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ABSTRACT

Masked Diffusion Language Models (MDLMs) have recently emerged as a strong
class of generative models, paralleling state-of-the-art (SOTA) autoregressive (AR)
performance across natural language modeling domains. While there have been
advances in AR as well as both latent and discrete diffusion-based approaches
for protein sequence design, masked diffusion language modeling with protein
language models (pLMs) is unexplored. In this work, we introduce MeMDLM, an
MDLM tailored for membrane protein design, harnessing the SOTA pLM ESM-2
to de novo generate realistic membrane proteins for downstream experimental
applications. Our evaluations demonstrate that MeMDLM-generated proteins
exceed AR-based methods by generating sequences with greater transmembrane
(TM) character. We further apply our design framework to scaffold soluble and
TM motifs in sequences, demonstrating that MeMDLM-reconstructed sequences
achieve greater biological similarity to their original counterparts compared to
SOTA inpainting methods. Finally, we apply a generalized Bayesian optimization
procedure that uniquely uses saliency maps to facilitate the generation of soluble
membrane proteins, paving the way for experimental applications. In total, our
pipeline motivates future exploration of MDLM-based pLMs for protein design.

1 INTRODUCTION

Membrane proteins are essential for molecular transport, signal transduction, and cellular communi-
cation, making them critical therapeutic targets (Jelokhani-Niaraki, 2022; Sanganna Gari et al., 2021).
However, de novo design of membrane proteins is challenging due to reliance on structure-based mod-
els and limited high-resolution structural data, with only 1% of PDB entries representing membrane
proteins (Wang et al., 2022; Yin et al., 2007; Elazar et al., 2022; Vorobieva et al., 2021). Sequence-
based models offer an alternative, but autoregressive (AR) approaches struggle with protein design
tasks because they generate residues sequentially, limiting long-range dependency modeling—a
critical feature for the complex topology of membrane proteins (Ferruz et al., 2022). To address these
limitations, we introduce MeMDLM, a classifier-guided masked diffusion language model (MDLM)
that enables parallel, non-sequential generation, capturing global sequence dependencies without
structural input.

MeMDLM leverages the MDLM framework to generate novel membrane protein sequences by
iteratively masking and reconstructing amino acid tokens, allowing the model to learn relationships
across distant residues (Sahoo et al., 2024). This contrasts with AR models, which are biased toward
local context and can miss critical global interactions necessary for membrane protein stability
and function. We further integrate LaMBO-2 for classifier-guided sampling (Gruver et al., 2024),
optimizing sequences for solubility and transmembrane (TM) characteristics. Our results show that
MeMDLM generates sequences with TM residue distributions closely matching natural membrane
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proteins, outperforms AR models in capturing transmembrane features, and successfully scaffolds
functional motifs. These advances highlight MDLM’s unique ability to model the global sequence
constraints essential for membrane protein design.

2 METHODS

2.1 MASKED DIFFUSION LANGUAGE MODEL (MDLM)

MDLM is a discrete diffusion architecture that retrains MLMs to learn the true distribution of data
by reconstructing sequences noised with <MASK> tokens. The MDLM training task leverages the
absorbing-state forward diffusion process and a specific reverse diffusion parameterization to simplify
the loss function and increase model accuracy. The absorbing state diffusion process, q(zt,x) is
a distribution parameterized by a time-conditioned log-linear noise schedule αt = − log(1 − t).
During training, we sample timesteps t ∼ U(0, 1) to compute αt, the probability of clean data x0

remaining unchanged, and 1− αt, the probability of x0 transitioning to a <MASK> token:

q(zt,x0) = Cat(zt;αtx0 + (1− αt)m) (1)

The reverse diffusion process, matching the estimated forward diffusion posterior p(zs | zt), is
parameterized by a categorical distribution (“SUBS”) that enforces restrictions on the original discrete
diffusion formulation specific to absorbing state diffusion methods. During the SUBS-parameterized
reverse process, unmasked tokens are unchanged and masked tokens are guaranteed to be unmasked:

pθ(zs|zt,x) =

Cat(zs; zt) zt ̸= m

Cat
(
zs;

(1− as)m + (as − at)x

1− at

)
zt = m

(2)

We utilize the ESM-2-150M pLM as the backbone model for learning the denoising network xθ(zt)
that reconstructs the original sequence from its masked counterpart (Lin et al., 2023). Because SUBS
“carries-over” unmasked tokens and masking rates are scheduled in a log-linear fashion, batches with
100% masking rates are problematic because xθ does not have contextual information to guide the
denoising process. Thus, we employ a maximal masking rate αmax = 0.75 to ensure our denoising
network learns long-range sequence dependencies while still training on higher masking rates to
facilitate de novo generation.

