Under review as a conference paper at ICLR 2025

MZ2RC-EVAL: MASSIVELY MULTILINGUAL
REPOSITORY-LEVEL CODE COMPLETION EVALUA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Repository-level code completion has drawn great attention in software engineer-
ing, and several benchmark datasets have been introduced. However, existing
repository-level code completion benchmarks usually focus on a limited number
of languages (<5), which cannot evaluate the general code intelligence abilities
across different languages for existing code Large Language Models (LLMs). Be-
sides, the existing benchmarks usually report overall average scores of different
languages, where the fine-grained abilities in different completion scenarios are
ignored. Therefore, to facilitate the research of code LLMs in multilingual scenar-
ios, we propose a massively multilingual repository-level code completion bench-
mark covering 18 programming languages (called M?RC-EVAL), and two types
of fine-grained annotations (i.e., bucket-level and semantic-level) on different
completion scenarios are provided, where we obtain these annotations based on
the parsed abstract syntax tree. Moreover, we also curate a massively multilingual
instruction corpora M?RC-INSTRUCT dataset to improve the repository-level
code completion abilities of existing code LLMs. Comprehensive experimental
results demonstrate the effectiveness of our M2RC-EVAL and M2RC-INSTRUCT.

1 INTRODUCTION

The emergence of Large Language Models (LLMs) specifically designed for code-related tasks has
marked a significant advancement in code generation. The code LLMs (Roziere et al.|[2023;Zheng
et al.|2023;|Guo et al.,[2024a}|Hui et al.| [2024b) pre-trained on extensive datasets comprising billions
of code-related tokens further revolutionize the automation of software development tasks, provid-
ing contextually relevant code suggestions and facilitating the translation from natural language to
code. The generation capability of code LLMs opens up diverse applications in software develop-
ment, promising to enhance productivity and streamline coding processes. As the field continues
to evolve, it presents exciting opportunities for future developments and innovations in automated
programming and code assistance.

The code completion task is crucial in modern software development, enhancing coding efficiency
and accuracy by predicting and suggesting code segments based on context. Recent advancements
in code LLMs (Bavarian et al.l [2022b) have introduced sophisticated completion techniques, such
as prefix-suffix-middle (PSM) and suffix-prefix-middle (SPM) paradigms, which can complete mid-
dle code segments given the surrounding context. However, the current benchmark (Ding et al.,
2024 Liu et al.,[2023a)) mainly focuses on several programming languages. For example, the Cross-
CodeEval (Ding et al.,|2024)) includes four languages (i.e., Python, Java, TypeScript, C#). Besides,
existing benchmarks can only provide the average score among all samples, which cannot provide a
language-specific evaluation for different programming languages based on their intrinsic structure.
Inspired by the multilingual in-file code generation benchmark MultiPL-E |Cassano et al.| (2022)
and McEval (Chai et al.| 2024), we create a massively multilingual repository-level code comple-
tion Evaluation benchmark called M?RC-EVAL to facilitate the research of the community.

In this paper, as shown in Fig. [I| our M?2RC-EVAL includes 18 programming languages with two
types of fine-grained annotations (i.e., bucket-level and semantic-level), where each language con-
tains 100 validation and 500 test samples, respectively. Specifically, for the bucket-level annotations,

Under review as a conference paper at ICLR 2025

BBE <t o W L s

c C++ C# Go HTML Haskell Java JavaScript Kotlin Lua Obijective-C PHP Python

™ ## Snippet 1 ! ™ ## snippet 1 | 1" ## Snippet 1
[RErE P T ST e oG 1 I /java/com/cefriel/util/Uniloader. java 1 | Japp/utils/service. ts 1
ki .cefriel.util;
! parser.entity['Aring'] = ‘A’ y R ¥enes = cau R CamRTCEIES ; 1 updateTask(task: any): Promise<any> { y
1 parser.enqty[‘yacute‘ ' 1 1 import org.sUf4j.Logger; 1 1 return this.updateItem(TASK, task); 1
parser.entityl ntilde’ ' 1 I import org.slf4].LoggerFactory; 1 } 1
 parser.entity[oslash | iMport java. io. Filelnputstrean; 1 deleteTask(task: any): Promise<any> {]
parser.entity['0unl'] = '0 1 inport java. io. T0Exception; 1 1 return this.deleteItem(TASK, task);
T.fromstring(doc, parser=parser) 1 I import java.io.InputStream; 1 1
L import java.net.HttpURLConnection: 1 createProject(project: any): Promise<any> {
1 1 mport java.net. ttp 2 1 turn th teItem(PROJECT 0; !
import java.net.MalformedURLException; 1 return this.createltem » project);
1 1 import java.net.URL; 1 f !
1 i .o \ ceesee 1
SR Cross fi 1 Cross file context b
1 e e P A
1 o O
) , 1 1 1 get user(): any { 1
parser.entity['Aring'] 1 import org.eclipse. rdf4j.model.*; return this._user;
parser.entity['yacute ! 1 FoRrE OO e 1 LI 1
':;Z‘L::‘ti;z{ ”;{;S: e 1 Vimport org.s1f4j.LoggerFactory; 1 1 1
1 ~ I package com.cefriel.util; set user(value: any) {
|<mFL|,LmG> h Cursor Position 1 . . 1 1 1t (this._user != value) { 1
1 SINFILLING | Cursor Position 1 1 this. _user = value; !
Iv . 1 I'import org.apache.camel.Exchange; 1 1 this.notifyPropertyChange("user", value); |
1 oRen E § import org.apache. camel.ProducerTenplate; ¥ \
s = & 1 import org.apache. (amel builder.ExchangeBuilder; 1 1 3 Cursor Position
1 xmldoc = ET, fromstnng(doc parser=parser) ; A 1import org.slf4j.Logge 1 1 1
1 import org.slf4j. Lodgerkactory; logout () { 1
1 import java.io.InputStream; ! y serviceModule. service. L0gout (h; m %
1 import java.util.Optional; 1 1 navigationtodule.navigate <INFILLING> 1
j table = string.maketrans("","") ' I public class HTTPResourceAccessor { 1 1 . = =1 1
I for sentence in xmldoc. iter('field'):) N private static final Logger LOG = 1 ¥ __ __ InfileContext _ __ _ _ 1
| if sentence.attrib == {'name': 'features'}: ' 1 LoggerFactory. getLogger (HTTPResourceAccessor. class); |
1 000000 1 | 1 [The answer should be:]
1 In-file Context ' f 2 e
___________________ «q
moduleName: viewsModule.Views.login,
[The answer should be:] The answer should be: backstackVisible: false,
LA 4] clearHistory: true (]
parser.entity['Ouml'] = '0O' (V] mport org.apache.camel.CamelContext; 1)
Bucket label: 3 Bucket label: 1 Bucket label: 4
Semantic label: Declaration and Definition Semantic label: Program Structure Semantic label: Expression
(a) Python (b) Java (c) TypeScript

Figure 1: Overview of our proposed M?RC-EVAL with 18 languages. Specifically, first, we provide
three samples from different languages (i.e., Python, Java, TypeScript) for illustration, where the
bucket label and semantic label for the corresponding cursor position are provided. Second, the
code LLMs need to predict the completion results given the in-file context from the current code
file and the cross file context retrieved from other code files in the current repository. Note that
“< INFILLING >” denotes that the current position will be triggered for code completion.

we first generate abstract syntax tree with [V layers using code parser (i.e., Treesitter EI), and divide
these N into fixed M buckets, Then, for each completion cursor position, we annotate the corre-
sponding bucket-level label based on the layer to which the location belongs. In this way, we can
obtain different code completion scenarios with different difficulties.

For the semantic-level annotations, inspired by (Takerngsaksiri et al., [2024)), we first pre-define 11
major semantic labels (e.g., Program Structure, Statement) for each completion cursor position,
which aims to analyze the fine-grained performance across different code semantics. Note that as
different languages usually have specific syntax, we carefully design the subcategories under each
major semantic label for different languages. Then, as the code parser usually provides syntax
labels (e.g., functions, variables, classes, empty linesﬂ for each completion cursor position, we
carefully define the mappings between the syntax labels to our designed semantic labels and build the
semantic-level annotations for our M2RC-EVAL. Finally, to enhance the performance of repository-
level code completion for existing code LLMs, we also create a massively multilingual instruction
corpora M?RC-INSTRUCT of 18 languages.

The contributions are summarized as follows:

* We propose the first massively multilingual repository-level code completion benchmark
M?2Rc-EVAL covering 18 languages, where two types of annotations (bucket-level and
semantic-level labels) are provided based on the parsed abstract syntax tree.

» We introduce M2RC-INSTRUCT, the massively multilingual repository-level code instruc-
tion corpora covering the multilingual code snippet from 18 languages, which can greatly
enhance the performance of repository-level code completion results.

* Comprehensive evaluation results and analysis demonstrate the effectiveness of our pro-
posed M2RC-EVAL and M2RC-INSTRUCT.

'"https://tree-sitter.github.io/tree-sitter/
Note that the syntax label provided by code parser (e.g., tree-sitter) are highly detailed.

https://tree-sitter.github.io/tree-sitter/

Under review as a conference paper at ICLR 2025

2 RELATED WORKS

Code Large Language Models. Code large language models (LLMs) (Chen et al., [2021} Zhao
et al., 2024} [Black et al., 2021} [2022; |Le et al.| 2022; |(Chowdhery et al., 2023} |Nijkamp et al., 2023
Fried et al., 2023} [Xu et all [2022; Jain et al.l [2024b) are increasingly involved in modern pro-
gramming, due to excellent capabilities of code generation (Li et al., [2022} |Allal et al.| 2023)), code
repair (Wang et al.,2021;2023)), code translation (Zheng et al., {2023} Li et al.,2023), and other cod-
ing tasks. UniCoder (Sun et al., 2024)) and SPT-Code (Niu et al.l [2022) introduce the pseudo-code
generation and the alignment between Abstract Syntax Tree (AST) and code. Recent code LLMs
such as Code Llama (Roziere et al.l 2023), DeepSeek-Coder (Guo et al., 2024a), and Qwen2.5-
Coder (Hui et al., 2024b) incorporate the fill-in-the-middle (FIM) task into their training stage for
code completion. Moreover, there is a wide variety of in-file benchmarks to evaluate different capa-
bilities of code LLMs (Zheng et al.| 2023} |Austin et al., [2021} [Jain et al., [2024a)), which focus on a
limited range of programming languages (e.g. Python and Java). The recent work (Chai et al.| [2024)
extends the number of programming languages to 40 for multilingual evaluation scenarios, which
has not considered the repository-level code completion.

Repository-level Code Completion. The latest repository-level code completion methods (Bair1
et al., 2023} [Phan et al., 2024; |Liao et al., 2023 |Shrivastava et al.| 2023a; |Agrawal et al.l 2023;
Shrivastava et al., 2023b; [Pei et al.| 2023} [Zhang et al.| 2023)) are similar to RAG, aim to precisely
retrieve all related code snippets across files within a repository. Further, repository-level bench-
marks are proposed to estimate the capability of code LLMs in a more realistic software engineering
scenario. But these datasets (Ding et al.,|2023;[2022; |Allal et al.,|2023) are primarily concentrated on
several programming languages. Regarding difficulty categorization, most methods only consider
the number of files involved in the completion content, overlooking the code’s structural and seman-
tic context within the entire project. Repofusion (Shrivastava et al., [2023a) and Repocoder (Zhang
et al., 2023) predict one line based on the prefix and suffix code, while CoderEval (Yu et al., [2024)
measures how many third-party libraries are called. To comprehensively evaluate the multilingual
repository-based code completion of different code LLMs, we push the boundaries of programming
languages into 18 languages in M2RC-EVAL with fine-grained annotations.

