RF), GRACE, and
PROP-GRACE. Bold indicates the best method, while underlined is the second-best.

Cora  CiteSeer PubMed Squirrel Computers Photo Chameleon Texas Wisconsin Cornell Mean

RF 0.1031  0.1504 03105  0.2231 0.2567 0.0040 0.0123 0.2018  0.3738 0.2018 0.1838
GRACE 0.3476  0.3166  0.2257  0.2179 0.4584 0.0150 0.0163 0.1897 0.2382 0.0345  0.2060
PROP-GRACE 0.3623  0.4136  0.3380  0.3071 0.4039 0.0818 0.0885 0.1491 0.1044 0.0536  0.2302

Table 22: Test accuracy (%) of noise-perturbed node classification benchmarks, comparing Raw
Features (RF), PROP and PROP-GRACE. We add noise from a normal distribution onto the original
features to generate randomly noisy node features. Bold indicates the best method.

Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon ~ Mean
RF 39.90 £ 6.85 3231 +847 57284569 42.60+7.57 54574627 21.34+1.03 2547 +247 39.07
PROP 7673 +2.02 69.25+244 81.50+2.00 73.76+11.58 70.23+7.74 4894 £6.14 69.39 +2.15 69.97

PROP-GRACE 80.77 +0.92 70.85+1.20 81.17+0.29 80.07 +0.48 72.06 + 0.67 5847 £0.72 67.794+ 120 73.03

N.2 HYPERPARAMETER SENSITIVITY ANALYSIS

In this section, we undertake a hyperparameter sensitivity analysis to compare PROPGCL with its
GCL backbone counterpart. The investigation entails manipulating a spectrum of hyperparameters to
assess their impact on performance metrics. Specifically, we focus on two pivotal hyperparameters
within the model architecture: the hidden dimension and the number of propagation steps. Figure
M]illustrates that the performance of DGI is notably sensitive to perturbations in hyperparameters.
For instance, on the Cora dataset, a reduction in the hidden dimension from 256 to 128 results in
a substantial accuracy decrement of approximately 40%. Conversely, as shown in Figure [3] the
robustness of PROP-DGI is evident across various hyperparameter configurations, with a sharp
decline only observed when using small neural networks.
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Figure 4: Hyperparameter sensitivity analysis of DGI with ChebNetlI as the encoder. We evaluate
the performances by varying the hidden dimension and propagation step.

O TRIALS IN THE FEW-SHOT LEARNING SETTING

In Section 5] we observe that GCL has the potential to learn good propagation coefficients given
well-trained transformation weights. It inspires methods in the few-shot scenario, where a model is
tasked with achieving effective generalization from a minimal number of labeled examples per class.

In this study, we examine the N-shot case, where N denotes the number of examples per class used
for training and is commonly chosen as 3 or 5. For our approach, we train the propagation coefficients
via GCL and then focus on optimizing the transformation weights supervisedly on the given support
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Table 23: Test accuracy (%) of modified node classification benchmarks, comparing Raw Features
(RF), PROP, and PROP-GRACE. We randomly mask a proportion of features to generate perturbed
node features. Bold indicates the best method, while underlined represents the second-best.

Mask ratio Method Cora CiteSeer PubMed Photo Computers Squirrel Chameleon ~ Mean
RF 5401+£340 60341424 7000466 6587516 68.59+498 2837+067 41771278 5556

20% PROP 76.19£3.76 7187268 83.85+:099 8978+ 151 83371218 47.13:14.50 64.40=245 73.80
PROP-GRACE 80.36+ 0.84 7327=0.66 82.12-0.16 88.00£042 79.19+0.50 56.93 =048 67.37+140 7532

RF 49.10 £2.61 4468+£9.49 5836+58] 50624953 53564974 2567+ 197 34994488 4528

40% PROP 6125+ 6.68 548741025 76.85+:443 761641029 6466+ 10.61 38.68+598 53.90+667 6091
PROP-GRACE 80.79 4+ 107 73.78=0.86 8155=0.18 8738050 71294029 5321+053 64.38=109 73.20

RF 4695 +£567 36.10+£8.12 5588+487 44204796 5385758 23224227 30724409 4157

60% PROP 54474693 425941070 63.68=£9.19 6027+ 1432 60.69 £ 846 2847650 41.03 =897 50.17
PROP-GRACE 7839+ 113 7201+ 111 79.13+020 7887=0.50 70.060.87 47.06+085 6376+ 118 69.90

RF 4833+£3.69 30.18+£5.64 52001+3.18 41474578 57874263 2193+204 28424313 4003

80% PROP 49.06 £ 639 33774983 57.89+873 57.894873 603745.14 26354538 34.64+9.06 44.90
PROP-GRACE 6020 + 1.40 6383+ 113 65294044 7138=104 64.85+098 38844113 5580+ 144 60.03
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Figure 5: Hyperparameter sensitivity analysis of PROP-DGI with the Chebyshev basis. We evaluate
the performances by varying the hidden dimension and propagation step.

examples. The method is termed as Fix-prop SL. For the baseline, we consider the ChebNetII
models trained via supervised learning (SL) and contrastive learning (CL).