With SUBS parameterization, we minimize a modified continuous-time NELBO, a Rao-Blackwellized
form of the original D3PM loss (Ho et al., 2020) that eliminates the reconstruction loss term:

L∞
NELBO = Eq,t

[
− log pθ(x|zt(0)) + T

[
at − as
1− at

log⟨xθ(zt),x⟩
]]

(3)

Overall, MeMDLM is a fine-tuned encoder that unconditionally generates membrane-like protein
sequences and produces membrane-aware embedding (Figure 1). To enable the ESM-2 pLM with
principled generation capabilities, we first pre-train ESM-2-150M on the MDLM task using sequences
that span the entire protein space, then fine-tune this model with membrane proteins to facilitate de
novo membrane protein sequence generation.

2.2 CLASSIFIER-GUIDED MASKED DISCRETE DIFFUSION

Preliminaries LaMBO-2 is a powerful Bayesian optimization algorithm that enables multi-
objective protein design via discrete classifier guidance Gruver et al. (2024). It extends the popular
continuous guidance strategy that biases the diffusion trajectory toward a target class y using the gra-
dients∇xt

log v(y | xt, t), where v(y | xt, t) is an external classifier trained on noisy data (Dhariwal
& Nichol, 2021). Specifically, LaMBO-2 follows the gradients of vθ, a value function trained on
corrupted sequences and hidden states e derived from the learned diffusion model xθ, to circumvent
the lack of continuous representations in discrete gradient guidance. We extend LaMBO-2 to the
MDLM sampling process to introduce token-level optimization over the sequence-level optimization
originally employed by LaMBO-2. We present the full sampling algorithms in Supplementary G.
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Figure 1: Denoising and noising processes guided by SUBS parameterization in MeMDLM. Protein sequences
are corrupted according to the noising scheduler at and denoised via xθ (ESM-2), calculating loss between the
true and reconstructed sequence.

Token-level Guidance We propose directly updating the hidden states e0 of a seed sequence w0

to avoid taking discrete jumps in the logits matrix. This approach naturally compliments the design
of MeMDLM, which uses its continuous representations as inputs to its language modeling head
xL
θ that generates logits. To optimize continuous sequence representations, we introduce parameters

∆saliency and ∆ that aggregate saliency information and an explore-exploit loss, respectively.

Implementation We train vθ to assign per-residue solubility scores to an unoptimized (insoluble)
seed sequence that was unconditionally generated from xθ. vθ’s training sequences are corrupted
according to the transition probability categorical distribution from equation 1; however, we set
αmax = 0.50 to approximately match average soluble residue density of the test set. Our focus on
per-residue scores preserves each residue’s contribution to the overall sequence score, which is an
important basis for token-level guidance. Using vθ, we follow LaMBO-2’s selection of edit positions
that do not contribute to the overall guidance objective by constructing the saliency map S ∈ Rl for a
sequence of length l, where Si represents the saliency at the token i ∈ {0, 1, . . . , l}:

Si = max


∑

j=1

∣∣∇∆saliencyvθ(e
′)ij
∣∣1/τ

, ϵ

 , pedit(w) =
Si∑

Si
(4)

using the parameters τ = 0.9 and ϵ = e−4. With this selection procedure, high values of Si correlate
to tokens that do not contribute to the overall sequence value and thus concentrate the largest edit
probability mass. We further down-select edit positions with top-k sampling:

Kedit = top-k(pedit(w), k = min{10, pedit(w) ̸= 0}) (5)

