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Breaking the Trilemma of Privacy, Utility, Efficiency via
Controllable Machine Unlearning
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ABSTRACT

Machine Unlearning (MU) algorithms have become increasingly
critical due to the imperative adherence to data privacy regulations.
The primary objective of MU is to erase the influence of specific
data samples on a given model without the need to retrain it from
scratch. Accordingly, existing methods focus on maximizing user
privacy protection. However, there are different degrees of privacy
regulations for each real-world web-based application. Exploring
the full spectrum of trade-offs between privacy, model utility, and
runtime efficiency is critical for practical unlearning scenarios. Fur-
thermore, designing the MU algorithm with simple control of the
aforementioned trade-off is desirable but challenging due to the
inherent complex interaction. To address the challenges, we present
Controllable Machine Unlearning (ConMU), a novel framework
designed to facilitate the calibration of MU. The ConMU framework
contains three integral modules: an important data selection mod-
ule that reconciles the runtime efficiency and model generalization,
a progressive Gaussian mechanism module that balances privacy
and model generalization, and an unlearning proxy that controls the
trade-offs between privacy and runtime efficiency. Comprehensive
experiments on various benchmark datasets have demonstrated
the robust adaptability of our control mechanism and its superior-
ity over established unlearning methods. ConMU explores the full
spectrum of the Privacy-Utility-Efficiency trade-off and allows prac-
titioners to account for different real-world regulations. Source code
available at: https://anonymous.4open.science/r/ConMU-B004/
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1 INTRODUCTION

Machine Learning (ML) models are often trained on real-world
datasets in various domains, including computer vision, natural
language processing, and recommender systems [6, 10, 32, 58]. For
example, many computer vision models are trained on images pro-
vided by Flickr users [55], whereas an amount of natural language
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Figure 1: Privacy, utility, efficiency trilemma in machine
unlearning. All previous works have focused on either one
or two extremities of the problem while ignoring the full
spectrum of trade-offs between the trinity (as shown in blue
dots on each subplot). Each of the proposed modules in our
ConMU offers smooth control of a pair of two unlearning
aspects specifically. Together, ConMU is capable of achiev-
ing a satisfactory outcome for versatile practical scenarios,
including various degrees of privacy regulations, efficiency
constraints, and utility objectives.

processing and recommender system algorithms have a high re-
liance on IMDB [40]. Meanwhile, privacy regulations like the Gen-
eral Data Protection Regulation of the European Union [33] and the
California Consumer Privacy Act [46] have established the right to
be forgotten [5, 17, 44]. This mandates the elimination of specific
user data from models upon removal requests.

One naive approach to “forget” user data is removing it from the
training set. However, this cannot provide sufficient privacy since
ML models tend to memorize training samples [23]. Organizations
must either expensively retrain the model from scratch without
using specified samples or employ machine unlearning [9] tech-
niques to protect user data privacy. Machine unlearning methods
are designed to meticulously eliminate samples and their associ-
ated influence from both the dataset and the trained model. This
safeguards the data privacy with unlearning, protecting it from
potential malicious attacks and privacy breaches.

Beyond privacy, utility and efficiency are also important aspects
of machine unlearning problems. For instance, sacrificing utility
by naively returning constant or purely random output ensures
privacy but results in a useless model. On the other hand, retraining
from scratch without data subject to removal guarantees privacy
and utility yet is prohibitively expensive. Designing a method that
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simultaneously maximizes the privacy, utility, and efficiency as-
pects of machine unlearning is critical and needed. Unfortunately,
theoretical machine unlearning research provides evidence that
there is an inevitable privacy-utility-efficiency trade-off even for
convex problems [13, 30, 45, 48] and similar phenomena exist in
other privacy problems [11, 12]. This leads to a trilemma of trinity
aspects of machine unlearning, which are accuracy, privacy, and
runtime efficiency. While the aforementioned theoretical unlearn-
ing solutions provide smooth control among the trinity, they are
restricted to simple models and cannot be generalized to general
deep-learning approaches.

While a number of efforts have been put into machine unlearn-
ing, existing unlearning solutions for deep neural networks mainly
focus on maximizing part of the trinity while neglecting their deli-
cate trade-off. In real-world scenarios, different applications would
require different levels of privacy regulations, runtime constraints,
and utility demand. For example, protecting user identities in health-
care applications [22] might be stricter than safeguarding friendship
data on social networks. However, autonomous driving [10] and
fraudulent attack detection in financial systems [59] would priori-
tize accuracy and runtime efficiency more than privacy.

Therefore, a practical machine unlearning solution should be
able to easily account for different levels of privacy, utility, and
efficiency requirements that arise from various tasks in practice.
Unfortunately, the literature lacks a comprehensive examination
and controllable MU approach for deep learning to the intricate dy-
namics involved in balancing privacy, model accuracy, and runtime
efficiency. A natural yet pivotal research question arises: "How to
resolve the unlearning trilemma for deep neural networks?".

To answer this question, we present Controllable Machine Un-
learning (ConMU), a novel framework that consists of three compo-
nents: an important data selection module, a progressive Gaussian
mechanism, and an unlearning proxy. Each component empha-
sizes one part of the aforementioned trilemma, see Figure 1 for
the illustration. In particular, the important data selection module
modulates the relationship between runtime and model accuracy.
The progressive Gaussian mechanism controls the trade-offs be-
tween accuracy and privacy. The unlearning proxy facilitates a
re-calibration between runtime and privacy. We further underscore
that the ConMU is adaptable and can be generalized across diverse
model architectures. Among all conducted experiments, ConMU
achieves the best privacy performance across 10 out of 12 experi-
ments, with competitive model utility and a 10-15x faster runtime
efficiency. Additionally, compared to the naive control baseline,
ConMU has illustrated greater control over the trilemma by exhibit-
ing superior and stable performance under the influence of multiple
trade-offs. Our main contributions are as follows:

o To the best of our knowledge, this is the first work of tack-
ling the critical trilemma within the realm of machine un-
learning for deep neural networks, with a specific focus
on the delicate balance between privacy, model utility, and
runtime efficiency.

e We propose ConMU, which contains three modules, each
designed to reconcile these competing factors: important
data selection, progressive Gaussian mechanism, and un-
learning proxy.

