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ABSTRACT

Score-based methods have demonstrated their effectiveness in discovering causal
relationships by scoring different causal structures based on their goodness of fit
to the data. Recently, Huang et al. (2018) proposed a generalized score function
that can handle general data distributions and causal relationships by modeling
the relations in reproducing kernel Hilbert space (RKHS). The selection of an ap-
propriate kernel within this score function is crucial for accurately characterizing
causal relationships and ensuring precise causal discovery. However, selecting the
optimal kernel for a given data remains unsolved. In this paper, we propose a
kernel selection method within the generalized score function that automatically
selects the optimal kernel that best fits the data. Specifically, we model the gen-
erative process of the variables involved in each step of the causal graph search
procedure as a mixture of independent noise variables. Based on this model, we
derive an automatic kernel selection method by maximizing the marginal likeli-
hood of the variables involved in each search step. We conduct experiments on
both synthetic data and real-world benchmarks, and the results demonstrate that
our proposed method outperforms heuristic kernel selection methods.

1 INTRODUCTION

Understanding causal structures is a fundamental scientific problem that has been extensively ex-
plored in various disciplines, such as social science (Antonakis & Lalive, 2011), biology (Londei
et al., 2006), and economics (Moneta et al., 2013). While conducting randomized experiments
are widely regarded as the most effective method to identify causal structures, their application is
often constrained by ethical, technical, or cost-related reasons (Spirtes & Zhang, 2016). Conse-
quently, there is a pressing need to develop causal discovery methods that can infer causal structures
only from uncontrolled observational data. In recent years, score-based methods have emerged as a
promising approach, enabling significant advancements in the field of causal discovery (Zhang et al.,
2018; Vowels et al., 2022) .

Generally, score-based methods are commonly employed for causal discovery by evaluating can-
didate causal graphs based on a specific criterion and selecting the graph with the optimal score
(Chickering, 2002; Silander & Myllymäki, 2006; Yuan & Malone, 2013). Specifically, score-based
methods begin by assuming a particular statistical model for the causal relationships and data dis-
tributions. Then, they proceed to test variables that are connected by the directed edges in the given
graph, assessing their goodness to fit the data based on the assumed model and specific criterion.
Subsequently, these methods score candidate graphs by accumulating all the local scores of the
assumed edges in the given graph and select the graph with the optimal score. Most existing score-
based methods only focus on one single specific model class, such as the BIC score (Schwarz, 1978),
MDL score (Adriaans & van Benthem, 2008) and BGe score (Geiger & Heckerman, 1994) only for
linear-Gaussian models, and BDeu score (Heckerman et al., 1995) which is specifically applicable
to discrete data, as well as some other explicit model classes (Bühlmann et al., 2014; Hyvärinen &
Smith, 2013; Sokolova et al., 2014) and their combinations (Claassen & Heskes, 2012; Tsamardinos
et al., 2006).

Recently, Huang et al. (2018) proposed a generalized score function that can handle diverse causal
relationships and data distributions. This approach utilizes the characterization of general indepen-
dence relationships with conditional covariance operators (Fukumizu et al., 2004) to transform the
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conditional independence test into a model selection problem. Therefore, it identifies the indepen-
dence relationships among variables by modeling their causal relationships using a regression model
in RKHS. Initially, a pre-defined kernel function is employed to map the dependent variables into an
RKHS, which serves as the feature space. Following the regression model, these mapped features
are assumed to be generated from their corresponding independent variables. Subsequently, the
candidate graph is scored by estimating and accumulating the likelihood of the conditional distribu-
tion of each dependent variable with respect to its independent variables in the graph. To properly
characterize the causal relationships, it requires to select an appropriate RKHS space as the feature
space, which is achieved through a manually pre-defined kernel in this approach.

However, selecting the optimal kernel for given observational data is an important and challenging
problem (Gretton et al., 2012). The default kernel parameters utilized in (Huang et al., 2018) are
heuristically selected, which are boldly determined based on the distance between points in the
original input space, without considering the specific characteristics of the data. Consequently,
models employing such manually-selected and fixed kernel parameters may not accurately capture
the true causal relationships, potentially leading to both spurious and missing edges in the causal
graph, as will be demonstrated in Section 2.

Contributions. In this paper, we propose a novel kernel selection method to overcome the above
limitation of the generalized score function with fixed kernels. Our proposed method can automati-
cally select the optimal kernel parameters that best fit the given data. To achieve this, we extend the
regression framework in RKHS and model the generative process of the involved variables in the
graph as a mixture of independent noise variables. Correspondingly, we estimate the causal rela-
tionships of the involved variables by maximizing the marginal likelihood of their joint distributions
instead of conditional distributions. In our approach, the selection of kernels is achieved through a
learning process for the parameters of the kernels. That is, we select the kernel by optimizing its
parameter with gradient-descent method, along with other parameters in the model simultaneously.
Consequently, our method can automatically select the optimal kernel parameters that best fit the
underlying causal relationship, which is superior to the manually-selected ones. We conduct exper-
iments on both synthetic and real-world benchmark datasets. The experimental results demonstrate
the effectiveness of our approach in selecting a better kernel while improving the accuracy of causal
relationship discovery.

