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Abstract
Foosball is a fast-paced, strategy-driven table
game that requires sub-second decision-making,
fine motor control, and dynamic tactics. Rein-
forcement learning (RL) algorithms are widely
used for AI agents to implicitly learn the physical
world. In this work, we present a new open-source
framework designed for evaluating end-to-end
deep RL algorithms in a simulated foosball en-
vironment. Our platform includes a high-fidelity
physics simulation environment built in MuJoCo,
enabling analysis of performance transfer from
virtual to real-world conditions. This platform is
designed to advance the development of compet-
itive agents capable of robust, adaptive behavior
and effective sim-to-real generalization, serving
as a standardized resource for the broader RL com-
munity. Code available at: https://github.
com/thakur-sachin/Foosball_CU

1. Introduction
Foosball is a fast-paced, strategy-driven table game that re-
quires sub-second decision-making, fine motor control, and
dynamic tactics. Reinforcement Learning (RL) techniques
are widely adopted for automating dynamic control tasks
because they can discover near-optimal policies across di-
verse environments (Margolis et al., 2022; Tang et al., 2024;
Kober et al., 2013). To effectively train the fast and physical
skills involved in foosball, an RL agent must learn within a
simulator that faithfully reproduces the sport’s real-world
physics and high-speed dynamics, ensuring the resulting pol-
icy can reliably transfer to an actual table with robustness
(D’Ambrosio et al., 2023; Kaufmann et al., 2023). Further-
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more, choosing an RL algorithm well suited to these rapid,
interactive settings is essential for maximizing decision-
making performance (Kurach et al., 2020; Tammewar et al.,
2023).

In this work, we introduce an end-to-end pipeline that en-
ables researchers to train agents in simulation and evaluate
them on standardized physical hardware. The system in-
cludes a high-fidelity physics simulation model, a real-world
foosball table with controllable actuators and RGB cameras,
and a global leaderboard that spans both simulated and
real-world performance in order to explore the domain of
sim-to-real transfer in foosball playing.

The pipeline is set up to feed raw images directly into a Deep
RL Agent, eliminating intermediate steps such as ball local-
ization or rod-angle estimation. We propose this as a physi-
cal foosball platform that can be used to compare RL agents
trained in separate simulated environments. Our preliminary
benchmarks consist of three reinforcement-learning algo-
rithms: Twin Delayed Deep Deterministic Policy Gradient
(TD3) (Fujimoto et al., 2018), Proximal Policy Optimization
(PPO) (Schulman et al., 2017), and Soft Actor-Critic (SAC)
(Haarnoja et al., 2019). We measure how reliably each can
score when domain randomization is applied and training
resources are held constant. We conclude with a discus-
sion of the benchmark’s potential for advancing sim-to-real
research in competitive multi-agent settings.

2. Related Work
Research on autonomous foosball spans both simulated set-
tings and physical tables. The studies summarized below
highlight key progress and open challenges.

2.1. Game-State Estimation

Several projects extract the match state from camera im-
ages of the foosball surface (Gutierrez-Franco et al., 2013;
Hernández et al., 2019; Weigel & Nebel, 2003). Janssen
et al. showed that a combination of regions of interest
(ROI) and Kalman filtering can reliably track the ball in a
known arena at speeds up to 10 m/s—even with rebounds
and sudden direction changes (Janssen et al., 2009). More
recently, CNN-based approaches have inferred rod positions
and ball locations directly from images, underscoring deep
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networks’ capacity to recover a foosball game state with-
out hand-crafted features (Hagens et al., 2024; Horst et al.,
2024).

2.2. Action Selection

Early autonomous players relied on hand-tuned decision
trees for rod manipulation (Weigel & Nebel, 2003; Weigel,
2005). Imitation-learning pipelines soon followed, captur-
ing advanced moves such as the “lock” and “slide-kick”
techniques (Zhang & Nebel, 2007). With the rise of Deep
Reinforcement Learning (DRL), researchers framed scoring
with a single rod as a control problem akin to a manufactur-
ing cell (De Blasi et al., 2020). Subsequent studies extended
DRL to individual skills such as dribbling and passing (Croe-
nen et al.), and to multi-agent scenarios in which strikers
and goalkeepers learn competing offensive and defensive
policies from scratch (Gashi et al., 2023; Pinto et al., 2017).

2.3. Sim-to-Real Transfer

Many works build physical foosball robots and then deploy
the policies trained in simulation on the real hardware (Moos
et al., 2024; De Blasi et al., 2020; Weigel, 2005; Rohrer
et al., 2021). This line of research sits within the broader
Sim-to-Real literature for robotic manipulation (Peng et al.,
2017a;b; Tobin et al., 2017). Reports consistently note a
marked performance drop when control policies leave the
simulator (Moos et al., 2024; Rohrer et al., 2021). Domain
randomization—systematically varying simulation param-
eters—has been proposed as a hedge against overfitting to
the virtual environment (De Blasi et al., 2020; Peng et al.,
2017b).

