
Published at Rethinking ML Papers – ICLR 2021 Workshop

YOU ONLY WRITE THRICE:
CREATING DOCUMENTS, COMPUTATIONAL NOTE-
BOOKS AND PRESENTATIONS FROM A SINGLE SOURCE

Kacper Sokol and Peter Flach
Department of Computer Science,
University of Bristol,
Bristol, United Kingdom
{K.Sokol,Peter.Flach}@bristol.ac.uk

ABSTRACT

Academic trade requires juggling multiple variants of the same content published
in different formats: manuscripts, presentations, posters and computational note-
books. The need to track versions to accommodate for the write–review–rebut–
revise life-cycle adds another layer of complexity. We propose to significantly re-
duce this burden by maintaining a single source document in a version-controlled
environment (such as git), adding functionality to generate a collection of out-
put formats popular in academia. To this end, we utilise various open-source tools
from the Jupyter scientific computing ecosystem and operationalise selected soft-
ware engineering concepts. We offer a proof-of-concept workflow that composes
Jupyter Book (an online document), Jupyter Notebook (a computational narrative)
and reveal.js slides from a single markdown source file. Hosted on GitHub, our
approach supports change tracking and versioning, as well as a transparent review
process based on the underlying code issue management infrastructure. An exhibit
of our workflow can be previewed at

https://so-cool.github.io/you-only-write-thrice/.

1 SOURCE MULTIPLICITY

Despite immense technological advances permeating into our everyday life and work, scientific pub-
lishing has seen much less evolution. While moving on from hand- or type-written manuscripts to
electronic documents allowed for faster and more convenient editing, dissemination and review, the
(now obsolete and unnatural) limitations of the “movable type” publication format persist. Among
others, this glass wall poses significant challenges to effective communication of scientific findings
with their ever-increasing volume, velocity and complexity. To overcome these difficulties we may
need to depart from the, de facto standard, Portable Document Format (PDF) and set our sight on
something more flexible and universal. In the past three decades the World Wide Web has organi-
cally evolved from a collection of hyper-linked text documents into a treasure trove of diverse and
interactive resources – a process that should inspire an evolution of the scientific publishing work-
flow.

A physical, printed and bound, copy of a research paper may have been mostly replaced by a PDF
document viewable on a wide array of electronic devices, but both formats effectively share the same
limitations. These constraints have recently become even more prominent with research venues re-
quiring to publish supplementary materials that fall outside of the textual spectrum. Releasing source
code is advised to ensure reproducibility; computational notebooks highlight individual methods, ex-
periments and results; recording a short promotional video helps to advertise one’s research; slides
and oral presentations (often pre-recorded nowadays) disseminate findings and foster discussions;
and posters graphically summarise research contributions. Notably, these artefacts are usually cre-
ated independently and are distributed separately from the underlying paper – nonetheless while
disparate in appearance, form and function, they all share a common origin.

1

https://so-cool.github.io/you-only-write-thrice/


Published at Rethinking ML Papers – ICLR 2021 Workshop

(MyST)
Markdown

Jupyter
Notebook •••

Jupyter 
Book 

 
(document)

reveal.js 
 
 

(presentation)

Jupyter 
Notebook 

 
(computation)

(v
er

si
on

 c
on

tro
ll)

Figure 1: Generating multiple conference artefacts such as documents (papers), presentations
(slides) and computational notebooks from a single source repository can streamline the academic
publishing workflow.

Without a designated place for each research output and a dedicated workflow to create and dis-
tribute them, they may end up scattered through the Internet. Code may be published on GitHub,
computational notebooks distributed via Google Colab or MyBinder, and videos posted on YouTube.
Slides and posters, on the other hand, tend to accompany the paper – which itself is placed in pro-
ceedings – sparingly with an often outdated version of the article available through arXiv. While
organising, distributing and linking all of these resources is a goal in itself, we shall first reconsider
the authoring process responsible for their creation. Since delivering each format appears to be an
independent task that requires a dedicated effort, having as many of these resources as possible gen-
erated from a single source could streamline the process and create a coherent narrative hosted in a
single place. While as a community we created technology powerful enough to train vision models
in a web browser1, we find it somewhat difficult to see beyond the restrictive PDF format and hence
increasingly lack publishing tools necessary to carry out our work effectively.