2 MOTIVATION

Huang et al. Huang et al. (2018) proposed a generalized score function that examines conditional
independence relations by exploring the goodness to fit the data under a regression model in RKHS.
Specifically, given a random variable X and its independent variables PA with domains X and
P , it assumes a causal relation in the RKHS, where the feature of X in RKHS, denoted as kx, is
generated through a nonlinear projection, represented as f(PA), with the addition of independent
noise ϵ, mathematically,

kx = f(PA) + ϵ, (1)
where kx is projected through a pre-defined feature mapping ϕX ∶ X → HX , which is related to
a fixed kernel function kX . In the approach, the parameters within f ∶ P → HX are learned by
maximizing the likelihood of conditional distribution p(kx ∣PA) to align with the data.

It can be observed from Eq.1 that the causal relationship between variables is characterized in the
RKHS space with the pre-defined ϕX . Therefore the choice of kernel kX related to ϕX , significantly
influences the results of the independence test. Hence, the audacious use of heuristically-selected
kernel parameters can lead to an unsuitable RHKS feature space, where the true causal relationships
may not be accurately characterized. This can result in inaccurate assessments of the independence
relationships among variables. Figure 1 depicts two failure cases using heuristically-selected kernel
parameters. In both cases, we follow the default kernel setting as outlined in (Huang et al., 2018),
using the Gaussian kernel and maintaining a fixed kernel bandwidth for kX to twice the median
distance between points in the input space.

In case 1, we consider a scenario where X2 is generated from X1 according to X1 = E1, X2 =
(cos(X1) + 0.5E2)

2 and the isolated node X3 = E3, with E1,E3 ∼ N (0,1) and E2 ∼ N (0,0.5).
Through the utilization of the predefined feature mapping ϕX in conjunction with the fixed kernel
function kX , the model will exhibit a spurious structure, X1 → X2 ← X3, where X3 is considered
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Figure 1: (a) Scatter plot of X1 and X2; (b) Scatter plot of X1 and estimated noise ϵ̃1, which are
not supposed to be correlated; (c) Scatter plot of X2 and X3; (d) Scatter plot of estimated noise ϵ̃2
and ϵ̃3, which are correlated.

as the parent of X2. Figure 1(a) illustrates the scatter plot of X1 and X2, while Figure 1(b) displays
the scatter plot of X1 and the estimated noise ϵ̃1 = kX2 − f(X1). It is evident that the estimated
ϵ̃1 exhibits a strong correlation with X1. This phenomenon arises due to the inability of the model
function, which is based on the unsuitable RKHS feature space determined by the manually-selected
kernel parameters, to adequately capture the causal relationship, leading to an incorrect edge X3 →
X2 in the inferred graph.

In case 2, there are three variables X1,X2 and X3, which satisfy X1 = E1, X2 = cos(X
2
1 +E2) and

X3 = cos(X2
2 + E3) with E1 ∼ N (0,1) and E2,E3 ∼ N (0,0.5). If we follow the default kernel

setting in (Huang et al., 2018), an additional edge X1 → X3 will be included in the inferred graph.
Figure 1(c) presents the scatter plot of X2 and X3, while Figure 1(d) displays the scatter plot of the
estimated noise terms ϵ̃2 and ϵ̃3, where ϵ̃2 = kX2 −f(X1) and ϵ̃3 = kX3 −f(X2). It can be observed
that ϵ̃2 and ϵ̃3 exhibit correlation. This indicates that, with the pre-defined kernel kX , the model
using the likelihood of the conditional distribution p(kx∣PA) fails to block the influence of X1 on
X3, leading to the extra edge between X1 and X3.

In Figures 1(b) and 1(d), we only display the first dimension of the estimated noise ϵ̃ in the feature
space. Similar outcomes for the remaining dimensions are available in Appendix B.1. By demon-
strating the potential limitations of the heuristically-selected kernels, we highlight the need for an
automated method that can select appropriate kernel function, tailored to the specific data, to im-
prove the accuracy of estimating causal relationships. In the following section, we will introduce
our kernel selection method, which can automatically select the optimal parameters of kX for the
given data. With the kernel parameters selected through optimazation, our method is capable of
inferring the correct causal structure for the two cases mentioned above.

3 OPTIMAL KERNEL SELECTION VIA MINIMIZING MUTUAL INFORMATION

In this section, we present a kernel selection method that enables the automatic selection of the op-
timal kernel for a given set of variables during the search procedure. To achieve this, we extend
the RHKS regression to treat the originally-fixed kernel parameters to be trainable, enabling their
optimization along with other parameters in the model. This allows us to automatically explore an
appropriate feature space for accurate independent tests. Accordingly, we model the causal relation-
ship as a mixture of independent noise variables in the RKHS and learn the parameters by estimating
the maximum marginal likelihood of the joint distribution of the involved variables.

