

000 001 002 003 004 005 DIVERGENCE-INDUCED CONTRASTIVE UNLEARNING 006 VIA DIRECTED REPRESENTATION SHIFTS 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Unauthorized data collection has become widespread, raising the need for defenses that prevent exploitation of personal data. Unlearnable Examples (UEs) address this by embedding imperceptible perturbations that preserve visual quality while making data unusable for training. Recent work has shown that contrastive learning can be poisoned to generate UEs, but existing methods lack theoretical grounding and fail to exploit the geometric structure of learned representations. In this work, we present the first principled analysis of contrastive poisoning and reveal why it is effective. Building on this understanding, we propose Divergence-Induced Contrastive Unlearning (DICU), a framework that introduces direction-aware divergence regularization into the poisoning objective. This design amplifies intra-class sparsity, pushes samples beyond class manifold boundaries, and enables free mixing across classes, producing stealthy and robust perturbations. Our approach is especially effective in high class-count settings, reducing linear probing accuracy at significant level.

1 INTRODUCTION

The rapid growth of online data has increased concerns about its unauthorized use in training machine learning models. Public datasets have been central to the progress of deep learning, yet their use also raises serious privacy risks (Prabhu & Birhane, 2021; Birhane & Prabhu, 2021). This concern has motivated the development of unlearnable examples (UEs) (Huang et al., 2021; Fowl et al., 2021b), which are designed to make data unusable for training machine learning models. Similar approaches are also referred to as availability attacks (Yu et al., 2022) or indiscriminate poisoning attacks (He et al., 2023) in the literature. These techniques enable users to inject protective noise into their personal data, reducing the risk of unauthorized exploitation.

Existing approaches to unlearning rely on perturbing training data so that models cannot learn meaningful representations (Carlini & Terzis, 2022; Cherepanova et al., 2021; Fowl et al., 2021b). Early methods added error-minimizing noise with surrogate models and produced unlearnable examples at either the sample or class level. These perturbations were fragile and failed under adversarial training. Later work shifted to indiscriminate poisoning, which aims to broadly degrade performance. Most studies were limited to supervised learning with cross-entropy loss (Mei & Zhu, 2015; Muñoz-González et al., 2017), even though contrastive learning can now achieve equal or better performance without labels. Contrastive Poisoning (CP) (He et al., 2023) extended these attacks to contrastive learning by distorting the InfoNCE objective and weakening data augmentation. It also introduced a dual-branch gradient scheme that targets momentum encoders. CP forces augmented poisoned pairs to move closer while the corresponding clean views move apart, creating a new form of unlearning in the contrastive setting. However, it does not address interactions between clean and poisoned pairs, and it does not explain why the attack is so vulnerable. On the other hand, Unlearnable Clusters (UC) (Zhang et al., 2023) advanced the field with cluster-level perturbations. A surrogate model extracted representations, and K-means grouped them into clusters. For each cluster, a generator produced perturbations that shifted samples toward incorrect centers, preventing models from learning valid structures. This made the method label-agnostic and resistant to label-based exploitation. Yet, UC required the generator to be reinitialized for every cluster, which led to high computational cost and poor scalability.

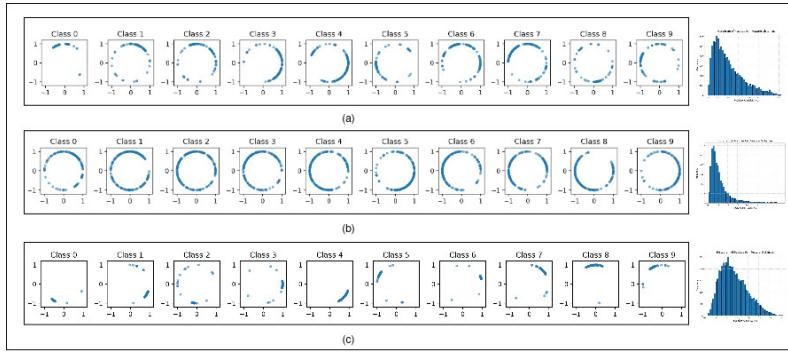


Figure 1: Representation analysis on CIFAR-100 in terms of uniformity and alignment. (a) Contrastive learning with clean samples shows balanced alignment and uniformity. Under contrastive poisoning, (b) poisoned samples achieve higher alignment and maintain uniformity, while (c) clean samples lose uniformity and exhibit larger distances between augmented pairs. This shift indicates increased sparsity in clean class embeddings.

We draw key insights from the representation analysis in Figure 1. Contrastive poisoning yields high alignment and uniformity for poisoned views, but it pushes clean samples apart and reduces their uniformity. This makes clean embeddings sparse within the class manifold and decreases the separation between nearby classes. These findings highlight that managing intra-class structure and embedding sparsity in contrastive frameworks is critical for developing more robust unlearning and defense strategies.

Motivated by these observations, we propose Divergence-Induced Contrastive Unlearning (DICU), a framework that increases intra-class dispersion and encourages mixing across classes. This design is particularly effective in high class-count settings, where it produces a more stealthy attack. Furthermore, our divergence regularization enables samples from one class to blend with those of any other class, enhancing the strength of the poisoning effect. In summary, our main contributions are as follows:

- We propose a stealthy poisoning attack within the contrastive learning framework, where we deliberately increase intra-class distances. By considering scenarios with a larger number of clusters, even a small perturbation can disrupt semantic alignment, leading to semantically entangled yet clustered representations that covertly degrade downstream performance.
- We conduct extensive experiments on datasets with a large number of classes, evaluating multiple models across two different contrastive learning frameworks.
- We extensively evaluate a range of defense mechanisms and observe that, in most cases, the attack remains robust.
- We investigate cross-transferability across diverse datasets and backbone models, revealing the strong robustness of the proposed attack.