To streamline the process of creating academic content we propose to generate conference artefacts
– such as documents (papers), presentations (slides) and computational notebooks – from a single
source as depicted in Figure 1. By storing all the information in a version-controlled environment
(e.g., git) we can also track article evolution and revision, and facilitate a review process similar to
the one deployed in software engineering and closely resembling the OpenReview workflow. Com-
bining together research outputs as well as their reviews and revisions could improve credibility and
provenance of scientific finding, thus simplifying re-submission procedures and taking the pressure
of overworked reviewers. Additionally, including interactive materials – such as code boxes and
computational notebooks – in the published resources encourages releasing working and accessible
code.

The envisaged workflow generalises beyond academic publishing and may well be adopted for
teaching, for example, producing lecture notes, slides and (computational) exercise sheets. Our
proof of concept consists of:

• documents based on Jupyter Book (Executable Books Community, 2020);
• computational narratives presented as Jupyter Notebooks (Kluyver et al., 2016); and
• presentations (decks of slides) created with reveal.js (El Hattab, 2020).

A self-contained example of generating these three artefacts from a single source document is pub-
lished with GitHub Pages and accessible at

https://so-cool.github.io/you-only-write-thrice/.
1https://teachablemachine.withgoogle.com/

2

https://so-cool.github.io/you-only-write-thrice/
https://teachablemachine.withgoogle.com/


Published at Rethinking ML Papers – ICLR 2021 Workshop

The text is written in extended markdown syntax (MyST flavour), and the code is executed in Python,
however any programming language supported by the Jupyter ecosystem can be used. These sources
are hosted on GitHub and can be inspected at

https://github.com/so-cool/you-only-write-thrice/.

Publishing these diverse materials as interactive web resources democratises access to cutting-edge
research since they can be explored directly in the browser without installing any software depen-
dencies. While the main output of the proposed workflow is a collection of HTML pages, it can also
produce static formats such as PDF or EPUB, albeit forfeiting all of the discussed advantages.

As it stands, our workflow consists of open-source tools, but it relies on free tiers of commercial ser-
vices. To ensure longevity and sustainability, we need community-driven software and infrastructure
for hosting, reviewing and publishing resources in the proposed formats, for example, taking inspi-
ration from the OpenReview model. Being able to influence its development, we could prioritise
features needed for a wider adoption of this bespoke platform, e.g., by implementing anonymous
submission and review protocols, which are not available in commercial solutions such as GitHub
or Bitbucket. At the content-generation end, our workflow relies heavily on the Jupyter ecosystem.
Jupyter Book and MyST Markdown provide basic text formatting and implement academic pub-
lishing features such as mathematical typesetting (with LATEX syntax) and bibliography management
(with BIBTEX). The platform is still in early development and exhibits certain limitations, e.g., fine-
grained layout customisation may be difficult, which is particularly noticeable with reveal.js slides.
However, the Jupyter Book environment can be extended with custom plugins, which in the long
term may be as plentiful as LATEX packages; for example, we built support for non-mainstream pro-
gramming languages such as SWI Prolog2, cplint3 and ProbLog4 that are not natively supported by
Jupyter. While the openness and transparency of the proposed workflow can be considered its forte,
the same qualities may also pose challenges for academic publishing, which need to be explored
further before pursuing this avenue.

A part of our workflow derives from the computational narrative concept, which interweaves prose
with executable code, thus improving reproducibility and accessibility of scientific findings. The
most prominent example of this technology are Jupyter Notebooks delivered to the audience through
MyBinder or Google Colab. Content that is more narrative-driven, on the other hand, can be pub-
lished with Bookdown (R Studio, 2020) – a toolkit comparable to Jupyter Book but stemming from
the R language ecosystem. A similar publication platform, dedicated to research papers, is Distill5,
however its wider adoption is hindered by the degree of familiarity with web technologies required
of authors. Additionally, the proposed workflow borrows from software engineering; in particular,
code versioning and review. The former is not widely adopted by the scientific community, partially
contributing to scientific papers lacking evolution traces and provenance that could shine a light
on their journey through rejection and acceptance at various workshops, conferences and journals.
On the other hand, the software-like review process of academic writing has been adopted by The
Open Journals6, for example, the Journal of Open Source Software7, further improving on the model
operationalised by OpenReview.

2 PUBLISHING WORKFLOW

The academic publishing life-cycle consists of four distinct steps: composing, reviewing, publishing
and presenting. Researchers need to write down their findings, get them reviewed and revised,
formally publish them adhering to bibliometric standards, and, finally, present their work in different
formats: as academic writing, conference talks, poster sessions, promotional videos, blog posts,

2https://book-template.simply-logical.space/
3http://cplint-template.simply-logical.space/
4https://problog-template.simply-logical.space/. ProbLog is unique in this aspect as

it can either be executed directly from Python (through a custom interpreter, thus not requiring a dedicated
plugin) or with bespoke code boxes (as is the case with SWI Prolog and cplint).