3 M-2RC-EvAaL

3.1 DATA COLLECTION

The Overall Data Pool. We begin by collecting The Stack v2 (Lozhkov et al.,2024), which consists
of permissively licensed repositories from GitHub. Next, we adopt the The-stack-v2-dedup,
which includes 784 million source code files spanning 619 programming languages with manual and
heuristic pre-processing. Further, we keep only repositories receiving more than 5 stars and contain-
ing [10,50] files. Lastly, preserving files written in 18 common languages, we have 431,353,244
files remaining, constituting the overall data pool.

Completion Cursor Position Selection. Completion cursor position selection significantly impacts
the quality of a code completion benchmark. Previous studies (Ding et al.| 2024 |Liu et al., [2023a)
randomly select a segment of consecutive characters as the completion span, which does not guar-
antee the integrity of identifiers and statements. Besides, recent works (e.g., Qwen2.5-Coder (Hui
et al.}[2024b), aiXcoder (Jiang et al.}[2024)) also claimed that developers often expect LLMs to com-
plete the current code into a complete snippet, such as a completed code line or loop block, instead
of suggesting an incomplete code snippet. Therefore, in M?RC-EVAL, we first parse the abstract
syntax tree (AST) of each source code file, and then we randomly choose a node (e.g., the node
of “Function Definition” in Fig. [2) on the AST as the completion cursor position. After that, we
obtain the corresponding code to obtain the ground-truth for the current completion cursor position.
Finally, at inference, the code LLMs need to predict the current code span given the in-file and cross
file contexts. Similarly, in training, we just use the ground-truth to supervise the tuning process of
the code LLMs.

Under review as a conference paper at ICLR 2025

I import unittest
1 from wxpusher import WxPusher Source Code

j from . import config
1

Abstract Syntax
o
@ @ @ Class Definition
" Function Definition B B

! class TestSendMessage(unittest.TestCase):
"""Unittest for sending message."""

def setUpClass(cls):
"""Set up for class."""
WxPusher.default_token = config.TOKEN

idef test_send_message_uid(self):
"""positive case for sending message with uid
res = WxPusher.send_message<|concat_token|>(
self.test_send_message_uid.__doc__,
uids=config.UIDS,
url='http://example.com/"',
)<|concat_token|> .
self.assertIsInstance(res,; dict)serereaneeaens

1
1
1
1
1
1
1
@classmethod '
1
1
1
1
1
1

[
:[Expression Statement]
i [
alelelE]a
self.assertIn('code', res)" i
self.assertEqual(1000, res['code']) @

def test_send_message_toplc_id(se;'[f): g l

‘ Bucket: 8 H Semantic: Identifie.r & Scope { Identifier J

‘ Bucket: 3 H Semantic: Declaration & Definition ‘ <> ' B

Figure 2: Illustration on generating completion cursor position and fine-grained annotations. Specif-
ically, we first parse the source code into an abstract syntax tree (AST). Then, we choose one node
as the completion cursor position and generate the bucket label based on the belonged layer number
in AST, and obtain the semantic label based on the node type parsed by the Tree-sitter.

M M M M [3 Prompt Length
[Completion Length
[Cross-file Dependencies

204
15
104 —| H
54
& 3 . C K {§
é\ &

&

24,

§
NI

S

o
ke,
Ry, 4
llé_}/
’(’o,,lq
gy |

»,

&
&
§
<

&

Figure 3: The average prompt length (100x tokens), completion span length (50x tokens), and cross-
file dependencies (1x) in the testing set of M?RC-EVAL. We define the number of other files, which
are explicitly imported and implicitly referenced by the current file, as cross-file dependencies.

Table 1: A comparison with existing notable repository-level code completion datasets.

Benchmark | #Languages Fine-grained Training Set # Test Repos
RepoBench (Liu et al.,2023a) 2 X v 1669
CrossCodeEval (Ding et al.,[2024) 4 X X 1002
R2C2-Bench (Deng et al.| [2024) 4 X v 1353
M?RC-EVAL& M?RC-INSTRUCT | 18 v v/ 5993

3.2 QUALITY CONTROL

We build a suite of post-processing filters to enhance the quality of M2RC-INSTRUCT. We eliminate
examples based on two heuristic rules: (1) The completion cursor position should be no longer
than 5 lines. (2) If the completion ground truth is fewer than 20 characters, at least 20% of them
should be alphabetic. To improve data independence and inference difficulty, we apply extra filters
to the test cases in M?RC-EVAL. (a) Repositories in M?RC-EVAL should be absent from M?RcC-
INSTRUCT. (b) We ensure that 30% of the completion ground truth is not shorter than 2 lines. (c)
The completion cursor position should not be fully white-spaced. (d) We discard test cases that could
be exactly predicted by DeepSeekCoder—1. 3B (Guo et al., 2024b)) without cross file contexts.

Under review as a conference paper at ICLR 2025

Table 2: Semantic-level annotations on different types of programming languages.

Major Classes Java Go Scala

Program Structure "Program Entry", "Program Entry", "Program Entry",
"Namespace", "Namespace", "Namespace",
"Import/Include" "Import/Include" "Import/Include"

Declaration and Definition

"Class", "Function",
"Variable"

"Class", "Function",
"Variable"

"Class", "Function",
"Variable"

Control Flow Structure

"Conditional", "Loop",
"Jump", "Exception Handling'

"

"Conditional", "Loop",
"Jump", "Exception Handling"

"

"Conditional", "Loop",
"Jump", "Exception Handling"

"

Expression "Arithmetic Operation”, " Arithmetic Operation", " Arithmetic Operation",
"Logical Operation", "Logical Operation", "Function Call", "Object
"Function Call", "Object "Function Call", "Object Creation", "Type Casting",
Creation", "Type Casting", Creation", "Type Casting", "Tuple Expression", "Logical
"Other", "Arithmetic " Arithmetic Operator", Operator", "Special Operator"
Operator”, "Logical Operator" "Logical Operator"

Data Type "Primitive Type", "Composite "Primitive Type", "Composite "Primitive Type", "Composite
Type", "Generic", "Numeric", Type", "Generic" Type", "Generic", "Numeric",
"String", "Boolean", "Special "String", "Boolean", "Special
Value" Value"

Statement "Expression Statement", "Expression Statement”, "Compound Statement”
"Compound Statement", "Compound Statement"
"Other Statement”

Modifier and Attribute "Access Modifiers", "Other "Access Modifiers", "Other "Access Modifiers", "Other

Modifiers", "Attribute
Annotation"

Modifiers", "Attribute
Annotation"

Modifiers", "Annotation"

Comments and Documentation

"Single-line Comment",
"Multi-line Comment"

"Single-line Comment"

"Single-line Comment",
"Multi-line Comment”

Preprocessing Directive

"Conditional Compilation”,
"Macro Definition"

"Conditional Compilation”,
"Macro Definition"

"Macro Definition"

Identifier and Scope

"Identifier", "Qualified Name"

"Identifier", "Qualified Name"

"Identifier", "Qualified Name",
"Binding", "Delimiter"

Special Language Structure

"Lambda Expression”,
"Pattern Matching",
"Coroutine"

"Lambda Expression”,
"Coroutine"

"Lambda Expression”,
"Pattern Matching"

3.3 DATASET STATISTICS

Following the quality filters in §@ from the overall data pool §(3:I). We sample 50,000 files
per language to construct our M“RC-INSTRUCT, and sample 100, and 500 files per language to
build the validation and test sets of our M2RC-EVAL, respectively. The statistics of the test set are
shown in Fig. [3| and we also provide a detailed comparison between our M2RC-EVAL with existing
repository-level code completion datasets in Table [I, Note that the numbers of repositories for
M?RC-INSTRUCT, validation split of M?RC-EVAL are 37439 and 1635, respectively.

3.4 FINE-GRAINED ANNOTATIONS

As shown in Fig. 2] to analyze the performance in a fine-grained manner, we further provide two
types of fine-grained annotations (i.e., bucket-level and semantic-level) for each completion cur-
sor. Specifically, we first generate the abstract syntax tree. For the bucket-level annotations, we
first simply divide each tree into M buckets based on the depth degree of the abstract syntax tree.
Note that we set M as 10 in our M2RC-EVAL. For example, if the number of layers for the cur-
rent abstract syntax tree is IV, the ¢-th layer of the tree belongs to the [W] bucket. Then, for

each completion cursor node, we annotate the bucket label based on the layer number of each node.
Similarly, for the semantic-level annotations, we directly annotate the semantic-level label for each
completion cursor node. Specifically, we pre-define 11 major classes (i.e., “Program Structure”,
“Declaration and Definition”, “Control Flow Structure”, “Expression”, “Data Type”, “Statement”,
“Modifier and Attribute”, “Comments and Documentation”, “Preprocessing Directive”, “Identifier
and Scope”, “Special Language Structure”). Then, as different languages have many specific de-
signs, the subcategories under each major class are carefully annotated for different languages. As
shown in Table 2} we provide the semantic-level annotations on three main-stream programming

Under review as a conference paper at ICLR 2025

Table 3: Exact match (%) and edit similarity (%) performance on M?RC-EVAL.

Model C C# C++ Go HTML Haskell -
EM ES EM ES EM ES EM ES EM ES EM ES EM ES
Code Llama-7B 186 472 196 526 21.8 51.1 260 536 206 404 22.6 489 - -
+ Retrieval 21.8 472 229 489 232 466 238 524 126 356 22.6 489 - -
+ Retrieval & Tuning 454 72.0 435 723 50.8 749 434 729 418 63.6 39.8 663 - -
StarCoder-7B 20.0 504 200 533 224 518 254 582 174 407 250 5I1.1 - -
+ Retrieval 238 47.8 27.1 532 246 480 260 536 206 404 250 477 - -

+ Retrieval & Tuning 47.0 72.7 451 748 524 763 432 737 458 67.1 448 702 - -
DeepSeekCoder-6.7B 224 537 214 562 232 542 294 614 176 434 252 513 - -

+ Retrieval 282 52,6 253 526 276 522 294 614 176 434 258 510 - -
+ Retrieval & Tuning 48.6 752 479 769 544 782 488 784 450 663 458 720 - -
Model Java JavaScript Kotlin Lua Objective-C PHP -
Code Llama-7B 234 585 172 520 23.6 57.0 200 457 178 495 192 549 - -
+ Retrieval 234 575 19.6 480 208 50.0 19.6 422 214 466 212 490 - -
+ Retrieval & Tuning 41.8 74.1 388 70.1 450 756 438 705 49.8 759 456 1767 - -
StarCoder-7B 240 592 166 520 244 593 214 486 176 496 186 544 - -
+ Retrieval 250 53.1 220 508 228 526 264 485 236 480 186 544 - -

+ Retrieval & Tuning 47.4 769 388 70.1 450 756 438 705 50.8 759 456 76.7 - -
DeepSeekCoder-6.7B 222 61.0 204 565 260 61.0 220 488 21.0 556 242 586 - -

+ Retrieval 21.6 514 244 536 260 61.0 220 499 276 535 28.6 569 - -
+ Retrieval & Tuning 482 79.1 43.6 735 460 757 446 706 522 77.6 49.8 788 - -
Model Python R Ruby Rust Scala TypeScript Avg.
Code Llama-7B 246 542 152 412 172 458 262 560 228 485 234 523 194 503
+ Retrieval 174 464 152 398 172 423 260 513 228 485 194 486 202 46.1
+ Retrieval & Tuning 39.2 699 38.6 655 430 685 420 692 41.0 70.1 37.0 682 419 70.0
StarCoder-7B 19.4 529 164 437 194 474 262 560 236 534 198 533 21.0 520
+ Retrieval 246 542 226 472 236 474 264 535 228 485 234 523 241 500

+ Retrieval & Tuning 392 699 41.0 66.6 43.0 685 458 726 43.6 715 392 697 445 722

DeepSeekCoder-6.7B 21.8 55.1 194 485 23.6 522 238 543 246 567 194 554 226 547
+ Retrieval 21.8 551 194 485 236 522 238 543 224 504 260 545 251 517
+ Retrieval & Tuning 41.6 713 454 694 456 703 47.6 734 448 737 432 734 468 74.1

languages (Java, Go, Scala), where the annotations on all 18 languages are provided in Fig.
Fig.[13]and Fig. [I4]of the Appendix.

