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ABSTRACT

Unauthorized data collection has become widespread, raising the need for defenses
that prevent exploitation of personal data. Unlearnable Examples (UEs) address
this by embedding imperceptible perturbations that preserve visual quality while
making data unusable for training. Recent work has shown that contrastive learning
can be poisoned to generate UEs, but existing methods lack theoretical grounding
and fail to exploit the geometric structure of learned representations. In this work,
we present the first principled analysis of contrastive poisoning and reveal why
it is effective. Building on this understanding, we propose Divergence-Induced
Contrastive Unlearning (DICU), a framework that introduces direction-aware diver-
gence regularization into the poisoning objective. This design amplifies intra-class
sparsity, pushes samples beyond class manifold boundaries, and enables free mix-
ing across classes, producing stealthy and robust perturbations. Our approach is
especially effective in high class-count settings, reducing linear probing accuracy
at significant level.

1 INTRODUCTION

The rapid growth of online data has increased concerns about its unauthorized use in training machine
learning models. Public datasets have been central to the progress of deep learning, yet their use also
raises serious privacy risks (Prabhu & Birhane, 2021; Birhane & Prabhu, 2021). This concern has
motivated the development of unlearnable examples (UEs) (Huang et al., 2021; Fowl et al., 2021b),
which are designed to make data unusable for training machine learning models. Similar approaches
are also referred to as availability attacks (Yu et al., 2022) or indiscriminate poisoning attacks (He
et al., 2023) in the literature. These techniques enable users to inject protective noise into their
personal data, reducing the risk of unauthorized exploitation.

Existing approaches to unlearning rely on perturbing training data so that models cannot learn
meaningful representations (Carlini & Terzis, 2022; Cherepanova et al., 2021; Fowl et al., 2021b).
Early methods added error-minimizing noise with surrogate models and produced unlearnable
examples at either the sample or class level. These perturbations were fragile and failed under
adversarial training. Later work shifted to indiscriminate poisoning, which aims to broadly degrade
performance. Most studies were limited to supervised learning with cross-entropy loss (Mei & Zhu,
2015; Muñoz-González et al., 2017), even though contrastive learning can now achieve equal or better
performance without labels. Contrastive Poisoning (CP) (He et al., 2023) extended these attacks to
contrastive learning by distorting the InfoNCE objective and weakening data augmentation. It also
introduced a dual-branch gradient scheme that targets momentum encoders. CP forces augmented
poisoned pairs to move closer while the corresponding clean views move apart, creating a new form
of unlearning in the contrastive setting. However, it does not address interactions between clean
and poisoned pairs, and it does not explain why the attack is so vulnerable. On the other hand,
Unlearnable Clusters (UC) (Zhang et al., 2023) advanced the field with cluster-level perturbations. A
surrogate model extracted representations, and K-means grouped them into clusters. For each cluster,
a generator produced perturbations that shifted samples toward incorrect centers, preventing models
from learning valid structures. This made the method label-agnostic and resistant to label-based
exploitation. Yet, UC required the generator to be reinitialized for every cluster, which led to high
computational cost and poor scalability.
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Figure 1: Representation analysis on CIFAR-100 in terms of uniformity and alignment. (a) Contrastive
learning with clean samples shows balanced alignment and uniformity. Under contrastive poisoning,
(b) poisoned samples achieve higher alignment and maintain uniformity, while (c) clean samples
lose uniformity and exhibit larger distances between augmented pairs. This shift indicates increased
sparsity in clean class embeddings.

We draw key insights from the representation analysis in Figure 1. Contrastive poisoning yields
high alignment and uniformity for poisoned views, but it pushes clean samples apart and reduces
their uniformity. This makes clean embeddings sparse within the class manifold and decreases the
separation between nearby classes. These findings highlight that managing intra-class structure and
embedding sparsity in contrastive frameworks is critical for developing more robust unlearning and
defense strategies.