As illustrated in Table [24] this approach yields improvements on several benchmarks. For instance,
Fix-prop SL enhances SL accuracy from 57.51% to 72.60% on Cora in the 5-shot case, and from
39.19% to 65.39% in the 3-shot case. However, the Fix—-prop SL approach has minimal impact
on the Squirrel and Chameleon datasets. The results demonstrate the potential of integrating SL
and CL from a decoupling perspective in the few-shot scenario. Notably, we keep hyperparameters
consistent across all training methods and benchmarks, leaving ample room for further exploration
beyond this initial investigation.

Table 24: , comparing models trained with SL, CL, and Fix-prop SL settings. Bold indicates the best,
while underlined represents the second-best choice.

Training Cora CiteSeer PubMed Squirrel Chameleon
SL 57.51 £2.29 43.11+£3.75 59.62+256 20.15+0.30 22.09+ 1.60
5 Shot CL 66.88 +£2.29 55.02 +£4.64 6320 +£2.64 28.41+0.87 36.92+2.52
Fix-prop SL  72.60 +1.43 53.26 +4.03 67.66 +2.58 20.60 +£0.90 23.30+1.91
SL 39.19+3.96 37.52+225 5589+255 2027+0.55 21.40+1.26
3 Shot CL 64.46 £4.34 5585+£5.15 59.88+£3.49 25.89+1.54 36.12+1.34
Fix-prop SL  65.39 +2.15 46.90 +£3.40 61.46+5.49 2038 +0.69 27.85+3.02
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P CONTRASTIVE TRAINING L0OSS CURVES

As demonstrated in Figure [f] to Figure 0] across multiple benchmarks, GCL with transformation
rapidly drives the CL training loss to near zero. In contrast, GCL without transformation maintains
a moderate loss level, reflecting its resistance to over-optimizing the CL objective. It verifies the
conclusion in Section [5.3] that transformation leads to the overfitting to contrastive loss and may
negatively transfer to downstream tasks.

Q EFFICIENCY ANALYSIS OF PROPGCL

By excluding transformation weights, PROPGCL demonstrates greater efficiency than the baseline
models in both time and memory usage, as evidenced by Tables 23] to For example, PROP-
GRACE reduces training time per epoch by 84.29% compared to GRACE with Chebyshev basis on
the CS dataset. In terms of memory consumption, PROP-GRACE reduces encoder memory usage
by over 99% across various benchmarks relative to the original baseline. Remarkably, PROP-GGD
achieves a 20% reduction in training time compared to GRACE on large-scale OGB benchmarks,
underscoring the scalability of PROPGCL for large-scale graph learning tasks.

In most real-world graph scenarios, PROPGCL demonstrates significantly higher time efficiency
compared to its backbone, even for large-scale graphs. For edge cases involving extremely dense
graphs and high feature dimensionality, we propose a lightweight solution—prepending a random
projection layer before propagation, whose efficacy is validated in Table 2.

Below, we provide a detailed time complexity analysis. For simplicity, consider a basic propagator
AX, with time complexity O(|E| x d), where d is the feature dimension and | F| is the edge number.
The transformation HW has complexity O(|V| X d;;, X dout), where d;, = d t 1s the input feature
dimension, dy,; is hidden dimension and |V| is node number. PROPGCL utilizes pure propagation
as O(|E| x dy), while the backbone combines both, i.e., O(|V| x df X dout + |E| X dout). The
time improvement is A = O(|V|(d¢(dout — ) + 5 X dout)), Where s = |E|/|V] is the sparsity
factor. The key insights are (1) for typical graphs (low s, moderate d ), PROPGCL’s gains grow with
dy, as doyt > s often holds for real-world sparse graphs, validated in Table and (2) for dense
and high-dimensional cases, while gains may narrow, we can lightweightly fix it by prepending a
random projection layer before propagation. Table 2] verifies random projections’ efficacy, and their
no-training nature preserves efficiency. Therefore, PROPGCL’s speedup holds across most practical
settings.

To verify the feasibility of the random projector, we construct synthetic graphs using the Erd6s—Rényi
model, consisting of 1000 nodes with a feature dimension of 10,000 and an edge probability of 0.5,
resulting in a dense graph with extremely high-dimensional features. To generate meaningful yet
non-trivial node features, we combine topological properties (degree, clustering coefficient) and
community structure (from spectral clustering). To prevent overly discriminative features, we further
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corrupt them with Gaussian noise (std=1.0). Node labels are assigned based on communities, and the
data is split into train/validation/test sets following the paper’s settings. We evaluate three variants: (1)
DGI: vanilla GCL with spectral GNNs as the backbone, (2) PROP-DGI: the method proposed in the
paper, removing the transformation entirely, (3) PROP-DGI-RAND: extends PROP-DGI by adding
a frozen random projection layer before propagation. The results are shown in Table[29] Although
sacrificing a modest performance compared with PROP-DGI, PROP-DGI-RAND still significantly
improves over DGI on test accuracy (90.90% vs. 58.05%). Moreover, the random projection further
decreases the training time for PROP-DGI from 0.1918s to 0.0227s, demonstrating its efficiency on
high-dimensional dense graphs.