2 RELATED WORK

Unlearning Examples. Unlearnable examples (UEs). UEs are a type of data poisoning attack (Biggio et al., 2012; Biggio & Roli, 2018) designed to prevent models from effectively learning on a protected dataset. Early methods relied on adversarial perturbations to degrade training performance, while recent approaches have focused on improving efficiency, transferability, and generalization across different architectures and datasets. In general, UEs can be generated through a bilevel optimization framework (Huang et al., 2020; Schwarzschild et al., 2021; Shafahi et al., 2018; Zhu et al., 2019) with the aid of a surrogate model (Huang et al., 2021), following a strategy similar to strong data poisoning. Adversarial noise is commonly employed, including methods such as Error-Maximizing

108 Noise (EMaxN) (Koh & Liang, 2017), Deep-Confuse (Feng et al., 2019), and Adversarial Poisoning
 109 (AdvPoison)
 110

111 **Attacker Objective.** In contrastive learning, a feature extractor is trained using a self-supervised
 112 objective without access to labels (Chen et al., 2020a). The learned representations are typically
 113 evaluated on downstream tasks via linear probing (Alain & Bengio, 2017), where a linear classifier is
 114 trained on top of the frozen features. The objective of the attacker is to poison the pretraining dataset
 115 such that any model trained on it fails to learn transferable or semantically meaningful representations.
 116 As a consequence, performance on downstream tasks—particularly under linear probing—deteriorates
 117 significantly, reflecting the success of the attack in disrupting representation learning.

118 **Attacker Capability.** We consider an indiscriminate poisoning setting where the attacker perturbs
 119 the victim’s training data to degrade learned representations. The attacker does not control the model
 120 architecture, initialization, or training routine, and may or may not know the specific contrastive
 121 learning algorithm used—such as SimCLR, MoCo, or BYOL. Following the convention established in
 122 prior work (He et al., 2023; Yu et al., 2022), we assume the attacker perturbs 100% of the training
 123 data with imperceptible noise constrained by an ℓ_∞ norm bound of $\epsilon = \frac{8}{255}$.
 124

125 3 DIVERGENCE-INDUCED CONTRASTIVE UNLEARNING

126 Contrastive learning is guided by alignment and uniformity objectives, which can be extended to
 127 poisoning by training with adversarially crafted samples (see Appendix A.1). We introduce a poi-
 128 soning framework based on representation-level interference in contrastive learning. Our method,
 129 Divergence-induced Contrastive Unlearning (DiCU), breaks intra-class coherence by encouraging
 130 divergence among poisoned samples within the same class. In contrast to prior poisoning attacks
 131 that mainly induce global class confusion or manipulate decision boundaries in supervised set-
 132 tings (Shafahi et al., 2018; Zhu et al., 2019), DiCU directly targets intra-class structure, fragmenting
 133 class manifolds in the contrastive embedding space.
 134

135 The proposed attack is executed in two stages. In the contrastive poisoning phase, augmented views
 136 of poisoned samples are tightly aligned, while clean positives are geometrically displaced across
 137 the unit hypersphere. This misalignment distorts the global feature structure, compromising the
 138 consistency of learned representations. In the divergence induction phase, we introduce class-wise
 139 directional constraints that drive intra-class features apart through controlled angular shifts. This
 140 promotes sparsity within class manifolds and weakens inter-cluster boundaries, effectively scattering
 141 representations of the same class throughout the embedding space. The combined effect of these
 142 two phases significantly degrades representation quality and impairs downstream classification
 143 performance. We formalize this behavior using a few geometric definitions.
 144

145 **Definition 1** (Poisoned Local Consistency). *Let $x_i \in \mathcal{X}$ be a sample from class $c \in \mathcal{C}$. Let x_i^c
 146 denote a clean augmented view and x_i^p a poisoned augmented view of the same instance. Let $f_\theta(\cdot)$
 147 be a contrastive poisoned encoder producing representations $z_i^c = f_\theta(x_i^c)$ and $z_i^p = f_\theta(x_i^p)$. A
 148 representation space satisfies poisoned local consistency if multiple poisoned augmentations of
 149 the same instance remain closely aligned, while their clean counterparts are pushed away in the
 150 embedding space. Formally, for poisoned views $x_i^{p(1)}, x_i^{p(2)}$ of a sample x_i , $z_i^{p(1)} = f_\theta(x_i^{p(1)})$ and
 151 $z_i^{p(2)} = f_\theta(x_i^{p(2)})$ and for the corresponding clean-augmented views (x_i^{c1}, x_i^{c2}) ,*
 152

$$153 \cos(z_i^{p(1)}, z_i^{p(2)}) \geq \tau \quad \text{and} \quad \cos(z_i^c, z_i^p) \leq \epsilon \quad (1)$$

154 where $\cos(u, v) = \frac{u \cdot v}{\|u\| \|v\|}$, τ is a lower bound for poison-poison alignment and ϵ is an up-
 155 per bound on clean-poison similarity. This contrastive setup ensures that the poisoned views
 156 form a coherent (but misaligned) subspace, effectively detaching them from their clean representation.
 157

158 **Definition 2** (Class-Wise Divergence via Targeted Angular Separation). *We define class-wise diver-
 159 gence as the enforcement of a fixed angular displacement between clean and poisoned views of the
 160 same input. Let x_i be a sample from class $c \in \mathcal{C}$, and let x_i^c, x_i^p be its clean and poisoned augmented
 161 views. Let $z_i^c = f_\theta(x_i^c)$ and $z_i^p = f_\theta(x_i^p)$ denote their normalized feature representations. For a*

162 prescribed angular margin $\theta_{ref} \in (0, 2\pi)$, we define divergence to hold when:
 163

$$164 \cos(\phi) \approx \cos(\theta_{ref}), \text{ where } \cos(\phi) = \frac{\mathbf{z}_i^c \cdot \mathbf{z}_i^p}{\|\mathbf{z}_i^c\| \|\mathbf{z}_i^p\|} \quad (2)$$

166 i.e., the angle between the clean and poisoned views is driven toward a fixed semantic offset in the
 167 latent space. This constraint is enforced to systematically displace poisoned representations from
 168 their clean counterparts while maintaining structured orientation.

169 To understand how our poisoning mechanism disrupts representation learning beyond local alignment
 170 objectives, we examine its global impact on the structure of the learned feature space. While
 171 contrastive losses encourage instance-level alignment, robust downstream performance also relies on
 172 the formation of coherent class-level manifolds. Our method introduces controlled divergence within
 173 each class, which may maintain local consistency but progressively fragments global class structures.
 174 To formalize this behavior, we propose the following hypotheses and geometric propositions that
 175 characterize the degradation of semantic organization in the latent space under our attack.