3.1 PRELIMINARY

Before delving into the details of our method, we introduce the notations that will be used through-
out the paper. Suppose there are three random variables X , Y and Z with domains X ,Y and
Z respectively. For these variables, we have n observations D = {(x1, y1, z1),⋯, (xn, yn, zn)}.
We define a RKHS HX on the domain X , equipped with a continuous mapping function ϕX ∶
X → HX and a measurable positive-definite kernel function kX (⋅, ⋅) ∶ X × X → R, which satisfies
kX (xi, xj) = ⟨ϕX (xi), ϕX (xj)⟩. We denote KX as the kernel matrix of X from D with the element
KX(ij) = kX (xi, xj). Therefore, for one particular observation x ∈ X , we represent its empirical
feature map as kx = (kX (x1, x),⋯, kX (xn, x))

T . Similar notations are also applied to Y and Z.
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3.2 REGRESSION IN RKHS

Our proposed method is grounded in the RKHS regression framework in RKHS and leverages its
inherent capability to characterize the independence relationship. Let us first introduce the connec-
tion between regression in RKHS and general conditional independence test. Suppose the random
variables X , Y and Z satisfy X á Y ∣ Z. In the regression model in RKHS, the relationship is
modeled as

ϕX (X) = f(Z) + ϵ, (2)

where ϕX ∶ X → HX , f : Z → HX and ϵ is the noise which is independent from Z. Let us
denote Z̈ ∶= (Y,Z). According to the characterization of conditional independence with conditional
covariance operators (Fukumizu et al., 2004), we have the following equivalence

EZ[VarX ∣Z[g(X)∣Z]] = EZ̈[VarX ∣Z̈[g(X)∣Z̈]] ⇐⇒ X á Y ∣ Z for all g ∈HX , (3)

which implies that incorporating Y as a predictor of X given Z is not advantageous, and as a
result, we can confirm that Y is not an independent variable of X . For the following two regression
functions in RKHS

ϕX (X) = f1(Z) + ϵ1,

ϕX (X) = f2(Z̈) + ϵ2,
(4)

we can write ϕX (X) = [ϕ1(X),⋯, ϕi(X),⋯]
T , with Cov (ϕi(X), ϕj(X)) = 0 for any i ≠ j. Since

ϕX (X) is the feature mapping in HX , we can associate each component ϕi(X) with a function
g ∈HX such that g = ϕi(X), i.e. Eq. 3 holds for any ϕi(X). With the orthogonality between ϕi(Y )
and ϕj(Y ), we can derive that

EZ[VarX ∣Z[ϕX (X)∣Z]] = EZ̈[VarX ∣Z̈[ϕX (X)∣Z̈]] ⇐⇒ X á Y ∣ Z. (5)

Therefore, the assessment of conditional independence relations between the given variable and
its potential independent variables in the graph can be transformed to evaluate the goodness to fit
the data based on the regression model in RKHS. Huang et al. (2018) leverage this property and
model causal relationship as a regression problem for the features mapped by the pre-defined ϕX .
They further evaluate the model according to the maximum likelihood of the conditional likelihood
p(kx∣Z) under the regression model. It is evident that the choice of kernel kX plays a critical
role in capturing the independent relationships within this model. However, the kernel parameters in
(Huang et al., 2018) are manually selected and fixed. Unfortunately, the feature space corresponding
to such a boldly-selected kernel may not consistently align with the underlying causal relationships,
which has been demonstrated in the aforementioned cases.

Nevertheless, if we allow the kernel kX to be trainable, it struggles to learn a non-trivial feature
mapping that can capture causal relations with conditional likelihood-based score functions. This is
primarily due to the absence of constraints imposed on kX . When learning the kernel parameters
with the conditional likelihood-based score functions, the model will end up learning a trivial con-
stant mapping with an excessively high score, which is uninformative for causal discovery purposes.
Therefore, when utilizing a trainable kernel, it becomes imperative to employ a different score func-
tion that can impose constraints on the kernel parameters, ensuring the accurate capture of the true
causal relationship.

3.3 MUTUAL INFORMATION-BASED SCORE FUNCTION

In this section, we propose a novel score function that addresses the challenge of learning non-trivial
relationships using trainable kernel parameters within the RKHS regression framework. We extend
the regression model in Eq. 2 by incorporating a flexible function ϕX (⋅ ;σx), which is associated
with a trainable kernel kX (⋅, ⋅ ;σx). Here, σx represents the trainable parameters of the kernel, such
as the bandwidth when kX is a Gaussian kernel. Mathematically, we represent the extended model
as

ϕX (X;σx) = f(PA; θ) + ϵ, (6)

where ϕX ∶ X → HX , PA denotes the independent variables of X , which may consist of multiple
variables. Both σx and θ are trainable parameters in our method.
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Since ϕX (X) ∈HX is in an infinite-dimensional space, where the probability is hard to measure, we
practically map ϕX (X) into its empirical feature kx. Suppose that we have a set of observations D =
{(x1,pa1), (x2,pa2),⋯, (xn,pan)} for (X,PA). With the property that functions in the RKHS
are in the closure of linear combinations of the kernel at given points, mapping ϕX (X) into kx does
not cause loss of information (Schölkopf et al., 2002). For one particular observation (x,pa), the
empirical feature of x is represented as kx = (kX (x1, x;σx), kX (x2, x;σx),⋯, kX (xn, x;σx))

T .
Therefore, the extended model on finite observations D is reformulated as

kx = f(pa ; θ) + ϵ, (7)

where ϵ = (ϵ1,⋯, ϵn)
T is the noise vector, with each element being independent of the others.