Anon.

o Extensive experiments demonstrate the effectiveness of our
proposed framework under both class-wise and random
forgetting requests.

2 RELATED WORK

2.1 Machine Unlearning with Theoretical
Guarantees

The concept of machine unlearning was first raised in [9]. In general,
two unlearning criteria have been considered in previous works:
Exact Unlearning and Approximate Unlearning. Exact unlearning
requires eliminating all information relevant to the removed data
so that the unlearned model performs exactly the same as a com-
pletely retrained model. For example, the authors of [25] presented
unlearning approaches for k-means clustering. [5] proposed the
SISA framework that partitions data into shards and slices, and each
shard has a weak learner, which enables quick retraining when deal-
ing with unlearning requests. However, exact unlearning does not
allow algorithms to trade privacy for utility and efficiency due to
its high requirements for privacy level. In contrast, unlike exact un-
learning, approximate unlearning only requires the parameters of
the unlearned model to be similar to a retrained model from scratch.
Therefore, it is possible for approximate unlearning to sacrifice a
portion of the privacy in exchange for better utility and efficiency.
[30, 48] studied the approximate unlearning for the cases of linear
models and convex losses. [42] extended the idea and provided a
theoretical guarantee on weak convex losses. [13, 45] generalize the
method of [30] to the graph learning domain. Nevertheless, none
of these approximate unlearning solutions apply to general deep
neural networks.

2.2 Unlearning in Deep Learning Models

Machine unlearning for deep neural networks is challenging be-
cause of the non-convex nature of the loss function [3]. [36] ap-
proximated the model perturbation towards the empirical risk min-
imization on the remaining datasets, using the inverse of Hessian.
[27] used fisher-based unlearning and introduced an upper bound
of SGD-based algorithms to scrub information from intermediate
layers of DNNS. [28] extended the framework and introduced forget-
ting methods using NTK theory [34]. [14] proposed a knowledge
adaptation technique where the unlearned model tries to learn
from a competent teacher model about retained dataset and an
incompetent model about forgetting dataset. [15] proposed an un-
learning method without using any training samples, in which they
used the error-maximizing noise, proposed by [54], to generate an
impaired forgetting dataset, and then used the error-minimizing
noise to generate the approximated retained dataset. However, this
method yields poor results. Thus, [15] proposed another unlearning
algorithm that uses gated knowledge transfer in a teacher-student
framework. [56] also proposed a Knowledge Gap Alignment method
that minimizes the output distribution difference between models
that are trained on different data samples. [53] focuses on deep re-
gression unlearning tasks using a partially trained blindspot model
to minimize the distribution difference with the original model.
Lastly, [35] showed that applying unlearning algorithms on pruned
models gives better performance.
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Though important data selections were largely used in deep
learning [47], their implementation in the MU field is still unex-
plored. We discovered that the important data selection is able to
offer strong control over the utility-efficiency trade-off. Similarly,
Gaussian Noise had been largely adopted in the field of differential
privacy [1, 2,7, 8, 18-20, 24], while its usage in machine unlearning
is not yet fully investigated. In addition, the concept of utilizing par-
tially competent teachers for a privacy-efficiency trade-off has not
been previously examined. Moreover, many of the existing works
focused solely on privacy, overlooking the relationships between
accuracy, privacy, and runtime efficiency. Unlike other machine-
unlearning algorithms, our method gives users exceptional flex-
ibility and control over the trade-offs among these three factors.
In addition, our method imposes no restrictions on optimization
methodologies or model architecture.

3 PRELIMINARIES

Removing certain training data samples can impact a model’s ac-
curacy, potentially improving, maintaining, or diminishing it [52].
As noted by [14], significant discrepancies between unlearned and
retrained models can lead to the Streisand effect, inadvertently
revealing information about forgotten samples through unusual
model behavior. Therefore, the goal of Machine Unlearning is to
erase the influence of the set of samples we want to forget so that
the unlearned model approximates the retraining one.

Let D, = {xi}fi | be the complete dataset before unlearning

requests, in which x; is the i*? sample. Let D ' be the set of samples
we want to forget as forgetting dataset, and the complement of Dy,
which we denote as Dy, is the set of samples retained in the training
samples, i.e. DyUD; = Do and DenDy = 0.1In the setting of random
forgetting, D¢ may contain samples from different classes of Do. In
class-wise forgetting, Dy is a set of examples that have the same
class labels. We denote 6, as the parameters of the original model,
which was trained on D,, denote the parameters of unlearned
models as 0,, and denote the parameters of retrained model 6,,
which is the model completely retrained from scratch using only
D,. Lastly, let 07 denote the parameters of the unlearning proxy,
which has the same model architecture as 6,, but was only partially
trained on D, for a few epochs.

0y is the gold standard in our MU problem. The goal of machine
unlearning is to approximate our 6, to 6,, with less computational
overhead. However, for machine unlearning on deep neural net-
works, achieving a balance between utility, privacy, and efficiency
has always been a difficult task.

4 METHODS

To address such a trilemma in machine unlearning, we introduce
the ConMU (Figure 2), a novel framework that consists of an im-
portant data selection, a progressive Gaussian mechanism, and an
unlearning proxy that modulate relationships among accuracy, pri-
vacy, and runtime efficiency. First, the important data selection
module (Figure 2 (a)) selectively discards unimportant retaining
and forgetting data samples that will not be utilized by subsequent
modules. Discarding more samples improves training time while
degrading the model’s accuracy. Next, the Progressive Gaussian
Mechanism module (Figure 2 (b)) injects Gaussian noise into the
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remaining forgetting dataset. The amount of noise can control the
balance between privacy and accuracy. Subsequently, an unlearn-
ing proxy model (Figure 2 (c)) is trained on the retained dataset
for a select number of epochs. Through knowledge transfer, the
training epoch of the proxy can balance the runtime and privacy.
Finally, by fine-tuning the original model using the concatenated
retained and noised forgetting datasets, it is transformed into an
unlearned version. As a result, by controlling the data volume, the
Gaussian noise level, and proxy training duration, we are able to
account for different privacy-utility-efficiency requirements. Sub-
sequent sections delve deeper into each module’s capabilities and
their influence on the trilemma.

