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Abstract

Translating software written in C to Rust has significant benefits in improving1

memory safety while maintaining high performance. However, manual translation2

is cumbersome, error-prone, and often produces unidiomatic code. Large language3

models (LLMs) have demonstrated promise in producing idiomatic translations,4

but offer no correctness guarantees as they lack the ability to capture the semantic5

differences between the source and target languages. We propose SACTOR, an6

LLM-driven C-to-Rust translation tool that employs a two-step process: an initial7

“unidiomatic” translation to preserve semantics, followed by an “idiomatic” refine-8

ment to align with Rust standards. SACTOR leverages static analysis of the C9

source to handle pointer semantics and dependency resolution. To validate the cor-10

rectness of step-wise translation, we use end-to-end testing via the foreign function11

interface. We evaluate the translation of 200 programs from two datasets and two12

case studies, comparing the performance of GPT-4o, Claude 3.5 Sonnet, Gemini13

2.0 Flash, Llama 3.3 70B and DeepSeek-R1 in SACTOR. Our results demon-14

strate that SACTOR achieves high correctness and enhanced idiomaticity, with15

the best-performing model (DeepSeek-R1) reaching 93% and 84% correctness (on16

each dataset, respectively), while generating more idiomatic, Rust-compliant code,17

reducing Clippy lint alerts by up to 7×, and producing unsafe-free translations on18

both datasets compared to existing methods.19

1 Introduction20

The C language is the most widely used language in system-level programming, because of its ability21

to directly manipulate memory and raw hardware [1]. However, its manual memory management has22

led to memory-related bugs, such as buffer overflows, dangling pointers, and memory leaks, which23

have been the root cause of many security vulnerabilities [2]. To address these shortcomings, Rust24

has emerged as a promising alternative; it is a modern system-programming language that offers25

memory safety without relying on garbage collection by imposing a strict object ownership model [3].26

Rust is adopted by projects like the Linux kernel in developing new hardware drivers1 and Mozilla27

Firefox. Translating legacy C code to Rust – particularly into idiomatic Rust rather than a direct,28

unidiomatic mapping – can improve safety and performance, but doing so manually is time-intensive,29

error-prone, and requires expertise in both languages.30

Traditional automatic translation tools such as C2Rust [4] analyze the abstract syntax tree (AST) of C31

code to generate syntactically equivalent Rust code. However, these rule-based or statically analyzed32

approaches [5, 4, 6, 7, 8] often fail to produce “idiomatic” Rust: code that follows the Rust program-33

ming model and conventions with the least use of unsafe blocks. Due to fundamental differences34

1https://github.com/Rust-for-Linux/linux
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in semantics and memory management between C and Rust, idiomatic translations are crucial to35

compiler-enforced memory safety, as well as improving code readability and maintainability.36

While large language models (LLMs) demonstrate the ability to “understand” syntax and code37

semantics [9], they are prone to hallucinations and often generate incorrect or semantically mis-38

aligned code [10]. In C-to-Rust translation, naive LLMs lacking structure awareness frequently39

produce unsafe or code. Prior work has explored translation quality through various prompting40

strategies [11, 12, 13] or ensure correctness via verification techniques, such as fuzz testing and41

symbolic execution [14, 15], to validate LLM-generated code. While these methods improve semantic42

alignment or enforce correctness, they often struggle with complex code and fall short of producing43

idiomatic, safety-compliant Rust. For example, Vert [14] struggles to verify programs involving44

data structures through symbolic execution, and C2SaferRust [12] still produces Rust code with45

substantial use of unsafe.46

In this paper, we introduce Structure-Aware C-to-Rust Translator (or SACTOR), an LLM-driven47

zero-shot translation tool. An overview of SACTOR is presented in Figure 4. We divide the48

translation process into two stages:49

1. C to Unidiomatic Rust – This phase performs a syntactic translation, preserving C-like semantics50

with unsafe blocks to handle low-level memory operations.51

2. Unidiomatic Rust to Idiomatic Rust – This phase refines the translation to Rust’s semantic52

standards, eliminating unsafe blocks to guarantee memory safety.53

Throughout both stages, we leverage static analysis to extract pointer semantics and dependency54