4 EXPERIMENTS

4.1 EVALUATION MODELS AND METRICS

We perform main experiments on M2Rrc-EVAL with three Code LLMs (i.e., StarCoder-7B (Li et al.|
2023), DeepSeekCoder-6.7B (Guo et al., 2024b) and Code Llama-7B (Roziere et al., 2023)) (See
Appendix [A.3]for more details). Following (Ding et al.,[2023), we compare the generated code with
the reference and compute the exact match (EM) and edit similarity (ES) metrics which assess the
textual similarities and ignore semantic structure similarities among predictions and ground-truth.

4.2 EXPERIMENTAL SETUP

Baseline. Only the original code file, where the cursor position is located, is provided for the code
LLMs. As no explicit inter-file context is supplied, the model must utilize its inherent knowledge-
based reasoning abilities to generate appropriate code.

+ Retrieval. In line with the approach outlined in CrossCodeEval (Ding et al.,|2023), the retrieval
process begins by examining files within the same repository. Continuous code segments of L
lines are extracted, where L matches the length of the retrieval query and is set as 10 by default.
Subsequently, these extracted candidates are prioritized based on their Jaccard similarity scores.
The most relevant fragments are then appended to the beginning of the in-file context in descending

*https://github.com/amazon-science/cceval

https://github.com/amazon-science/cceval

Under review as a conference paper at ICLR 2025

Table 4: Performance on different LLMs on M2RC-EVAL.
M?RC-EVAL MZ?RC-EVAL-2403 M-Z?RC-EVAL-2406

Model
EM ES EM ES EM ES
Code Llama-7B 194 503 19.1 52.9 21.5 52.7
+ Retrieval 20.2 46.1 23.1 50.8 25.0 51.5
StarCoder-7B 21.0 520 204 53.1 20.1 51.6
+ Retrieval 24.1 50.0 26.0 54.9 28.6 55.9
DeepSeekCoder-6.7B 22.6 547 204 51.9 23.0 55.6
+ Retrieval 25.1 517 240 52.7 30.3 56.4
DeepSeekCoder-33B 26.8 51.6 24.0 43.7 23.9 49.7
+ Retrieval 273 529 27.1 51.8 27.5 49.8
Qwen2.5-Coder-7B 188 465 205 49.7 21.0 48.1
+ Retrieval 272 522 310 57.2 324 56.7
Qwen2.5-Coder-32B 347 657 35.0 66.2 37.3 67.6
+ Retrieval 4177 68.0 439 69.5 45.9 71.2
LLama3.1-70B 6.4 31.9 5.0 31.5 54 31.3
+ Retrieval 6.8 33.0 6.1 33.3 6.1 32.8
Qwen2.5-72B 6.7 39.1 11.6 49.6 10.2 453
+ Retrieval 122 448 124 51.1 13.4 50.9
GPT-40 122 455 11.5 54.0 11.1 472
+ Retrieval 17.8 56.7 15.0 57.4 17.3 54.0
Claude 3.5 Sonnet 224 553 232 63.8 23.1 59.5
+ Retrieval 299 628 284 65.9 30.5 67.1
DeepSeekV2.5 16.1 50.5 239 61.0 252 56.9
+ Retrieval 272 606 283 64.1 26.0 61.1

order of similarity. This concatenation continues until the total length, including both the added
candidates and the original in-file context, reaches the predetermined maximum token limit of 4096.

+ Retrieval & Tuning. To further improve the performance of repository-level code completion,
we fine-tune code LLMs on the M?RC-INSTRUCT dataset mentioned in §(3). At inference, we use
the same inference strategy as discussed in “+ Retrieval”.

4.3 MAIN RESULTS

We present the results on M?RC-EVAL in Table We observe that different code LLMs have
different repository-level code completion abilities for different programming languages. For in-
stance, DeepSeekCoder-6.7B demonstrates strong completion ability for Go, while its performance
is weaker with HTML, a markup language, which demonstrates the necessity of evaluating code
LLMs for multilingual capabilities. Besides, the results indicate that cross-file context is highly
effective, resulting in a significant improvement compared to using only in-file context. In partic-
ular, the multilingual SFT on our created instruction corpora M2RC-INSTRUCT also significantly
enhances performance on M2RC-EVAL. Notably, after SFT on M?RC-INSTRUCT, Code Llama-7B,
which originally ranked lowest with in-file context, outperformed the non-finetuned StarCoder-7B,
demonstrating the effectiveness of M2RC-INSTRUCT.

4.4 ANALYSIS

Analysis on data leakage. Following LiveCodeBench (Jain et al.| 2024a) and EvoCodeBench (L1
et al.| 2024), we also build a dynamically updating M2rc-Eval dataset, where the M?RC-EVAL-
2403 and M?RC-EVAL-2406 are produced in Table Ié__ll Specifically, we collect repositories from
2024.03.01-2024.05.31 and then build the M?RC-EVAL-2403 split based on the same data col-
lection process. Similarly, we build the M2RC-EVAL-2406 using repositories from 2024.06.01-
2024.08.30, and the results (EM/ES) of different splits for different LLMs (Code Llama-7B,
StarCoder-7B, DeepSeekCoder-6.7B, GPT—4ﬂ LLama3.1 (Team/[2024a)), Qwen2.5 (Teaml [2024b)),

*nttps://openai.com/index/hello-gpt-40/

https://openai.com/index/hello-gpt-4o/

Under review as a conference paper at ICLR 2025

100 1k 5k 10k 50k

Size
—e— C (EM) —8— C++ (EM) —®— HTML (EM) ~m- C(ES) C++ (ES) —m- HTML (ES)
—0— C# (EM) —8— Go (EM) —8— Haskell (EM) ~m- C# (ES) ~M- Go (ES) ~M - Haskell (ES)

Figure 4: Effectiveness of using different training data sizes.

Claude 3.5 El and DeepSeek-V2.5 (DeepSeek-All 2024)) are provided. Note that as some mod-
els do not support the FIM pattern, we directly use a prompt engineering strategy to obtain the
repository-level code completion results. We have the following observations. (1). When introduc-
ing cross-file context using retrieval, better performance results are usually obtained, specifically on
the EM metric. (2). For existing Code LLMs, the performance on different testing splits is relatively
stable, which means that data leakage or contamination concerns are almost non-existent in M2RC-
EVAL. Besides, for many knowledge-based benchmarks (e.g., MMLU (Hendrycks et al] [2020),
SimpleQA [2024)), this knowledge information widely exists in web and book corpus,
which have been trained in existing LLMs. However, these benchmarks are still effective tools for
evaluating the knowledge coverage degree in these LLMs. (3) Meanwhile, although our M?Rc-
EVAL has been trained in several LLMs, we still find existing LLMs cannot achieve competitive
performance results, and our M2RC-EVAL can still be used as an effective benchmark to evaluate
the code completion abilities of existing LLMs. (4) These powerful API LLMs or open-source
LLMs (e.g., LLama3.1-70B, Qwen2.5-72B) have strong code generation abilities in many bench-
marks (e.g., HumanEval [2021), MBPP [Austin et al| (2021)), (Tain et al} [2024a)), the
repository-level code completion performance are still limited when compared to these code-specific
LLMs. We assume that these code LLMs usually introduce an FIM loss objective in training, which
is the same as the testing scenes and greatly improves the repository-level code completion.

Analysis on different model sizes. In Table 5]
we provide the performance of StarCoder for

different model sizes in the validation set of Table 5: Performance on M2RC-EVAL.
M?RC-EVAL. Notably, StarCoder-7B consis- Average
tently outperforms StarCoder-3B under compa- Model | aATmest
rable conditions. However, following the appli- EM ES
cation of SFT on M2RC-INSTRUCT, the results StarCoder-3B 149 435
of StarCoder-3B exceed those of the inference- + Retrieval 146 384

only StarCoder-7B. This finding underscores - - - — - — - - - -
the effectiveness of our M2RC-INSTRUCT in + Retrieval & Tuning 417 69.1

augmenting the capabilities of smaller models StarCoder-7B 206 499
in repository-level code completion. " {Retrieval 23.6 493
Analysis on different training data sizes. In "+ Retrieval &:Fﬁniné 444 714

Table [6] we evaluate the fine-tuned StarCoder-
7B by employing varying sizes of M?RC-INSTRUCT and report the results on the validation set of
M?2RcC-EVAL. Our observations indicate that increasing the dataset from 0.1k to 50k samples per
language yields improved results. This suggests that more training data can help boost the model’s
performance. Therefore, we select 50k samples per language as the default training set size.

Analysis on the granularity of different bucket levels. As mentioned in §([3.4), we categorize
M?Z2RC-EVAL into ten bucket levels based on the positions of the code requiring completion within
the abstract syntax tree. As shown in Fig.[5] we presents the performance of StarCoder-7B on the
test set of M2RC-EVAL across these different bucket levels, and we observe that as the bucket level

Shttps://www.anthropic.com/news/claude-3-5-sonnet

https://www.anthropic.com/news/claude-3-5-sonnet

Under review as a conference paper at ICLR 2025

Table 6: Performance on M2RC-EVAL using different training data sizes.
Data Size (Per lang.) \ 100 1k 5k 10k 50k

EM (Avg.) 234 357 405 424 444
ES (Avg.) 49.1 629 682 694 714

Performance of Different Bucket Levels

0.3
0.2 —&— + Retrieval & Tuning (EM)
: + Retrieval & Tuning (ES)
—e— + Retrieval (EM)
0.1 —e— + Retrieval (ES)

0 1 2 3 6 7 8 9

Buéket LZvel
Figure 5: Effectiveness of different bucket levels based on StarCoder-7B.

decreases, the performance of StarCoder-7B correspondingly declines, which means that the code
completion on the shadow layer is usually more challenging than on the deep layer. For more experi-
mental data on single-language completion performance and its relation to bucket levels, please refer
to Fig[9) and Fig[I0]in the Appendix. These findings suggest that the code LLMs encounter chal-
lenges when addressing shallow nodes within the syntax tree during the code completion process.

Analysis on the granularity of different semantic levels.
Similarly, in §(@’ we also categorize the nodes within the |
abstract syntax tree into eleven primary semantic levels based
on their semantic characteristics, and we provide the perfor-
mance of StarCoder-7B on repository-level code completion
for these various semantic levels across multilingual languages
on the test set of the M2RC-EVAL. Notably, we observe sig- I I I
nificant performance disparities across different semantic lev-

. . 20
els. Specifically, StarCoder-7B shows superior performance
on “Identifier and Scope”, while it exhibits lower efficacy on 0_]._“_m
“Special Language Structure”, This suggests that current code 1 2 3 4 5
LLMs are proficient at completing tasks related to variable def-
initions and references, yet their capacity to handle character- Figure 7: Effectiveness of code
istics of different languages requires further enhancement. For completion on different lines based
single-language completion performance across various node on StarCoder-7B.
types, please refer to Fig. [IT]in the Appendix.