In our extended model defined in Eq. 7, the parameters σx and θ are trained to make the estimated
noise ϵ̃ = kx − f(PA; θ) and PA as independent as possible. This is achieved by minimizing their
mutual information as following:

I(PA, ϵ̃) =H(PA) +H(ϵ̃) −H(PA, ϵ̃), (8)

where H(PA, ϵ̃) is the joint entropy and ϵ̃ = (ϵ̃1,⋯, ϵ̃n)
T is the estimated noise in the feature

space. Based on the change-of-variables theorem, the joint density p(PA, ϵ̃) can be derived from
p(PA, ϵ̃) = p(PA,X)/∣detJ∣ and J is the Jacobian matrix of transformation from (PA,X) to
(PA, ϵ̃), i.e. J = [∂(PA, ϵ̃)/∂(PA,X)]. Therefore, the joint entropy of (PA, ϵ̃) is derived as

H(PA, ϵ̃) = −E[log p(PA, ϵ̃)] = −E {log p(PA,X) − log ∣J∣} . (9)

By combining Eq.8 and Eq.9, we can express I(PA, ϵ̃) as follows:
I(PA, ϵ̃) =H(PA) +H(ϵ̃) −E[log ∣detJ∣] +E[log p(PA,X)]

=H(PA) −E[log p(ϵ̃)] −E[log ∣detJ∣] −H(PA,X)

= −E[log p(ϵ̃)] −E[log ∣detJ∣] +C,

(10)

where C = −H(PA,X) + H(PA) does not depend on σx and θ, and thus can be considered as
constant. Hence, we only focus on the first two terms in Eq. 10, which is equivalent to the negative
log likelihood of p(PA,X) when ϵ is considered as Gaussian. Refer to Appendix A.1 for the
detailed derivations. Therefore, for the particular observation (x,pa), according to Eq. 10, we have
the following negative log likelihood

− log p(X = x,PA = pa ∣ f, σx) = −
n

∑
j=1

(E[log p(ϵ̃j)] +E[log ∣detJj ∣]), (11)

where ϵ̃j represents jth dimension of estimated noise ϵ, and Jj is the Jacobian matrix of transfor-
mation from (PA,X) to (PA, ϵ̃j), which is calculated as

detJj = det

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂PA

∂PA

∂PA

∂X
∂ϵ̃j

∂PA

∂ϵ̃j

∂X

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= det

⎡
⎢
⎢
⎢
⎢
⎣

Im 0

−f ′(pa)T k′
(j)

⎤
⎥
⎥
⎥
⎥
⎦

= k′(j), (12)

where Im is an m-dimensional identity matrix, where m is the number of variables in PA. f ′(pa)
represents the derivative vector of f concerning PA, while k′

(j) signifies the jth element in the
derivative of kx concerning X . More specifically, we utilize the widely-used Gaussian kernel
throughout the paper, resulting in k′

(j) = −
(x−xj)

σ2
x
⋅ exp [

(x−xj)
2

2σ2
x
].

It is well-known that directly maximizing the likelihood function itself may potentially lead to over-
fitting in structure learning (Uemura et al., 2022). To mitigate this issue, we opt to use the marginal
likelihood of p(X,PA) as the score function in our method. Specifically, we assume that f follows
a Gaussian process, denoted as f ∼ GP(0,KPA), where KPA is the kernel matrix of PA with a
trainable parameter σp. By integrating Eq. 11 with respect to f , we parameterize f with σp. Conse-
quently, for the random variable X and its independent variables PA with finite observations D, our
score function, using the marginal likelihood of joint density p(X,PA) within the extended model,
is as follows:

S(X,PA) = −
1

2
trace{KX(KPA + σ

2
ϵ I)

−1KX}

−
n

2
log ∣KPA + σ

2
ϵ I ∣ −

n2

2
log 2π +

n

∑
i≠j

log ∣K ′X(ij)∣,
(13)
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where KX and KPA is the kernel matrix of X and PA on D, K ′X is the derivative of KX respect
to xi, σϵ is a hyper-parameter. See Appendix A.2 for the detailed derivations. Overall, the whole
hypothetical graph G which has Q variables is scored as

S(G;D) =
Q

∑
q=1

S(Xq, PAGq ), (14)

where Xq is the variable in G and PAGq represents its independent variables in the graph.