177 3.1 BI-LEVEL OPTIMIZATION FOR *DiCU*

179 After introducing the poisoning framework, we now formulate the optimization of *DiCU* as a bi-level
 180 problem. Our goal is to craft poisoned representations that both adhere to local consistency and induce
 181 structured intra-class divergence. To achieve this, we alternate between optimizing the contrastive
 182 encoder f_θ and updating the perturbation parameters δ and direction shifts β associated with each
 183 class.

184 Recognizing the complexity of this setup, we follow a staged training strategy: during each training
 185 round, we first update the encoder f_θ using a standard contrastive loss on the perturbed dataset. Then,
 186 we optimize the poisoning parameters with respect to a composite loss that enforces directional
 187 divergence and sparsity. This bi-level routine is summarized in Algorithm 1.

188 **Phase 1: Encoder Update.** Given a batch of poisoned samples, we update the encoder parameters
 189 θ using the contrastive loss \mathcal{L}_{CL} , as defined in prior work He et al. (2023). The poisoned views are
 190 generated by applying class-specific perturbations:

$$191 x_i^p = x_i^c + \delta_{y_i}, \text{ where } y_i \text{ denotes class label of sample } x_i. \quad (3)$$

192 The encoder update minimizes:

$$193 \theta \leftarrow \theta - \eta_\theta \nabla_\theta \mathcal{L}_{CL}(f_\theta; \{x_i^p\}_{i=1}^B). \quad (4)$$

195 **Phase 2: Poison Generator Update.** After the encoder is updated, we refine the poisoning vectors δ
 196 to enforce divergence-aware objectives. This is done by minimizing the directional divergence loss:

$$197 \mathcal{L}_{DDL} = \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} (\cos(\phi_i) - \cos(\phi_{ref, y_i}))^2, \quad (5)$$

200 where $\cos(\phi_i)$ is computed from the clean and poisoned views of sample x_i , and ϕ_{ref, y_i} is a reference
 201 direction assigned from a predefined angular set. This loss ensures each poisoned sample is pushed
 202 in a distinct direction to induce intra-class fragmentation.

203 The poisoning parameters are updated to minimize the combined loss:

$$204 \mathcal{L}_{total} = \lambda \mathcal{L}_{CL} + \mathcal{L}_{DDL}, \quad (6)$$

205 where λ is the regularizer balancing contrastive consistency and sparsity.

207 The feature extractor is updated using stochastic gradient descent, while the poisoning perturbations
 208 are optimized with projected gradient descent (Madry et al., 2018; He et al., 2023) to ensure they
 209 remain within the prescribed ℓ_∞ norm constraint. All training steps are detailed in Algorithm 1.

211 4 EXPERIMENT

213 This section presents the experimental setup, which includes datasets, model architectures, poisoning
 214 frameworks, baselines, and training details in Section 4.1. The main results and an extensive ablation
 215 study are provided in Section 4.2 and Section 4.3. We further include visualizations in ?? to better
 understand the behavior of DICU.

216 **Algorithm 1** *Divergence-induced Contrastive Unlearning*

```

217 1: Input: Clean dataset  $\mathcal{D}_c$ ; learning rates  $\eta_\theta, \eta_\delta$ ; total rounds  $T$ ; updates per round  $T_\theta, T_\delta$  for
218 2: feature extractor and perturbations; PGD steps  $T_p$ ;  $K$  number of classes.
219 3: for  $t = 1$  to  $T$  do
220 4:   for  $t_\theta = 1$  to  $T_\theta$  do
221 5:     Sample a batch  $\{x_i\}_{i=1}^B \sim \mathcal{D}_c$ 
222 6:      $\theta \leftarrow \theta - \eta_\theta \nabla_\theta \mathcal{L}_{CL}(f_\theta; \{x_i + \delta_k\}_{i=1}^B)$ 
223 7:   end for
224 8:   for  $t_\delta = 1$  to  $T_\delta$  do
225 9:     Sample a batch  $\{(x_i, y_i)\}_{i=1}^B \sim \mathcal{D}_c$ 
226 10:    for  $t_p = 1$  to  $T_p$  do
227 11:       $g_i \leftarrow \nabla_{\delta_k} \lambda \mathcal{L}_{CL}(f_\theta; \{x_i + \delta_k\}_{i=1}^B) + \mathcal{L}_{DDL}(f_\theta; \{x_i + \delta_k\}_{i=1}^B)$ 
228 12:       $\delta(y) \leftarrow \Pi_\epsilon \left( \delta(x_i) - \eta_\delta \cdot \text{sign} \left( \sum_{i:y_i=y} g_i \right) \right), \forall y$ 
229 13:    end for
230 14:  end for
231 15: Output: Poisoned dataset  $\mathcal{D}_p = \{x + \delta_k : x \in \mathcal{D}_c, k \in K\}$ 
232
233
234
235
236
```

235 4.1 SETUP

236 **Datasets and Models.** We conduct experiments on several benchmark datasets, including CIFAR-10/100 (Krizhevsky & Hinton, 2009), STL-10 (Coates et al., 2011), Stanford Cars (Krause et al., 2013), Oxford Flowers (Nilsback & Zisserman, 2008), Food-101 (Bossard et al., 2014), SUN397 (Xiao et al., 2010), and ImageNet (Russakovsky et al., 2015). For ImageNet, we use a subset of 100 classes, denoted as ImageNet-100. ResNet-18 serves as the default surrogate model unless stated otherwise. For target models, we consider a range of architectures, including ResNet-18/50, DenseNet-121, and VGG-19. All experiments use standard data augmentations, including resizing, random cropping, horizontal flipping, and normalization. We further evaluate our approach under two popular contrastive learning frameworks: SimCLR (Chen et al., 2020b), and BYOL (Grill et al., 2020)

240 **Baselines.** We compare our proposed method, DICU, with several representative approaches: 241 Contrastive Poisoning (CP) (He et al., 2023), Unlearnable Clusters (UC) (Zhang et al., 2023), 242 DeepConfuse (Feng et al., 2019), Synthetic Perturbations (SynPer) (Yu et al., 2022), and Adversarial 243 Poisoning (AdvPoison) (Fowl et al., 2021a).