60

40

Analysis on completion on differ-
ent lines. As shown in Fig[]]

StarCoder-7B can effectively com- Table 8: Performance on M?RC-EVAL.

plete tasks involving a small number Average
of lines. However, as the number of Model

lines to be completed increases, the EM ES
scores of the generated code grad- + Retrieval 23.6 493

ually decline. This indicates that ----—----—- - - - —-——-—-————-

completing multi-line code remains a + Retr%eval B Tun%ng 444714
challenge for code LLM. + Retrieval & Tuning (Python Only) 39.2 679

Analysis on cross-lingual transfer.

We fine-tune the StarCoder-7B model using Python-only data (50k) in M2RC-INSTRUCT and com-
pare it with the results of using our whole training data. In Table 8] we report the results on the
validation set of M2RC-EVAL, and observe that fine-tuning the model exclusively with Python data

Under review as a conference paper at ICLR 2025

Performance of Different Semantic Levels (total)

[+ Retrieval & Tuning (EM)
084 3 + Retrieval (EM)
[+ Retrieval & Tuning (ES)

0.6 O + Retrieval (ES)
o
g
@ 0.4+

024

0.0 T T

(\)c\\xf

’ 3
\)c(e Q&(" 65*‘0 \a“v e‘“c ‘“‘0\) o zc“ and soot® Smk“““
ek and et ofiet &
\

‘3‘“
o
pro¥ o \a(ﬁ“" Co“«o yod

oS

AT
. and P sve“‘?‘\ Lang

Figure 6: Effectiveness of different semantic levels based on StarCoder-7B.

Table 7: CodeBLEU results on ten representative programming languages.

Model C C# C++ Go Java JavaScript PHP Python Ruby Rust Avg.
StarCoder-7B 483 489 504 515 50.6 46.4 48.2 46.4 46.1 504 48.7
+ Retrieval 50.1 523 511 525 514 49.3 52.2 49.3 49.1 514 509

+ Retrieval & Tuning 56.0 574 576 570 57.6 54.8 57.8 52.0 529 555 559

resulted in a significant improvement in its M?RC-EVAL score, coming close to the ES performance
achieved through fine-tuning with data from 18 languages. Note that we provide detailed improve-
ments on different languages in Fig.[22)and Fig. 23]

Analysis on CodeBLEU metric. In Table 3] we mainly report the EM and ES metrics based on the
textual similarity, which neglects important syntactic and semantic features of codes and underes-
timates different outputs with the same semantic logic. Thus, the CodeBLEU (Ren et al., 2020)E]
is proposed, which considers information from not only the shallow match, but also the syntactic
match and the semantic match. In Table [7] we report the results of 10 popular programming lan-
guages using the test split of M?RC-EVAL based on the StarCoder-7B model and observe that we can
still achieve better performance by fine-tuning on our constructed M?RC-INSTRUCT, which further
demonstrates the effectiveness of our M2RC-INSTRUCT on repository-level code completion.

Analysis on various input lengths. As shown in
Fig.[8] we report the results produced by StarCoder- 50 80

7B (“Retrieval & Tuning”) on our M2?RC-EVAL 4
when the input lengths of range in {512, 1024, 2048, 244.4¢1 70
4096} tokens. In Fig. 8] we observe that a scal-
ing law exists, where better performance is achieved 60
when the input length is larger. Thus, we set the de-
fault input length as 4096 tokens. 30
251 - 40
5 CONCLUSION 201 o Frvch
Edit Similarity | 30
15 : . . .
In this paper, we propose the first massively multi- 512 1024 2048 4096

lingual repository-level code completion benchmark

(M2RC-EVAL) with 18 popular programming lan- Figure 8: Performance on M?RC-EVAL with
guages, where two types of fine-grained annota- various input lengths based on StarCoder-7B.
tions (bucket-level and semantic-level) are provided

to comprehensively analyze the effectiveness of dif-

ferent code LLMs. Besides, we also curate a high-quality instruction corpus M?RC-INSTRUCT to
enhance the performance of existing models on repository-level code completion. Extensive experi-
mental results and detailed discussions demonstrate the effectiveness of our proposed M?RC-EVAL
and M2RC-INSTRUCT. Finally, we hope M?RC-EVAL could guide the developers and researchers
to understand the repository-level code completion capabilities of LLMs and facilitate the growth of
code intelligence and software engineering.

SWe test the CodeBLEU metric based on https://github.com/k4black/codebleul

10

https://github.com/k4black/codebleu

Under review as a conference paper at ICLR 2025

REFERENCES

Lakshya A Agrawal, Aditya Kanade, Navin Goyal, Shuvendu K Lahiri, and Sriram K Rajamani.
Guiding language models of code with global context using monitors. 2023.

Loubna Ben Allal, Raymond Li, Denis Kocetkov, Chenghao Mou, Christopher Akiki, Carlos Munoz
Ferrandis, Niklas Muennighoff, Mayank Mishra, Alex Gu, Manan Dey, et al. Santacoder: don’t
reach for the stars! arXiv preprint arXiv:2301.03988, 2023. URL https://arxiv.org/
abs/2301.03988.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021. URL https://arxiv.org/abs/2108.
07732.

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Arun Iyer, Suresh Parthasarathy, Sriram Raja-
mani, B Ashok, Shashank Shet, et al. Codeplan: Repository-level coding using llms and planning.
arXiv preprint arXiv:2309.12499, 2023.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. arXiv
preprint arXiv:2207.14255,2022a. URL https://arxiv.org/abs/2207.14255,

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. arXiv
preprint arXiv:2207.14255, 2022b.

Sid Black, Leo Gao, Phil Wang, Connor Leahy, and Stella Biderman. GPT-Neo: Large Scale Au-
toregressive Language Modeling with Mesh-Tensorflow, 2021. URLhttps://doi.org/10.
5281 /zenodo.5297715.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Ho-
race He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, Usvsn Sai Prashanth, Shiv-
anshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-NeoX-
20B: An open-source autoregressive language model. In Proceedings of BigScience Episode
#5 — Workshop on Challenges & Perspectives in Creating Large Language Models, pp. 95—
136, virtual+Dublin, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
bigscience-1.9. URL https://aclanthology.org/2022.bigscience—1.9,

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-
e: A scalable and extensible approach to benchmarking neural code generation. arXiv preprint
arXiv:2208.08227, 2022.

Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin, Ke Jin, Jiaheng Liu, Tao Sun, Ge Zhang,
Changyu Ren, Hongcheng Guo, et al. Mceval: Massively multilingual code evaluation. arXiv
preprint arXiv:2406.07436, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. ArXiv preprint, abs/2107.03374, 2021. URL https://
arxiv.org/abs/2107.03374.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. 24(240):1-113, 2023.

CodeGeeX, 2022. https://github.com/THUDM/CodeGeeX.

DeepSeek-Al. Deepseek-v2: A strong, economical, and efficient mixture-of-experts language

model, 2024.

11

https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2207.14255
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://aclanthology.org/2022.bigscience-1.9
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://github.com/THUDM/CodeGeeX

Under review as a conference paper at ICLR 2025

Ken Deng, Jiaheng Liu, He Zhu, Congnan Liu, Jingxin Li, Jiakai Wang, Peng Zhao, Chenchen
Zhang, Yanan Wu, Xueqiao Yin, Yuanxing Zhang, Wenbo Su, Bangyu Xiang, Tiezheng Ge, and
Bo Zheng. R2c2-coder: Enhancing and benchmarking real-world repository-level code comple-
tion abilities of code large language models. ArXiv, abs/2406.01359, 2024.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Murali Krishna Ramanathan, Ramesh Nallapati,
Parminder Bhatia, Dan Roth, and Bing Xiang. Cocomic: Code completion by jointly modeling
in-file and cross-file context. arXiv preprint arXiv:2212.10007,2022. URL https://arxiv.
org/abs/2212.10007.

Yangruibo Ding, Zijian Wang, Wasi Uddin Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Mu-
rali Krishna Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, and Bing Xiang.
Crosscodeeval: A diverse and multilingual benchmark for cross-file code completion. In
Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/
hash/920f2dced7d32ab2ba2f1970bc306af6-Abstract—Datasets_and_
Benchmarks.htmll

Yangruibo Ding, Zijian Wang, Wasi Ahmad, Hantian Ding, Ming Tan, Nihal Jain, Murali Krishna
Ramanathan, Ramesh Nallapati, Parminder Bhatia, Dan Roth, et al. Crosscodeeval: A diverse
and multilingual benchmark for cross-file code completion. Advances in Neural Information
Processing Systems, 36, 2024.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and
synthesis. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=hQwb—-1bM6EL.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—
the rise of code intelligence. arXiv preprint arXiv:2401.14196,2024a. URL https://arxiv.
org/abs/2401.14196.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024b.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. 2020.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024a.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024b.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024a.

Nihal Jain, Robert Kwiatkowski, Baishakhi Ray, Murali Krishna Ramanathan, and Varun Kumar.
On mitigating code 1lm hallucinations with api documentation. ArXiv, abs/2407.09726, 2024b.

Siyuan Jiang, Jia Li, He Zong, Huanyu Liu, Hao Zhu, Shukai Hu, Erlu Li, Jiazheng Ding, Yu Han,

Wei Ning, Gen Wang, Yihong Dong, Kechi Zhang, and Ge Li. aixcoder-7b: A lightweight and
effective large language model for code completion. 2024.

12

https://arxiv.org/abs/2212.10007
https://arxiv.org/abs/2212.10007
http://papers.nips.cc/paper_files/paper/2023/hash/920f2dced7d32ab2ba2f1970bc306af6-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/920f2dced7d32ab2ba2f1970bc306af6-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2023/hash/920f2dced7d32ab2ba2f1970bc306af6-Abstract-Datasets_and_Benchmarks.html
https://openreview.net/forum?id=hQwb-lbM6EL
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196

Under review as a conference paper at ICLR 2025

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muiioz Ferran-
dis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb
of permissively licensed source code. arXiv preprint arXiv:2211.15533, 2022. URL https:
//arxiv.org/abs/2211.15533.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven C. H. Hoi.
Coderl: Mastering code generation through pretrained models and deep reinforcement learn-
ing. ArXiv, abs/2207.01780, 2022. URL https://api.semanticscholar.org/
CorpusID:250280117.

Jia Li, Ge Li, Xuanming Zhang, Yihong Dong, and Zhi Jin. Evocodebench: An evolving code
generation benchmark aligned with real-world code repositories. 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023. URL https://arxiv.org/abs/2305.
06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. ArXiv preprint, abs/2203.07814, 2022. URL https://arxiv.org/abs/
2203.07814.

Dianshu Liao, Shidong Pan, Qing Huang, Xiaoxue Ren, Zhenchang Xing, Huan Jin, and Qinying
Li. Context-aware code generation framework for code repositories: Local, global, and third-party
library awareness. 2023.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. arXiv preprint arXiv:2306.03091, 2023a.

Tianyang Liu, Canwen Xu, and Julian J. McAuley. Repobench: Benchmarking repository-level
code auto-completion systems. abs/2306.03091, 2023b. doi: 10.48550/ARXIV.2306.03091. URL
https://doi.org/10.48550/arXiv.2306.03091.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. 2024.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In International Conference on Learning Representations, 2023. URL https://
openreview.net/forum?id=iaYcJKpY2B_.

Changan Niu, Chuanyi Li, Vincent Ng, Jidong Ge, LiGuo Huang, and Bin Luo. Spt-code:
Sequence-to-sequence pre-training for learning source code representations. 2022 IEEE/ACM
44th International Conference on Software Engineering (ICSE), pp. 01-13,2022. URL https:
//api.semanticscholar.orqg/CorpusID:246077487.

Hengzhi Pei, Jinman Zhao, Leonard Lausen, Sheng Zha, and George Karypis. Better context makes
better code language models: A case study on function call argument completion. In Proceedings
of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on
Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Ad-
vances in Artificial Intelligence, AAAT'23/IAAT'23/EAAT’23. AAAI Press, 2023. ISBN 978-1-
57735-880-0. doi: 10.1609/aaai.v37i4.25653. URL https://doi.org/10.1609/aaai.
v3714.25653.