Table 25: Training time per epoch in seconds between PROP-GRACE and GRACE. Experiments
are all conducted on a single 24GB NVIDIA GeForce RTX 3090, except those denoted with * on
48GB Nvidia A40 for out-of-memory. Improvement refers to the percentage increase in speed of the
-PROP version compared to the baseline, i.e., (tGRACE — tPROP—GRACE)/tGRACE-

Basis Method Cora  CiteSeer PubMed Photo  Computers CS Squirrel Chameleon  Actor
Chebyshey GRACE 0.1611  0.1939 02795  0.2872 0.4639 L.5111*%  0.7004 0.2295 0.2872
PROP-GRACE  0.1409  0.1478  0.2650  0.2400 0.3626 0.2374*  0.2581 0.1450 0.2073
Improvement 12.54%  23.79% 5.18% 16.44% 21.84% 84.29%  63.15% 36.82% 27.83%
Bernstein GRACE 0.1515 02215 02513 0.4878 0.9293 6.7666*  1.8997 0.4079 0.2619

PROP-GRACE 0.1226  0.1178 02334  0.3832 0.6968 0.6038*  0.5175 0.1653 0.1789
Improvement 19.03%  46.79% 7.10%  21.45% 25.02% 91.08% 72.76% 59.47% 31.69%
GRACE 0.1114  0.1023 0.1217  0.1606 0.2340 1.2487* 03714 0.1524 0.1202
PROP-GRACE 0.1024  0.1224 0.1221  0.1428 0.1928 0.1927*  0.1650 0.1151 0.1109
Improvement 8.06% 16.42% 0.31% 11.12% 17.61% 84.57%  55.56% 24.46% 7.74%

Monomial

Table 26: Memory consumption of encoder in KBs between PROP-GRACE and GRACE. Improve-
ment refers to the percentage decrease in the memory consumption of the -PROP version compared
to the baseline. i.e., (mGRACE — mpRop,GRACE)/mGRACE.

Method Cora CiteSeer PubMed Photo  Computers CS Squirrel  Chameleon  Actor
GRACE 3894.04 8434.04 2028.04 2518.04  2562.04  2562.04 5206.04  5678.04 = 2892.04
PROP-GRACE  11.24 28.97 3.95 5.86 6.04 6.04 16.36 18.21 7.32

Improvement  99.71%  99.66%  99.81%  99.77% 99.76% 99.76%  99.69% 99.68% 99.75%

Table 27: Training time per epoch in seconds and memory consumption of encoder in KBs between
GGD and PROP-GGD on OGB benchmarks. Experiments are conducted on a single 80GB NVIDIA
A100. Improvement refers to the percentage increase in speed or decrease in memory consumption.

Metric Method ogbn-arxiv ogbn-products
GGD 1.0270 (2324.00)  284.3968 (12740.00)
Time (Memory) PROP-GGD 0.7892 (3.5) 212.0509 (3.52)

Improvement  23.15% (99.85%) 25.44% (99.97%)

29



Under review as a conference paper at ICLR 2026

Table 28: The relationships of sparse factor s and hidden dimension d,,,; in popular benchmarks

Dataset s doyt in best practice  Relationships
Cora 1.95 64-512 dout > S
CiteSeer 1.36 64-512 dout > S
PubMed 2.25 64-512 dout > s
Photo 15.57 64-512 dout > s
Computers  17.88 64-512 dout > 8
Chameleon 15.85 64-512 dout > 8
Squirrel 41.74 64-512 dout > S

Table 29: Test accuracy (%) and training time (seconds) on the high-dimensional dense graph.

Method Accuracy Training Time
DGI 58.05 £ 1.40 0.6293
PROP-DGI 100.00 + 0.00 0.1918
PROP-DGI-RAND  90.90 £ 1.30 0.0227

R COMPARISON WITH SUPERVISED CONTRASTIVE LEARNING

We hypothesize that the failure partly of learning effective transformation weights stems from the
unsupervised nature of the contrastive task, which leads to inefficient optimization without sufficient
guidance. As an initial exploration, we devise a supervised contrastive loss by selecting positive and
negative pairs according to ground-truth labels, following the principles of supervised contrastive
learning (Khosla et al., 20205 (Graf et al., [2021)). We apply the modified loss to the GCA framework
(termed SUP-GCL) and compare the learned transformation weights with those of GCL and SL. As
shown in Figure ??, incorporating supervised signals slightly mitigates the smooth characteristic
of GCL weights, but can’t fully solve the limitations. We believe the intrinsic reasons behind the
ineffective learning of transformation weights remain to be further explored. Fortunately, we find
that GCL promisingly captures propagation coefficients and, building on this insight, we propose
removing the transformation while retaining only propagation.