Motivated by these observations, we propose Divergence-Induced Contrastive Unlearning (DICU),
a framework that increases intra-class dispersion and encourages mixing across classes. This
design is particularly effective in high class-count settings, where it produces a more stealthy attack.
Furthermore, our divergence regularization enables samples from one class to blend with those of any
other class, enhancing the strength of the poisoning effect. In summary, our main contributions are as
follows:

• We propose a stealthy poisoning attack within the contrastive learning framework, where we
deliberately increase intra-class distances. By considering scenarios with a larger number of
clusters, even a small perturbation can disrupt semantic alignment, leading to semantically
entangled yet clustered representations that covertly degrade downstream performance.

• We conduct extensive experiments on datasets with a large number of classes, evaluating
multiple models across two different contrastive learning frameworks.

• We extensively evaluate a range of defense mechanisms and observe that, in most cases, the
attack remains robust.

• We investigates cross-transferability across diverse datasets and backbone models, revealing
the strong robustness of the proposed attack.

2 RELATED WORK

Unlearning Examples. Unlearnable examples (UEs). UEs are a type of data poisoning attack (Biggio
et al., 2012; Biggio & Roli, 2018) designed to prevent models from effectively learning on a protected
dataset. Early methods relied on adversarial perturbations to degrade training performance, while
recent approaches have focused on improving efficiency, transferability, and generalization across
different architectures and datasets. In general, UEs can be generated through a bilevel optimization
framework (Huang et al., 2020; Schwarzschild et al., 2021; Shafahi et al., 2018; Zhu et al., 2019)
with the aid of a surrogate model (Huang et al., 2021), following a strategy similar to strong data
poisoning. Adversarial noise is commonly employed, including methods such as Error-Maximizing
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Noise (EMaxN) (Koh & Liang, 2017), Deep-Confuse (Feng et al., 2019), and Adversarial Poisoning
(AdvPoison)

Attacker Objective. In contrastive learning, a feature extractor is trained using a self-supervised
objective without access to labels (Chen et al., 2020a). The learned representations are typically
evaluated on downstream tasks via linear probing (Alain & Bengio, 2017), where a linear classifier is
trained on top of the frozen features. The objective of the attacker is to poison the pretraining dataset
such that any model trained on it fails to learn transferable or semantically meaningful representations.
As a consequence, performance on downstream tasks–particularly under linear probing–deteriorates
significantly, reflecting the success of the attack in disrupting representation learning.

Attacker Capability. We consider an indiscriminate poisoning setting where the attacker perturbs
the victim’s training data to degrade learned representations. The attacker does not control the model
architecture, initialization, or training routine, and may or may not know the specific contrastive
learning algorithm used–such as SimCLR, MoCo, or BYOL. Following the convention established in
prior work (He et al., 2023; Yu et al., 2022), we assume the attacker perturbs 100% of the training
data with imperceptible noise constrained by an ℓ∞ norm bound of ϵ = 8

255 .

3 DIVERGENCE-INDUCED CONTRASTIVE UNLEARNING

Contrastive learning is guided by alignment and uniformity objectives, which can be extended to
poisoning by training with adversarially crafted samples (see Appendix A.1). We introduce a poi-
soning framework based on representation-level interference in contrastive learning. Our method,
Divergence-induced Contrastive Unlearning (DiCU), breaks intra-class coherence by encouraging
divergence among poisoned samples within the same class. In contrast to prior poisoning attacks
that mainly induce global class confusion or manipulate decision boundaries in supervised set-
tings (Shafahi et al., 2018; Zhu et al., 2019), DiCU directly targets intra-class structure, fragmenting
class manifolds in the contrastive embedding space.

The proposed attack is executed in two stages. In the contrastive poisoning phase, augmented views
of poisoned samples are tightly aligned, while clean positives are geometrically displaced across
the unit hypersphere. This misalignment distorts the global feature structure, compromising the
consistency of learned representations. In the divergence induction phase, we introduce class-wise
directional constraints that drive intra-class features apart through controlled angular shifts. This
promotes sparsity within class manifolds and weakens inter-cluster boundaries, effectively scattering
representations of the same class throughout the embedding space. The combined effect of these
two phases significantly degrades representation quality and impairs downstream classification
performance. We formalize this behavior using a few geometric definitions.