4.1 Important Data Selection

Unlearning acceleration is crucial in MU. Since our method uses
both remaining noised D¢ and remaining D, to perform fine-tuning,
the amount of Dy and Dy play significant roles in the run time of
our proposed methods. However, the large quantities of Dy and
D, will likely result in an inefficient MU algorithm with a long
runtime. Therefore, to facilitate this process, we introduce a novel
filtering method using EL2N scores to determine which samples
are important for unlearning scenarios. Suppose that (6, x) is the
output of the neural network 6 with given data x, and denote y as
the true class label of x. We calculate the mean and the standard
deviation of /2 normed loss:

po(x) = Ex|If(0,x) - yll2, (1)

o9 (x) = VVx|[f(0,x) = yll2. @)

A higher iy means that x is hard to learn and they tend to be the
outliers in the dataset. A lower pg means that 6 can fit x well. There-
fore, we can keep data samples important for the generalization
of models by keeping data within a certain range of samples that
don’t have a very high or low . In our method, we introduce two
controllable hyperparameters z; and z; and calculate a bound:

[po(x) — z1 X 09 (x), pg(x) + 22 X 09 (x)]. ®)
This bound gives users control of how many important data points
we want to include by tuning z; and zy. If we include more data, our
accuracy increases, but the runtime also increases. As a result, the
ConMU can have a greater speed-up while maximally preserving
accuracy by utilizing important data samples.

4.2 Progressive Gaussian Mechanism

MU algorithms aim to erase the information about Dy from the
original model. In order to forget Dy, we can continue training
the original model using an obfuscated version of Dy, prompting
catastrophic forgetting of Dy. Within this context, we propose the
progressive Gaussian mechanism, which leverages Gaussian noise
to obscure the selected D £ Moreover, one of the standout features of
this approach is that the magnitude and the shape of Gaussian noise
applied to the dataset serve as tunable hyperparameters, granting a
remarkable degree of control over the process. More formally, after
selecting a subset of important samples:

DY € [pg, (Dy) = z1 X 09, (Dy), g, (Dy) + 22 X 09, (D), (4)

the ConMU adds Gaussian noise to data samples to balance privacy
and accuracy. More specifically, for each data samples in D’,, we
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Figure 2: The overall framework of proposed method ConMU, which is placed after forgetting request. In (a), an important data
selection is implemented to select data samples that are important to the model. A customized upper/lower bound is attached
to this module to facilitate the selection process. Then, the selected forgetting data D’, is passed to (b), the progressive Gaussian

mechanism, to gradually inject Gaussian noise. More noise in the image leads to higher privacy. Afterward, the processed
forgetting data Dj’{ is concatenated with the selected retaining data D;, which is used for fine-tuning the original model. The

unlearning proxy (c) is partially trained on the retaining data D, and knowledge is transferred to the original model via KL

Divergence.

add Gaussian noise and obtain:
14 ’
Dy =Dy
where a, y1, and o are controllable hyperparameters, where y and
o? represent the mean and variance of the Gaussian distribution,
and the a represents the number of times the noise was added to
the sample. With more noise being added to the data samples, we
will get higher privacy, but lower model accuracy. Therefore, the
progressive Gaussian mechanism controls the amount of informa-
tion they want to scrub away and the amount of information that
they want to preserve to maintain the accuracy of the model. In
Section 5.3, we empirically demonstrated that with larger a, the
accuracy decreases and the privacy increases, and vice versa.

+ax N, N~ N(u %), (5)

4.3 Fine-tuning with Unlearning Proxy

The objective of machine unlearning is to align the output distri-
bution of the unlearned model closely with that of the retrained
model — a model never exposed to the forgotten data samples. To
achieve this, we can utilize an unlearning proxy model, which is
a model that has the same architecture as the original model and
is partially trained on the retained dataset for a few epochs. By
transferring the knowledge of the behavior of the unlearning proxy,
we can obtain an unlearned model that contains less information
about the forgetting datasets.

More formally, the unlearning proxy model 6y is partially trained
on the retained dataset D, for § epochs, in which § is a hyperparam-
eter. Next, we compute the KL divergence between the probability

distribution of 6;’s output on the input data x and that of the 0, as:

Or(x )(l))
0u () (i)

where i corresponds to the data class. We want to minimize this KL
divergence, aiming to make the output distribution of the unlearned
model 6y, as close as possible to that of a model that has never seen
Dy, which is the unlearning proxy. In section 5.3, we demonstrate
that if § increases, the 6, will become more similar to 0,, but with
increasing runtime.

Dir(0r(x) || 0u(x)) = 291(96)(1) log( (6)

4.4 Controlling Machine Unlearning

After discussing the individual modules for important data selection,
progressive Gaussian mechanism, and using an unlearning proxy,
we now focus on how these parts come together. First, we obtain
Dnew = Dj'r’ U Dy, in which:

Dy € [pg, (Dr) = 21 X 0g,,(Dr), g, (Dr) + 25 X 0, (Dr)],  (7)

and z{ and zj are two hyperparameters for filtering the retained
dataset, as discussed in 4.1. With Dy, we will use the cross-
entropy (CE) loss to further train 6, on Dyeyy, combined with the
KL loss in section 4.3. The loss to train the unlearned model 8, is

defined as:
L = CE(Dnew) + yDkL(01(Dnew) |l Ou(Dnew))- ®)

The y in Equation (8) ensures that these two losses are on the same
scale. In summary, the ConMU uses Equation (8) to fine-tune the
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original model 8, to achieve 6, with way fewer epochs required
by complete retraining, allowing the calibration of the amount of
data to preserve, the amount of noise added to the filtered forget
data samples, and number of times to train the unlearning proxy.
With these three modules, the ConMU allows controllable trade-offs
between accuracy, privacy, and runtime.

4.5 Forget-Retain-MIA Score

There are many evaluation metrics to determine the privacy of the
unlearning algorithms. For example, many literatures used Retain
Accuracy (RA) and Forget Accuracy (FA) [4, 14, 15, 26, 27, 35, 44, 54],
which are the generalization ability of the unlearned model on D,
and Dy, respectively. Moreover, many previous works have used
Membership Inference Attacks (MIA) [14, 21, 29, 35, 44, 51] that
determine whether a particular training sample was present in the
training data for a model.