We utilize the indices of Kedit to create m ∈ Rl, a one-hot vector encoding select edit positions in the
sequence, enabling us to zero the gradient contribution for high-value (soluble) tokens with the step
h′ ← xL

θ (e
′ +∆saliency ⊙m). We apply an explore-exploit loss to the logits:

LEE = λ

[
DKL(h

′∥h)−
∑
i=1

vθ(e
′)i

]
, h′ ← h′ + xL

θ (e
′ +∇∆LEE) (6)

where gradients
∑

i=1 vθ(e
′)i encourage high values of the desired sequence property while the KL

term ensures the transition distribution maximizes the original likelihood. We chose to omit the
stochasticity term

√
2ητ ϵ, ϵ ∼ N (0, 1) from LaMBO-2’s Langevin dynamics update step to focus

on deterministic updates that will optimize the current sequence, rather than exploring alternative
sequences that may not align with the optimization objective.
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Sampling During inference, we first generate an unconditional seed sequence with hidden states e0
using N MeMDLM sampling steps. We refine this sequence with classifier guidance, performing
N additional sampling steps and applying S optimization steps at each Ni-th step. We initialize
the prior as h0 = xL

θ (e0) and update it at each Ni-th step with equation 6 to ensure logits integrate
both saliency-guided and explore-exploit-driven updates. Our approach (Figure 2) unifies classifier
guidance with MeMDLM, enabling controllable discrete diffusion in a continuous latent space.

Figure 2: Refining continuous sequence representation by following gradients of the value function, culminating
in token-level optimization for property-guided protein design.

3 RESULTS

To identify the effects of choosing saliency-based edit positions, we visualized saliency scores com-
puted by equation 4 for randomly selected sequences in the MeMDLM test set. In our framework,
tokens with higher saliency scores are more likely to be selected for optimization. Figure 3 demon-
strates that insoluble (teal) regions have high saliency scores while soluble (orange) regions have low
saliency scores after completing S optimization steps after only the N0-th generation step.

Figure 3: Saliency maps generated for test set sequences.

The results suggest that logit updates in equation 6 are deterministic, driven by the gradients of
the classifier rather than stochastic noise. By drawing the connection between saliency scores and
discrete token optimization, we show that guiding sequence design in a discrete space is informed by
the continuous, latent structure of the sequence.

Given the limited availability of experimentally verified membrane structures, we focused on the
overall soluble character of the generated sequences by predicting TM and soluble residue regions
with DeepTMHMM (Hallgren et al., 2022). To realize this comparison, we utilized all 770 sequences
from the MeMDLM model test set, yielding a realistic evaluation of soluble residue density.
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Figure 4: DeepTMHMM-predicted soluble residue density in membrane protein sequences.

Figure 4 compares the soluble residue density of experimentally annotated membrane proteins with
de novo-generated sequences. The results show that MeMDLM generates sequences with a soluble
residue density closely matching that of experimentally verified membrane proteins, indicating
that MeMDLM has successfully learned their underlying distribution (Supplementary Table 4).
In contrast, ProtGPT2 generates a more uniform distribution of soluble residues, suggesting an
overgeneralization of key membrane protein characteristics. Furthermore, unconditionally-generated
MeMDLM sequences that are optimized with discrete classifier guidance exhibit an even higher
soluble residue density, highlighting the effectiveness of our guidance method. Visualizing randomly
selected MeMDLM-generated sequences with AlphaFold3 (Supplementary Figure 6) also confirms
the presence of hallmark membrane protein structures, including alpha-helical bundles and central
TM regions (Zhang et al., 2015).

As a natural extension of de novo design, we scaffolded around TM and soluble motifs of exper-
imentally annotated membrane proteins (Figure 5, Supplementary F.2). We take the entire test
set—comprising 770 experimentally verified membrane protein sequences with annotated TM and
soluble motifs—and mask out all residues except those in the TM or soluble motif(s). We use these
partially masked sequences as input to the models to assay their capability to generate scaffolds
conditioned on known TM or soluble motifs. We focused on these domains due to their distinct
hydrophilic and hydrophobic regions that govern the folding and thus function of the overall protein.
We further apply classifier-guided discrete diffusion to optimize insoluble regions of the test set
proteins, observing an increase in soluble residue density.