S TRIALS ON LEARNING EFFECTIVE TRANSFORMATION WEIGHTS IN GCL

According to the analysis in Section [5.1] GCL learns uninformative weights that are excessively
smooth. Here we try three ways to solve this problem: 1) enforcing the sparsity of weights with [y
normalization; 2) using whitening methods (Bell & Sejnowski, [1997; Kessy et al.,|2018); 3) using
normalization methods (Huang et al., 2018; Hua et al., 20215 |Guo et al.,[2023a).

l; regularization. As a typical technique, the [, regularization encourages sparsity by driving some
weights to zero and retaining the most relevant features. In practice, we add a penalty proportional
to the sum of the absolute values of the encoder parameters to the contrastive loss, i.e., Liotal =
Lct, + XY, |w;|, where Lcy, is the contrastive loss, A is the regularization strength, and the w;
is the parameters of the encoder. We conduct experiments on ChebNetll with the [; regularized
GRACE training objective, varying the regularization strength A in [1 x 1074, 1 x 10751 x 1076].
As shown in Table the [, regularization improves performance over the original GRACE on
the Squirrel, Chameleon, Texas, Wisconsin, and Cornell datasets, though it still lags behind PROP,
except on Wisconsin. However, for Cora, Citeseer, and PubMed, [; regularization negatively impacts
performance.

Whitening methods. Whitening methods are used to decorrelate and normalize data. By making
dimensions mutually independent, whitening methods implicitly solve the representation collapse
problem. Here we consider the typical Zero-phase Component Analysis (ZCA) whitening (Kessy:
et al., [2018)), which transforms the input data such that it has zero mean and identity covariance
matrix, while also preserving data structure as much as possible. It is computed by multiplying

the data by the inverse square root of its covariance matrix, i.e., & = VA‘%VT:I:, where V is the
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Table 30: Time efficiency comparison, with the percentage denoting the decrease of the epoch time
consumption (seconds).

Method Photo Computers CsS Squirrel Chameleon Average

GRACE 0.2872 0.4639 15111 0.7004 0.2295 0.6384

SimGCL 0.2637 (18.18%)  0.3947 (114.91%) 1.0329 (131.64%) 0.6374 (18.99%) 0.1893 (|17.51%) 0.5036 (121.11%)
PROP-GRECE  0.2400 (116.44%) 0.3626 (121.84%) 0.2374 (184.29%) 0.2581 (163.15%) 0.1450 (136.82%) 0.2486 (161.05%)

Table 31: Test accuracy (%) of node classification benchmarks. We train ChebNetlI using the [y
regularized GRACE objective. A denotes the regularization strength. Bold indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell
PROP 8548 +£0.76 78.87 +£0.63 82.80+0.48 5848 +1.03 68.82+142 86.23+3.11 89.00+£325 86.23+3.11
A=0 (GRACE) 83424092 74.794+0.57 84.92+£0.26 3790+0.79 55.67+0.96 77.87+£279 86.38+3.63 75.74+3.61
A=le-4 5371 £1.10 2697 £0.50 81.20+0.21 33.07£0.89 48.60+1.42 80.98+2.30 70.00+1.88 82.79+2.46
A=le-5 78.87 £1.17 7329+0.63 84.17+0.23 37.46+0.89 56.37+1.01 56564197 91.88+2.25 81.80+2.30
A=le-6 77775 £0.80 73.90+0.74 84.16+0.21 38274102 5691+1.09 52794+476 86.88+2.88 74264738

matrix of eigenvectors and A is the diagonal matrix of eigenvalues of the covariance matrix of . We
conduct experiments under the GRACE framework with a ZCA whitening layer added to the encoder
ChebNetll. As shown in Table[32] the whitening improves performance over the original GRACE on
the PubMed and Chameleon datasets but drastically deteriorates most of the other datasets.

Table 32: Test accuracy (%) of node classification benchmarks. We train ChebNetII using GRACE
with the ZCA whitening. Bold indicates the best, while underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell
PROP 8548 +£0.76 78.87 +0.63 82.89 +0.48 5848 +1.03 68.82+1.42 86.23+3.11 89.00+3.25 86.23 +3.11
GRACE 83.42+0.92 7479 £0.57 84.92+0.26 37.90+0.79 55.67+096 77.87 +2.79 86.38 +£3.63 75.74+3.61
GRACE+ZCA 7929 £ 1.71 4729 £0.70 85.76 +0.29 36.72+091 58.60 + 1.07 43.77 +8.36 27.38 +£3.63 38.52+6.23

Normalization methods. For normalization methods, we consider the widely used Batch Nor-
malization (BN) (loffel 2015)), and the recently proposed Decorrelate ContraNorm (DCN) (Guo
et al.| 2023a)). Batch normalization scales and shifts the mini-batch of data to have a mean of zero
and a standard deviation of one, i.e., & = (x — up)/\/0% + €, where up and o% are the mean
and variance of the mini-batch B, and ¢ is a small constant for numerical stability. DCN scatters
representations in the embedding space and leads to a more uniform distribution. The formulation of
DCNis & = & — s X & x softmax(z ' =), where s is the scale factor. We conduct experiments under
the GRACE framework with a BN or DCN layer added to the encoder ChebNetll. As shown in Table
[33] BN and DCN both fail to bring substantial improvement over the original GRACE.

In summary, these techniques offer limited effectiveness for GCL with polynomial GNNs. We think
the possible reason is that the learning of transformation weights needs a high-quality supervision sig-
nal. Although these methods help prevent representation collapse, they do not carry extra information.
Therefore, GCL still fails to learn good transformation weights.