3.4 DIFFERENCE WITH EXISTING METHOD

It is important to highlight that even though our score function shares a similar form with the score
function in (Huang et al., 2018), with the exception of the last term, there are noteworthy distinctions
in terms of causal relationship modeling. The score function that Huang et al. (2018) proposed is
grounded in a regression model with pre-defined features of dependent variables and relies on the
likelihood of conditional distribution. It requires the manual selection and fixing of kernel parame-
ters beforehand. In contrast, our method models the causal relationship as a mixture of independent
noise variables with learnable kernel functions, offering greater flexibility. Accordingly, we utilize
the joint distribution likelihood of the involved variables as the score function to enforce constraints
on the additional parameters. Consequently, with trainable kernels, our score function can automat-
ically learn the optimal kernel for the given data within our extended model. This flexibility allows
our method to adapt to more complex scenarios and accurately capture the causal relationships.

4 SEARCH PROCEDURE

When applying score functions to causal discovery, it is necessary to consider its properties of local
consistency and score equivalence. These properties ensure that the score functions can identify the
optimal causal graph or its equivalence class based on the available data.

Local score consistency. The proposed score function is expected to be local consistent. That is,
the score of a DAG model should (1) increase when adding an edge that eliminates an indepen-
dence constraint which is not presented in the generative distribution, and (2) decrease as a result of
adding any spurious edge that does not eliminate such a constraint. Formally, we have the following
definition of score local consistency.

Definition 1 (Score Local Consistency (Chickering, 2002)) Let G be any DAG, and let G′ be the
DAG that results from adding the edge Xi → Xj on G. Let D be the observation dataset. A
score function S(G;D) is locally consistent if the following two properties holds as the sample size
n→∞:

1. If Xj ̸Xi ∣ PAGj , then S(G′;D) > S(G;D).

2. If Xj áXi ∣ PAGj , then S(G;D) > S(G′;D).

Moreover, the following Lemma 1 shows that our score function using the marginal likelihood of
involved variables is locally consistent.

Lemma 1 Under the condition that,

lim
n→∞

1

3!
(σϵ − σ̂ϵ)

3 ∂
3 log p(X,PAG ∣ σ̂ϵ)

∂σϵ
3

= 0, (15)

and with a prior that p(σϵ) = 1 over the neighborhood of the true parameters σ̂ϵ, the score function
using the marginal likelihood of joint distributions is locally consistent.

Note that σ comprises all the trainable parameters in the model and σ̂ represents the true parameters
with the maximum of marginal likelihood. The condition given in Eq. 15 means that the estimated
parameters σϵ is close to the true parameters σ̂ϵ as n→∞. The proof is provided in Appendix A.3.

Score Equivalence. We also care about the class equivalence property of the score function to in-
vestigate whether the DAGs with the same independence constraints have the same score. Formally,
score equivalence is defined as follows.
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Definition 2 (Score Equivalence (Chickering, 2002)) Let D be the observation dataset. A score
function S is score equivalent if for any two DAGs G and G′, which are in the same Markov equiva-
lence class, we have S(G;D) = S(G′;D).

Similar to the previous generalized score function, we found that using the marginal likelihood of
joint distribution as score function, different DAGs in the same Markov equivalence class may have
different scores, i.e. our score function is not score equivalent. The reason is that the causal rela-
tionship in our extended model is nonlinear. And with nonlinear relationships, models in opposite
directions may have different scores (Hoyer et al., 2008; ZHANG, 2009).

Even though our score is not score equivalent, it is still possible to obtain the asymptotically optimal
searched graph. It has been proved that using a locally consistent score function with the GES algo-
rithm (Chickering, 2002) as the search procedure, it guarantees to find the Markov equivalence class
which is consistent to the data generative distribution asymptotically, which does not require score
equivalence (Huang et al., 2018). Therefore, we use the marginal likelihood of joint distribution as
the score function coupled with GES as search procedure to identify the underlying causal graphs in
our approach.

5 EXPERIMENTAL RESULTS

We conducted experiments on both synthetic data and real-world benchmark datasets to evaluate the
proposed score function. We compared our score function with the previous conditional likelihood-
based score function methods: CV (cross-validated likelihood) and Marg (marginal likelihood)
in (Huang et al., 2018). All the score-based methods were combined with GES algorithm as the
search procedure for causal structure learning. Additionally, we conducted a comparison with the
constraint-based search algorithm PC (Spirtes et al., 2000) and employed the kernel-based condi-
tional independence test method (KCI) (Zhang et al., 2011) to assess independence relationships.
This is denoted as PC in our comparisons.

In all experiments involving kernel-based methods, we employed the widely-used Gaussian kernel.
In line with the default kernel configuration outlined in (Huang et al., 2018), we set the kernel
bandwidth as twice the median distance between the original input points for both CV and Marg.
We also initialized our method with this same kernel bandwidth to our methods, demonstrating
that our approach can commence with heuristic initialization and learn improved kernel parameters
through optimization, as compared to utilizing fixed ones. More experimental details can be found
in Appendix B.2.