Huy Nhat Phan, Hoang N. Phan, Tien N. Nguyen, and Nghi D. Q. Bui. Repohyper: Search-expand-
refine on semantic graphs for repository-level code completion. 2024. URL https://api.
semanticscholar.org/CorpusID:271860296.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis.
arXiv preprint arXiv:2009.10297, 2020.

13

https://arxiv.org/abs/2211.15533
https://arxiv.org/abs/2211.15533
https://api.semanticscholar.org/CorpusID:250280117
https://api.semanticscholar.org/CorpusID:250280117
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2203.07814
https://arxiv.org/abs/2203.07814
https://doi.org/10.48550/arXiv.2306.03091
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://api.semanticscholar.org/CorpusID:246077487
https://api.semanticscholar.org/CorpusID:246077487
https://doi.org/10.1609/aaai.v37i4.25653
https://doi.org/10.1609/aaai.v37i4.25653
https://api.semanticscholar.org/CorpusID:271860296
https://api.semanticscholar.org/CorpusID:271860296

Under review as a conference paper at ICLR 2025

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
2023.

Disha Shrivastava, Denis Kocetkov, Harm de Vries, Dzmitry Bahdanau, and Torsten Scholak. Re-
pofusion: Training code models to understand your repository. arXiv preprint arXiv:2306.10998,
2023a.

Disha Shrivastava, Hugo Larochelle, and Daniel Tarlow. Repository-level prompt generation for
large language models of code. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pp- 31693-31715. PMLR, 23-29 Jul 2023b. URL https://proceedings.mlr.press/
v202/shrivastava23a.htmll

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. 568:127063, 2024.

Tao Sun, Linzheng Chai, Yuwei Yin Jian Yang, Hongcheng Guo, Jiaheng Liu, Bing Wang, Liqun
Yang, and Zhoujun Li. Unicoder: Scaling code large language model via universal code. ACL,
2024.

Wannita Takerngsaksiri, Chakkrit Tantithamthavorn, and Yuan-Fang Li. Syntax-aware on-the-fly
code completion. Inf. Softw. Technol., 165(C), January 2024. ISSN 0950-5849.

Llama 3 Team. The llama 3 herd of models. arXiv preprint arXiv: 2407.21783, 2024a.

Qwen Team. Qwen2.5: A party of foundation models, September 2024b. URL https:
//gwenlm.github.io/blog/gwen2.5/l

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. 2023.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. CodeT5: Identifier-aware unified
pre-trained encoder-decoder models for code understanding and generation. In Proceedings of
the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 86968708,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.685. URL https://aclanthology.org/
2021 .emnlp-main. 685.

Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and Steven CH Hoi.
Codet5+: Open code large language models for code understanding and generation. 2023.

Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
John Schulman, and William Fedus. Measuring short-form factuality in large language models.
2024. URL https://api.semanticscholar.org/CorpusID:273877483.

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evaluation of
large language models of code. In Proceedings of the 6th ACM SIGPLAN International Sympo-
sium on Machine Programming, pp. 1-10, 2022.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Qianx-
iang Wang, and Tao Xie. Codereval: A benchmark of pragmatic code generation with generative
pre-trained models. In Proceedings of the 46th IEEE/ACM International Conference on Software
Engineering, pp. 1-12, 2024.

Fengji Zhang, Bei Chen, Yue Zhang, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou, and Weizhu

Chen. Repocoder: Repository-level code completion through iterative retrieval and generation.
arXiv preprint arXiv:2303.12570, 2023. URL https://arxiv.org/abs/2303.12570.

14

https://proceedings.mlr.press/v202/shrivastava23a.html
https://proceedings.mlr.press/v202/shrivastava23a.html
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://aclanthology.org/2021.emnlp-main.685
https://aclanthology.org/2021.emnlp-main.685
https://api.semanticscholar.org/CorpusID:273877483
https://arxiv.org/abs/2303.12570

Under review as a conference paper at ICLR 2025

CodeGemma Team Heri Zhao, Jeffrey Hui, Joshua Howland, Nam Nguyen, Siqi Zuo, Andrea
Hu, Christopher A. Choquette-Choo, Jingyue Shen, Joe Kelley, Kshi tij Bansal, Luke Vilnis,
Mateo Wirth, Paul Michel, Peter Choy, Pratik Joshi, Ravin Kumar, Sarmad Hashmi, Shub-
ham Agrawal, Zhitao Gong, Jane Fine, Tris Brian Warkentin, Ale Jakse Hartman, Bin Ni,
Kathy Korevec, Kelly Schaefer, and Scott Huffman. Codegemma: Open code models based
on gemma. ArXiv, abs/2406.11409, 2024. URL |https://api.semanticscholar.org/
CorpusID:2705603109.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen,
Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for
code generation with multilingual evaluations on humaneval-x. arXiv preprint arXiv:2303.17568,
abs/2303.17568, 2023. doi: 10.48550/ARXIV.2303.17568. URL https://doi.org/10.
48550/arXiv.2303.17568.

15

https://api.semanticscholar.org/CorpusID:270560319
https://api.semanticscholar.org/CorpusID:270560319
https://doi.org/10.48550/arXiv.2303.17568
https://doi.org/10.48550/arXiv.2303.17568

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 BROADER IMPACTS

In this paper, we propose a repository-level code completion benchmark with 18 programming lan-
guages. Therefore, we hope our work can enhance the improvements on the multilingual repository-
level code completion task.

A.2 LIMITATIONS

First, there are several hyperparameters (e.g., training sizes, input length) to tune, which is laborious
and expensive. Second, the current work only focuses on the repository-level code completion
task, where other repository-level code intelligence tasks are not considered. Third, only textual
similarity scores (EM and ES) are used and execution-based evaluation based on test cases is not
applied, which may not reflect the performance of different code LLMs well.

A.3 DETAILS OF THE BASELINE MODELS

StarCoder (Li et al) [2023) is a series of generative language models (e.g., 7B, 15.5B). These
decoder-only models are trained on the Stack dataset (Kocetkov et all, 2022)) and can support 8K
tokens in context.

DeepSeekCoder (Guo et all, 2024b) is a collection of code-oriented models with capacities from
1.3B to 33B parameters. Trained on a manually curated 2-trillion-token corpus, these models lever-
age Fill-in-the-Middle (FIM) (Bavarian et al.,[20224) and Rotary Position Embedding (RoPE)
techniques, which enables efficient code generation and infilling within a 16K token
window.

Code Llama (Roziere et all [2023) is a family of code large language models based on Llama
2 (Touvron et al] [2023) with 7B, 13B, 34B, and 70B parameters. While trained on 16K token
sequences, these models can handle inputs up to 100K tokens during inference.

Note that we just use the base model versions of these three models.

A.4 DISCUSSION ON NO EXECUTION-BASED EVALUATION

Current datasets for repository-level code completion evaluation, such as CrossCodeEval
and RepoBench 2023b)), only assess textual similarity between predictions
and ground-truth. We hypothesize this limitation stems from several challenges: Firstly, generating
comprehensive unit tests for each completion position in a repository is problematic. Single-line
completions often fail to construct executable functions, and ensuring adequate test coverage is dif-
ficult. Secondly, execution-based evaluation necessitates creating diverse environments for each
repository, accommodating various software packages and hardware requirements. This process
is intricate and challenging to implement. Thirdly, existing benchmarks with unit tests typically
focus on simpler scenarios, like single-file completions or function body generation. Examples
include commonly used datasets such as Humaneval [CodeGeeX| (2022) and MBPP
(2021). Despite these obstacles, we recognize the importance of execution-based evaluation for ac-
curately assessing code completion effectiveness, and we will continue to investigate how to evaluate
repository-level code completion well.

A.5 ANALYSIS ON MORE EVALUATION METRICS

In Table [for syntax static analysis, following Qwen2.5-Coder (Hul et al] [2024a), to further
verify the syntax correctness of the predicted code snippets, we use the code static checking tools
(Tree-Sitter) for all predicted code snippets of test split of M2rc-Eval. Specifically, we parse the
code snippet into the abstract syntax tree and filter out the code snippet, where the parsed nodes
in the code snippet have parsing errors. For execution analysis, as discussed in Appendix [A.4]
generating unit test cases and providing execution sandboxes for repository-level code completion
are very challenging. In this rebuttal phase, we follow RepoCoder (Zhang et all, [2023)) to provide
the execution test samples in Java language. Specifically, as running tests can be time-consuming

16

Under review as a conference paper at ICLR 2025

Table 9: Performance on M?RC-EVAL.

Model Average
Syntax Accuracy Execution Accuracy
~_+Retrieval 86.8 48.5
+ Retrieval & Tuning 85.9 53.5
+ Retrieval & Tuning (Python Only) 96.9 60.4

and computationally expensive, we first randomly select a separate set of smaller-scale repositories
that are easy to deploy. Besides, as collecting unit tests can be time-consuming, we directly utilize
the unit tests available in these repositories and annotate corresponding functions covered by these
unit tests. Finally, we utilize unit tests present in the repository to evaluate the functional correctness
of the completed function body, where we report the Pass@ 1(Pass rate is 1 if the code passes all the
corresponding test cases, and 0 otherwise). Note that the number of samples for execution analysis
is 175, and the average number of test cases is 4.3. Results for syntax static analysis and execution
analysis are shown in Table[J} and we observe that both the execution accuracy and syntax accuracy
improve a lot after tuning. Notably, the syntax accuracy is close to 100% after tuning, which means
that existing code LLLMs can easily learn the basic syntax rules for existing programming languages.

A.6 ANALYSIS ON THE QUALITY CONTROL

In §([3.2), we discard test samples that could be exactly predicted by DeepSeekCoder-1.3B without
cross-file contexts. Meanwhile, to discuss more clearly, we also use the DeepSeekCoder-6.7B,
StarCoder-7B, and DeepSeekCoder-33B to analyze the ratios of evaluation cases with or without
using repository-level contexts. Specifically, we prompt DeepSeekCoder-6.7B, StarCoder-7B, and
DeepSeekCoder-33B using the in-file contexts of each sample and obtain three predictions. If one
prediction is exactly matched ground-truth, this sample is considered to be predicted without requir-
ing repository-level contexts. Finally, we observe that 71% samples cannot be well predicted only
using in-file contexts, which indicates that it is necessary to use the cross-file contexts to achieve
better performance in our M?RC-EVAL.

A.7 ANALYSIS ON FAILURE CASES IN DIFFERENT PROGRAMMING LANGUAGES

We manually inspect the behavior of StarCoder-7B [2023) on completion cases in dif-
ferent programming languages. As shown in Fig. [T3} the model successively predicts the attribute
position.y, which is an easy pattern that could be inferred from position.x in the prefix.
Besides, the (x, y) pattern that occurs multiple times in the cross-file context. On the contrary,
the model seems to struggle with complex expressions and statements. In Fig.[T6] the model should
complete the function with a combined condition and return statement. However, the retriever could
not provide useful references and the model only predicts half of the condition correctly. Fig. [I7]
illustrates a Python script to execute memory calculations. Although some calculations appear in the
cross-file context, there are no precisely matched calculation procedures. The recurrent conditions
in the ground truth require calculations on the data shape, but the model clumsily guesses the data
shape. Moreover, we observe that the model prediction is usually affected by frequent identifiers in
the retrieved contents. In Fig.[I8] the model repeats the gc . Client and results in a hallucination
for object Pul 1Requests, where the ground truth is gc. Similarly, in Fig.[T9] the model blindly
catches the “err” with error level. Yet the correct log level is “warn”, which could be judged from
c.on(’error’, console.warn) inthe Cross file Context 1. Further, in Fig.|7_0|, the ground
truth and the model prediction differ by only two characters “()” from a textual perspective, but the
ground truth passes the method reference while the model prediction passes the method return.