244 4.2 MAIN RESULTS

245 We summarize poisoning attacks in contrastive learning frameworks in Table 1 and compare with 246 other baseline attacks in Table 2. Overall, our method outperforms especially in high-class-count 247 settings. To support this observation, we evaluate on datasets with larger numbers of classes and find 248 that the attack is significantly more effective, highlighting a fundamental vulnerability of contrastive 249 learning in high-class settings. However, performance on Stanford Cars and Oxford Flowers is 250 weaker, which may indicate that our attack benefits from greater variation between classes.

251 Table 1: Performance of indiscriminate poisoning attacks across contrastive learning algorithms and 252 datasets. Results are reported as linear probing accuracy (%). Clean, random noise, and classwise 253 contrastive poisoning (CP) baselines are included for reference.

Attack Type	CIFAR-10		CIFAR-100		ImageNet-100
	SimCLR	BYOL	SimCLR	BYOL	SimCLR
None	91.8	92.2	62.8	65.3	69.3
Random Noise	90.4	90.7	57.5	61.0	67.5
CP ($\epsilon = 8/255$)	68.0	56.9	54.6	37.9	55.6
DICU ($\epsilon = 8/255$)	79.7	66.3	36.4	25.0	2.1

260 **Impact on Downstream Task for transferability.** We poison SimCLR during training on ImageNet- 261 100, and then evaluate the learned features by training linear classifiers on clean downstream datasets, 262 including CIFAR-10, CIFAR-100, STL-10, and ImageNet-100 (Table 3). Despite the downstream 263

270
271 Table 2: Performance of our method and four baselines under high-class settings in the label-agnostic
272 scenario. Results are reported as test accuracy (%), with the best attack highlighted in bold.
273
274
275
276
277

Methods	Cars	Flowers	Food101	Sun397	ImageNet-100
Deep-Confuse	51.1	50.9	73.1	34.4	55.1
Adv Poison	51.9	50.6	75.1	38.5	73.8
SynPar	53.5	52.7	74.8	38.3	74.7
UC	33.6	35.6	55.3	20.4	54.8
DICU	71.8	69.8	14.6	14.7	2.1

278 Table 3: Attack transferability across Datasets and backbone architectures. Reported values are
279 classification accuracy (%), ↓.
280
281

Transferability across datasets					
Attack type	Poisoning on Imagenet 100				STL-10
	Imagenet-100	CIFAR-100	CIFAR-10	STL-10	
None	69.3	58.5	72.5	82.0	
DICU-ResNet-18	10.8	56.6	40.1	28.4	

Transferability across backbone architectures				
Attack type	Poisoning on CIFAR-100			
	Resnet 18	Resnet 50	Vgg19	Densenet121
DICU-ResNet-18	36.4	14.9	10.9	22.3

290 datasets being different from those used for poisoning, the model’s performance consistently drops,
291 demonstrating cross-dataset attacks, where poisoning on one dataset impairs performance on entirely
292 separate datasets. We generate contrastive poisons using ResNet-18 on CIFAR-100 within the
293 SimCLR framework. The victim model is trained on these poisoned datasets and evaluated with
294 different architectures, including ResNet-18, ResNet-50, VGG-19, and DenseNet-121. The results
295 indicate that increasing model complexity may not be sufficient to reduce the poisoning effect. Our
296 attacks remain effective across all backbone architectures.

297 **Transferability Across different CL algorithms.** We
298 evaluate the effectiveness of *DICU* across different contrastive learning (CL) algorithms, assessing both within-
299 model and cross-model poisoning transferability. Table 4
300 reports the linear probing accuracy of SimCLR, and BYOL
301 victim models when trained on features poisoned using
302 *DICU*. We consider L_∞ - norm restriction in this exper-
303 iment = 16/255. Our results show that DiCU consistently
304 outperforms standard CP across all victim models and at-
305 tacker configurations. Notably, when poisons are generated using BYOL, the attack exhibits the
306 strongest transferability—achieving the lowest accuracy on all victim models, with performance
307 dropping as low as 44.2% for BYOL. This suggests that features poisoned under BYOL encode more
308 generalizable divergence, making it more transferable to other CL frameworks. These
309 findings highlight *DICU*’s ability to generalize across architectures, making it a more effective and
310 transferable attack compared to traditional classwise contrastive poisoning.

311 **Defenses.** We conduct experiments on CIFAR-100 using
312 SimCLR and ResNet-18. We ablate the hyperparameters
313 of data augmentations, which have been studied as de-
314 fenses against poisoning attacks (Tao et al., 2021; Huang
315 et al., 2021). We test four standard augmentations: Ran-
316 dom Noise, which adds white noise; Gauss Smooth, which
317 applies a Gaussian filter; Cutout (DeVries & Taylor, 2017),
318 which removes parts of the input; and MixUp (Zhang et al.,
319 2017). We also evaluate Matrix Completion, which ran-
320 domly drops pixels and reconstructs them using matrix
321 completion (Chatterjee, 2015), and JPEG compression
322 with quality set to 10. Table 8 shows that, except for Ad-
323 versarial Training, all defenses remain stable under both
324 attacks.

299 Table 4: Cross-Model Transferability

Attack type + attacker algorithm	Victim’s algorithm	simclr	byol
<i>DiCP</i> SimCLR	63.7	47.2	
<i>DiCP</i> BYOL	54.8	44.2	

325 using BYOL, the attack exhibits the
326 strongest transferability—achieving the lowest accuracy on all victim models, with performance
327 dropping as low as 44.2% for BYOL. This suggests that features poisoned under BYOL encode more
328 generalizable divergence, making it more transferable to other CL frameworks. These
329 findings highlight *DICU*’s ability to generalize across architectures, making it a more effective and
330 transferable attack compared to traditional classwise contrastive poisoning.