5https://distill.pub/
6https://www.theoj.org/
7https://joss.theoj.org/. The submission and review process is outlined in the journal’s docu-

mentation published at https://joss.readthedocs.io/.

3

https://github.com/so-cool/you-only-write-thrice/
https://book-template.simply-logical.space/
http://cplint-template.simply-logical.space/
https://problog-template.simply-logical.space/
https://distill.pub/
https://www.theoj.org/
https://joss.theoj.org/
https://joss.readthedocs.io/


Published at Rethinking ML Papers – ICLR 2021 Workshop

press releases and public engagement events, among others. Each artefact produced in this process
constitutes a different entry point to the research outputs, allowing a diverse audience to freely
explore a wide range of its – theoretical, computational and experimental – aspects. However,
despite sharing a common origin, the current publishing workflow requires us to craft each piece of
this mosaic separately.

To address this issue, we propose a proof-of-concept pipeline for composing academic articles,
computational notebooks and presentations from a single curated source, helping to document and
disseminate research in accessible, transparent and reproducible formats. To this end, we harness
modern web technologies, e.g., reveal.js, and open-source software from the Jupyter ecosystem, in
particular Jupyter Book and Jupyter Notebook/Lab. Such an approach allows exploring and inter-
acting with research outputs directly in a web browser (including mobile devices), thus alleviating
technological and software barriers – akin to what PDF did for electronic documents. Finally, we
tackle the review step by linking it to the document source, which permits a much more structured
and conversational process that feels more natural and intuitive.

Composing The backbone of our workflow are documents written in MyST Markdown – an ex-
tended markdown syntax that supports basic academic publishing features such as tables, figures,
mathematical typesetting and bibliography management. Content written in this format is highly
interoperable and can be converted to LATEX, HTML, PDF or EPUB outside of the proposed system,
thus serve as a source for or a component of other authoring environments. The key to automatically
composing a variety of output formats is the syntactic sugar allowing to superficially split the con-
tent into fragments and annotate them. These tags prescribe how each piece of prose, figure or code
should be treated – e.g., included, skipped or hidden – when building different target formats. Then,
Juptyer Book can process selected fragments to generate web documents and computational narra-
tives, the latter of which may be launched as Jupyter Notebooks with either MyBinder or Google
Colab. While this is already a step towards “reproducibility by design”, having content that depends
on code implicitly encourages releasing it as a software package that can be invoked whenever nec-
essary, therefore improving reproducibility even further. The aforementioned source annotation can
also specify a slide type and its content in a presentation composed with reveal.js, streamlining yet
another aspect of the academic publishing workflow. While each of these artefacts is destined for
web publication, their trimmed version can also be exported to formats such as PDF or EPUB.

Reviewing In the proposed workflow, we envisage storing the document source in a version-
controlled environment similar to git, which has two benefits. First, it enables tracking changes
in the document, versioning it and monitoring its evolution through various workshops, conferences
and journals submissions. Secondly, such a setting supports peer review inspired by code review
in software engineering. In this model, the reviewers could attach their comments to specific lo-
cations in the paper, allowing other reviewers to chime in and the paper authors to address very
specific concerns explicitly linked to the submitted document. Furthermore, this structure creates
a discussion-like experience, which should feel more natural to humans – akin to comments and
discussions in shared document writing platforms such as Google Docs, Microsoft Office Word and
Overleaf. The entire process can be made more structured and objective by providing the reviewers
with general checklists and a list of tags to annotate each of their concerns (e.g., typo, derivation
error or incorrect citation). The rebuttal and revision stage is also simplified in this framework since
all of the changes applied to the document are tracked and can be linked to individual reviewer
comments.