Figure 5: Distribution comparison of reconstruction quality. A Pseudo perplexity of soluble and TM regions
scaffolded by MeMDLM and EvoDiff. B Cosine similarity between embeddings of true and reconstructed
sequences from MeMDLM and EvoDiff. C DeepTMHMM-predicted soluble residue density in original,
unguided, and guided MeMDLM sequences.

4 DISCUSSION

We introduce MeMDLM, the first classifier-guided masked diffusion language model for de
novo membrane protein generation. By overcoming the sequential bias of autoregressive mod-
els, MeMDLM captures long-range dependencies crucial for structural and functional integrity. With
LaMBO-2 integration, we enable property-guided optimization, generating soluble and biologically
relevant sequences. MeMDLM outperforms existing methods in scaffolding functional motifs and
producing structurally realistic membrane proteins. Moving forward, we will experimentally charac-
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terize these proteins, assessing TM domain integrity, solubility, and stability to validate MeMDLM’s
potential for therapeutic development.
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A DATA CURATION

A.1 MEMDLM TRAINING DATA

Pre-training We queried the UniRef50 database for a random set of 100,000 unique protein
sequences containing only the 20 natural amino acids; we only considered sequences shorter than
1,024 residues due to GPU memory limits, and shorter sequences were padded to this maximal length.
Sequences were split using the MMSeqs2 easy clustering module with a minimum sequence identity
of 30% and a coverage threshold of 50%. The resulting clusters were split to a 80-10-10 ratio into the
training set (80,231 sequences, 80.23%), validation set (9,904 sequences, 9.90%), and the testing set
(9,865 sequences, 9.87%).

Fine-tuning Bioassembly structures from X-ray scattering or electron microscopy with better than
3.5 Å resolution, annotated by PDBTM1, mpstruc2, OPM3, or MemProtMD4, were used to curate
membrane protein sequences for fine-tuning. de novo designed membrane proteins were added
manually to the database. The proteins were culled at 100% sequence identity and 30% sequence
identity to result in a non-redundant set and a sequence-diverse set, respectively. Integral membrane
residues, defined as residues with at least one atom within the bilayer, were parsed from the resulting
bioassembly structures using the membrane boundaries predicted by PPM 3.05. From the dataset of
integral membrane residues, only structures with at least one TM chain spanning the entire membrane
bilayer were included in the dataset. Additionally, chains without integral membrane residues were
removed from the structure. All peripheral membrane proteins, defined as proteins with no TM chain,
were filtered out. The TM protein sequences at the two sequence identity cut-offs and the Python
script that parses the sequences from the PPM predictions are included in the SI. The remaining 9,325
TM sequences were then split using the MMSeqs2 easy clustering module with a minimum sequence
identity of 80% and a coverage threshold of 50%. The resulting clusters were split to an 80-10-10
ratio into the training set (7,632 sequences, 81.81%), the validation set (927 sequences, 9.94%), and
the testing set (770 sequences, 8.25%).

Value Function We leveraged the same set of 9,329 membrane sequences from the MeMDLM
training dataset to develop a binary classifier that predicts the solubility of each amino acid within a
protein sequence. Each sequence was annotated on a per-residue basis, with TM (class 1) and soluble
(class 0) labels assigned according to the sequence’s uppercase and lowercase residues, respectively.
The same training, testing, and validation data splits used to train MeMDLM were also utilized to
train and evaluate this classifier.

A.2 PHYSICOCHEMICAL PROPERTY PREDICTION MODEL TRAINING DATA

Solubility Prediction We leveraged the same set of 9,329 membrane sequences from the MeMDLM
training dataset to develop a binary classifier that predicts the solubility of each amino acid within a
protein sequence. Each sequence was annotated on a per-residue basis, with TM (class 1) and soluble
(class 0) labels assigned according to the sequence’s uppercase and lowercase residues, respectively.
The same training, testing, and validation data splits used to train MeMDLM were also utilized to
train and evaluate this classifier.