Definition 1 (Poisoned Local Consistency). Let xi ∈ X be a sample from class c ∈ C. Let xc
i

denote a clean augmented view and xp
i a poisoned augmented view of the same instance. Let fθ(·)

be a contrastive poisoned encoder producing representations zci = fθ(x
c
i ) and zpi = fθ(x

p
i ). A

representation space satisfies poisoned local consistency if multiple poisoned augmentations of
the same instance remain closely aligned, while their clean counterparts are pushed away in the
embedding space. Formally, for poisoned views xp(1)

i , x
p(2)
i of a sample xi, z

p(1)
i = fθ(x

p(1)
i ) and

z
p(2)
i = fθ(x

p(2)
i ) and for the corresponding clean-augmented views (xc1

i , xc2
i ),

cos (z
p(1)
i , z

p(2)
i ) ≥ τ and cos (zci , z

p
i ) ≤ ϵ (1)

where cos (u, v) = u·v
∥u∥ ∥v∥ , τ is a lower bound for poison-poison alignment and ϵ is an up-

per bound on clean-poison similarity. This contrastive setup ensures that the poisoned views
form a coherent (but misaligned) subspace, effectively detaching them from their clean representation.

Definition 2 (Class-Wise Divergence via Targeted Angular Separation). We define class-wise diver-
gence as the enforcement of a fixed angular displacement between clean and poisoned views of the
same input. Let xi be a sample from class c ∈ C, and let xc

i , xp
i be its clean and poisoned augmented

views. Let zci = fθ(x
c
i ) and zpi = fθ(x

p
i ) denote their normalized feature representations. For a
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prescribed angular margin θref ∈ (0, 2π), we define divergence to hold when:

cos(ϕ) ≈ cos(θref), where cos(ϕ) =
zci · z

p
i

∥zci ∥ ∥z
p
i ∥

(2)

i.e., the angle between the clean and poisoned views is driven toward a fixed semantic offset in the
latent space. This constraint is enforced to systematically displace poisoned representations from
their clean counterparts while maintaining structured orientation.

To understand how our poisoning mechanism disrupts representation learning beyond local alignment
objectives, we examine its global impact on the structure of the learned feature space. While
contrastive losses encourage instance-level alignment, robust downstream performance also relies on
the formation of coherent class-level manifolds. Our method introduces controlled divergence within
each class, which may maintain local consistency but progressively fragments global class structures.
To formalize this behavior, we propose the following hypotheses and geometric propositions that
characterize the degradation of semantic organization in the latent space under our attack.

3.1 BI-LEVEL OPTIMIZATION FOR DiCU

After introducing the poisoning framework, we now formulate the optimization of DiCU as a bi-level
problem. Our goal is to craft poisoned representations that both adhere to local consistency and induce
structured intra-class divergence. To achieve this, we alternate between optimizing the contrastive
encoder fθ and updating the perturbation parameters δ and direction shifts β associated with each
class.

Recognizing the complexity of this setup, we follow a staged training strategy: during each training
round, we first update the encoder fθ using a standard contrastive loss on the perturbed dataset. Then,
we optimize the poisoning parameters with respect to a composite loss that enforces directional
divergence and sparsity. This bi-level routine is summarized in Algorithm 1.

Phase 1: Encoder Update. Given a batch of poisoned samples, we update the encoder parameters
θ using the contrastive loss LCL, as defined in prior work He et al. (2023). The poisoned views are
generated by applying class-specific perturbations:

xp
i = xc

i + δyi , where yi denotes class label of sample xi. (3)
The encoder update minimizes:

θ ← θ − ηθ∇θLCL(fθ; {xp
i }

B
i=1). (4)

Phase 2: Poison Generator Update. After the encoder is updated, we refine the poisoning vectors δ
to enforce divergence-aware objectives. This is done by minimizing the directional divergence loss:

LDDL =
1

|B|
∑
i∈B

(cos(ϕi)− cos(ϕref,yi))
2
, (5)

where cos(ϕi) is computed from the clean and poisoned views of sample xi, and ϕref,yi
is a reference

direction assigned from a predefined angular set. This loss ensures each poisoned sample is pushed
in a distinct direction to induce intra-class fragmentation.