331 Table 5: Performance of defenses

Methods	Accuracy
Clean	58.5
No defense	36.4
Random Noise (8/255)	54.3
Gaussian smooth (k=3)	55.3
MixUP	47.8
CutOut	47.5
Matrix completion	55.7
jpeg comp.	50.5
Adv. Training	35.6

324 Table 7: Accuracy under different reference direction strategies for indiscriminate poisoning.
325

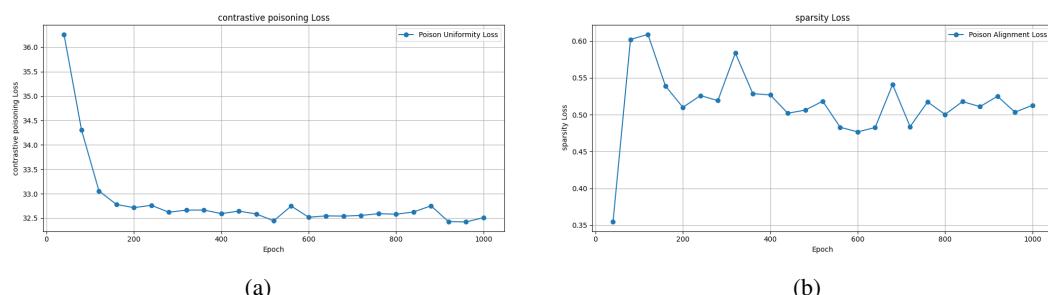
326 setup	327 Reference Direction Strategy	328 Accuracy (%)
329 clean	330 NA	331 91.8
332 D-1	333 Random cosine values between -1 and 1	334 63.7
335 D-2	336 Equispaced cosine values between -1 and 1	337 58.7
338 D-3	339 Manually assigned angles per class	340 63.4

341 4.3 ABLATION STUDY
342

343 We perform an ablation study on CIFAR-100 using SimCLR to evaluate the impact
344 of different loss components on DiCU’s attack efficacy. Table 6 shows that
345 only the DDL term alone can effectively perturb the loss, while combining it
346 with CP or using CP alone is less effective. We study how directional reference
347 values affect attack effectiveness by defining three divergence configurations:
348 D-1, D-2, and D-3 (Table 4). D-1 uses 10 random cosine values, D-2 uses
349 uniformly spaced values, and D-3 assigns specific angles per class to cover
350 different quadrants. These settings control the distribution of poisoned samples
351 on the unit hypersphere. Using SimCLR on CIFAR-10, we evaluate the impact
352 of each strategy on learned representations. D-2, with evenly spaced angles, consistently achieves the
353 lowest downstream accuracy, showing that uniform angular separation maximizes semantic disruption.
354 These results emphasize the role of directional divergence in poisoning attacks.
355

356 4.4 ANALYZING PROPERTIES AND LOSS DYNAMICS
357

358 **Loss Dynamics During DiCU Optimization.** To better understand the training behavior of our
359 proposed attack, we track both the contrastive loss and the directional divergence loss across epochs.
360 As shown in Figure 2a, the contrastive loss steadily declines, indicating that the model continues to
361 optimize its alignment and uniformity objectives, even when poisoned data is used. In parallel, the
362 divergence loss shown in Figure 2b rises early and then stabilizes, suggesting that the imposed diver-
363 gence constraint remains consistently active during training. This sustained directional enforcement
364 drives poisoned and clean views apart at the representation level, fragmenting intra-class structure
365 and weakening semantic consistency across the embedding space.
366

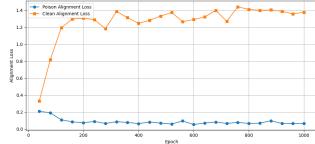
367 Figure 2: Training losses under sparsity-aware contrastive poisoning. (a) Contrastive loss decreases
368 steadily. (b) Sparsity loss remains consistently high, enforcing intra-cluster dispersion.
369

370 **Behavioral Analysis of Contrastive Learning Under Poisoned Data.** Unlike classification losses,
371 contrastive learning (CL) objectives such as *InfoNCE* aim to produce robust representations by
372 optimizing both *alignment*-bringing augmented views of the same instance closer-and *uniformity*-
373 dispersing representations across the feature space (Wang & Isola, 2020). To evaluate how *DiCU*
374 interferes with these objectives, we track their behavior during training. As shown in Figure 3,
375 we visualize the alignment and uniformity trends for SimCLR on CIFAR-10 under our proposed
376 *DiCU*. Blue curves indicate poisoned samples, while orange curves represent clean samples. Notably,
377 the alignment loss shows a large discrepancy, suggesting that *DiCP* primarily targets and disrupts
378 alignment. This behavior is further supported by the cosine similarity distributions in Figure 3.

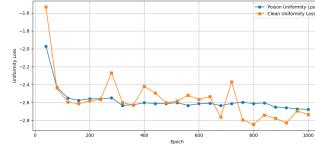
379 Table 6: Ablation
380 on loss components.
381

382 Loss Terms	383 Accuracy
384 CP	385 54.6
386 CP+DDL	387 36.4
388 DDL	389 17.8

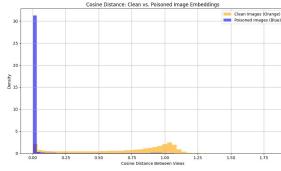
Poisoned view pairs remain highly aligned with cosine distances near zero, while clean view pairs show broader variance, indicating weakened alignment. Despite appearing well-aligned, the model fails to learn semantically meaningful representations for poisoned samples—effectively deceiving the alignment objective.



(a) Alignment trend



(b) Uniformity trend



(c) Distri. of cosine similarity

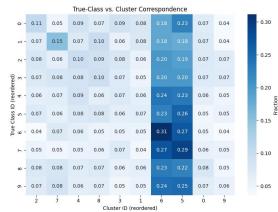
Figure 3: (a, b) Evolution of alignment and uniformity losses over training epochs. (c) Cosine distance distributions between embeddings of two augmented views for poisoned (blue) and clean (orange) samples.