5.1 SYNTHETIC DATA

To verify the effectiveness and generality of our proposed method, we generated various types of
data, including continuous, discrete, and mixed continuous-discrete data. For each variable Xi in
the graph, the data was generated according to:

Xi = gi(fi(PAi) + ϵ), (16)

where fi was randomly chosen from the linear, sin, cos, tanh functions and their combinations,
and gi was chosen from linear, exponential and power functions with power values ranging from
1 to 3. The noise term ϵ was randomly chosen from either a Gaussian or uniform distribution.
We generated causal graphs with different graph densities ranging from 0.2 to 0.8. The graphs had
varying numbers of variables, ranging from 6 to 10 with two sample sizes n = 500 and n = 1000. For
each graph density, sample size and data type, we generated 10 realizations with different numbers
of variables and data relationships.

Figure 2 presents the F1 score 1 of the recovered causal graphs using our proposed score function,
along with the score-based methods CV and Marg, as well as the constraint-based PC. The x-axis
shows the graph density, measured by the ratio of the number of edges to the maximum possible
number of edges in the graph. The y-axis is the F1 score; higher F1 scores mean higher accuracy.
In general, the F1 score decreases as the graph density increases for all methods. There are some

1F1 score is a weighted average of the precision and recall, with F1 = 2 recall ⋅precision
recall+precision
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Figure 2: The F1 score of recovered causal graphs on: (a.1) Continuous data with n = 500;
(b.1) Discrete data with n = 500; (c.1) Mixed data with n = 500; (a.2) Continuous data with n =
1000; (b.2) Discrete data with n = 1000; (c.2) Mixed data with n = 1000. The x-axis is the graph
density and the y-axis is the F1 score; higher F1 score means higher accuracy.

fluctuations due to the randomness of the graph size as well as the generated relations. Overall,
our joint distribution likelihood-based score function consistently performs the best in all settings,
particularly when the graphs are dense, which demonstrates the effectiveness of our score function
in capturing the underlying causal relationships. Compared with the pre-defined kernel-based CV
and Marg, the improvement that our method achieved in F1 score highlights the advantages of using
a trainable kernel with the marginal likelihood of joint distribution as score function in capturing the
causal relationships.

We also exploited another accuracy measurement, the normalized structural hamming distance
(SHD) (Tsamardinos et al., 2006), to evaluate the difference between the recovered Markov equiv-
alence class and the true class with correct directions. Figure 3 gives the normalized SHD of the
recovered Markov equivalence class. A lower SHD score indicates better performance in graph
recovery. Overall, we found that our kernel selection method gives the best accuracy in all cases,
which is consistent with the results measured by F1 score. The experimental results on synthetic
data highlight the significance of appropriate kernel selection and the advantages of our approach.
By automatically selecting the optimal kernel that best fits the data, our method can better capture
causal relationships and achieve more accurate causal discovery.

5.2 BENCHMARK DATASETS

We also evaluated our proposed kernel selection method on two benchmark datasets commonly used
in causal discovery: SACHS and CHILD. SACHS dataset consists of 11 variables, while the CHILD
dataset has 20 variables. All variables in both datasets are discrete, with cardinalities ranging from 1
to 6. For each benchmark dataset, we randomly chose the data with sample size n = 200,500,1000
and 2000, and repeated 20 times in each sample size.

Figure 4 gives the F1 score and SHD score of the recovered causal skeletion on SACHS and CHILD.
Overall, the F1 score increases with the sample size while the SHD score decreases for all the meth-
ods, illustrating that the accuracy increases with larger sample size in both SACHS and CHILD
dataset. On the SACHS dataset, the score-based methods (CV, Marg and Ours) outperform the
constraint-based PC. Among the score-based methods, our proposed method achieves the best per-
formance across all sample sizes. On the CHILD dataset, our method consistently outperforms the
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Figure 3: The normalized SHD of recovered causal graphs on synthetic data with different data
types and sample sizes. The y-axis is the normalized SHD score and the lower SHD score means
better accuracy.
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Figure 4: Performance on two popular benchmark dataset. The x-axis is the sample size. (a) and
(b) are the F1 scores on SACHS and CHILD. Higher F1 score means higher accuracy. (c) and (d)
are the SHD scores; the lower SHD score means better accuracy.

other methods by a significant margin. The experimental results on the benchmark datasets highlight
the advantages of our method in real-world scenarios. It also indicates that manually-selected ker-
nels may not be suitable for many real-world data and the automatic selection of the optimal kernel
in our method enables better handling of the wide range of causal relationships in the real world.