The poisoning parameters are updated to minimize the combined loss:
Ltotal = λLCL + LDDL, (6)

where λ is the regularizer balancing contrastive consistency and sparsity.

The feature extractor is updated using stochastic gradient descent, while the poisoning perturbations
are optimized with projected gradient descent (Madry et al., 2018; He et al., 2023) to ensure they
remain within the prescribed ℓ∞ norm constraint. All training steps are detailed in Algorithm 1.

4 EXPERIMENT

This section presents the experimental setup, which includes datasets, model architectures, poisoning
frameworks, baselines, and training details in Section 4.1. The main results and an extensive ablation
study are provided in Section 4.2 and Section 4.3. We further include visualizations in ?? to better
understand the behavior of DICU.
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Algorithm 1 Divergence-induced Contrastive Unlearning

1: Input: Clean dataset Dc; learning rates ηθ, ηδ; total rounds T ; updates per round Tθ, Tδ for
feature extractor and perturbations; PGD steps Tp; K number of classes.

2: for t = 1 to T do
3: for tθ = 1 to Tθ do
4: Sample a batch {xi}Bi=1 ∼ Dc

5: θ ← θ − ηθ∇θLCL(fθ; {xi + δk}Bi=1)
6: end for
7: for tδ = 1 to Tδ do
8: Sample a batch {(xi, yi)}Bi=1 ∼ Dc

9: for tp = 1 to Tp do
10: gi ← ∇δkλLCL(fθ; {xi + δk}Bi=1) + LDDL(fθ; {xi + δk}Bi=1)

11: δ(y)← Πϵ

(
δ(xi)− ηδ · sign

(∑
i:yi=y gi

))
, ∀y

12: end for
13: end for
14: end for
15: Output: Poisoned dataset Dp = {x+ δk : x ∈ Dc, k ∈ K}

4.1 SETUP

Datasets and Models. We conduct experiments on several benchmark datasets, including CIFAR-
10/100 (Krizhevsky & Hinton, 2009), STL-10 (Coates et al., 2011), Stanford Cars (Krause et al., 2013),
Oxford Flowers (Nilsback & Zisserman, 2008), Food-101 (Bossard et al., 2014), SUN397 (Xiao
et al., 2010), and ImageNet (Russakovsky et al., 2015). For ImageNet, we use a subset of 100
classes, denoted as ImageNet-100. ResNet-18 serves as the default surrogate model unless stated
otherwise. For target models, we consider a range of architectures, including ResNet-18/50, DenseNet-
121, and VGG-19. All experiments use standard data augmentations, including resizing, random
cropping, horizontal flipping, and normalization. We further evaluate our approach under two popular
contrastive learning frameworks: SimCLR (Chen et al., 2020b), and BYOL (Grill et al., 2020)
Baselines. We compare our proposed method, DICU, with several representative approaches:
Contrastive Poisoning (CP) (He et al., 2023), Unlearnable Clusters (UC) (Zhang et al., 2023),
DeepConfuse (Feng et al., 2019), Synthetic Perturbations (SynPer) (Yu et al., 2022), and Adversarial
Poisoning (AdvPoison) (Fowl et al., 2021a).

4.2 MAIN RESULTS

We summarize poisoning attacks in contrastive learning frameworks in Table 1 and compare with
other baseline attacks in Table 2. Overall, our method outperforms especially in high-class-count
settings. To support this observation, we evaluate on datasets with larger numbers of classes and find
that the attack is significantly more effective, highlighting a fundamental vulnerability of contrastive
learning in high-class settings. However, performance on Stanford Cars and Oxford Flowers is
weaker, which may indicate that our attack benefits from greater variation between classes.

Table 1: Performance of indiscriminate poisoning attacks across contrastive learning algorithms and
datasets. Results are reported as linear probing accuracy (%, ↓). Clean, random noise, and classwise
contrastive poisoning (CP) baselines are included for reference.