4.5 VISUALIZING ATTACKER AND VICTIM PERSPECTIVES ON POISONED FEATURES

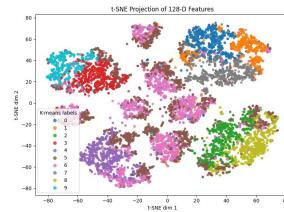
To better understand how our poisoning attack alters representation learning, we visualize the feature space using t-SNE plots from both the attacker (Figure 5) and victim (Figure 4) perspectives. From the attacker’s side, *K-means* clustering reveals clean geometric separation, yet these clusters exhibit strong semantic misalignment when overlaid with true class labels—indicating the attack preserves spatial structure while fragmenting class identity. This mismatch is further supported by heatmaps showing multiple classes collapsing into a small subset of clusters, revealing a loss of class diversity. In contrast, t-SNE plots on the victim side reveal heavily entangled class labels with no coherent cluster boundaries. Despite apparent groupings, the representations lack class specificity, confirming that the poisoning effectively dismantles semantic structure while maintaining a deceptive appearance of order. This divergence between geometric and semantic organization highlights the stealthy nature of our attack: the learned features appear structured, but are fundamentally misaligned with the underlying data distribution—thereby degrading downstream performance while evading simple detection. We present a comparison with contrastive poisoning in Figure 6, where it is evident that, on the victim side, contrastive poisoning disrupts semantic alignment while also degrading the geometric structure of the learned representations.

4.6 QUALITATIVE ANALYSIS OF LEARNED PERTURBATIONS

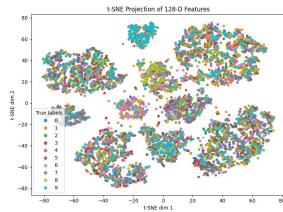
Figure 7 visualizes the learned perturbations δ produced by *DICU* when attacking SimCLR on CIFAR-10. Noise components exhibit consistent, structured patterns, indicating that the optimization process captures meaningful directions in representation space. Clean and poisoned image pairs are also shown to demonstrate that the perturbations remain visually imperceptible, yet still disrupt semantic alignment effectively.



(a) Class–Cluster Mapping



(b) t-SNE with Kmeans labels



(c) t-SNE with ground truth

Figure 4: Visualizing *victim* perspectives on poisoned features.(a) Class–cluster heatmap shows collapse into a few dominant clusters. (b) t-SNE with K-means labels reveals structured but semantically misaligned clusters. (c) t-SNE with ground-truth labels shows strong class mixing and loss of semantic structure.

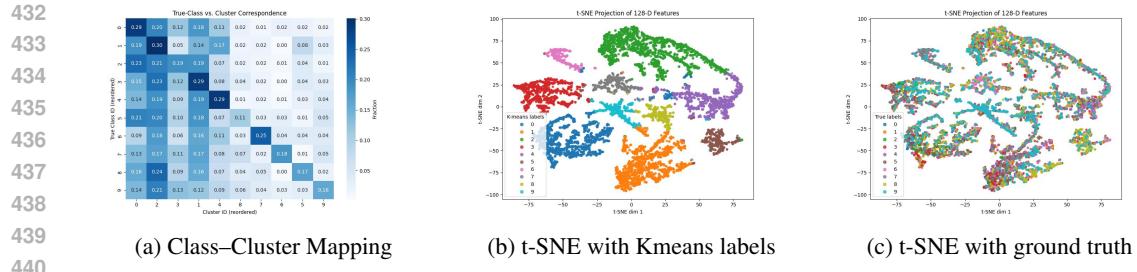


Figure 5: Visualizing *attacker* perspectives on poisoned features. (a) Heatmap shows partial alignment between clusters and true classes, with noticeable class leakage. (b) t-SNE with K-means labels shows clean cluster geometry but loss of semantic alignment. (c) t-SNE with true labels reveals severe class mixing, confirming disruption of class separability.

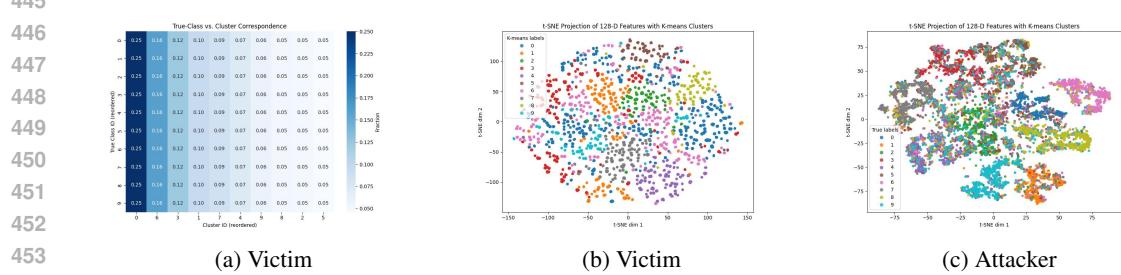


Figure 6: Visualizing Victim and Attacker Perspectives on Poisoned Features under Contrastive Poisoning (He et al., 2023) (a) Class–Cluster Mapping. (b)–(c) t-SNE with Kmeans labels.

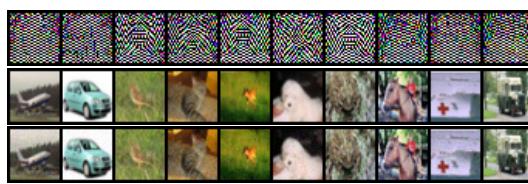


Figure 7: Visualization of poisoning noise in SimCLR trained on CIFAR-10. The first row displays the learned δ perturbations. The second and third rows display clean images and their corresponding poisoned versions for each CIFAR-10 class.

5 CONCLUSION

We present our first investigation into intra-class sparseness induced by external forces, which increases the difficulty of unlearning. We find that this difficulty grows in large-class scenarios, as the closeness of different classes in the embedding space makes attacks easier when class sparsity increases. This leads to the mixing of embeddings from nearby classes while retaining geometric semantics, resulting in stealthy attacks. Learned poisons are also transferable across datasets and architectures, and increasing model complexity alone is insufficient to defend against them. However, certain data augmentation-based defenses provide robust protection, whereas adversarial training offers limited defense against our method.

REFERENCES

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes. In *International Conference on Learning Representations (ICLR) Workshop*, 2017.

Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine learning. *Pattern Recognition*, 84:317–331, 2018.

486 Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines.
 487 In *Proceedings of the 29th International Conference on Machine Learning (ICML)*, pp. 1467–1474,
 488 2012.

489 Abeba Birhane and Vinay Uday Prabhu. Multimodal datasets: misogyny, pornography, and malignant
 490 stereotypes. *arXiv preprint arXiv:2102.03390*, 2021.

492 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
 493 nents with random forests. In *European Conference on Computer Vision*, pp. 446–461. Springer,
 494 2014.

495 Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning. In *International
 496 Conference on Learning Representations (ICLR)*, 2022.