A.8 ANALYSIS ON LANGUAGE-SPECIFIC INSIGHTS
We have classified 18 programming languages in M?RC-EVAL into 5 programming paradigms

and 9 application scenarios as shown in Table [T0] and Table [T} Based on the above programming
classification structure, we also report the EM results based on StarCoder-7B as shown in Table [I2]

17

Under review as a conference paper at ICLR 2025

and Table [[3] and have the following observations: (1). For different programming paradigms,
we observe that the markup language paradigm has the lowest performance, and the functional
paradigm has the best performance. Besides, after tuning, the performance of the markup language
paradigm improves greatly. We assume that the syntax rules for markup language are easy, and these
code LLLMs can quickly obtain these rules after tuning. (2). For different application scenarios, the
performance varies significantly. Specifically, the Web Frontend and Scientific Computing have
relatively low performance, which needs to be improved for existing code LLMs. (3). We observe
these LLMs share some common strengths and weaknesses and we will continue to investigate more
language-specific insights to better improve the code completion abilities of existing code LLMs.

Table 10: Classification of M2RC-EVAL based on paradigm types.

Paradigm Types | Languages
Procedural C
Object Oriented C#, Java, Kotlin, Objective-C
Multiple Paradigms | C++, Go, JavaScript, Lua, PHP, Python, R, Ruby, Rust, Scala, TypeScript
Functional Haskell
Markup Language HTML

Table 11: Classification of M?RC-EVAL based on application scenarios.

Application Scenarios | Languages
Mobile Kotlin, Objective-C
Cross Platform Java
Desktop Application C#
Web Frontend JavaScript, TypeScript, HTML
‘Web Backend Go, PHP, Ruby, Rust, Scala
Scientific Computing Python, R
System & Software C, C++
Education & Research Haskell
Automation Scripts Lua

Table 12: Results of M2RC-EVAL based on paradigm types.

Paradigm Types \ StarCoder + Retrieval + Retrieval & Tuning

Procedural 19.2 23.7 47.6
Object Oriented 21.3 24.2 474
Multiple Paradigms 21.1 24.3 43.4
Functional 25.1 24.8 44.6
Markup Language 17.2 21.3 46.7

A.9 ANALYSIS ON THE COMPLETION CURSOR POSITION

As mentioned in many works (Hui et al} 20240} [Jiang et al] 2024)), developers often expect LLMs

to complete the current code into a complete snippet, such as a completed code line or loop block,
instead of suggesting an incomplete code snippet. Besides, the recent Qwen2.5-Coder adopts a
similar way with MZRC-INSTRUCT to produce the instruction dataset. Meanwhile, to demonstrate
the effectiveness of our M?RC-INSTRUCT, we also constructed a test dataset called M?RC-EVAL
(Random). Specifically, for a fair comparison, based on the same repositories of M2RC-EVAL, we
randomly choose arbitrary completion cursor positions while ensuring the completed code forms a
valid AST node, where the generated testing set is named M?RC-EVAL (Random). The evaluation
results are as shown in Table We observe that higher performance is obtained in M?RC-EVAL
(Random). For this phenomenon, the possible reason is as follows. In each completion span, the
completion cursor position of our default M2rc-Eval is the start position of the syntax node block,

18

Under review as a conference paper at ICLR 2025

Table 13: Results of M2RC-EVAL based on application scenarios.

Application Scenarios | StarCoder + Retrieval + Retrieval & Tuning

Mobile 21.2 22.9 48.0

Cross Platform 24.2 253 48.1
Desktop Application 18.7 26.1 453
Web Frontend 17.9 22.2 41.5
Web Backend 22.8 24.8 44.6
Scientific Computing 18.2 23.5 40.3
System & Software 21.3 24.0 50.1
Education & Research 25.1 24.8 44.6
Automation Scripts 21.7 26.3 43.7

Table 14: Results of M2RC-EVAL and M?RC-EVAL (Random).

Model | EM/ES (M?RC-EVAL) EM/ES (M?RC-EVAL (Random))
StarCoder-7B \ 21.0/52.0 24.0/53.9

+ Retrieval \ 24.1/50.0 30.1/55.0

+ Retrieval & Tuning 44.5/72.2 54.5/76.8
DeepSeekCoder-6.7B 22.6/54.7 25.3/56.2

+ Retrieval \ 25.1/51.7 32.4/59.6

+ Retrieval& Tuning | 46.8/74.1 55.7/78.3

which means that no context can be used inside the syntax node block. In contrast, the completion
cursor position of M2Rc-EVAL (Random) is the arbitrary position of the syntax node block, which
means that there exist additional informative contexts inside the current syntax node block for better
completion. In other words, in M?2Rrc-EVAL (Random), the additional contexts are inside the syntax
node block and before the completion cursor position, which can decrease the completion difficulty
and improve the completion quality.

19

Under review as a conference paper at ICLR 2025

A.10 MORE EXPERIMENTS

* We provide the analysis on the bucket levels in Fig. [0]and Fig.[I0] respectively.

* We analyze the effect of different semantic levels on Rust, Objective-C, and Haskell in
Fig.[IT] respectively.
* We provide the semantic-level annotations on 18 languages in Fig.[T2] Fig.[T3]and Fig.[T4]

*+ We provide the results of problems from different difficulty levels in Fig. 21} where we
define completion on 1 line, completion on 2-3 lines and completion on 4-5 lines as easy,
middle, and hard settings, respectively.

* The prompt template for evaluating the repository-level code completion of general LLMs
is shown in Template [A.10]

Prompt Template

System Instruction:

First, input a segment of <LANG> code that needs completion. Please help complete
the code at the corresponding position.

The format of the input code is as follows:
<fim_start> prefix <fim_hole> suffix <fim_end>

Explanation:

1. <fim_start>, <fim_hole>, and <fim_end> are special characters.

2. <fim_hole> is the position that needs completion.

3. The prefix after <fim_start> represents the context before the content that needs
completion.

4. The suffix after <fim_hole> represents the context following the content that needs
completion.

The output format is as follows:
1. Only the code completion result for the position <fim_hole> is needed.
2. Do not use markdown format.
3. Do not include the surrounding context.
4. Do not provide any explanation or description.

The content of the input code is as follows:
<CODE>

20

Under review as a conference paper at ICLR 2025

Performance of Different Bucket Levels (Python) Performance of Different Bucket Levels (Lua)
N —
08 0.7 —— -
0.6
0.6
e £os
Soa S
@ A o4
0.2 0.3 -
+ Retrieval & Tuning (EM) —a— + Retrieval & Tuning (EM)
+ Retrieval & Tuning (ES) s+ Retrieval & Tuning (ES)
+ Retrieval (EM) 0.2 —e— + Retrieval (EM)
0.0 + Retrieval (ES) —e— + Retrieval (ES)
0 1 2 4 5 7 8 9 0 1 2 3 4 5 7 8 9
Bucket Level Bucket Level
Performance of Different Bucket Levels (Scala) 08 Performance of Different Bucket Levels (TypeScript)
0.8 A 1 4
+ / * 0.7 —
I
0.6 +
0.6
05
2 2
0.4
S 04 S
@ A3
0.2 0.2
+ Retrieval & Tuning (EM) + Retrieval & Tuning (EM)
—&— + Retrieval & Tuning (ES) 0.1 —#— + Retrieval & Tuning (ES)
—®— + Retrieval (EM) —#— + Retrieval (EM)
0.0 —e— + Retrieval (ES) 0.0 —e— + Retrieval (ES)
0 1 2 3 4 5 7 8 9 [1 2 3 4 5 7 8 9
Bucket Level Bucket Level
Performance of Different Bucket Levels (JavaScript) Performance of Different Bucket Levels (R)
o8 T 0.7 Iy A< |
071 — -)
0.6 S
0.6
0.5
05
£ 2oa
S 04 =
@ @ o3
0.3 :
0.2 0.2
+ Retrieval & Tuning (EM) —a— + Retrieval & Tuning (EM)
0.1 —+— 4+ Retrieval & Tuning (ES) 0.1 —+— + Retrieval & Tuning (ES)
~e— + Retrieval (EM) —e— + Retrieval (EM)
0.0 —o— + Retrieval (ES) 0.0 —e— + Retrieval (ES)
0 1 2 4 5 7 8 9 0 1 2 3 4 5 7 8 9
Bucket Level Bucket Level
o8 Performance of Different Bucket Levels (HTML) Performance of Different Bucket Levels (Go)
s - 0.8
0.7 - -
0.7
0.6
0.6
05
° o 05
S04 s
% é 0.4
0.3 03
02 0.2
—— + Retrieval & Tuning (EM) —&— + Retrieval & Tuning (EM)
0.1 —4— + Retrieval & Tuning (ES) 0.1 —4— + Retrieval & Tuning (ES)
~o— + Retrieval (EM) —e— + Retrieval (EM)
0.0 —e— + Retrieval (ES) 0.0 —e— + Retrieval (ES)
0 1 2 2 5 7 8 9 0 1 2 4 5 7 8 9
Bucket Level Bucket Level
Performance of Different Bucket Levels (Java) Performance of Different Bucket Levels (PHP)
1 1.0
0.8
0.8 \7—f7+-,
0.6
® @ 0.6
£ £
S 04 S
@ A o4
0.2
—+— + Retrieval & Tuning (EM) 0.2 —+— + Refrieval & Tuning (EM)
—a + Retrieval & Tuning (ES) s+ Retrieval & Tuning (ES)
~o— + Retrieval (EM) —o— + Retrieval (EM)
0.0 —e— + Retrieval (ES) 0.0 —e— + Retrieval (ES)
[1 2 3 4 5 6 7 8 9 [1 2 3 4 5 6 7 8 9
Bucket Level Bucket Level
Performance of Different Bucket Levels (C#) Performance of Different Bucket Levels (Rust)
e)
0.8 e, + 4
4 0.8
0.6
° o 06
£ £
S S
@ 04 @
0.4
0.2
+ Retrieval & Tuning (EM) —+— + Retrieval & Tuning (EM)
—&— + Retrieval & Tuning (ES) 0.2 —#— + Retrieval & Tuning (ES)
—#— 4 Retrieval (EM) —#— + Retrieval (EM)
0.0 —e— + Retrieval (ES) —e— + Retrieval (ES)
[1 2 7 8 9 [1 2 3 7 8 9

4 5 4 5
Bucket Level Bucket Level

Figure 9: Effectiveness of different bucket levels based on StarCoder-7B for different languages.