Attack Type CIFAR-10 CIFAR-100 ImageNet-100
SimCLR BYOL SimCLR BYOL SimCLR

None 91.8 92.2 62.8 65.3 69.3
Random Noise 90.4 90.7 57.5 61.0 67.5
CP (ϵ = 8/255) 68.0 56.9 54.6 37.9 55.6
DICU (ϵ = 8/255) 79.7 66.3 36.4 25.0 2.1

Impact on Downstream Task for transferability. We poison SimCLR during training on ImageNet-
100, and then evaluate the learned features by training linear classifiers on clean downstream datasets,
including CIFAR-10, CIFAR-100, STL-10, and ImageNet-100 (Table 3). Despite the downstream
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Table 2: Performance of our method and four baselines under high-class settings in the label-agnostic
scenario. Results are reported as test accuracy (%, ↓), with the best attack highlighted in bold.

Methods Cars Flowers Food101 Sun397 ImageNet-100
Deep-Confuse 51.1 50.9 73.1 34.4 55.1

Adv Poison 51.9 50.6 75.1 38.5 73.8
SynPar 53.5 52.7 74.8 38.3 74.7

UC 33.6 35.6 55.3 20.4 54.8
DICU 71.8 69.8 14.6 14.7 2.1

Table 3: Attack transferability across Datasets and backbone architectures. Reported values are
classification accuracy (%, ↓).

Transferability across datasets

Attack type Poisoning on Imagenet 100
Imagenet-100 CIFAR-100 CIFAR-10 STL-10

None 69.3 58.5 72.5 82.0
DICU-ResNet-18 10.8 56.6 40.1 28.4

Transferability across backbone architectures

Attack type Poisoning on CIFAR-100
Resnet 18 Resnet 50 Vgg19 Densenet121

DICU-ResNet-18 36.4 14.9 10.9 22.3

datasets being different from those used for poisoning, the model’s performance consistently drops,
demonstrating cross-dataset attacks, where poisoning on one dataset impairs performance on entirely
separate datasets. We generate contrastive poisons using ResNet-18 on CIFAR-100 within the
SimCLR framework. The victim model is trained on these poisoned datasets and evaluated with
different architectures, including ResNet-18, ResNet-50, VGG-19, and DenseNet-121. The results
indicate that increasing model complexity may not be sufficient to reduce the poisoning effect. Our
attacks remain effective across all backbone architectures.

Table 4: Cross-Model Transferability

Attack type +
attacker algorithm

Victim’s algorithm
simclr byol

DiCP SimCLR 63.7 47.2
DiCP BYOL 54.8 44.2

Transferability Across different CL algorithms. We
evaluate the effectiveness of DICU across different con-
trastive learning (CL) algorithms, assessing both within-
model and cross-model poisoning transferability. Table 4
reports the linear probing accuracy of SimCLR, and BYOL
victim models when trained on features poisoned using
DICU. We consider L∞- norm restriction in this experi-
ment = 16/255. Our results show that DiCU consistently
outperforms standard CP across all victim models and at-
tacker configurations. Notably, when poisons are generated using BYOL, the attack exhibits the
strongest transferability–achieving the lowest accuracy on all victim models, with performance
dropping as low as 44.2% for BYOL. This suggests that features poisoned under BYOL encode more
generalizable divergence, making iteam task highly transferable to other CL frameworks. These
findings highlight DICU’s ability to generalize across architectures, making it a more effective and
transferable attack compared to traditional classwise contrastive poisoning.

Table 5: Performance of defenses

Methods Accuracy
Clean 58.5
No defense 36.4
Random Noise (8/255) 54.3
Gaussian smooth (k=3) 55.3
MixUP 47.8
CutOut 47.5
Matrix completion 55.7
jpeg comp. 50.5
Adv. Training 35.6

Defenses. We conduct experiments on CIFAR-100 using
SimCLR and ResNet-18. We ablate the hyperparameters
of data augmentations, which have been studied as de-
fenses against poisoning attacks (Tao et al., 2021; Huang
et al., 2021). We test four standard augmentations: Ran-
dom Noise, which adds white noise; Gauss Smooth, which
applies a Gaussian filter; Cutout (DeVries & Taylor, 2017),
which removes parts of the input; and MixUp (Zhang et al.,
2017). We also evaluate Matrix Completion, which ran-
domly drops pixels and reconstructs them using matrix
completion (Chatterjee, 2015), and JPEG compression
with quality set to 10. Table 8 shows that, except for Ad-
versarial Training, all defenses remain stable under both
attacks.
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Table 7: Accuracy under different reference direction strategies for indiscriminate poisoning.