Table 33: Test accuracy (%) of node classification benchmarks. We train ChebNetlI using GRACE
with BN or DCN normalization. s denotes the scale factor in DCN. Bold indicates the best, while
underlined represents the second-best choice.

Cora CiteSeer PubMed Squirrel Chameleon Texas Wisconsin Cornell
PROP 8548 £0.76 78.87 +0.63 82.89 £0.48 58.48+1.03 68.82+1.42 86.23+3.11 89.00+325 86.23+3.11
GRACE 8342+0.92 7479 £0.57 84924026 3790+0.79 55.67+£096 77.87+279 86.38+3.63 7574+3.61
GRACE + BN 8225+ 1.00 7278 +1.00 85.10+0.24 39.56+047 54.77+0.74 76.07+£2.95 72.63+475 75.90=£2.79

GRACE + DCN (s=0.5) 79.79 £0.99 73.86+0.86 84.00+ 037 38.17+0.95 56.19+1.03 71.15+2.13 8325+250 71.64+£459
GRACE +DCN (s=1.0) 75.19 £1.08 7491 +0.63 83.06+0.22 3828+1.12 57354098 74.26+1.64 90.50+1.50 76.72+3.11
GRACE +DCN (s=5.0) 7440+ 1.15 7446+0.63 79.41+£035 38.01+£0.79 58974133 7295+344 83251275 73.44+344
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T CHARACTERIZATION OF LEARNED TRANSFORMATION WEIGHTS

In Section [5.1} we demonstrated the transformation weights learned by DGI and SL on the Cora
dataset. Here, we extend these findings by presenting comprehensive results across various bench-
marks and GCL methods including GRACE, GCA, BGRL. As depicted from Figure[T0|to Figure
[[4] the weights learned by SL display diverse, data-dependent distributions, while those learned by
CL consistently follow a Gaussian-like distribution that centers at zero. Although we can’t exhaust
all GCL methods, these representative methods provide further evidence that GCL often struggles
to learn effective transformation weights. In Figure [I3] we provide results of SUP-CL on more
benchmarks, verifying that the participation of supervision signals slightly mitigates the ineffective

transformation learning problem.
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Figure 11: Distribution of the transformation weights learned by DGI and SL.
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Figure 13: Distribution of the transformation weights learned by BGRL and SL.
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Figure 14: Heatmap of the transformation weights learned by GRACE and SL.
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U CHARACTERIZATION OF LEARNED PROPAGATION COEFFICIENTS

In section[5.2] we find after fixing the transformation weights with supervised ones, the model trained
via GCL performs as well as in a supervised manner. To verify that given well-trained transformation
weights, GCL can learn effective propagation coefficients. We compare the propagation coefficients
learned by SL, GCL, and the fix-transformation GCL. As shown in Figure @ compared with CL, the
propagation coefficients learned by fix-transformation GCL are closer to those in SL, demonstrating
that GCL can learn effective propagation coefficients fitting the given transformation weights.
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Figure 16: Propagation coefficients of supervised learning (SL), contrastive learning (CL), and
fix-transformation contrastive learning (fix-trans CL) introduced in Section@ ‘We show the first
three propagation coefficients for the space limit.

V EXPERIMENTAL DETAILS OF PROP AND PROPGCL

V.1 BENCHMARKS

Node classification benchmarks. 1) Citation Networks (Sen et al, 2008} Namata et al., 2012). Cora,
CiteSeer, and PubMed are three popular citation graph datasets. In these graphs, nodes represent
papers and edges correspond to the citation relationship between two papers. Nodes are classified
according to academic topics. 2) Amazon Co-purchase Networks (Shchur et al. [2018). Photo and
Computers are collected by crawling Amazon websites. Goods are represented as nodes and the
co-purchase relationships are denoted as edges. Node features are the bag-of-words representation
of product reviews. Each node is labeled with the category of goods. 3) Wikipedia Networks
(Rozemberczki et all, [2021). Squirrel and Chameleon are collected from the English Wikipedia,
representing page-page networks on specific topics. Nodes represent articles and edges are mutual
links between them. 4) WebKB Networks [2020). In Texas, Wisconsin, and Cornell datasets,
nodes represent web pages and edges represent hyperlinks between them. Node features are the bag-
of-words representation of web pages. 5) Actor Networks [Pei et al| (2020). Each node corresponds to
an actor, and the edge between two nodes denotes co-occurrence on the same Wikipedia page. Node
features correspond to some keywords on the Wikipedia pages. Statistics of datasets are shown in
Table 34

Graph Classification benchmarks. 1) Molecules. MUTAG (Debnath et all,[1991)) is a dataset of
nitroaromatic compounds and the goal is to predict their mutagenicity on Salmonella Typhimurium.
NCI1 2008) is a dataset of chemical molecules that are annotated based on their activity
against non-small cell lung cancer and ovarian cancer cell lines. 2) Bioinformatics. PROTEINS
(Borgwardt et all, [2003) is a dataset of proteins that are classified as enzymes or non-enzymes.
Nodes represent the amino acids and two nodes are connected by an edge if they are less than 6
Angstroms apart. DD (Dobson & Doig [2003)) consists of protein structures with nodes corresponding
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to amino acids and edges indicating that two amino acids are within a certain number of angstroms. 3)
Social Networks. IMDB-BINARY and IMDB-MULTI (Yanardag & Vishwanathan, 2015)) are movie
collaboration datasets consisting of a network of 1,000 actors/actresses who played roles in movies in
IMDB. In each graph, nodes represent actors/actresses; corresponding nodes are connected if they
appear in the same movie. COLLAB (Yanardag & Vishwanathan| |2015)) is derived from three public
collaboration datasets representing scientific collaborations between authors. For all benchmarks, we
use collections from TUDataset (Morris et al}[2020). Statistics of datasets are shown in Table[33]

Table 34: Statistics of node classification benchmarks. 7 (G) denotes the edge homophily ratio
introduced in|Zhu et al.| (2020a).