Membrane Localization We collected 30,020 protein sequences from DeepLoc 2.0 (Thumuluri
et al., 2022) to build a binary classifier that predicts a protein sequence’s cellular localization. The
authors of the dataset provided a multi-label label for each sequence indicating its localization(s). We
used the authors’ provided data splits, with training sequences having 11 labels and testing sequences
having 8 labels.

B PHYSICOCHEMICAL PROPERTY PREDICTION

B.1 MODEL DESIGN

Masked Language Model (MLM) ESM-MLM is a fine-tuned encoder that produces membrane-
aware protein sequence embedding used as a baseline comparison for the MDLM training task.
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We trained a MLM head on top of ESM-2-150M using membrane protein sequences to force
comprehension of membrane protein properties. We chose to randomly mask 40% of amino acid
tokens during training over the standard 15% to more closely resemble the dynamics of MDLM
training. Corrupted sequences were passed into ESM-2-150M to retrieve their output embeddings.
The MLM loss function is defined as:

LMLM = −
∑
i∈M

logP (xi|x\M) (7)

whereM represents the set of masked positions in the input sequence, xi is the true amino acid token
at position i, and x\M denotes the sequence with the masked tokens excluded.

During training, we unfroze the key, query, and value weights in the attention heads of the final three
encoder layers. With this training recipe, we augment the pre-existing ESM-2-150M latent space
with physicochemical properties of membrane proteins without overfitting on the new sequences.
ESM-MLM was tasked to minimize the NLL (equation 7) on 4xA6000 NVIDIA GPUs during
training using a learning rate of 5e-3, the Adam optimizer, and a batch size of 8 over 10 epochs.

Solubility Prediction We first predicted TM and soluble residues, a hallmark characteristic of
membrane protein sequences. We utilized embeddings from each pLM’s latent space (ESM-2-150M,
ESM-MLM, and MeMDLM) as inputs to train a two-layer perceptron classifier that minimized the
standard binary cross-entropy (BCE) loss to compute the probability that each residue in the sequence
is either soluble (probability < 0.5, class 0) or TM (probability > 0.5, class 1). The BCE loss is
formally defined as: BCE(y, ŷ) = −(y log(ŷ) + (1− y) log(1− ŷ))

Membrane Localization Prediction Proteins originating from the endomembrane system and
localizing in the plasma membrane differ in conformation and function from those in the cytosol and
other cellular organelles. We predicted the subcellular localization of protein sequences by utilizing
embeddings from each pLM’s latent space (ESM-2-150M, ESM-MLM, and MeMDLM) to train a
XGBoost classifier that minimized the standard BCE loss (above) to compute the probability that a
protein sequence localizes in the plasma membrane (probability > 0.5, class 1) or in other regions
(probability < 0.5, class 0).

B.2 REPRESENTATION QUALITY

We leveraged the trained solubility prediction and membrane localization classifiers to determine if
MDLM training retains and augments the original BERT model’s representation quality (Table 1).

Model Solubility (↑) Membrane Localization (↑)
ESM-2-150M 0.966 0.576
ESM-MLM 0.897 0.584
MeMDLM 0.949 0.541

Table 1: Performance comparison (AUROC) of embeddings in predicting physicochemical properties of
MeMDLM test set sequences.

MeMDLM latent embeddings achieve predictive performance that closely parallels SOTA pLM
embeddings, which are specifically designed to deliver dense sequence representations. These results
demonstrate that MeMDLM accurately captures the biological features underpinning functional
membrane proteins.

C MODEL DESIGN AND IMPLEMENTATION

C.1 MASKED DIFFUSION LANGUAGE MODELS

We utilized the full MDLM implementation (https://github.com/kuleshov-group/
mdlm) to design MeMDLM, replacing the DiT backbone with the ESM-2-150M pLM. We lever-

9



Published at the GEM workshop, ICLR 2025

aged full-parameter training of the ESM backbone during both pre-training and fine-tuning stages.
MeMDLM was trained on 4xA6000 NVIDIA GPUs using a learning rate of 3e-4 with cosine warmup,
the AdamW optimizer (weight decay of 0.075; betas of 0.9 and 0.999), and a batch size of 8 over five
epochs during pre-training and 60 epochs during fine-tuning.