setup Reference Direction Strategy Accuracy (%)

clean NA 91.8
D-1 Random cosine values between -1 and 1 63.7
D-2 Equispaced cosine values between -1 and 1 58.7
D-3 Manually assigned angles per class 63.4

4.3 ABLATION STUDY

Table 6: Ablation
on loss components.

Loss Terms Accuracy
CP 54.6
CP+DDL 36.4
DDL 17.8

We perform an ablation study on CIFAR-100 using SimCLR to evaluate the im-
pact of different loss components on DiCU’s attack efficacy. Table 6 shows that
only the DDL term alone can effectively perturb the loss, while combining it
with CP or using CP alone is less effective. We study how directional reference
values affect attack effectiveness by defining three divergence configurations:
D-1, D-2, and D-3 (Table 4). D-1 uses 10 random cosine values, D-2 uses
uniformly spaced values, and D-3 assigns specific angles per class to cover
different quadrants. These settings control the distribution of poisoned samples
on the unit hypersphere. Using SimCLR on CIFAR-10, we evaluate the impact
of each strategy on learned representations. D-2, with evenly spaced angles, consistently achieves the
lowest downstream accuracy, showing that uniform angular separation maximizes semantic disruption.
These results emphasize the role of directional divergence in poisoning attacks.

4.4 ANALYZING PROPERTIES AND LOSS DYNAMICS

Loss Dynamics During DiCU Optimization. To better understand the training behavior of our
proposed attack, we track both the contrastive loss and the directional divergence loss across epochs.
As shown in Figure 2a, the contrastive loss steadily declines, indicating that the model continues to
optimize its alignment and uniformity objectives, even when poisoned data is used. In parallel, the
divergence loss shown in Figure 2b rises early and then stabilizes, suggesting that the imposed diver-
gence constraint remains consistently active during training. This sustained directional enforcement
drives poisoned and clean views apart at the representation level, fragmenting intra-class structure
and weakening semantic consistency across the embedding space.

(a) (b)

Figure 2: Training losses under sparsity-aware contrastive poisoning. (a) Contrastive loss decreases
steadily. (b) Sparsity loss remains consistently high, enforcing intra-cluster dispersion.

Behavioral Analysis of Contrastive Learning Under Poisoned Data. Unlike classification losses,
contrastive learning (CL) objectives such as InfoNCE aim to produce robust representations by
optimizing both alignment-bringing augmented views of the same instance closer-and uniformity-
dispersing representations across the feature space (Wang & Isola, 2020). To evaluate how DiCU
interferes with these objectives, we track their behavior during training. As shown in Figure 3,
we visualize the alignment and uniformity trends for SimCLR on CIFAR-10 under our proposed
DiCU. Blue curves indicate poisoned samples, while orange curves represent clean samples. Notably,
the alignment loss shows a large discrepancy, suggesting that DiCP primarily targets and disrupts
alignment. This behavior is further supported by the cosine similarity distributions in Figure 3.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Poisoned view pairs remain highly aligned with cosine distances near zero, while clean view pairs
show broader variance, indicating weakened alignment. Despite appearing well-aligned, the model
fails to learn semantically meaningful representations for poisoned samples-effectively deceiving the
alignment objective.

(a) Alignment trend (b) Uniformity trend (c) Distri. of cosine similarity

Figure 3: (a, b) Evolution of alignment and uniformity losses over training epochs. (c) Cosine
distance distributions between embeddings of two augmented views for poisoned (blue) and clean
(orange) samples.