Homo / Hetero Category Dataset #Nodes #Edges # Features # Classes H(G)

Cora 2,708 5,278 1,433 7 0.81
Citation CiteSeer 3,327 4,552 3,703 6 0.74
Homophily PubMed 19,717 44,338 500 3 0.80
Photo 7,650 119,081 745 8 0.83
Co-purchase
Computers 13,752 245,861 767 10 0.78
Wikipedia Chameleon 2,277 36,101 2,325 6 0.23
Squirrel 5,201 217,073 2,089 4 0.22
Texas 183 279 1703 5 0.11
Heterophily WebKB  Wisconsin 251 466 1703 5 021
Cornell 183 277 1703 5 0.30
Film-actor Actor 7,600 30,019 932 5 0.22

Table 35: Statistics of graph classification benchmarks. We report average numbers of nodes, edges,
and features across graphs in graph classification datasets.

Category Dataset #Graphs # Nodes #Edges #Features # Classes
MUTAG 188 17.9 39.6 7 2
Moleculars NCII 4110 2987 32.30 37 2
) PROTEINS 1113 39.1 145.6 0 2
Proteins DD 1178 28432 715.66 89 2
IMDB-BINARY 1000 19.8 193.1 0 2
Social Networks  IMDB-MULTI 1500 13.0 131.9 0 3
COLLAB 5000 74.49 2457.78 0 3

V.2 BASELINES

We categorize baselines for the node classification task into 1) traditional graph embedding al-
gorithms DeepWalk (Perozzi et al. 2014) and Node2Vec (Grover & Leskovec, 2016)); 2) graph
autoencoders GAE (Kipf & Welling, 2016), VGAE (Kipf & Welling, 2016); 3) graph contrastive
methods GRACE (Zhu et al., [2020b), DGI (Velickovic et al.,[2019), GCA (Zhu et al.,|2021c), MV-
GRL (Hassani & Khasahmadil 2020), ProGCL (Xia et al.,2022); 4) graph non-contrastive methods
CCA-SSG (Zhang et al.} 2021) and BGRL (Thakoor et al., [2022), 5) heterophily baselines compared
in Section @, PolyGCL (Chen et al., 2024), HGRL (Chen et al.| 2022), GraphACL (Xiao et al.,
2024), SP-GCL (Wang et al.| 2023), DSSL (Xiao et al.,[2022).The design details are as follows.

1) Traditional graph embeddings.

* DeepWalk (Perozzi et al.,2014). DeepWalk leverages truncated random walks to capture
local network structures. The algorithm treats the random walks as sequences of nodes, akin
to sentences in language models. It learns latent representations by applying skip-gram to
maximize the co-occurrence probabilities of nodes appearing in these random walks.

* Node2Vec (Grover & Leskovec| 2016). Node2Vec is built on DeepWalk by introducing a
flexible biased random walk strategy to explore network neighborhoods. The key innovation
is balancing breadth-first sampling (BFS) and depth-first sampling (DFS). This allows
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Node2Vec to capture both homophily and structural equivalence, making the learned node
embeddings more expressive.

2) Graph autoencoders.

* GAE (Kipf & Welling} 2016). GAE involves an encoder-decoder architecture, where the
encoder is a GCN that transforms node features into latent embeddings by aggregating
information from neighboring nodes. The embeddings are then used by the decoder, which
typically applies a simple inner product operation to reconstruct the graph structure, such as
predicting edges between nodes.

* VGAE (Kipf & Welling} 2016). VGAE extends GAE by introducing a probabilistic frame-
work using a variational autoencoder (VAE) setup. It models latent variables with Gaussian
distributions, enabling the generation of node embeddings that capture uncertainty. This
design improves the model’s ability to capture complex structures in graphs, especially in
tasks like link prediction.

3) Graph contrastive methods.

The mode of GCL has three mainstreams: local-to-local, global-to-global, and global-to-local (Zhu
et al., 2021b). A classic example of local-to-local is GRACE (Zhu et al.,[2020b), which generates
two graph views by augmentations and the same nodes in augmented views are positive while all
the other node pairs are negative. Global-to-global mode is often used with multiple graphs in
the graph classification task, with GraphCL (You et al., 2020) as an early but influential trial. For
the global-to-local perspective, positive pairs are taken as the global representation and nodes of
augmented views, and negative pairs are the global representation and nodes of corrupted views. DGI
(Velickovic et al.}[2019) is a typical example.