21

Under review as a conference paper at ICLR 2025

Performance of Different Bucket Levels (Kotlin) Performance of Different Bucket Levels (Haskell)
1.0 A 0.8 % 2
0.7 o s
0.8 —_—
0.6 J
\
0.6
4 Los
=3 =l
S 51
@R o4 @04
03
02 —a— + Retrieval & Tuning (EM) + Retrieval & Tuning (EM)
—a— + Retrieval & Tuning (ES) 0.2 s+ Retrieval & Tuning (ES)
e + Retrieval (EM) —e— + Retrieval (EM)
0.0 —e— + Retrieval (ES) 01 —e— + Retrieval (ES)
[1 2 a 5 7 8 9 To 1 2 3 a4 5 7 8 9
Bucket Level Bucket Level
Performance of Different Bucket Levels (C) Performance of Different Bucket Levels (C++)
— 1.0
0.8 ye
0.8
0.6
o 06
£ £
S 0.4 S
@ A4
0.2 L
+ Retrieval & Tuning (EM) 0.2 —+— + Retrieval & Tuning (EM)
—&— + Retrieval & Tuning (ES) —4— + Retrieval & Tuning (ES)
~a— + Retrieval (EM) —a— + Retrieval (EM)
0.0 ~e— + Retrieval (ES) 0.0 —e— + Retrieval (ES)
[1 2 4 5 7 8 9 [1 2 3 4 5 7 8 9
Bucket Level Bucket Level
Performance of Different Bucket Levels (Objective-C) Performance of Different Bucket Levels (Rust)
1
0.8 + — -
—— 1
— i 0.8
0.6
@ @ 0.6
B 1
Soa S
w) w)
0.4
0.2
—a— + Retrieval & Tuning (EM) + Retrieval & Tuning (EM)
—&— 4 Retrieval & Tuning (ES) 0.2 —&— + Retrieval & Tuning (ES)
—e— + Retrieval (EM) —e— + Retrieval (EM)
0.0 —s— + Retrieval (ES) —s— + Retrieval (ES)

7 8 9 0 1 2 7 8 9

4 5 4 5
Bucket Level Bucket Level

Figure 10: Effectiveness of different bucket levels based on StarCoder-7B for different languages.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Score

Score

Score

Performance of Different Semantic Levels (Rust)

10
[+ Retrieval & Tuning (EM)

0s] O3 +RetrievalGMH) @B =
= + Retrieval & Tuning (ES)

0e) O3 tRewieval®s) pm 4 | H4 o opm P HEL

04 R s o B - - . SN N . .

02 F---n-- - - - -] - 1R -
0.0
e Lo e 200 S\ ot qon GNe ©
R e ozf‘“‘“o \,,S“‘“’w‘ ?ﬂ(ess“’ m‘a“v% S‘?“e“\e o o o ad®) ED’“‘“‘V ‘ﬁ“dswve . 5\;\‘“’"
prog® Gon an " AEV L a 3“500"“ wvﬁis\“ 4 ! ‘a(\%“‘a%
e co W e pred® » 5 ?ec;\a\
o

o Performance of Different Semantic Levels (Objective-C)

[+ Retrieval & Tuning (EM)
084 3 + Retrieval (EM)

[+ Retrieval & Tuning (ES)
06] E= *Rewieval®S) ogm o f L B4 om0

04 - R T e N B E— P

024 | N - - - - = N
00
W& 20N e J00 e S\ Ui qon ave J
s o et et ™ e e et e s caee™
prozt® st co‘\«l"Y\o \odFE = ot (e‘,‘oc“ss‘“ e e
pec e ® gpec®
o
o Performance of Different Semantic Levels (Haskell)
[0 + Retrieval & Tuning (EM)
0g{ =3 +Retrieval EM)) | B e O |
[+ Retrieval & Tuning (ES)
0] B3 tRewieval®s) fb L B e e e P
04 B R | R S - .- = = = e
02 - . - B e e - = = = e
004

© Ao e HO0 \3 Aot a0t ave e
gml“‘“ 9&“‘“0 Ngc\ﬁ““ Ew(eis‘c 95"““E Sm\e“‘z“ a o ‘“e(\@‘@) et ﬁ“oS“"ﬁ zgw\w‘“‘
gﬁ‘“ . \ R et & poe™ s et v,\\'a%
10! & m‘,o“ 0 0@\{\ s and ?@Q‘c,cﬁ yaet aed ant
< o i
0!

Figure 11: Effectiveness of different semantic levels based on StarCoder-7B.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

‘Arithmetic Operation)

Primitive Type
osite TYPE

comp'

(f) JavaScript

Figure 12: Semantic-level annotations on different types of programming languages. “none” is used
if this language does not have corresponding subcategories.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) Kotlin

120 — oueuld

Composite Type|
Py :

S0hLE

Except;
Ption Hi
an,
ng,

[Access Modifi Program Structure

JArithmetic Operation

(e) Python

Figure 13: Semantic-level annotations on different types of programming languages. “none” is used
if this language does not have corresponding subcategories.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 14: Semantic-level annotations on different types of programming languages. “none” is used
if this language does not have corresponding subcategories.

26

Under review as a conference paper at ICLR 2025

Cross file Context 1
Iprotected setPosition({ x, y }: Position): void {
I this.position = { x, y };
1
jpublic getCurrentTile(): Tile {
return map.getTile(this.position);

|7/ “Path :-/;rc-/t;/E-ne;y/_Eany-. ts

Iprotected setDestinyTile(tile: Tile): void {
| this.destinyTile = tile;

:getDestinyTlle():

Cross file Context 2

Ipublic setEnemyFree(): void {

| this.isFree = true;

|. this.setGameMode(GameMode.CHASE)
+

'prutected setPosition({ x, y }: Position): void {
I this.position = { x, y };

i

\public getCurrentTile(): Tile {

o return map.getTile(this:position);

T |

] o
(/7 Path: /src/ts/Eneny/Eneny.ts Cross file Context 3 1

1
|tweenMovement (image, () => {
image. destroy(); 1
I this.ghost.x = CENTER_MAP_POSITION.x; 1
| this.ghost.y = CENTER| SITION.y;
enemySprite.body.moves = true; 1
I enemySprite.visible = true; 1
| this.ghost.anims.play(*ghost${this.ghostType}East) ; |
IsetTineout () => { 1
| enemySprite.enableBody (); h
R
\// Path: /src/ts/Enemy/Enemy.ts Cross file Context 4 1
'Compare with this code snippet: 1
1 this.ghost.y += this.SPEED; 1
1 break; 1
1 case "NORTH":
animationName = "North"; !
| this.ghost.y -= this.SPEED; 1
1 break; 1
1 case "WEST": 1
1 animationName = "West";
« _ _ _this.ghost.x -= this.SPEED, _ _ _ _ _ _ _ _____.

import { Tile } from '../Tile'; In-flle context
import { map, pacman, ENEMY_SPAWN_TIME } from '../app'

import { GameMode } from '../game-interfaces/modes.interface';

import { scene } from '../app'

import { Utils } from '../Utils/utils';

export class RedGhost extends Enemy {
private scatterPosition

constructor(){
let position = { x: 475, y: 375 }
let ghost = scene.physics.add.sprite(position.x,

Completion Cursor Position

1

1

1

1

1

1

1

1

1

1

1

1

1

,"ghostRedAnim") 1

ghost.type = "Red" 1

ghost.timeToSetFree = ENEMY_SPAWN_TIME 1

scene.enemyﬁroup.add(ghost); 1
super(position, ghost)

this.initialPosition = position !

this.scatterPosition = {x:2,y:2} 1

+

private findDestinyTile(): Tile{ :

1

1

1

1

1

1

1

1

4

switch(this.mode){
case GameMode.CHASE:
return map.getTile(pacman.getCurrentPosition())
case GameMode.FRIGHTENED:
return this.frightenedTile
case GameMode.SCATTER:
return map.getTile(this.scatterPosition, 'index')

}
}
}
position.y Ground Truth
position.y @ Model Output °

Figure 15: Visualization on success case for

TypeScript. (Semantic label: Modifier and Attribute)

:// Path: /ketopt.h Cross file Context 1 :
Istatic void ketopt_permute(char *argv[], int j, int n) 1
18
1 int k; !
char *p = argvljl; !
1 for (k = 0; k < n; ++k) 1
1 argvlj - kIl = argvlj - k - 11; 1
1 argvlj - kI = p; 1
r 1
L o S S S

v/ Path: /Correct.h

ol

Cross file Context 2 |
linline int calculate_score(int new_occ_0, int new_occ_1) 1
14 1
| if(new_occ_0 + new_occ_1 == 0) !

{

) return -1; !
1 1
1 if(filter_snp(new_occ_0, new_occ_1, new_occ_0 + new_occ_1) == 0)j
['
1 return - '
- -
v/ : /Levenshtein_dis Cross file Context 3 1

(*return_err) = line_error;

1 return (xreturn_t_end);
b

LA ; . .
Ilnllne void reverse_string(charx str, int strLen)

double threshold = 0.30;
available = available/((double) (total));

return 0;

1

1

1 if(available <= threshold && available < 6)
L

1

1

return 1;

v
Iinline int filter_one_snp(int occ_@, int occ_1, int total)

e ——

i I R
I #include <pthread.h> fi
1 #include <stdint.h> In flle conteXt 1
1
: typedef struct{ 1
int %1, n; 1
I char *xa;
1 }enzyme; 1
1
: typedef struct { 1
int flag; 1
1 int num_reads;
I oeeenns 1
1 1
uint32_t ul_min_base; 1
V' } hifiasm_opt_t; i
1
| extern hifiasm_opt_t asm_opt; 1
1
! oid init_opt(hifiasm_opt_tx asm_opt); 1
1 Void destory_opt(hifiasm_opt_tx asm_opt); 1
I void ha_opt_reset_to_round(hifiasm_opt_t* asm_opt, int round);
1 void ha_opt_update_cov(hifiasm_opt_t *opt, int hom_cov); 1
1 void ha_opt_update_cov_min(hifiasm_opt_t *opt, int hom_cov, int min_chain); 1
int CommandLine_process(int argc, char *argv[], hifiasm_opt_tx asm_opt); 1
1 double Get_T(void); 1
1
| static inline int ha_opt_triobin(const hifiasm_opt_t %opt) 1
1
1
1 Completion Cursor Position :
1
1 1
j static inline int ha_opt_hic(const hifiasm_opt_t *opt) 1
{ 1
) return ((opt->hic_reads[0] & opt->hic_reads[1])); 1
1
e e e e e e e e e e e e e e e L e
{return ((opt—=fn_bin_yak[0] & opt->fn_bin_yaki1) Ground Truth
|| (opt->fn_bin_list[@] & opt->fn_bin_list[1]));}
Model Output
.
{return (opt->fn_bin_poy && opt->fn_bin_yak[0] && opt->fn_bin_yak[1]);} °

Figure 16: Visualization on failure case for the C language. (Semantic label: Statement)

27

Under review as a conference paper at ICLR 2025

V# Path: /src/plotting modules.py
J# Compare with this code snippet: Cross file Context 1
plt.tight_layout() '
! plt show() 1
1 elif ncomp == 3: 1
1 s.waveforms [tsta] [tcomp(0]]
tr(o].stats.delta !
! trlo].stats.npts 1
1 np.arange(0,npts)*dt 1
1 np.zeros(shape=(ncomp,npts),dtype=np.float32) 1
for ii in range(ncomp):
1 [ii] s [tstal [tcompliil] [0].data 1
- -
W Path: /test/performace_check/check_detrend_demean_taper.py
y# Compare with this code snippet:
| abply a cosine taper using obspy functions Cross file Context 2 1
'
1 #ndata = np.zeros(shape=data.shape,dtype=data.dtype)
y if data.ndim == 1:
npts = data.shape(0] !
! # window length 1
1 if npts¥0.05>20:wlen = 20 1
1 else:wlen = nptsx0.05 1
taper values
! func = _get_function_from_entry_point('taper', ‘hann') 1
e
I# Path: /test/performace_check/check_detrend_performance.py f
J#* Compare with this code snippet: i
dataS = taper(dataS) i
I fetime.tine() Cross file Context 3 |
I print('inside new takes %6.2f'%(t1-t0)) 1
1 source_params = np.vstack([trace_madS,trace_stdS]).T
return source_params,datas_t,datas 1
lgef detrend(data): 1
Pl .
| remove the trend of the signal based on QR decomposion i
V' #ndata = np.zeros(s ata.shape, dtype=data.dtype) 1
I P /test/performace_check/check_detrend_performance.py 1
J# Compare with this code snippet: 9
(def detrend(data): Cross file Context 4,
1
1 remove the trend of the signal based on QR decomposion 1
.
#ndata = np.zeros(shape=data.shape,dtype=data.dtype) 1
! if data.ndin == 1: 1
1 np.ones ((data.shape[0],2)) 1
1 0] = np.arange (0, data. shape (0]) /data. shape 0]
| np.linalg.qr(X) !
np.dot (np. linalg.inv(R),Q.transpose()) 1
e e