498 Sourav Chatterjee. Matrix estimation by universal singular value thresholding. *The Annals of
 499 Statistics*, 43(1):177–214, 2015.

500 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 501 contrastive learning of visual representations. In *Proceedings of the 37th International Conference
 502 on Machine Learning (ICML)*, pp. 1597–1607. PMLR, 2020a.

504 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
 505 contrastive learning of visual representations. In *Proceedings of the 37th International Conference
 506 on Machine Learning (ICML)*, volume 119, pp. 1597–1607. PMLR, 2020b.

508 Valeria Cherepanova, Micah Goldblum, Harrison Foley, Shiyuan Duan, John Dickerson, Gavin
 509 Taylor, and Tom Goldstein. Lowkey: Leveraging adversarial attacks to protect social media users
 510 from facial recognition. In *International Conference on Learning Representations (ICLR)*, 2021.

511 Adam Coates, Andrew Y. Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-
 512 vised feature learning. In *Proceedings of the Fourteenth International Conference on Artificial
 513 Intelligence and Statistics (AISTATS)*, volume 15, pp. 215–223. JMLR Workshop and Conference
 514 Proceedings, 2011.

515 Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks
 516 with cutout. *arXiv preprint arXiv:1708.04552*, 2017.

518 Ji Feng, Qi-Zhi Cai, and Zhi-Hua Zhou. Learning to confuse: Generating training time adversarial
 519 data with auto-encoder. In *Advances in Neural Information Processing Systems*, volume 32, 2019.

521 Liam Fowl, Micah Goldblum, Ping-yeh Chiang, Jonas Geiping, Wojciech Czaja, and Tom Goldstein.
 522 Adversarial examples make strong poisons. In *Advances in Neural Information Processing Systems*,
 523 volume 34, pp. 30339–30351, 2021a.

524 Liam Fowl, Caleb Robinson, Sen Zhao, Micah Goldblum, and Tom Goldstein. Robust learning with
 525 unlearnable examples. In *Advances in Neural Information Processing Systems*, 2021b.

527 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
 528 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Ghesh-
 529 laghi Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. In
 530 *Advances in Neural Information Processing Systems (NeurIPS)*, volume 33, pp. 21271–21284,
 2020.

532 Hao He, Kaiwen Zha, and Dina Katabi. Indiscriminate poisoning attacks on unsupervised contrastive
 533 learning. In *Proceedings of the Eleventh International Conference on Learning Representations
 534 (ICLR)*, 2023.

535 Hanxun Huang, Chaowei Li, Bo Li, and Dawn Song. Unlearnable examples: Making personal data
 536 unexploitable. In *International Conference on Learning Representations*, 2021.

538 W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. Metapoison: Practical
 539 general-purpose clean-label data poisoning. In *Advances in Neural Information Processing Systems*,
 volume 33, pp. 12080–12091, 2020.

540 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 541 *International Conference on Machine Learning*, pp. 1885–1894. PMLR, 2017.
 542

543 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-
 544 grained categorization. In *Proceedings of the IEEE International Conference on Computer Vision
 545 Workshops*, pp. 554–561, 2013.

546 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
 547 Technical Report TR-2009, University of Toronto, 2009. URL <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>.
 548

550 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
 551 Towards deep learning models resistant to adversarial attacks. In *International Conference on
 552 Learning Representations (ICLR)*, 2018. URL <https://openreview.net/forum?id=rJzIBfZAb>.
 553

554 Shike Mei and Xiaojin Zhu. Using machine teaching to identify optimal training-set attacks on
 555 machine learners. In *AAAI Conference on Artificial Intelligence*, 2015.
 556

557 Luis Muñoz-González, Battista Biggio, Ambra Demontis, Alessandro Paudice, Vasin Wongrassamee,
 558 Emil C Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with back-gradient
 559 optimization. In *Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security*,
 560 pp. 27–38, 2017.

561 Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
 562 of classes. In *2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing*,
 563 pp. 722–729. IEEE, 2008.
 564

565 Vinay Uday Prabhu and Abeba Birhane. Large image datasets: A pyrrhic win for computer vision?
 566 In *WACV*, 2021.
 567

568 Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
 569 Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
 570 challenge. *International Journal of Computer Vision*, 115(3):211–252, 2015.

571 Avi Schwarzschild, Micah Goldblum, Arjun Gupta, John P Dickerson, and Tom Goldstein. Just
 572 how toxic is data poisoning? a unified benchmark for backdoor and data poisoning attacks. In
 573 *International Conference on Machine Learning*, pp. 9389–9398. PMLR, 2021.
 574

575 Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Orestis Suci, Christoph Studer, Tudor Dumitras,
 576 and Tom Goldstein. Poison frogs! targeted clean-label poisoning attacks on neural networks. In
 577 *Advances in Neural Information Processing Systems*, pp. 6106–6116, 2018.

578 Lue Tao, Lei Feng, Jinfeng Yi, Sheng-Jun Huang, and Songcan Chen. Better safe than sorry:
 579 Preventing delusive adversaries with adversarial training. In *Advances in Neural Information
 580 Processing Systems*, volume 34, 2021.
 581

582 Tongzhou Wang and Phillip Isola. Understanding contrastive representation learning through align-
 583 ment and uniformity on the hypersphere. In *Proceedings of the 37th International Conference on
 584 Machine Learning (ICML)*, pp. 9929–9939. PMLR, 2020.

585 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 586 Large-scale scene recognition from abbey to zoo. In *2010 IEEE Computer Society Conference on
 587 Computer Vision and Pattern Recognition*, pp. 3485–3492. IEEE, 2010.
 588

589 Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Availability attacks create shortcuts.
 590 In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining
 591 (KDD)*, pp. 2367–2376. ACM, 2022.
 592

593 Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. Mixup: Beyond empirical
 594 risk minimization. *arXiv preprint arXiv:1710.09412*, 2017.

594 Jiaming Zhang, Xingjun Ma, Qi Yi, Jitao Sang, Yu-Gang Jiang, Yaowei Wang, and Changsheng
 595 Xu. Unlearnable clusters: Towards label-agnostic unlearnable examples. In *Proceedings of the*
 596 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3984–3993,
 597 2023.