* GRACE (Zhu et al.|2020b). GRACE generates two graph views by corruption and learns
node representations by maximizing the agreement of node representations in these two
views. To provide diverse node contexts for the contrastive objective, GRACE proposes a
hybrid scheme for generating graph views on both structure and attribute levels.

* GCA (Zhu et al.,2021c)). GCA proposes adaptive augmentation that incorporates various
priors for topological and semantic aspects of the graph. On the topology level, GCA designs
augmentation schemes based on node centrality measures, while on the node attribute level,
GCA corrupts node features by adding more noise to unimportant node features.

* DGI (Velickovic et al., 2019). DGI relies on maximizing mutual information between
patch representations and corresponding high-level summaries of graphs—both derived
using established graph convolutional network architectures. The learned patch representa-
tions summarize subgraphs centered around nodes of interest, and can thus be reused for
downstream node-wise learning tasks.

* MVGRL (Hassani & Khasahmadil, 2020). MVGRL introduces a self-supervised approach
for learning node and graph-level representations by contrasting structural views of graphs.
MVGRL shows that contrasting multi-scale encodings does not improve performance, and
the best performance is achieved by contrasting encodings from first-order neighbors and
graph diffusion.

* ProGCL (Xia et al.| [2022). ProGCL observes limited benefits when adopting existing
hard negative mining techniques of other domains in graph contrastive learning. ProGCL
proposes an effective method to estimate the probability of a negative being true and devises
two schemes to boost the performance of GCL.

4) Non-contrastive methods.

* CCA-SSG (Zhang et al., |2021). CCA-SSG optimizes a novel feature-level objective
that aligns features across different graph augmentations. It uses decorrelation to prevent
degenerate solutions, allowing the model to learn invariant node representations. The model
avoids a mutual information estimator or negative samples, which simplifies training and
reduces computational complexity.

* BGRL (Thakoor et al.,[2022). BGRL avoids the use of negative samples by predicting
different augmentations of the input graph. BGRL relies on a bootstrapping mechanism,
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where one branch predicts the output of another branch that is not updated by gradient de-
scent. This method eliminates the complexity of contrastive learning and negative sampling,
making it more scalable.

5) Heterophily baselines.

* PolyGCL (Chen et al., 2024). PolyGCL integrates spectral polynomial filters into graph
contrastive learning, enabling it to handle both homophilic and heterophilic graphs. The
method generates different spectral views using polynomials and incorporates high-pass
information into the contrastive objective.

* HGRL (Chen et al., [2022). HGRL introduces self-supervised learning for heterophilic
graphs by capturing distant neighbors and preserving original node features. It achieves
this through carefully designed pretext tasks optimized via high-order mutual information,
avoiding reliance on labels.

* GraphACL (Xiao et al.,[2024). GraphACL focuses on an asymmetric view of neighboring
nodes. The algorithm captures both one-hop local neighborhood information and two-hop
monophily similarity, crucial for modeling heterophilic structures.

* SP-GCL (Wang et al.,[2023)). SP-GCL introduces a single-pass graph contrastive learning
method without augmentations. It theoretically guarantees performance across both ho-
mophilic and heterophilic graphs by studying the concentration property of features obtained
through neighborhood propagation.

* DSSL (Xiao et al., [2022). DSSL decouples neighborhood semantics in self-supervised
learning for node representation. It introduces a latent variable model that decouples node
and link generation, making it flexible to different graph structures. The method utilizes
variational inference for scalable optimization, improving downstream performance without
relying on homophily assumptions.

We categorize the baselines in the graph classification task into 1) graph kernel methods including
GL (Shervashidze et al.| 2009), WL (Shervashidze et al.,[2011), and DGK (Yanardag & Vishwanathan)
2015), 2) traditional graph embedding methods including node2vec (Grover & Leskovec [2016]),
sub2vec (Adhikari et al., [2018), and graph2vec (Narayanan et al., 2017), 3) contrastive learning
methods including InfoGraph (Sun et al.| 2020), GraphCL (You et al.| 2020), MVGRL (Hassani &
Khasahmadi, [2020), JOAOvV2 (You et al.,[2021), ADGCL (Suresh et al.,[2021) as introduced in recent
works. The design details are as follows.

1) Graph kernel methods.

* Graphlet Kernel (GL) (Shervashidze et al.| [2009). GL works by counting the number
of small subgraphs (known as graphlets) of a fixed size that appear in each graph. The
comparison of these counts across graphs allows the kernel to capture the local topological
structures of the graphs, making it useful for tasks such as graph classification.

¢ Weisfeiler-Lehman Sub-tree Kernel (WL) (Shervashidze et al.,[2011). WL extends the
concept of graph kernels by applying the Weisfeiler-Lehman test of isomorphism on graphs.
It involves iteratively relabeling the nodes of the graphs based on the labels of their neighbors
and then using these relabelings to define a kernel, typically counting matching sub-trees.

* Deep Graph Kernel (DGK) (Yanardag & Vishwanathan, 2015). DGK combines deep
learning techniques with graph kernels. It first learns a low-dimensional representation
of the graphs through unsupervised learning (often using a form of graph embedding or
autoencoders), then applies traditional kernel methods to these representations.