3. Building The Simulation Environment
Foosball play involves rapid interactions between the ball
and players. Given the features of fast movements of the
ball and accurate contact state estimation during the play,
MuJoCo (Multi-Joint dynamics with Contact) physics sim-
ulator is utilized to conduct the simulation training in this
study.

MuJoCo is an open-source physics engine designed to fa-
cilitate advanced scientific research and development in
domains such as robotics, biomechanics, graphics, and an-
imation. The simulator provides various constraints and
configurable options for contact and friction dynamics, en-
abling accurate contact estimation. Its capacity for both pre-
cise and rapid simulations makes it particularly well-suited
for applications that require accuracy and computational
efficiency, such as foosball playing (Todorov et al., 2012).

The foosball table model used is the Tornado T-3000 Foos-
ball Table, which is the official table of the International
Table Soccer Federation (ITSF). As shown in Figure 1, the

Figure 1: MuJoCo Foosball Simulation Environment

3D the foosball table’s components are reconstructed in
the MuJoCo simulation environment using Signed Distance
Field (SDF).

There are three constraint solver parameters under user’s
control, which determine the behaviors of the constraint
models in the simulation. These parameters can be set in-
directly through the attributes available in MJCF (MuJoCo
XML Format) elements. A new constraint formulation is
used in MuJoCo to define the constraint. To embody accu-
rate contacts and fast calculation of collision, we construct
a strong constraint model by setting impedance the solver
parameters. In addition, to ensure rapid recovery from con-
straint violations, we set the time constant to a small value.
We are further exploring the parameters, contact models,
and friction loss to achieve the realistic movement of the
ball.

3.1. Episodic Setup

In our experiments, the agent is given full control over the
yellow foosball rods and is incentivized to score in the goal
guarded by the black opponents. The center of the intended
goal is characterized by x and y coordinates (0,64) in the
environment setup.

OBSERVATION SPACE

Our framework supports the use of an image-based obser-
vation space or a position-based space. In all of these ex-
ploratory experiments, the agent is given the 38-dimensional
position-based space, comprised of the linear position of
all rods (8), the rotational position of all rods (8), the linear
velocity of all rods (8), the rotational velocity of all rods (8),
3-dimensional position of the ball (3) and 3-dimensional
velocity of the ball (3).
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ACTION SPACE

In all experiments, the agent is given linear and rotational
control over all joints for one side of play. This results in an
8-dimensional action space.

REWARD FUNCTION

Several iterations of a reward function were attempted dur-
ing this study. Approaches that included rod movement
penalties, ball velocity, time till scoring, etc. were tried. In
practice, the reward function yielding the best results was
one that simply incentivized movement towards the goal
and an increased reward when a goal was achieved. The
following reward function was used:

α −
√

(xb − xg)2 + (yb − yg)2 + β I{yb ≥ yg}

where xb and yb are the x and y components of the ball, xg

and yg are the x and y components of the goal, and α and β
are tunable parameters. During the training, α = 300 and
β = 1000.

EPISODE

Every episode begins with all rods in their starting position
and the ball in a slightly randomized position. The x and y
coordinates are drawn independently as follows:

xb ∼ N (−0.5, 0.52), yb ∼ N (−0.1, 0.52)

The episode progresses for at most 40 Mujoco time-steps.
The simulation ends if the ball stagnates for 10 consecutive
time-steps or does not make progress towards the goal in
the y-dimension for 15 consecutive time-steps.

4. RL Platform and Agents
We evaluated three widely used continuous-control
reinforcement-learning algorithms under a unified exper-
imental framework. All agents were implemented with
the Stable Baselines 3 library (Raffin et al., 2021), ensur-
ing consistent game state. Each policy employed the same
multilayer-perceptron (MLP) backbone: seven fully con-
nected layers of 3 000 hidden units. Adam optimizers with
identical learning-rate schedules were applied across al-
gorithms, and gradient clipping was enabled to stabilize
updates. Below we provide a quick review of the features
of each method.

4.1. Proximal Policy Optimization (PPO) (Schulman
et al., 2017)

Proximal Policy Optimization is an on-policy, actor–critic
algorithm designed to balance between sample efficiency

and implementation simplicity. During each update, PPO
maximizes the clipped objective:

Lclip(θ) = Et

[
min

(
rt(θ)At, clip(rt(θ), 1−ε, 1+ε)At

)]
,

rt(θ) =
πθ(at | st)
πθold(at | st)

which limits the magnitude of policy updates and preventing
destructive oscillations.

4.2. Soft Actor–Critic (SAC) (Haarnoja et al., 2019)

Soft Actor–Critic is an off-policy algorithm that augments
the conventional actor–critic framework with an entropy-
regularization term, encouraging the policy to remain
stochastic and explore the action space:

Jπ = Es∼D
[
Ea∼π(·|s)

[
Q(s, a)− α log π(a | s)

]]
Two independent critics are trained to minimize a squared-
Bellman loss, while a temperature parameter α is tuned
automatically to match a target entropy.