598 Kangjie Zhu, Xinyun Hu, Hengzhi Huang, Gavin Taylor, and Furong Li. Transferable clean-label
 599 poisoning attacks on deep neural nets. In *Proceedings of the 36th International Conference on*
 600 *Machine Learning (ICML)*, volume 97, pp. 7614–7623. PMLR, 2019.

603 A APPENDIX

604 A.1 PRELIMINARIES

605 A.1.1 CONTRASTIVE LEARNING

606 Let the input space be denoted as \mathcal{X} and the representation (embedding) space as \mathbb{R}^d . A contrastive
 607 learning model is parameterized by an encoder $f_\theta : \mathcal{X} \rightarrow \mathbb{R}^d$, which maps an input sample $x \in \mathcal{X}$ to
 608 its representation $z = f_\theta(x)$. We assume that all representations are normalized to lie on the unit
 609 hypersphere \mathbb{S}^{d-1} .

610 **Alignment.** Contrastive learning seeks to minimize the distance between positive pairs, i.e., aug-
 611 mentations of the same input x . Formally, for a pair (x_i, x_i^+) , the alignment objective is given
 612 by:

$$613 \mathcal{L}_{\text{align}} = \mathbb{E}_{(x_i, x_i^+)} [\|f_\theta(x_i) - f_\theta(x_i^+)\|_2^2]. \quad (7)$$

614 A small alignment loss indicates that representations of augmented views of the same sample are
 615 closely aligned in the embedding space.

616 **Uniformity.** To avoid representational collapse, contrastive learning enforces uniform coverage of
 617 the hypersphere. Uniformity can be quantified as:

$$618 \mathcal{L}_{\text{unif}} = \log \mathbb{E}_{x_i, x_j \sim \mathcal{D}} [e^{-t \|f_\theta(x_i) - f_\theta(x_j)\|_2^2}], \quad (8)$$

619 where $t > 0$ is a temperature hyperparameter. Low $\mathcal{L}_{\text{unif}}$ implies that embeddings are well-dispersed
 620 across the representation space.

621 A.1.2 CONTRASTIVE POISONING (CP)

622 We briefly review the key components of contrastive poisoning as introduced in prior work (He et al.,
 623 2023), including poison generation, data augmentation, and dual-branch gradient propagation. As
 624 these elements form the foundation of our method, we adopt and build upon them in this work.

625 A.1.3 CONTRASTIVE POISONING GENERATION

626 Contrastive Poisoning (CP) is an indiscriminate data poisoning strategy designed to undermine the
 627 ability of contrastive learning (CL) algorithms to learn meaningful representations from training
 628 data. Instead of targeting specific classes or examples, CP introduces perturbations broadly across
 629 the dataset to degrade representation quality in a self-supervised setting. In the standard CL pipeline
 630 (e.g., SimCLR, MoCo, BYOL), a feature encoder and a projection head are jointly trained to align
 631 views of the same input (positive pair) while pushing apart views of different inputs (negative pair).
 632 The goal of CP is to generate imperceptible perturbations that interfere with this alignment process,
 633 misleading the model to minimize the CL objective while failing to capture semantic structure.

634 To accomplish this, the attacker selects a target CL method and jointly optimizes the feature encoder
 635 parameters θ and an input-specific perturbation function $\delta(x)$. The poisoning objective is formulated
 636 as:

$$637 \min_{\theta, \delta: \|\delta(x)\|_\infty \leq \epsilon} \mathbb{E}_{\{x_i\}_{i=1}^B \sim \mathcal{D}_c} \mathcal{L}_{\text{CL}} (f_\theta; \{x_i + \delta(x_i)\}_{i=1}^B), \quad (9)$$

638 where \mathcal{L}_{CL} denotes a contrastive loss (e.g., InfoNCE), B denotes the batch size and \mathcal{D}_c is the clean
 639 dataset. Optimization proceeds in alternating steps: the encoder is updated via stochastic gradient

648 descent (SGD), while the perturbations $\delta(x)$ are refined using projected gradient descent (PGD) under
 649 an ℓ_∞ constraint to ensure imperceptibility.
 650

651 This formulation lays the foundation for our work, which extends CP by introducing directional
 652 divergence constraints that target intra-class structure in the learned representation space.
 653

654 A.1.4 DUAL BRANCH POISON PROPAGATION

655 In supervised learning, optimizing data perturbations for poisoning is relatively straightforward, as
 656 gradients can be directly obtained through the cross-entropy loss, i.e., $\nabla_x \mathcal{L}_{\text{CE}}(h(x), y)$. However,
 657 contrastive learning presents additional complexity: the loss function depends on the relationship
 658 between multiple data points in a batch, and many frameworks—such as MoCo and BYOL—incorporate
 659 a momentum encoder that is detached from the main training pipeline.
 660

661 In these settings, the momentum encoder is updated via an exponential moving average (EMA) of the
 662 online encoder, and it does not participate in backpropagation by default. As a result, conventional
 663 poisoning approaches only use gradients from the online encoder—this is known as the *single-branch*
 664 gradient flow.
 665

666 Following the approach of He et al. (He et al., 2023), we adopt a *dual-branch* gradient scheme, where
 667 gradients are propagated through both the online encoder and the momentum encoder during poison
 668 optimization. This modification provides richer gradient signals and enables more effective perturba-
 669 tion updates, especially in momentum-based frameworks like MoCo and BYOL. As demonstrated in
 670 prior work, dual-branch gradient flow significantly improves the quality of learned poisons compared
 671 to the single-branch variant.
 672

673 A.1.5 DATA AUGMENTATION

674 Contrastive learning heavily relies on strong data augmentations (e.g., cropping, color jittering, bright-
 675 ness shifts), which are essential for learning invariant representations. However, these augmentations
 676 pose a challenge for poisoning attacks: if not properly incorporated into the optimization loop, they
 677 can neutralize the effect of perturbations by altering the poisoned inputs before the encoder processes
 678 them. To ensure the effectiveness of poisoning in the presence of augmentations, we follow he et al.
 679

680 A.2 DECLARATION OF LLM USAGE

681 Large Language Models (LLMs) were not involved in the core methodology or experiments of this
 682 research. Any language editing assistance (e.g., improving phrasing or clarity) did not affect the
 683 scientific contributions or the originality of the work.
 684

685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701