C.2 VALUE FUNCTION

vθ is the value function used to enable classifier-guided sampling in MeMDLM. To design our value
function, we utilize four Transformer encoder layers with two self-attention heads each, applying
LayerNorm and dropout (p = 0.5) on encoder outputs. A two-layer perceptron with sigmoid
activation receives these encoder outputs to obtain per-residue solubility probabilities (predictions).
The value function was trained on 2xA6000 NVIDIA GPUs and tasked to minimize the standard
BCE loss using a learning rate of 3e-4 with cosine warmup, the AdamW optimizer, and a batch size
of 16 over five epochs. With this training setup, the value function achieved a test AUROC of 0.92,
demonstrating its reliability for guiding gradient-based edit position selection.

Model Train Loss (↓) Val Loss (↓) Test Loss (↓) Test AUROC (↑)
Value Function 0.2234 0.3044 0.3391 0.9253

Table 2: Training and evaluation performance of the value function (per-reside solubility classifier).

To follow the LaMBO-2 implementation of classifier-based edits, we embedded sequences using
the unconditional MeMDLM latent space to train vθ. Before tokenization, training sequences were
further corrupted using the same log-linear corruption scheduler αt used to train MeMDLM where
select amino acid tokens are replaced with the <mask> token.

D PROTEIN LANGUAGE MODEL TRAINING AND EVALUATION

Loss (↓) Perplexity (↓)
Train Val Test Val Validation Test

ESM-MLM 0.072 0.072 0.072 1.074 1.074 1.074

ProtGPT2 1.585 – 3.392 4.879 – 29.730

MeMDLM 0.695 2.479 2.230 2.002 7.722 9.285

Table 3: Loss and perplexity comparison across protein language models.

E PROTEIN SEQUENCE GENERATION

E.1 PROTGPT2

Prepared sequences—split to contain 60 amino acids per line with beginning- and end-of-sequence
tags—were passed into the run_clm.py script (https://huggingface.co/nferruz/
ProtGPT2) to fine-tune the pre-trained ProtGPT2 pLM (Ferruz et al., 2022). Fine-tuning was
performed over 5 epochs with a learning rate of 5e-4 and batch size of 2, calculating training loss at
every step as the negative log-likelihood loss between logits and labels. The fine-tuned model was
used to generate 100 de novo membrane protein sequences.

E.2 EVODIFF

We utilized the native EvoDiff codebase (https://github.com/microsoft/evodiff) and
the provided pre-trained checkpoint OA_DM_38M() to infill insoluble and soluble domains of
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membrane protein sequences. We evaluated EvoDiff’s reconstruction quality against MeMDLM’s to
provide a comparison to SOTA inpainting methods.

E.3 MEMDLM

We generated 100 de novo protein sequences of random lengths by inputting sequences consisting of
only <MASK> tokens into the forward pass of MeMDLM. Next, we scaffolded around TM or soluble
motifs by masking specific residues; partially masked sequences were passed through the model for
generation. We evaluated MeMDLM against EvoDiff’s reconstruction quality. We further applied our
optimization scheme to design soluble analogs of our unconditionally generated membrane proteins.

F GENERATION QUALITY EVALUATION

F.1 De Novo DESIGNS

We used AlphaFold3 (AF3) to visualize the structures of naturally occurring and de novo-generated
membrane protein sequences. Since AF3 was trained primarily on PDB structures, it has an inherent
bias to produce more confident predictions for sequences that resemble those in the PDB. To mitigate
this bias and motivate a more rigorous comparison, we focused on membrane protein sequences
that are not present in the PDB, using them as a benchmark to compare our de novo designs, which
represent novel topologies not yet captured in natural membrane proteins. We randomly selected
UniProt IDs of membrane protein sequences from the Membranome database, ensuring that each
selected UniProt ID does not have a corresponding PDB ID (Lomize et al., 2017). Figure 6 shows
that ProtGPT2 structures do not exhibit the classic membrane protein architecture, where a TM
domain spans the bilayer in the center and soluble regions are located at the intra- and extracellular
domains of the protein. However, MeMDLM’s structures closely match the expected and naturally
occurring topology of membrane proteins, with a clearly defined TM domain in the center of the
protein surrounded by soluble regions. We annotated soluble and TM domains using DeepTMHMM.