4.3. Twin Delayed Deep Deterministic Policy Gradient
(TD3) (Fujimoto et al., 2018)

TD3 extends Deep Deterministic Policy Gradient by mit-
igating overestimation bias through three modifications:
(i) maintaining twin critic networks and taking the mini-
mum of their target values, (ii) delaying actor updates with
respect to critic updates, and (iii) adding clipped Gaussian
noise to the target action.

5. Training Protocol
All three algorithms were trained in the foosball environ-
ment introduced in Section 3. Each run comprised 15
epochs, where one epoch equaled 105 simulation time
steps. A replay buffer of capacity 106 was pre-allocated
and cleared only between independent seeds. To track out-
of-sample performance, we performed deterministic eval-
uations every 3 000 steps, averaging returns over ten held-
out episodes with exploration disabled. Hyperparameters
not listed above—such as learning rates (3 × 10−4 for ac-
tors and critics), discount factor (γ = 0.99), and gradient
norms—were held constant across agents. All experiments
executed on a single NVIDIA RTX 4090 GPU.

6. Preliminary Results
Each trained controller was subjected to a test phase com-
prising 103 independent episodes in the same simulation
environment, with exploration noise disabled so that ac-
tions were chosen deterministically. For every episode we
logged the full trajectory of states, actions, and rewards, and
afterward computed the following diagnostics:
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Figure 2: Evaluation metrics computed over 103 determin-
istic episodes.

• Score Rate: the proportion of episodes in which the
ball ultimately crossed the opponent’s goal line.

• Average Distance to Goal: the mean Euclidean dis-
tance between the ball and the goal center, aggregated
over all time steps in all evaluation episodes.

• Average Velocity: the mean speed of the ball, again
averaged over every time step across the evaluation set.

• Average Reward: the mean cumulative reward ob-
tained per episode under the deterministic policy.

• Average Last Distance to Goal: the ball-to-goal dis-
tance measured at the final time step of each episode,
then averaged over episodes.

Overall performance. Under the chosen training horizon
and domain-randomization settings, SAC emerged as the
top-performing algorithm. As depicted in Figure 2, SAC
achieved a 42.9% Score Rate, more than doubling the values
recorded for PPO and TD3. Correspondingly, its Average
Reward was noticeably higher, reflecting the reward bonus
associated with a successful goal.

Proximity versus conversion. Although SAC converted
the largest share of episodes into goals, Fig. 2b reveals that
TD3 ended its episodes almost as close to the target. The
Average Last Distance to Goal of TD3 was 31.92 versus
24.87 for SAC. This indicates that TD3 learned to advance
the ball into shooting range but lacked a reliable finishing
tactic. Given the relatively short 15-epoch budget, it is likely
that additional training would allow TD3 to narrow, or even
close, the scoring gap.

Ball-handling dynamics. Interestingly, the agents discov-
ered distinct ball-speed regimes despite the absence of an
explicit velocity term in the objective. TD3 propelled the
ball at roughly twice the speed attained by SAC, which itself
moved the ball about twice as fast as PPO. These differences
are reflected in the Average Velocity metric and suggest that
each algorithm gravitated toward a unique trade-off between
control precision and shot power.

In summary, the evaluation confirms that SAC currently
offers the most reliable end-to-end policy under our training
constraints, while TD3 shows promise in ball advancement
that could translate into higher scoring with extended train-
ing. PPO, although stable, lags behind both in conversion
efficiency and ball-movement aggressiveness.

7. Open-Source Benchmark
Foosball offers a compact and compelling testbed for deep
reinforcement learning research. Notably, the game’s core
aspects, including high-speed ball and rod interactions, me-
chanical contact dynamics, and adversarial gameplay, re-
quire a mixture of fine low-level motor control and high-
level policy learning and opponent modeling. These char-
acteristics allow for meaningful evaluation of an agent’s
ability to generalize across domains without being over-
whelmed by noise or large mechanical movements. Unlike
some RL domains that operate in high-dimensional, un-
predictable environments, foosball provides a controlled
setting with complex yet well-defined dynamics. Further-
more, the need for precise coordination across multiple rods,
and rapid decision-making under adversarial pressure make
it a rich test case for learning across various RL frameworks.
To support continued research in the foosball domain, we
present our custom foosball environment as an open-source
physically accurate testing ground for RL algorithms.

8. Conclusion
This paper introduces an end-to-end deep RL pipeline en-
abling AI agents to infer the physics in a competitive foos-
ball setting, bridging both simulation and physical envi-
ronments. The pipeline employs a high-fidelity simulation
model reproducing the real-world dynamics so that the AI
models can implicitly learn and understand dynamics in the
foosball game through visual inputs. We believe, by sup-
porting reproducible deployment pipelines and standardized
evaluation protocols, the benchmark allows agents trained
in simulation to be tested on the real-world foosball ta-
ble. A leaderboard infrastructure tracks agent performance
across domains, enabling fair comparisons and long-term
progress tracking. Foosball’s structured yet dynamic game-
play presents a well-suited environment for studying sim-to-
real generalization, physical scene understanding, competi-
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tive RL strategies, and control robustness.
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