Given this landscape of varied metrics, it becomes imperative
to consolidate them to yield a more comprehensive evaluation. As
we have stated in section 3, our goal for the evaluation of privacy
is to ensure minimal disparity between our model’s outcomes and
the retrained model, which is the gold standard of unlearning tasks.
Therefore, we introduce a new evaluation metric called the Forget-
Retain-MIA (FRM) score that considers the differences between the
unlearned model with the retrained model on the trifecta of FA, RA,
and MIA, which is inspired by NeurlPS 2023 machine unlearning
challenge 1 Suppose we denote FA,, RA,, and MIA, as the FA, RA,
and MIA performance of the retrained model, and denote FA,, RA,,
and MIA, as the FA, RA, and MIA performance of the unlearning
model, we calculate the FRM score as:

IMIAy, — MIA,|
MIA, )
©)
The FRM score quantitatively compares the normalized differences
in FA, RA, and MIA performances of the unlearning model with
that of its retrained counterpart. The FRM score lies between 0
and 1. An FRM score of an unlearning model will be closer to
1 if the unlearned model’s privacy is perfectly aligned with the
retained model’s privacy, and it will be closer to 0 if the model is
completely different from the retrained model. An ideal FRM score
of 1 signifies that the unlearning algorithm has achieved exact
unlearning. We use the FRM score to evaluate the ConMU and
other baseline models’ performance on privacy in the subsequent
experiment sections.

|FAu _FAr| + |RAu_RAr|

FRM = exp(~
R exp(—( FA. RA

5 EXPERIMENTS

In this section, we conduct extensive experiments to validate the
effectiveness of the ConMU. In particular, through the experiments,
we aim to answer the following research questions: (1) Can ConMU
find the best balance point given the trilemma? (2) Can each module
effectively control a specific aspect of the trilemma? (3) Can the
naive fine-tune method possess the same control ability as the
ConMU?

Ihttps://unlearning-challenge.github.io/
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5.1 Experiment setups

5.1.1 Datasets and models. Our experiments mainly focus on
image classification for CIFAR-10 [37] on ResNet-18 [31] under
two unlearning scenarios: random data forgetting and class-wise
data forgetting. Besides, additional experiments are conducted on
CIFAR100 [37], and SVHN [43] datasets using vgg-16 [50]. The
details of the dataset are shown in Appendix C.

5.1.2 Baseline Models. For baselines, we compare with Fine-
Tuning (FT) [27, 35, 57], Gradient Ascent (GA) [29, 35], and Influ-
ence Unlearning (IU) [16, 26, 35, 36, 44]. In particular, FT directly
utilizes retained dataset D, to fine-tune the original model 6,. The
GA method attempts to add the gradient updates on Dy during
the training process back to the 8,. Lastly, IU leverages influence
functions to remove the influence of the target data sample in 6,.
Besides, [35] has shown that pruning first before applying unlearn-
ing algorithms will increase performance. Therefore, we apply the
OMP (one-shot-magnitude pruning) [35, 38, 39, 41] to each baseline
model as well as the ConMU. The details of each baseline model
are elaborated in Appendix B.1.

5.1.3 Evaluation Metrics. We aim to evaluate MU methods from
five perspectives: test accuracy forget accuracy (TA), forget accuracy
(FA), retain accuracy (RA), membership inference attack (MIA) [49],
runtime efficiency (RTE), and FRM privacy score. Specifically, TA
measures the accuracy of 6, on the testing datasets and evaluates
the generalization ability of MU methods. FA and RA measure the
accuracy of the unlearned model on forgetting dataset Dy and re-
taining dataset Dy, respectively. MIA verifies if a particular training
sample existed in the training data for the original model. Lastly,
we use the FRM privacy score metric to comprehensively evaluate
the privacy level of an MU method. Additional details of evaluation
metrics are illustrated in Appendix A.

5.1.4 Implementation Details. We report the mean of ten in-
dependent runs with different data splits and random seeds. For
random forgetting, we randomly selected 20% of the training sam-
ples as forgetting datasets. For class-wise forgetting, we randomly
selected 50% of a particular class for different datasets as the for-
getting samples. The details will be in appendix B.2.

5.2 Experiment Results

To answer the first question: Can ConMU find the best trade-
off points given three important factors? We conduct random
forgetting and class-wise forgetting to comprehensively evaluate
the effectiveness of a MU method. The performance is reported
in Table 1. Note that a better performance of a MU method con-
tains a smaller performance gap with the retrained model (except
RTE and TA), which is the gold standard for MU tasks. According
to the table, we can find that IU (influence unlearning) and GA
(gradient ascent) with OMP pruning achieve satisfactory results
under unlearning privacy (FA, RA, MIA, and FRM) and efficiency
(RTE) metrics with relatively shorter runtime. According to the
table, IU is usually the fastest baseline, while GA is the runner-up.
However, this outstanding unlearning efficiency comes at a high
cost to the model utility, rendering them the worst baseline models
in terms of test accuracy. Alternatively, FT (fine-tuning) performs
well across all metrics with the exception of unlearning efficiency.
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Table 1: Overall results of our proposed ConMU, with a number of baselines under two unlearning scenarios: random forgetting
and class-wise forgetting. Since a retrained model is golden for unlearning tasks, we evaluate the performance of MU models

based on their similarities to the retrained model. Bold indicates the best performance and underline indicates the runner-up.

The unlearning performance of each MU method is evaluated under five metrics: test accuracy (TA), accuracy on forget data
(FA), accuracy on retain data (RA), membership inference attack (MIA), and running time efficiency (RTE). An additional FRM
is added on top of that to thoroughly evaluate the privacy level of each method. Note that a larger value of FRM denotes a
closer privacy level as a retrained model. A performance difference against the retrained model is reported in (o). A better
performance in the metrics with blue | has the smallest gap with retrained model. While the metrics with black T favor a
greater performance value.