2) Traditional graph embeddings.

* Node2Vec (Grover & Leskovec, 2016). Node2Vec is built on DeepWalk by introducing a
flexible biased random walk strategy to explore network neighborhoods. The key innovation
is balancing BFS and DFS. This allows Node2Vec to capture both homophily and structural
equivalence, making the learned node embeddings more expressive.

* Sub2Vec (Adhikari et al.,[2018)). Inspired by the word2vec model, sub2vec learns vector
representations for subgraphs in a graph. It treats each subgraph as a "word" and the

38



Under review as a conference paper at ICLR 2026

entire graph as a "document" to learn embeddings that capture the structural and contextual
properties of subgraphs.

* Graph2Vec (Narayanan et al., 2017). Similar to sub2vec, graph2vec is designed to learn
embeddings for entire graphs. By treating each graph as a "document” and graph sub-
structures as "words," graph2vec employs a document embedding approach to learn a
fixed-size vector representation for each graph.

3) Graph contrastive methods.

* GraphCL (You et al| 2020). GraphCL designs four types of graph augmentations to
incorporate various priors and learns graph-level representations by maximizing the global
representations of two views for a graph.

* InfoGraph (Sun et al.| 2020). InfoGraph maximizes the mutual information between the
graph-level representation and the representations of substructures of different scales (e.g.,
nodes, edges, triangles). By doing so, the graph-level representations encode aspects of the
data that are shared across different scales of substructures.

* ADGCL (Suresh et al.,|2021). ADGCL proposes a novel principle, adversarial GCL, which
enables GNNs to avoid capturing redundant information during training by optimizing
adversarial graph augmentation strategies used in GCL.

* JOAO (You et al., [2021). JOAO proposes a unified bi-level optimization framework to
automatically, adaptively, and dynamically select data augmentations when performing
GraphCL on specific graph data.

V.3 SETTINGS

For the node classification task, following [Zhu et al.| (2020b); |Velickovic et al.|(2019); [Hassan1 &
Khasahmadi| (2020), we use linear evaluation protocol, where the model is trained in an unsupervised
manner and feeds the learned representation into a linear logistic regression classifier. In the evaluation
procedure, we randomly split each dataset with a training ratio of 0.8 and a test ratio of 0.1, and
hyperparameters are fixed the same way for all the experiments. Each experiment is repeated ten
times with mean and standard derivation of accuracy score.

For the graph classification task, we use Adam SGD optimizer with the learning rate selected
in {1073,107%,107°} and the number of epochs in {20,100}. For PROP, we only search the
propagation step K in the range of [0, 1, 2, 3, 5, 10]. Following |Sun et al.[(2020); You et al. (2020),
we feed the generated graph embeddings into a linear Support Vector Machine (SVM) classifier,
and the parameters of the downstream classifier are independently tuned by cross-validation. The
C parameter is tuned in {1073,1072,--. /102, 10%}. We report the mean 10-fold cross-validation
accuracy with standard deviation. All experiments are conducted on a single 24GB NVIDIA GeForce
RTX 3090.

V.4 HYPERPARAMETER

For all methods, we train the linear classifier for 2000 epochs with a learning rate of 0.01 and
no weight decay. For hyperparameters of the model architecture and the unsupervised training
procedure, we maintain consistency in the hyperparameter search space across methods as much
as possible. Specifically, for GRACE, we search the temperature 7 in [0.1, 0.5, 1.0], the projector
hidden dimension in [128, 256, 512], the learning rate in [0.01, 0.001], fix the patience as 50, and all
augmentation rates as 0.2. For DGI, we search the learning rate in [0.01, 0.001], the early-stopping
patience in [50, 100], and the hidden dimension in [128, 256, 512]. For CCA-SSG, we search the
training epochs in [20, 50, 100], A in [1e-3, S5e-4], the hidden dimension in [128, 256, 512], and fix
all augmentation ratios as 0.2. For GCA, we search the temperature 7 in [0.1, 0.5, 1.0], the projector
hidden dimension in [128, 256, 512], the drop scheme in [pr, degree, evc], and fix the early-stopping
patience as 50, the learning rate as 0.01, and all augmentation ratios as 0.2. For BGRL, we search the
predictor hidden dimension in [128, 256, 512], the learning rate in [1e-4, 1e-5], the weight decay in [0,
le-5], fix the learning rate warmup epochs as 1000, the momentum moving as 0.99. For DeepWalk,
we search the vector dimension in [128, 256, 512], the context window size in [5, 10], the walk
number in [10, 20], and the walk length in [40, 80]. For Node2Vec, we search the vector dimension
in [128, 256, 512], the walk number in [10, 20], the probability p in [0.5, 1.0], ¢ in [0.5, 1.0], and
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fix the context window size as 10, and the walk length as 80. For MVGRL, we search the learning
rate in [0.01, 0.001], the early stopping patience in [50, 100], and the hidden dimension in [128, 256,
512]. For GAE and VGAE, we search the learning rate in [0.01, 0.001], the early stopping patience
in [50, 100], and the hidden dimension in [128, 256, 512]. For the heterophily baselines in@ we
use the optimal hyperparameter combinations provided in the original papers.
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