Figure 6: AlphaFold3-predicted structures of natural and de novo-generated membrane protein sequences with
soluble (orange) and teal (TM) residues annotated.
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Metric Test Set ProtGPT2 MeMDLM MeMDLM
(Annotated) (Unconditional) (Unconditional) (Guided)

Soluble Residue Density 53.2 ± 24.1 48.8 ± 33.9 43.2 ± 35.9 86.4 ± 29.0

Table 4: Average soluble residue density in membrane protein sequences.

F.2 SCAFFOLDING FUNCTIONAL MOTIFS

We compare the cosine similarity between ESM-2-650M embeddings of test set sequences and their
reconstructed counterparts, along with the ESM-2-650M pseudo-perplexity of the reconstructed
sequence.

Transmembrane Domain Soluble Domain

Pseudo Perplexity Cosine Similarity Pseudo Perplexity Cosine Similarity

MeMDLM 3.819 ± 2.745 0.768 ± 0.193 7.029 ± 6.021 0.778 ± 0.159

EvoDiff 20.554 ± 65.368 0.742 ± 0.200 16.990 ± 4.704 0.777 ± 0.149

Table 5: Reconstruction quality comparison of models scaffolding around TM and soluble motifs of 770
experimental membrane protein sequences that reprsent the MeMDLM model test set.

Table 5 shows that MeMDLM-inpainted sequences not only achieve lower average pseudo-perplexities
but also exhibit cosine similarities closely aligned with EvoDiff-based scaffolds across both soluble
and TM domains. These results suggest that MeMDLM scaffolds functional motifs with greater
confidence while preserving biological relevance.
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G CLASSIFIER-GUIDED SAMPLING FRAMEWORK

Algorithm 1 Classifier-Guided Sampling with MeMDLM

1: Input: Prior sequence w0 = {wi}Li=1 for wi ∈ V , diffusion model xθ, value function vθ,
optimization algorithm Oθ, sampling steps N .

2: Output: Logits xs

3: for i ∈ 1, 2, ..., N do:
4: t ∼ Uniform([0, 1])
5: h, e← xθ(w0)
6: h← Oθ(h, e)
7: pθ(x0) = SUBS(h,w0)
8: Compute transition probability categoricals q(xs|xt)
9: Sample xs ∼ q(xs|xt)

10: end for
11: return xs

Algorithm 2 Token-level Optimization via Saliency Maps

1: Inputs: Protein sequence w, logits h, diffusion model hidden states e, diffusion model xθ, value
function vθ, sequence length l, optimization steps S. Sampling parameters λ, η, ϵ, τ .

2: Output: Optimized logits h′.
3: Initialize Adagrad(∆ = 0, η) for ∆ ∈ Rdim(e)

4: Initialize ∆saliency = 0 for ∆saliency ∈ Rdim(e)

5: for s = 1→ S do
6: Initialize SGD (∆saliency, ηsaliency = 1)
7: e′ ← e+∆+∆saliency

8: Si = max


(∑

j=1

∣∣∇∆saliencyvθ(e
′)ij
∣∣)1/τ

, ϵ


9: Update ∆saliency using SGD

10: Si =

{
0, if vθ(e′)i ≥ 0.5

Si, else
11: pedit(w) = Si/

∑
Si

12: Kedit = top-k(pedit(w), k = min{10, pedit(w) ̸= 0})

13: m =

{
1, if i ∈ Kedit

0, else
14: e′ ← e+∆saliency ⊙m
15: h′ ← xL

θ (e
′)

16: L = λ[DKL [h
′ ∥ h]−

∑
i=1

vθ(e
′)i]

17: h′ ← h′ + xL
θ (e

′ +∇∆L)
18: Update ∆ using Adagrad with∇∆L
19: end for
20: h′ ← xL

θ (e
′ +∆)

21: return h′
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