MU Methods | TA(%) T FA(%)] RA(%)] MIA(%)|  RTE(s) | FRM Privacy 1
Resnet-18 Random data forgetting (CIFAR-10)
retrain 79.99  80.46 (0.00)  91.47 (0.00)  0.196 (0.00)  933.51 1
IU + Pruning | 41.63  41.62(38.84) 41.21(50.26)  0.576 (0.38)  33.69 0.051
GA + Pruning 64.61 66.74 (13.72)  66.15 (25.32)  0.341 (0.145) 28.15 0.305
FT + Pruning 84.71 84.13 (3.67)  90.96 (0.51)  0.154 (0.042)  475.99 0.767
ConMU 78.83  81.22(0.76) 81.75(9.72)  0.189(0.008)  59.59 0.855
Resnet-18 Class-Wise forgetting (CIFAR-10)
retrain 82.55  68.22(0.00)  89.67 (0.00)  0.339 (0.00)  1241.92 1
IU + Pruning | 2039  0.01(68.21) 20.96(68.71)  1.00 (0.661)  40.15 0.024
GA + Pruning | 52.22 15.22 (53)  53.88(35.79) 0.832(0.493)  25.24 0.072
FT + Pruning 85.75 69.89 (1.67)  92.10 (2.43)  0.278 (0.061)  565.47 0.793
ConMU 83.61  67.23(0.99) 86.68(5.75)  0.329 (0.01)  89.4 0.925
VGG Random data forgetting (CIFAR-10)
retrain 81.10 81.49 (0.00) 92.09 (0.00) 0.195 (0.00) 881.57 1
IU + Pruning 59.74 57.97 (23.52) 57.52 (34.57)  0.393(0.198) 38.36 0.186
GA + Pruning 69.43 69.97(11.52)  69.79 (22.30)  0.292 (0.097) 47.17 0.414
FT + Pruning 83.88 58.98(22.51)  90.64 (1.45)  0.384(0.189)  378.02 0.283
ConMU 79.09  82.52(1.03)  84.00 (8.09)  0.175(0.02)  32.42 0.816
VGG Class-Wise forgetting (CIFAR-10)
retrain 82.41 69.02 (0.00) 92.90 (0.00) 0.334 (0.00)  1034.40 1
IU + Pruning | 53.06  27.16 (41.86) 53.08 (38.82)  0.655 (0.321)  46.70 0.136
GA + Pruning 53.18 11.96 (57.06) 54.51(38.39) 0.864 (0.530)  30.74 0.059
FT + Pruning | 83.88  58.98(10.04) 90.64(2.26)  0.383 (0.049)  353.97 0.729
ConMU 81.12  63.75(5.27) 87.10(5.80) 0.362 (0.028) 148 0.800
VGG Random data forgetting (CIFAR-100)
retrain 60.65 60.54 (0.00) 92.49 (0.00) 0.406 (0.00) 823.15 1
IU + Pruning 7.15 5.97 (54.57)  5.83(86.66)  0.066 (0.340)  38.74 0.069
GA +Pruning | 1471  13.96(46.58) 14.24 (78.25) 0.855(0.449)  47.42 0.066
FT + Pruning | 49.78  47.67 (12.87) 60.70 (31.79)  0.509 (0.103)  215.22 0.444
ConMU 55.22  61.53(0.99) 71.77 (20.72) 0.414(0.008)  65.01 0.771
VGG Class-Wise forgetting (CIFAR-100)

retrain 63.71 65.78 (0.00) 93.00 (0.00) 0.382 (0.00)  1036.40 1
IU + Pruning 714  3.56(62.22)  5.89 (87.11)  0.044 (0.338)  37.95 0.063
GA +Pruning | 10.68  0.44(65.34) 10.21(82.79) 0.010 (0.372)  23.01 0.057
FT + Pruning | 57.33  64.00 (1.78) 74.60 (18.40)  0.364 (0.018)  403.07 0.762
ConMU 58.78  58.39(7.39) 80.03 (12.97) 0.385 (0.003)  53.07 0.771
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Figure 3: Ablation study results of each module on CIFAR-10 with ResNet-18. For every module, we fix the other two novel
modules while adjusting its own controllable parameters. Since each proposed module is designed to control one side of the
trilemma, we present the results for each module in a chart with x and y axes representing their respective controlled factors.

As shown in Table 1, FT is the runner-up in the majority of cases
and achieves a high FRM across all benchmarks. However, this
comes with a high sacrifice on runtime efficiency, making it the
slowest baseline method. Finally, we observe that the ConMU can
outperform other baselines by remarkable margins and achieve
a good balance on all privacy metrics and competitive accuracy
across CIFAR-10, CIFAR-100, and SVHN, respectively. Additionally,
the ConMU has the highest FRM score among all baseline models
with an acceptable runtime efficiency relative to other baselines.

5.3 Unlearning Trilemma Analysis

Given our proposed ConMU is to narrow the performance gap with
the gold-retrained model and to better control the trade-off between
different metrics, we conduct further experiments to validate the
effectiveness of each module. The central question addressed is:
Can each module effectively govern a specific facet of the
aforementioned trilemma? The associated results are shown
in Figure 3. To better answer this question, we first represent the
unlearning trilemma as a triangle (figure 1), wherein each side cor-
responds to a distinct aspect of the trilemma. An effective control
module should identify a balance point anywhere along the side,
rather than being confined to the two endpoints. Since the ConMU
contains three modules, to better observe the compatibility and
flexibility of each module in influencing different metrics, we sys-
tematically adjust the input values of each module with random
forgetting requests on the CIFAR-10 dataset, showcasing the ability
to control trade-offs at various levels.

5.3.1 Utility vs Efficiency. In our proposed method, the impor-
tant data selection module is specifically designed to curate the
samples that are later utilized in the fine-tuning process of the
pruned model. The rationale behind this is twofold: (1) extracting
the samples that contribute significantly to model generalization
process, and (2) expediting the runtime of the unlearning process.
To further investigate the trade-off between model utility and run-
time efficiency, we carefully adjust the upper and lower bounds of
the important data selection to incorporate different percentiles of
data. In Figure 3 (a), we present the control ability of the proposed
important data selection module by selecting different portions
of data. We start with the inclusion of 5 % of the data and grad-
ually progress to 90 %. From figure 3 (a), we first discover that a
higher percentile of selected data not only prolongs the runtime

but also enhances the utility performance of the ConMU. For in-
stance, increasing the data percentile from 5 % to 25% results in a
7.89 % increase in model accuracy from 75.09 to 81.02. However,
this improvement comes at the cost of a 68.17 % increase in run-
time, escalating from 38.86 seconds to 65.35 seconds. Furthermore,
we observe diminishing returns as the included data percentage
increases. Take the last two points as an example, including 10 %
more data leads to a mere 1.39 % increase in model utility but incurs
a substantial 29.7 % increase in runtime, escalating from 135.43
seconds to 175.71 seconds. This phenomenon suggests that beyond
a certain threshold of included data, sacrificing runtime yields only
marginal improvements in model utility.