In-file Context

lthlS script generates a large matrix to compare its
emory size with that estimated from mprof module

W define matrix dimension

\n1 = 10000

"2 = 25000

get the random matrix

data = np.random.rand(nl,n2)

es = n1kn2%8/1024%*3

:ss = sys.getsizeof(data)/1024%x3

:# delay the time for accurate memory monitoring
tdata@ np.zeros(shape=data.shape,dtype=data.dtype)
Yor ii in range(data shape[0]):

! for jj in range(data.shape[1])

! tdata@[ii,jj] = datalii,jjl+0.1xdatalii,jjl
Iprint('memory estimates are %5.3f %5.3f'%(es,ss))

1

Y allocate a porportion of the data matrix

ldata = np.random. rand(nl1,n2)

ktdatal = np.zeros(shape=data.shape,dtype=data.dtype)
| Completion Cursor Position

1ss = sys.getsizeof(tdatal)/1024x%x*3

print(‘new memory estimates are %5.3f %5.3f'%(es,ss))
1

e e e e e e

Ground Truth

N e e e e e e e e e o =

for ii in range(0,int(0.5%n1)):
for jj in range(0,int(0.5%n2)):
tdatallii,jj] = datalii,jjl+0.1xdatalii,jj]

g Model Output
for ii in range(data.shape[0])

for jj in range(data.shapel[ll): °
tdatallii,jj] = datalii,jj]+0.1xdatalii,jj]

Figure 17: Visualization on failure case for Python. (Semantic label: Expression)

S

(== m = ———

fF=--=-=-===

V7 Path: /pkg/t,'cckty/ worker.go Cross file Context 1 1
\// Compare with this code snippet: :
! if err := w.buildWeekly(issue); err != nil { 1
1 return err 1
1
, // comnit and push branch \
if err := w.gitCommitAndPush(newBranch); err != nil { 1
1 if err == ErrNothingChanged { 1
1 // if nothing changed, no need to submit pull request.
return nil 1
y 1
- -
1
y 1
y 1
1 _, err = gc.Client. Issues.Create(ctx, gc.Owner(),
gc.Repo(), newIssue) 1
I if err 1= nil { 1
1 return err h
I return nil 1
1 !
1 func lw WUrker) commitAndSubmitPR(issue github.Issue) error { f

y// Compare with this code snippet:

_, _, err = gc.Client, Issues.Create(ctx, gc.Owner(),

generateNewBranch(

ver.go Cross file Context 3 1

/cli/dy-bot/server/ser

if err nit {
http.Error(w, err.Error(), http.StatusInternalServerError)
return

+

r.Body.Close()

if err s.manager.HandleEvent (eventType, data); err != nil {
log.Errorf("Failed when handle webhook events: %v", err)
http.Error(w, err.Error(), http.StatusInternalServerError)
return

kly/worker. Cross file Context 4

Title: &title,
Labels: &[Istring{
labelWorking,

Assignee: Sassignee,
Body: &body,

gc.Repol(), newIssue)
if err != nil {
return err

Jac-ka-ge-w;erly-

pimport (In-file Context
"context"

1 wmt

y "os/exec"
"strings"
"time"

"github.com/dyweb/dy-bot/pkg/gh"
"github.com/google/go-github/github"

func (w Worker) sumbitPR(branch string, issueNumber int) error {
title := fmt.Sprintf("Weekly: Add %d", issueNumber)

head fmt.Sprintf("gaocegege-bot:%s", branch)

base
body fmt.Sprintf(“weekly: Generate
gaocegege-bot powered by github.com/dyweb/dy-bot
Ref https://github.com/%s/%s/issues/%d"

w.config.Owner, w.config.Repo, issueNumber)
newPR := &github.NewPullRequest{
Title: &title,
Head: &head,
Bas &base,
Body: &body,

b

log.Infof("PR: %v", newPR)
gh.GetGitHubClient()
context.Background()

(UM U U U gy

if _, _, err := Completion Cursor Position ;oerr 1= nil {
log.Errorf("failed to create pull request: %v", err)
return err
return nil
D
Ground Truth

gc.PullRequests.Create(ctx, gc.Owner(), gc.Repo(), newPR)

g Model Output

gc.Client.PullRequests.Create(ctx, gc.Owner(), gc.Repo(), newPR) °

Figure 18: Visualization on failure case for Go. (Semantic label: Expression)

28

Under review as a conference paper at ICLR 2025

gy P R R
/ Path: /test/channel.js f
Compare with this code snippet: Cross file Context1 | | | ! ‘ In-file Context
var bothDone = 1atch(z, done) ; Ht!/usr/bin/env node 1
var pair = util.socketPair(); 1 1 !
var ¢ = new Connection(pair.client); = i ' ib')+
if (LOG_ERRORS) c.on('error’, console.warn); . const angp = require(*anqpliv’); y
c.open(OPEN_OPTS, function(err, ok) { ! 1 , .. 1
if (err null) client(c, bothDone); 1 jconst queue = ‘hello’; 1
else fail(bothDone); 1 1 1
; (async () =>{
pair.server.read(8); // discard the protocol header ! 1 try { 1
var s = util.runServer(pair.server, function(send, wait) { | 1 const connection = await amqp.connect(amgp://localhost®); 1
. 1 const channel = await connection.createChannel(); 1
1 1 1
v is code snippet: " ' .
"}, Buffer. from('foobar')); Cross file Context 2 1 1 'ﬁroﬁess.ﬁnc?(S{?INT , async () => { 1
3, done); 1 jawait channel.close(); f
, . 1 j|await connection.close(); 1
function(send, wait, done, ch) { | 1); :
wait(defs.BasicPublish) () !
then(wait(defs.BasicProperties)) 1 .
.then?walt(undeflned)) /e _),‘ frame I :awa}t channel.assertQueue(queue, { durable: false }); :
.then(function(f) { lawait channel.consume(queue, (message) => {
assert.equal('foobar', f.content.toString()); ! 1 console. log(" [x] Received message.content.toString()); !
y }). then(succeed(done), fail(done)); I 1 }, { noAck: true }); |
e - 1 1
V/ Pat t 1 1 console.log(' [*] Waiting for messages. To exit press CTRL+C'); 1
y/ Comp i (f'* f"tﬂ_'v f;ﬂ{ snippet: 1 |} catch (err) 1
.then(function "
send(defs.ChannelCloseok, {}, ch); Cross file Context3 | ! |
1 }).then(succeed(done), fail(done)); 1 1 R ROR 1
R S Completion Cursor Position i
est("return”, channelTest(
! “function(ch, done) { 1 ! |
1 ch.on('return’, function(m) { 1 1 N0 1
1 completes(function() { ! ' 1
assert.equal(’barfoo’, m.content.toString()); !
) }, done); ! L e ——
T e I ——,
V/ Path: /test/channel.js 1 Ground Truth
// Compare with this code snippet: "
: .then(succeed(done), fail(done)); Cross file Context4|
) 1 .
I test("delivery”, channelTest(1 fconsotewarnierr)i)
1 function(ch, done) {
' open(ch); !
ch.on('delivery', function(m) { !
1 Comptetes(function() { i & Model Output
1 assert.equal('barfoo’, m.content.toString()); : v
) })) done) ; i {console.error(err);}
e e o o OO

Figure 19: Visualization on failure case for Javascript. (Semantic label: Statement)

R R mm e e e e e e e e e e e e e e e e === m =,
src/main/scala/org/soichiro/ircslackrelay/Sla rcActor.scala _fi
V// Compare with this code snipp. Cross file Context 1 1 o In-file Context
og.info(s"Messaged: ${m Ipackage org.soichiro.ircslackrelay 1
! sendToIrc(m) 1 1
1 case n: IrcNotice => import ActorSystemProvider._
1 log.info(s"Noticed: ${n}") 1 1
sendToIrc(n) ! 1
! case _ => | * Main application singleton '
1 log.error("Not supported command.") */
1 Iobject Main extends App { 1
private def sendToIrc(c: IrcCommand): Unit = { o . 1
! if(isItalic(c.message)) | val slackClientActor = Completion Cursor Position i
e m - -
v '/:{/",;,‘/(H, “@'7,0/(”,‘“,‘_7/ ! val ircToSlackActor = system.actor0f(IrcToSlackActor.props(slackClientActor), I
// Compare with this code snippet: ! name = “ircToSlackActor") !
y } N Cross file Context 2 | ircToSlackActor ! StartIrcToSlackActor f
1
I private def getIrcChannel(slackChannel: Channel): String = { 1 val slackToIrcActor = system.actorOf(SlackToIrcActor.props(slackClientActor), 1
c 9 1 name = "slackToIrcActor") 1
1 Config. relays. relayMapSlackToIrc(slackChannel.getName. toLowerCase) | SlackTolrehctor | StartSlackToIreActor i
1 Val passwordRegex = "_([*_]+)_ I \
I private def isItalic(s: String): Boolean = {] :
1 s match
1 case passwordRegex(_) => true -
-
177 Path: /src/ma ro/s01 Ground Truth
V// Compare with this code snippet:
override def receive: Receive = { " system.actor0f(SlackClientActor.props, "slackClientActor")
case StartSlackToIrcActor => Cross file Context 3
1 slackIrcClient.connect
1 log. info("SlackToIrcActor Started.")
case m: IrcMessage =>
! log. info(s"Messaged: ${m}") Model Output
1 sendToIrc(m) °
1 case n: IrcNotice =>
log.info(s"Noticed: ${n}") system.actor0f(SlackClientActor.props(), name="slackClientActor")
! sendToIrc(n)
o o — — — — — —————————————— =
ceesee
Figure 20: Visualization on failure case for Scala. (Semantic label: Expression)
25
[Easy (ES)
2.0 3 Middle (ES)
o [Hard (ES)
£ 154 [Easy (EM)
@ 10 1 Middle (EM)
: =0 Hard (EM)
N I_D
0.0 T T T T T T T T T T T T T T T
. O ot C B\ oy Qi st CH \4 NS GO LR ot Y e on
o‘o'xeﬂwa C skt R wod ~ o 1o e W@Q\;\Qwv&c(\? gea U Py

Figure 21: Performance on M?RC-EVAL for problems of different difficulty levels.

29

Under review as a conference paper at ICLR 2025

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584 Figure 22: EM performance on M2RC-EVAL for different programming languages when only using
1585 Python training data.

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601 Performance of Different Progr ing L

1602
1603
1604
1605
1606
1607
1608
1609 W gt G0 et et ©
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Performance of Different Progr ing L

°
=

3 + Retrieval
8 e == =3 + Retrieval & Tuning (Python Only) -

°

°
e

EM Score
g

e
o

s

°
s

CH o Go N\ RO\RINGS PR L SR P Y e puP ot r oY st ca\ Fo
uv s § PSS o\)’:ﬁd‘“ v ~ S T wcsi

ES Score

O‘o'\%\'we—c Wt e er%f\?‘ Y R S

Figure 23: ES performance on M?RC-EVAL for different programming languages when only using
Python training data.

30

	Introduction
	Related Works
	M2rc-Eval
	Data Collection
	Quality Control
	Dataset Statistics
	Fine-grained Annotations

	Experiments
	Evaluation Models and Metrics
	Experimental Setup
	Main Results
	Analysis

	Conclusion
	Appendix
	Broader Impacts
	Limitations
	Details of the Baseline Models
	Discussion on no execution-based evaluation
	Analysis on more evaluation metrics
	Analysis on the quality control
	Analysis on Failure Cases in Different Programming Languages
	Analysis on language-specific insights
	Analysis on the completion cursor position
	More experiments