4.5 VISUALIZING ATTACKER AND VICTIM PERSPECTIVES ON POISONED FEATURES

To better understand how our poisoning attack alters representation learning, we visualize the feature
space using t-SNE plots from both the attacker (Figure 5) and victim (Figure 4) perspectives. From
the attacker’s side, K-means clustering reveals clean geometric separation, yet these clusters exhibit
strong semantic misalignment when overlaid with true class labels—indicating the attack preserves
spatial structure while fragmenting class identity. This mismatch is further supported by heatmaps
showing multiple classes collapsing into a small subset of clusters, revealing a loss of class diversity.
In contrast, t-SNE plots on the victim side reveal heavily entangled class labels with no coherent
cluster boundaries. Despite apparent groupings, the representations lack class specificity, confirming
that the poisoning effectively dismantles semantic structure while maintaining a deceptive appearance
of order. This divergence between geometric and semantic organization highlights the stealthy nature
of our attack: the learned features appear structured, but are fundamentally misaligned with the
underlying data distribution—thereby degrading downstream performance while evading simple
detection. We present a comparison with contrastive poisoning in Figure 6, where it is evident that, on
the victim side, contrastive poisoning disrupts semantic alignment while also degrading the geometric
structure of the learned representations.

4.6 QUALITATIVE ANALYSIS OF LEARNED PERTURBATIONS

Figure 7 visualizes the learned perturbations δ produced by DICU when attacking SimCLR on
CIFAR-10. Noise components exhibit consistent, structured patterns, indicating that the optimization
process captures meaningful directions in representation space. Clean and poisoned image pairs
are also shown to demonstrate that the perturbations remain visually imperceptible, yet still disrupt
semantic alignment effectively.

(a) Class–Cluster Mapping (b) t-SNE with Kmeans labels (c) t-SNE with ground truth

Figure 4: Visualizing victim perspectives on poisoned features.(a) Class–cluster heatmap shows
collapse into a few dominant clusters. (b) t-SNE with K-means labels reveals structured but semanti-
cally misaligned clusters. (c) t-SNE with ground-truth labels shows strong class mixing and loss of
semantic structure.
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(a) Class–Cluster Mapping (b) t-SNE with Kmeans labels (c) t-SNE with ground truth

Figure 5: Visualizing attacker perspectives on poisoned features. (a) Heatmap shows partial alignment
between clusters and true classes, with noticeable class leakage. (b) t-SNE with K-means labels
shows clean cluster geometry but loss of semantic alignment. (c) t-SNE with true labels reveals
severe class mixing, confirming disruption of class separability.

(a) Victim (b) Victim (c) Attacker

Figure 6: Visualizing Victim and Attacker Perspectives on Poisoned Features under Contrastive
Poisoning (He et al., 2023) (a) Class–Cluster Mapping. (b)-(c) t-SNE with Kmeans labels.

Figure 7: Visualization of poisoning noise in SimCLR trained on CIFAR-10. The first row display
the learned δ perturbations. The second and third rows display clean images and their corresponding
poisoned versions for each CIFAR-10 class.

5 CONCLUSION

We present our first investigation into intra-class sparseness induced by external forces, which
increases the difficulty of unlearning. We find that this difficulty grows in large-class scenarios, as
the closeness of different classes in the embedding space makes attacks easier when class sparsity
increases. This leads to the mixing of embeddings from nearby classes while retaining geometric
semantics, resulting in stealthy attacks. Learned poisons are also transferable across datasets and
architectures, and increasing model complexity alone is insufficient to defend against them. However,
certain data augmentation–based defenses provide robust protection, whereas adversarial training
offers limited defense against our method.
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A APPENDIX

A.1 PRELIMINARIES

A.1.1 CONTRASTIVE LEARNING

Let the input space be denoted as X and the representation (embedding) space as Rd. A contrastive
learning model is parameterized by an encoder fθ : X → Rd, which maps an input sample x ∈ X to
its representation z = fθ(x). We assume that all representations are normalized to lie on the unit
hypersphere Sd−1.

Alignment. Contrastive learning seeks to minimize the distance between positive pairs, i.e., aug-
mentations of the same input x. Formally, for a pair (xi, x

+
i ), the alignment objective is given

by:
Lalign = E(xi,x

+
i )

[
∥fθ(xi)− fθ(x

+
i )∥

2
2

]
. (7)

A small alignment loss indicates that representations of augmented views of the same sample are
closely aligned in the embedding space.