5.3.2 Utility vs Privacy. In the intricate landscape of the trilemma,
another crucial facet involves the delicate equilibrium between util-
ity and privacy. As mentioned in Section 4.2, the purpose of such a

module is to disrupt the forgetting information in samples, where a

higher noise level indicates that the sample contains more chaotic

information, which represents better privacy. To validate this hy-
pothesis, we modify the mechanism’s noise level to demonstrate

the relationship between model utility and privacy. Figure 3 (b),
illustrates the performance of the proposed progressive Gaussian

mechanism module under varying noise levels. We begin with a

noise level of 0, which uses the selected data from the previous

module, and increase it to a noise level of 10. As shown by the in-
creasing FRM score, a higher noise level results in a closer privacy

level with respect to the retrained model (higher FRM score). For

example, increasing the noise level from 0 to 2 increases the FRM by

4.2 %, from 0.707 to 0.737. This enhancement, however, comes with

a0.72 % decrease in model utility, from 81.21% to 80.62%. This trend

is consistent as the intensity of noise increases. As the noise level

increases from 8 to 10, the model test accuracy decreases from 79.59

% to 78.22%, a decrease of 1.75 %, while the FRM increases by 3.2

%. This phenomenon demonstrates the viability of the compromise

between model utility and privacy.

5.3.3 Privacy vs Efficiency. Lastly, there is a discernible trade-
off between model privacy and runtime performance. As mentioned
in Section 4.3, we introduce an unlearning proxy to strike a bal-
ance between these two crucial factors. This module’s purpose is
to reduce the privacy disparity between the retrained model and
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Figure 4: Unlearning performance of ConMU and Naive Fine-tuning on CIFAR-10 with ResNet-18 under random forgetting
request using various combinations of controllable mechanisms. For FT, we adjust the epoch number from 5 to 35 and try
different learning rates ranging from 0.1 to 0.0001. Figure 4 (a) focuses on evaluating the relationship between utility and
runtime efficiency, where x and y axes denote the test runtime and accuracy, respectively. Figure 4 (b) focuses on the relationship
between utility and privacy, where x and y axes denote the FRM score and test accuracy, respectively. Figure 4 (c) depicts the
relationship between privacy and runtime efficiency, where x and y axes denote the runtime and FRM score, respectively. The
red point represents the performance of the fine-tuning method and the blue point denotes the ConMU.

the unlearning model by means of an unlearning proxy. To vali-
date this effect, we progressively increase the training epoch of the
unlearning proxy from 0 to 8, enabling it closer to the retrained
model. As shown in Figure 3 (c), an increase in the number of train-
ing epochs in the unlearning proxy resulted in improved privacy
performance, as indicated by a higher FRM score. Raising the proxy
training epoch from 2 to 3 increases runtime by 23.13 %, from 67.61
seconds to 83.25 seconds. This results in a 26.02 % increase in FRM
score. However, this progress diminishes when FRM exceeds 0.75.
Consider the last three data points as an illustration: a 66.1 % in-
crease in duration from 100.47 seconds to 166.89 seconds results in
a 4.64 % increase from 0.776 to 0.812. Similarly to the trade-off be-
tween utility and runtime, there exists a threshold between privacy
and runtime where sacrificing one does not result in a substantial
improvement in the other.

5.4 ConMU vs. Naive Fine-Tune Method

The overall performance of the rudimentary fine-tune (FT) base-
line method, as shown in Table 1, is comparable to that of the
ConMU baseline method. Consequently, an intriguing question
may be posed: Can the naive FT model have the same control
ability over these trilemmas as the method demonstrated by
merely adjusting its hyperparameters? In order to answer this
question, we compare the control ability of the ConMU and naive
fine-tuning. To demonstrate this distinction in a holistic manner,
we evaluate the performance of two models based on three crucial
factors: privacy (FRM), utility (TA), and efficiency (runtime). We
primarily demonstrate the control ability of the naive fine-tuning
method by varying two parameters: learning rate and fine-tuning
epochs. For the ConMU, we alter those three proposed modules.
Figure 4 (a) demonstrates the trade-off between the runtime of
each sample and the utility. In addition, figure 4 (b) illustrates the
trade-off between utility and privacy, in which greater x values
indicate a higher FRM score, which corresponds to a closer level
of privacy with the retrained model. As demonstrated in Section
5.3, an expected trade-off would emerge as x values increase from
left to right. Figure 4 (c) demonstrates the relationship between
privacy and runtime efficiency. Ideally, a sample that resolves the

trilemma should be placed in the top left corner of (a), the top
right corner of (b), and the top left corner of (c). Given a similar
level of test accuracy, ConMU can achieve a higher FRM score
with a shorter runtime. When the test accuracy for FT is 77.99
% and the ConMU is 78.08 %, for example, the FRM is 0.71 and
0.87, respectively. Meanwhile, the runtime is 480.14 seconds and
52.12 seconds, respectively, which is 9x faster. Furthermore, as
test accuracy improves, the performance of the ConMU remains
relatively stable and consistent. For instance, when the test accuracy
for FT increases from 84.22 % to 85 %, the FT’s FRM falls from 0.77 to
0.74. In contrast, the FRM for ConMU increases by 0.3 % from 0.799
to 0.801 when the test accuracy increases from 84.32 % to 85.09 %.
In terms of the runtime, the FT increases from 600.22 seconds to
720.19 seconds, whereas the ConMU only increases by only 65.55
seconds, from 207.13 to 272.68 seconds. Throughout the resulting
chart, ConMU displays its superiority not only in the stability of
controlling the trilemma but also a significant margin over the
overall performance.