6 CONCLUSION

In this paper, we presented a novel kernel selection method in the generalized score function for
causal discovery, which allows for the automatic selection of the optimal kernel that best fits the
data. We extend the regression model in RKHS and model the causal relation between variables
as a mixture of independent noise variables. Base on this model, we treat the kernel as trainable
parameters that can be optimized along with other parameters in the model. Accordingly, we utilize
the marginal likelihood of joint distribution as the score function to automatically select the optimal
kernel specific to the given data. Experimental results on both synthetic data and benchmark datasets
demonstrated the effectiveness of our method in automatically selecting superior kernels compared
to manually selected ones and its contributions on precise relationship characterization and accurate
causal discovery.
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Appendix
In this section, we present all the proofs and more experimental details and results. The content of
the Appendix is as follows:

• Proofs

- A.1 The relationship between mutual information and likelihood
- A.2 Derivation of marginal likelihood of joint distribution in RKHS
- A.3 Proof of Lemma 1

• More experimental details and results

- B.1 Visualization of more dimensions of the cases in Motivation
- B.2 More experimental details

A PROOFS

A.1 THE RELATIONSHIP BETWEEN MUTUAL INFORMATION AND LIKELIHOOD

According to Eq.7, the random variables X and PA hold the following relation

kx = f(PA) + ϵ, (17)

where kx represents the feature of X in the RKHS, f denotes a nonlinear function, and ϵ represents
the noise term, which is independent of PA. Considering a dataset of n observations, denoted as
D = {(x1,pa1), (x2,pa2),⋯, (xn,pan)}, the feature vector kx becomes an n-dimensional vector,
given by kx = (k1,⋯, kn). Additionally, the noise term is defined as ϵ = (ϵ1,⋯, ϵn), with each
element ϵi being independent of the others.

Suppose that the noise term ϵi ∼ N (0, σ
2
ϵ ). According to Eq.5, we denote ki = g(X). Based on the

change-of-variables theorem, the joint density p(X,PA) can be estimated by

p(X,PA; f, g) = p(X, ϵ̃i; f, g) ⋅ ∣detJi∣

=
1

√
2πσ2

ϵ

exp(−
(g(X) − f(PA))2

2σ2
ϵ

) ⋅ ∣detJi∣,
(18)

where ϵ̃i = g(X) − f(PA) is estimated noise and Ji is the Jacobian matrix of transformation
from (PA,X) to (PA, ϵ̃i), i.e. Ji = [∂(PA, ϵ̃i)/∂(PA,X)]. Therefore, we can obtain the log-
likelihood of p(X,PA) on D:

logL(f, g ;D) = log
n

∏
j=1

p(xj ,paj ; f, g)

=
n

∑
j=1

⎧⎪⎪
⎨
⎪⎪⎩

log
1

√
2πσ2

ϵ

exp(−
(g(xj) − f(paj))

2

2σ2
ϵ

) + log ∣detJi∣(j)

⎫⎪⎪
⎬
⎪⎪⎭

= n{E[log p(ϵ̃i)] +E[log ∣detJi∣]} ,

(19)

Therefore, the log likelihood under the extended model in Eq.7 is

logL(σx, f ;D) =
n

∑
i=1

n{E[log p(ϵ̃i)] +E[log ∣detJi∣]}

= n{E[log p(ϵ̃)] +E[log ∣detJ∣]}

(20)

where we represent ∣detJ∣ = ∑n
i=1 ∣detJi∣ and σx is the parameter of the kernel function. As can be

seen, minimizing the mutual information between X and PA in Eq.10 is equivalent to maximizing
the likelihood of p(PA,X) under our extended model in Eq.20.
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A.2 DERIVATION OF MARGINAL LIKELIHOOD OF JOINT DISTRIBUTION IN RKHS

Suppose that the estimated noise is Gaussian, denoted as ϵ ∼ N (0, σ2
ϵ I) and f is a Gaussian process

with f ∼ N (0,KPA). According to Eq.18, for one particular observation (x,pa) ∈ (X ,P), the log
marginal likelihood of p(x,pa) is

log p(X = x,PA = pa ∣ σx, σp) = log∫ p(x,pa ∣ f, σx) ⋅ p(f ∣ σp) df

= log∫ p(x,pa ∣ f, σx) ⋅ p(f ∣ σp) df +
n

∑
j=1

log∫ ∣detJj ∣ ⋅ p(f ∣ σp) df

= log∫ p(x,pa ∣ f, σx) ⋅ p(f ∣ σp) df +
n

∑
j=1

log ∣detJj ∣

= log∫ N (0, σ
2
ϵ I) ⋅N (0,KPA) df +

n

∑
j=1

log ∣detJj ∣

= log N (0,KPA + σ
2
ϵ I) +

n

∑
j=1

log ∣k′(j)∣

where σp is the parameter in KPA. Let us further denote Kθ = (KPA + σ
2
ϵ I). With n observations

D = {(x1,pa1), (x2,pa2),⋯, (xn,pan)}, the log likelihood of joint density (X,PA) on D is
represented as

log l(σx, σp) =
n

∏
i=1

⎧⎪⎪
⎨
⎪⎪⎩

log N (0,Kθ) +
n

∑
j=1

log ∣k′(j)∣

⎫⎪⎪
⎬
⎪⎪⎭

= −
1

2

n

∑
i=1

kT
x(i)K

−1
θ kx(i) −

n

2
log det ∣Kθ ∣ −

n2

2
log 2π +

n

∑
i=1

n

∑
j=1

log ∣k′x(ij)∣

= −
1

2

n

∑
i=1

(KXK−1θ KX)ii −
n

2
log det ∣Kθ ∣ −

n2

2
log 2π +∑

i≠j

log ∣K ′X(ij)∣

= −
1

2
trace(KXK−1θ KX) −

n

2
log det ∣Kθ ∣ −

n2

2
log 2π +∑

i≠j

log ∣K ′X(ij)∣

where i represents the jth sample in D and j is the jth element in the feature vector kx There-
fore, k′x(ij) = K ′X(ij) where KX and KPA is the kernel matrix of X and PA with the leranable
parameters σx and σp respectively.
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A.3 PROOF OF LEMMA 1