Uniformity. To avoid representational collapse, contrastive learning enforces uniform coverage of
the hypersphere. Uniformity can be quantified as:

Lunif = log Exi,xj∼D
[
e−t∥fθ(xi)−fθ(xj)∥2

2
]
, (8)

where t > 0 is a temperature hyperparameter. Low Lunif implies that embeddings are well-dispersed
across the representation space.

A.1.2 CONTRASTIVE POISONING (CP)

We briefly review the key components of contrastive poisoning as introduced in prior work (He et al.,
2023), including poison generation, data augmentation, and dual-branch gradient propagation. As
these elements form the foundation of our method, we adopt and build upon them in this work.

A.1.3 CONTRASTIVE POISONING GENERATION

Contrastive Poisoning (CP) is an indiscriminate data poisoning strategy designed to undermine the
ability of contrastive learning (CL) algorithms to learn meaningful representations from training
data. Instead of targeting specific classes or examples, CP introduces perturbations broadly across
the dataset to degrade representation quality in a self-supervised setting. In the standard CL pipeline
(e.g., SimCLR, MoCo, BYOL), a feature encoder and a projection head are jointly trained to align
views of the same input (positive pair) while pushing apart views of different inputs (negative pair).
The goal of CP is to generate imperceptible perturbations that interfere with this alignment process,
misleading the model to minimize the CL objective while failing to capture semantic structure.

To accomplish this, the attacker selects a target CL method and jointly optimizes the feature encoder
parameters θ and an input-specific perturbation function δ(x). The poisoning objective is formulated
as:

min
θ,δ:∥δ(x)∥∞≤ϵ

E{xi}B
i=1∼Dc

LCL
(
fθ; {xi + δ(xi)}Bi=1

)
, (9)

where LCL denotes a contrastive loss (e.g., InfoNCE), B denotes the batch size and Dc is the clean
dataset. Optimization proceeds in alternating steps: the encoder is updated via stochastic gradient
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descent (SGD), while the perturbations δ(x) are refined using projected gradient descent (PGD) under
an ℓ∞ constraint to ensure imperceptibility.

This formulation lays the foundation for our work, which extends CP by introducing directional
divergence constraints that target intra-class structure in the learned representation space.

A.1.4 DUAL BRANCH POISON PROPAGATION

In supervised learning, optimizing data perturbations for poisoning is relatively straightforward, as
gradients can be directly obtained through the cross-entropy loss, i.e., ∇xLCE(h(x), y). However,
contrastive learning presents additional complexity: the loss function depends on the relationship
between multiple data points in a batch, and many frameworks–such as MoCo and BYOL–incorporate
a momentum encoder that is detached from the main training pipeline.

In these settings, the momentum encoder is updated via an exponential moving average (EMA) of the
online encoder, and it does not participate in backpropagation by default. As a result, conventional
poisoning approaches only use gradients from the online encoder–this is known as the single-branch
gradient flow.

Following the approach of He et al. (He et al., 2023), we adopt a dual-branch gradient scheme, where
gradients are propagated through both the online encoder and the momentum encoder during poison
optimization. This modification provides richer gradient signals and enables more effective perturba-
tion updates, especially in momentum-based frameworks like MoCo and BYOL. As demonstrated in
prior work, dual-branch gradient flow significantly improves the quality of learned poisons compared
to the single-branch variant.

A.1.5 DATA AUGMENTATION

Contrastive learning heavily relies on strong data augmentations (e.g., cropping, color jittering, bright-
ness shifts), which are essential for learning invariant representations. However, these augmentations
pose a challenge for poisoning attacks: if not properly incorporated into the optimization loop, they
can neutralize the effect of perturbations by altering the poisoned inputs before the encoder processes
them. To ensure the effectiveness of poisoning in the presence of augmentations, we follow he et al.

A.2 DECLARATION OF LLM USAGE

Large Language Models (LLMs) were not involved in the core methodology or experiments of this
research. Any language editing assistance (e.g., improving phrasing or clarity) did not affect the
scientific contributions or the originality of the work.
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