6 CONCLUSION

In this paper, we identify the trilemma between model privacy,
utility, and efficiency that exists in machine unlearning for deep
neural networks. To address this issue and gain greater control
over this trilemma, we present ConMU, a novel MU calibration
framework. Specifically, ConMU introduces three control modules:
the important data selection, the progressive Gaussian mechanism,
and the unlearning proxy, each of which seeks to calibrate portions
of the MU trilemma. Extensive experiments and in-depth studies
demonstrate the superiority of the ConMU across multiple bench-
mark datasets and a variety of unlearning metrics. Future work
could focus on extending our control mechanism to other fields of
study, such as the NLP and Graph domain.
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Appendix A EVALUATION METRICS

Retain Accuracy (RA) and Forget Accuracy (FA) [4, 14, 15, 26,
27, 35, 44, 54]: Retain Accuracy is the generalization ability of 6,
on Dy, which is referred as the fidelity of machine unlearning. The
Forget Accuracy, on the other hand, is the generalization ability of
0y on Dy, which is the efficacy of machine unlearning. A better Dy
score for an approximate unlearning method should minimize the
disparity with the retrained model, which is the gold-standard.
Test Accuracy (TA): Test Accuracy (TA), unlike D or Dy, assesses
the generalization ability of 8,, on the test dataset after unlearning.
Besides the task of class-wise forgetting, in which the forgetting
class is excluded from the testing dataset, the accuracy of the test
is determined using the entire testing dataset.
Confidence-based Membership Inference Attack (MIA) [14,
21, 29, 35, 44, 51]: Membership inference attacks determine whether
a particular training sample was present in the training data for a
model. In our work, we employed confidence-based MIA based on
[35]. Formally, we first train an MIA predictor using D, and test
sets. Then, we apply the trained MIA predictor to 6, on Dy, and we
get the following score called MIA-efficacy: TN/|Dy|. Here, TN is
the number of forgetting samples that are predicted as non-training
samples. A higher MIA-efficacy score indicates that 6, has less
information about Dy.

Runtime Efficiency (RTE) [9, 35, 44]: Runtime efficiency mea-
sures the computational efficiency of an MU method. In Machine
Unlearning, we want to achieve the 6,-like model in less computa-
tional time.

Appendix B IMPLEMENTATION DETAILS

B.1 Baseline Descriptions

Influence unlearning [16, 26, 35, 36, 44]: The influence function
is a technique that allows us to understand how model parameters
change by up-weighting training data points, and the effect of
these data points can be estimated in closed form. In machine
unlearning, we can estimate |6, — 6,| if D, is removed from D,
using influence functions. Also, influence unlearning assumes that
the empirical risk is twice-differentiable and strictly convex in 6.
However, for deep neural networks, due to the non-convexity of
the loss function and approximating the inverse-Hessian vector
product can be erroneous [3, 36, 44], using influence functions to
approximate 6, is not effective in practice.

Gradient Ascent [29, 35]: Gradient Ascent is doing exactly the
opposite of what gradient descent tries to do. It reverses the model
training on Dy during training back to the 6,. To be more specific,
gradient ascent approaches move 6, towards loss for data points to
be erased.

Regular Fine-tuning [27, 35, 57]: Different from naively retraining
from the scratch, FT fine-tunes the the pre-trained 6, on D, for a
few epochs, with a slightly larger learning rate. The motivation is
that fine-tuning on D, may cause catastrophic unlearning over Dy.

B.2 Hyperparameters

The hyper-parameters of ConMU are listed in Table 2 for random
forgetting and Table 3 for class-wise forgetting. For random forget-
ting, we randomly selected 20% of the original training data as the
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forgetting dataset. For class-wise forgetting, we randomly selected
50% of a particular class as the forgetting data. Due to the limitation
of the GPU memory, the batch size is restricted to 128. Note that the
a is generally larger for class-wise forgetting than that for random
forgetting.

Table 2: Hyper-parameters of ConMU for CIFAR-10, CIFAR-
100 and svhn datasets on ResNet18 and VGG for random for-
getting. The z; and z, indicate the lower and upper bounds of
important data selection, respectively. The « is the amount of
Gaussian noise used in the Progressive Gaussian Mechanism.
The Gaussian noise has a mean ; and a standard deviation o.
d is the number of epochs that the incompetent model was
trained on. y is the coefficient of the KL loss term.

Model ‘ ConMU (ResNet-18) ‘ ConMU (VGG)
Dataset | CIFAR-10 | CIFAR-100 | svhn | CIFAR-10 | CIFAR-100 | svhn
Fine-Tune Epoch 5 5 5 5 5 5
Learning Rate le-2 le-2 le-2 le-2 le-2 le-2
Batch Size 128 128 128 128 128 128
Optimizer SGD SGD SGD SGD SGD SGD
Retain, zy 0.3 0.25 0.28 0.2 0.45 0.3
Retain, z; 0.17 0.16 0.1 0.16 0.35 0.2
Forget, z, 1.0 0.2 0.4 0.2 0.4 0.4
Forget, z; 0.85 0.18 0.3 0.15 0.37 0.3
a 3 4 5 3 5 5
u 0 0 0 0 0 0
o 1 1 1 1 1 1
§ 1 1 1 1 1 1
Y 0.5 0.5 0.5 0.5 0.5 0.5

Table 3: Hyper-parameters of ConMU for CIFAR-10, CIFAR-
100 and svhn datasets on ResNet18 and VGG for class-wise
forgetting. The forgotten Class is the class index of the
dataset we chose to forget for the experiments. The z; and
z3 indicate the lower and upper bounds of important data
selection, respectively. The « is the amount of Gaussian noise
used in the Progressive Gaussian Mechanism. The Gaussian
noise has a mean p and a standard deviation o. § is the num-
ber of epochs that the incompetent model was trained on. y
is the coefficient of the KL loss term.