Such a formalisation of the review–rebut–revise cycle significantly increases the transparency and
provenance of the entire process. This approach can be trialled through the Pull Request functional-
ity of commercial code sharing platforms, such as GitHub or Bitbucket, before investing more time
and resources into the development of a dedicated (self-hosted and open-source) technology. While
doing so would not allow for anonymous peer-review, the process could start with implementing
and improving upon the aforementioned model operationalised by the the Open Journals, helping to
identify and prioritise features expected of the dedicated platform. Similarly, displaying a reviewer’s
comments could be delayed until the review is finished to avoid bias, followed by merging them with
other comments placed in close proximity. Notably, adapting the proposed review format would not
require version-control or software engineering skills since all of the complexities are abstracted
away by the user interface. Since the review could be permanently attached to the submission, the

4



Published at Rethinking ML Papers – ICLR 2021 Workshop

implications of this approach would need to be studied and understood before enforcing it. Alter-
natively, or in addition to the above process, external services such as hypothesis8 or utterances9

– which are available as (experimental) Juptyer Book plugins – could be used to collaboratively
review, comment, discuss or annotate submissions.

Publishing Since the content source is stored in a version-controlled environment, one can imag-
ine submitting a document for review by specifying its particular version (e.g., by tagging a selected
git commit), with the publication process following the same procedure. Such a versioning ap-
proach would also demystify the journey of a paper through various workshops, conferences and
journals, and clarify the improvements made after each rejection. In this setting, bibliometrics can
be achieved by automatically minting Digital Object Identifiers (DOI) upon publication, for exam-
ple, using zenodo10, which is already integrated with software versioning mechanisms provided by
GitHub and Bitbucket. Another bibliometrics strategy suitable for web technologies can be derived
from tools such as Google Analytics, which could be deployed to collect fine-grained information
about the readers and hyper-links pointing to and from the publication, thus allowing to build a de-
tailed network of connected documents. While the format is intended for web publication, it can also
be stored on a personal computer or converted into monolithic entities such as LATEX, PDF or EPUB.
This interoperability allows to archive any or all variants of the document to ensure its longevity
and accessibility. Notably, by connecting the local copy to a custom execution environment, the
interactivity of the materials can be preserved offline.

Presenting The proposed authoring framework alleviates the need to create separate articles, com-
putational narratives and slides by building them from a single markdown source. Since these arte-
facts are intended for web publication, they can take advantage of modern technologies that can
make them interactive, thus more engaging. For example, the RISE extension of the Jupyter Note-
book platform (Avila, 2020) allows launching reveal.js presentations with executable code boxes.
By building bespoke plugins, we can enable support of less prominent programming languages (re-
call the aforementioned example of SWI Prolog) and create additional output formats such as blog
posts or academic posters. Since the materials are delivered as web pages, technological barriers
are lifted, portability is guaranteed and sharing is made easy. Finally, the proposed workflow can
be deployed in education to prepare lectures, courseworks, exercises, notes and (self-)study mate-
rials, therefore supporting both synchronous and asynchronous learning – see the pre-release11 of
our interactive edition (Flach & Sokol, 2018) of the Simply Logical textbook (Flach, 1994) for an
example.

3 CONCLUSIONS

In this paper we proposed a novel publication workflow built around Jupyter Book, Jupyter Note-
book and reveal.js. Our exhibit demonstrates how to create narrative-driven documents (peppered
with executable code examples), computational notebooks and interactive slides, all from a single
markdown source. Furthermore, we outlined a strategy for hosting and disseminating such materi-
als through version-controlled environments similar to code sharing repositories. Such a platform
facilitates an intuitive review mechanism inspired by software engineering practice, thus endowing
provenance and transparency to the scientific publication process. While our exhibit is currently a
bare-bones proof-of-concept built from open-source tools, it shows the potential for transforming the
current PDF workflow into an environment focused on content creators and reviewers. One can even
imagine automating parts of this process with “bots” validating submissions based on predefined cri-
teria, and partially pre-populating a review form to streamline the entire publication life-cycle (akin
to continuous integration and deployment pipelines in software engineering).

While addressing some of the main issues with current publishing practice, the proposed workflow
is not (yet) a silver bullet and the underlying technology needs further development to mature into
reliable software. We envisage that engagement of the scientific community and open discussion are
needed to steer the development and foster broader adoption of such tools, for example, workshops

8https://hypothes.is/
9https://utteranc.es/

10https://zenodo.org/
11https://too.simply-logical.space/

5

https://hypothes.is/
https://utteranc.es/
https://zenodo.org/
https://too.simply-logical.space/


Published at Rethinking ML Papers – ICLR 2021 Workshop

encouraging submission and review in such a format. Interactivity is a great advantage of Jupyter
Book publications, but the compute resources employed to execute the underlying code have to be
accounted for and provisioned since relying upon free code-execution environments (such as Google
Colab and MyBinder) is not sustainable in the long term. Given that the main output of the proposed
workflow is a collection of web pages, they either need to be accessed online or downloaded and
browsed locally to take full advantage of their format; generating PDFs and EPUBs is also possible,
however they lack interactivity and may not be visually appealing since they only play a secondary
role. Notably, the proposed framework is not as powerful as LATEX, which benefits from decades
of development and a rich ecosystem of packages, therefore any customisation or automation will
require a bespoke plugin that may be slow to create and buggy at first. Nonetheless, without making
the first step – and addressing the disadvantages associated with it – the publishing process will not
benefit from the technology that we developed to make our research possible in the first place.