Our score function using marginal likelihood of joint density (Xi, PAGi ) is

S(Xi, PAGi ) = log p(Xi, PAGi ∣σϵ), (21)

And σϵ represents the trainble parameters in the model. For example, when we choose Gaussian
kernel, there are two parameters in the model: the bandwidth of the kernels applied on the depen-
dent variable and its parents, denoted as σϵ = [σX , σPA]. We define σ̂ϵ = [σ̂X , σ̂PA] to be the true
parameters with the maximum of p(X,PAGi ). By employing the Laplace method (Maxwell Chick-
ering & Heckerman, 1997), we can derive that

log p(Xi, PAGi ∣σϵ) ≈ log p(Xi, PAGi ∣ σ̂ϵ) + log p(σ̂ϵ) +
d

2
log(2π) −

1

2
log ∣A∣, (22)

where d is the number of trainable parameters in the model, and A is the negative Hessian of
log p(Xi, PAGi ∣ σϵ) evaluated at σ̂ϵ. The first term in Eq.22, log p(Xi, PAGi ∣ σ̂ϵ) increases lin-
early with the sample size n. And log ∣A∣ increases as d logn. The remaining two terms log p(σ̂ϵ)

and
d

2
log(2π) are both consistent with n increasing. That is, for a large sample size n, we obtain

log p(Xi, PAGi ∣ σϵ) ≈ log p(Xi, PAGi ∣ σ̂ϵ) −
d

2
logn. (23)

This approximation is equivalent to the Bayesian Information Criterion (BIC) (Schwarz, 1978).
Since BIC is consistent (Haughton, 1988), the marginal likelihood of joint distribution p(Xi, PAGi )
as score function is also consistent.

Consequently, we have demonstrated the local consistency of our proposed score under the condi-
tions outlined in Lemma 1. Consider a variable X and all its potential parent variable combinations,
denoted as [PA1, PA2,⋯, PAn]. Each combination PAi with X corresponds to its respective
maximum marginal likelihood of p(X,PAi ∣ σ̂ϵ), denoted as Si. The local consistency property
guarantees that among all these combinations, the score for the correct PAtrue variable for X , de-
noted as Strue, is the highest. Therefore, our proposed score function is effective in identifying the
correct PA variables of X from among all the potential parents.
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B MORE EXPERIMENTAL DETAILS AND RESULTS

B.1 VISUALIZATION OF MORE DIMENSIONS OF THE CASES IN MOTIVATION

In the Motivation Section, we conducted an experiment involving two cases where conditional
likelihood-based score function failed to learn the correct structure. We generated a total of n = 500
points as the observation data for each case. Hence, each observation x is associated with a feature
kx in RKHS with 500 dimensions. We utilized the Adam optimizer Kingma & Ba (2014) for the
training of parameters in the projection f in Equation 1 during each search procedure, and the model
was trained for a total of 500 iterations.

Figure 5 and Figure 6 depict the visualization of additional dimensions. The figures show that the
remaining dimensions of the feature exhibit a similar pattern to the first dimension, as depicted in
Figure 1 in the paper.

(a) 𝑑 = 2 (b) 𝑑 = 3

(c) 𝑑 = 10 (d) 𝑑 = 100

Figure 5: The visualization of the rest dimensions in cases 1. d represents the dth dimension of the
feature kx.
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(a) 𝑑 = 2 (a) 𝑑 = 3

(c) 𝑑 = 10 (d) 𝑑 = 100

Figure 6: The visualization of the rest dimensions in cases 2. d represents the dth dimension of the
feature kx.
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B.2 EXPERIMENTAL DETAILS

We present the implementation details for the learning procedure of our methods. The hyper-
parameter for noise scale σϵ is uniformly set to 0.01 for Marg, CV, and our method. During each
search step, our model undergoes training for 1000 iterations. We employed the Adam optimizer
(Kingma & Ba, 2014) with an initial learning rate of 0.1 to optimize the parameters in our method.

To mitigate the influence of noise patterns arising from limited data, we introduce a threshold τ for
local changes in GES. Specifically, our method executes the corresponding operation in the graph
only when the score change before and after applying the Insert or Delete operator exceeds the
threshold τ . For synthetic continuous data, τ is set to 0.002, while for synthetic discrete and mixed
data, it is set to 0.01. As for the real benchmark datasets, we set τ to 0.8 for SACHS and 0.5 for
CHILD. The code of all the methods is highly based on the causal-learn toolbox, which provides
implementations of the compared methods.
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