Model | ConMU (ResNet-18) | ConMU (VGG)
Dataset | CIFAR-10 | CIFAR-100 | svhn | CIFAR-10 | CIFAR-100 | svhn
Forgotten Class 5 69 5 5 69 5
Fine-Tune Epoch 5 5 5 5 5 5
Learning Rate le-2 le-2 le-2 le-2 le-2 le-2
Batch Size 128 128 128 128 128 128
Optimizer SGD SGD SGD SGD SGD SGD
Retain, z; 0.3 0.3 0.3 0.4 0.45 0.3
Retain, z; 0.2 0.1 0.2 0.3 0.35 0.2
Forget, z 1.0 0.4 0.8 0.8 1.0 0.8
Forget, z; 0.8 0.3 0.5 0.5 0.85 0.5
a 12 1 4 20 10 4
" 0 0 0 0 0 0
a 1 1 1 1 1 1
S 1 1 1 1 1 1
Y 0.5 0.5 0.5 0.5 0.5 0.5
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1277 Table 4: Additional results of our proposed ConMU, with a number of baselines under two unlearning scenarios: random 1335
1275 forgetting and class-wise forgetting. Bold indicates the best performance and underline indicates the runner-up. The efficacy of 1336
1270 each MU method is evaluated under five metrics: test accuracy (T'A), accuracy on forget data (FA), accuracy on retain data (RA), 1337
1250 ~ membership inference attack (MIA), and running time efficiency (RTE). The performance of ConMU is reported in the form of 1338
1281 a+p, where a is the mean value of independent 10 trial runs and b denotes the standard deviation. A performance difference 1339
1282 against the retrained model is reported in (o). 1340
1283 1341
1284 MU Methods | TA(%) 1 FA(%)| RA(%)| MIA(%)] RTE(s) | FRM Privacy 1 1342
1285 1343
1286 Resnet-18 Random data forgetting (CIFAR-100) 1344
1287 retrain 51.45 40.82 (0.00)  99.97 (0.00) 0.493 (0.00) 1066.69 1 1345
1288 IU + Pruning 6.48 6.03(38.84)  6.02(93.95) 0.929 (0.436) 38.36 0.069 1346
1289 GA +Pruning | 31.33 31.26 (9.56)  31.64 (68.33) 0.675 (0.182) 54.58 0.276 1347
1290 FT + Pruning 56.36  54.87(14.05) 70.55 (29.42) 0.451 (0.042) 282.09 0.484 1348
1291 ConMU 48.97  54.95(14.13)  61.25 (38.72) 0.453(0.04) 27.83 0.443 1349
1292 Resnet-18 Class-Wise forgetting (CIFAR-100) 1330
iizz retrain 56.43 60.89 (0.00) 99.98 (0.00) 0.391 (0.00) 1323.98 1 iz:
1205 IU + Pruning 6.52 8.89 (52.00) 6.05 (93.93) 0.94 (0.549) 39.14 0.041 1353
1296 GA + Pruning 20.18 7.78 (53.11) 19.53 (80.45) 0.933 (0.542) 22.57 0.047 1354
FT + Pruning 60.07  76.67 (15.78) 73.87 (26.11) 0.244 (0.147) 364.23 0.408
:;; ConMU 5522 61.53(28.27) 71.77(0.023)  0.414 (0.023) 48.23 0.704 :iz
1299 VGG Random data forgetting (SVHN) 1357
1300 retrain 93.53 93.47 (0.00)  99.62 (0.00) 0.065 (0.00) 840.33 1 1358
1301 IU + Pruning 90.18 9230 (1.17)  91.96 (7.66) 0.08 (0.015) 49.30 0.726 1359
1302 GA + Pruning 92.26 94.34 (0.87) 94.38 (5.24) 0.94 (0.875) 26.40 0 1360
1303 FT + Pruning 94.19 95.71 (2.24) 99.65 (0.03) 0.043 (0.022) 280.15 0.696 1361
1304 ConMU 90.95  91.93(1.54)  92.51(7.11) 0.081(0.016) 79.71 0.716 1362
1305 VGG Class-Wise forgetting (SVHN) 1363
:2; retrain 94.12 90.21 (0.00)  99.55 (0.00) 0.098 (0.00) 1048.65 1 ::
IU + Pruning 90.08 92.83 (2.62)  91.92 (7.63) 0.072 (0.026) 35.01 0.624
1208 GA +Pruning | 8138  31.64(58.57) 86.45 (13.10) 0.684 (0.586) 27.99 0.057 1306
1309 FT + Pruning 95.02 94.87 (4.66)  99.99 (0.44) 0.051 (0.047) 320.77 0.3772 1367
1310 ConMU 92.31 88.43 (1.78)  94.73 (4.82) 0.106 (0.008) 85.05 0.864 1368
:i Resnet-18 Random data forgetting (SVHN) :i:
1313 retrain 91.05 91.68 (0.00) 99.45 (0.00) 0.083 (0.00) 954.66 1 1371
1314 IU + Pruning 35.04 36.45 (55.23)  36.78 (62.67) 0.637 (0.554) 40.52 0 1372
- GA +Pruning | 8535 87.87 (3.81)  87.51 (11.94) 0.121 (0.038) 57.55 0.538 1373
16 FT + Pruning 92.95  93.34(1.66) 100.00 (0.55)  0.066 (0.017) 729.64 0.795 1374
- ConMU 92.98  93.05(1.37)  93.84 (5.61) 0.07(0.013) 74.36 0.796 -
1318 Resnet-18 Class-Wise forgetting (SVHN) 1376
13 retrain 91.40 83.73 (0.00)  98.71 (0.00) 0.162 (0.00) 1075.59 1 w7
1320 IU + Pruning 32.68 13.14 (70.59)  35.48 (63.23) 0.868 (0.706) 41.08 0.003 1378
1321 GA + Pruning 73.96 28.25 (55.48)  77.42 (21.29) 0.717 (0.555) 19.28 0.014 1379
1322 FT + Pruning 93.39 90.57 (6.84) 100 (1.29) 0.094 (0.068) 458.9 0.598 1380
1323 ConMU 9215, 5, 88.44(471)  94.34(437)  0.11640003 (0.046) 5137 0.681 1381
1324 1382
1325 1383
1326 Appendix C ADDITIONAL EXPERIMENTS Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009 1384
7" The additional experiments are reported in Table 4, which has the 1985
PE same setup as Table 1. 1280
1329 1387
1330 1388
1331 1389
1332 1390
1333 1391

1334 12 1392
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