ACCESSIBILITY STATEMENT

The main output format of the proposed Jupyter Book publishing workflow are HTML pages, and
the ubiquity of web technologies ensures availability of compatible accessibility tools. In particular,
adherence to web accessibility standards and utilisation of commonplace assistive technology can
render the artefacts of our workflow widely approachable. For example, tools such as navigation
aids; screen readers; screen magnifiers; page display colour, contrast and brightness adjustments;
as well as font (size and colour) customisation can be easily deployed. Additionally, accessibility
of computational notebooks is constantly monitored and improved by the Project Jupyter’s Acces-
sibility Working Group12. Similarly, the reveal.js platform allows inclusion of custom plugins, with
availability of community-developed accessibility improvements13.

Since the generated web resources are static (from the technology perspective), they can be down-
loaded onto a personal computer and browsed offline. The use of modern web technologies makes
them responsive, thus compatible with computers and mobile devices of varying screen size. In
addition to the HTML output, the proposed workflow can build other popular formats such as PDF
or EPUB, which are suitable for tablets and e-readers. We envisage hosting the content source files
at popular code sharing and versioning platforms – such as GitHub or Bitbucket – that support rich
ticketing and issue management systems. In particular, the readers can use these mechanisms to
provide feedback and raise accessibility concerns.

ACKNOWLEDGEMENTS

This work was supported by the TAILOR Network14 – an ICT-48 European AI Research Excellence
Centre funded by EU Horizon 2020 research and innovation programme, grant agreement number
952215. Among others, TAILOR explores novel ways of working and publishing, including AI-
powered collaboration tools, and AI training platforms and materials.

REFERENCES

Damián Avila. RISE, October 2020. URL https://github.com/damianavila/RISE.

Hakim El Hattab. reveal.js, October 2020. URL https://github.com/hakimel/reveal.
js.

Executable Books Community. Jupyter Book, February 2020. URL https://doi.org/10.
5281/zenodo.4539666.

Peter Flach. Simply Logical: Intelligent Reasoning by Example. John Wiley, 1994. URL https:
//www.cs.bris.ac.uk/˜flach/SimplyLogical.html.

Peter Flach and Kacper Sokol. Simply Logical: Intelligent Reasoning by Example – Online Edi-
tion. Zenodo, 2018. doi: 10.5281/zenodo.1156977. URL https://doi.org/10.5281/
zenodo.1156977.
12https://github.com/jupyter/accessibility/
13https://github.com/marcysutton/reveal-a11y/
14https://tailor-network.eu/

6

https://github.com/damianavila/RISE
https://github.com/hakimel/reveal.js
https://github.com/hakimel/reveal.js
https://doi.org/10.5281/zenodo.4539666
https://doi.org/10.5281/zenodo.4539666
https://www.cs.bris.ac.uk/~flach/SimplyLogical.html
https://www.cs.bris.ac.uk/~flach/SimplyLogical.html
https://doi.org/10.5281/zenodo.1156977
https://doi.org/10.5281/zenodo.1156977
https://github.com/jupyter/accessibility/
https://github.com/marcysutton/reveal-a11y/
https://tailor-network.eu/


Published at Rethinking ML Papers – ICLR 2021 Workshop

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul Ivanov,
Damián Avila, Safia Abdalla, Carol Willing, and Jupyter development team. Jupyter Notebooks
– A Publishing Format for Reproducible Computational Workflows. In Fernando Loizides and
Birgit Scmidt (eds.), Positioning and Power in Academic Publishing: Players, Agents and Agen-
das, pp. 87–90, Netherlands, 2016. IOS Press. URL https://eprints.soton.ac.uk/
403913/.

R Studio. Bookdown, October 2020. URL https://github.com/rstudio/bookdown.

7

https://eprints.soton.ac.uk/403913/
https://eprints.soton.ac.uk/403913/
https://github.com/rstudio/bookdown

	Source Multiplicity
	Publishing Workflow
	Conclusions