information, guiding the translation. To efficiently verify LLM-generated code, we embed the55

translated Rust alongside the original C implementation via Foreign Function Interface (FFI), enabling56

end-to-end testing of the complete program for correctness. The two-phase strategy separates57

syntax from semantics, allowing the LLM to focus on a simplified task at each step and improving58

translation correctness, while static analysis further enhances this process by supplying precise59

program semantics, helping the LLM generate idiomatic, memory-safe Rust. These steps combined60

significantly improve translation quality, achieves high-level correctness, and provides a broader61

applicability to different types of C programs.62

In summary, we make the following contributions:63

• We present SACTOR2, a tool that integrates information extracted from static analysis into a64

two-step translation pipeline. SACTOR reliably produces idiomatic, unsafe-free Rust from C65

(§ 4). A full example translation is provided in Appendix G.66

• We introduce a novel verification approach that embeds the translated Rust code alongside the67

original C implementation using FFI. This enables practical, scalable, and efficient end-to-end68

testing for LLM-generated code (§ 4.3).69

• We evaluate SACTOR on a diverse set of C programs across two datasets and five LLMs. Our70

best-performing model, DeepSeek-R1, achieves a 93% and 84% success rate on each dataset,71

respectively (§ 6.1). Notably, SACTOR generates more idiomatic, unsafe-free Rust compared to72

four existing methods (§ 6.2). These results demonstrate SACTOR’s effectiveness.73

• Finally, we present a comprehensive cost and diagnostic analysis:74

1. Token Efficiency: GPT-4o is the most token-efficient, while DeepSeek-R1 consumes 5–7×75

more tokens. The average number of queries varies less, with Llama 3.3 taking only ∼1.4×76

more queries than Gemini 2.0 (Appendix K).77

2. Feedback Improvement: Incorporating compilation and testing feedback significantly boosts78

the success rate of weaker models such as Llama 3.3 by around 17% (Appendix L).79

3. Temperature Sensitivity: Temperature adjustments have a negligible effect, with only slight80

improvements observed at lower values (Appendix M).81

4. Failure Analysis: Reasoning models like DeepSeek-R1 excel at resolving complex issues such82

as format string and array manipulation errors (Appendix J).83

2 Background84

Primer on C and Rust: C is one of the most widely used programming languages [16]. It is a85

low-level language that provides direct access to memory and hardware through pointers and abstracts86

2SACTOR code: https://anonymous.4open.science/r/sactor-C8D6; datasets: https://anonymous.
4open.science/r/sactor-datasets-DE21.
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the machine-level instructions. While this makes it efficient, it suffers from memory vulnerabilities87

such as buffer overflow [17, 18], dangling pointers [19], and memory leaks [20]. Rust, in contrast,88

is a modern programming language that provides memory safety without additional performance89

penalty, and has the same ability to access low-level hardware as C. Instead, Rust enforces strict90

compile-time memory safety through ownership, borrowing, and lifetimes—mechanisms designed91

and undergoing formal verification to eliminate memory vulnerabilities [3, 21].92

Challenges in Code Translation: Despite its advantages, Rust is a relatively new language; many93

widely-used system-level programs remain in C, which lacks memory safety and is prone to vulnera-94

bilities. It’s desirable to translate such programs to Rust and gain security and reliability benefits,95

but the process is challenging due to fundamental language differences. Figure 5 in Appendix C96

shows an example of a simple C program and its Rust equivalent to illustrate the differences of two97

languages in terms of memory management and error handling. While Rust permits unsafe blocks98

for C-like pointer operations, their use is discouraged due to the absence of compiler guarantees and99

their non-idiomatic nature for further maintenance.100

Other differences include string representation, pointer usage, array handling, reference lifetimes, and101

error propagation. A non-exhaustive summary appears in Appendix C. These gaps make translation102

non-trivial: an effective translator must (1) understand the semantics of both languages, (2) reason103

over memory management differences, and (3) handle language-specific constructs. In addition, a104

practical correctness verification approach for the translated code is also essential.105

3 Related Work106

LLMs for C-to-Rust Translation: Vert [14] uses LLMs to generate translation candidates and107

applies fuzz testing and symbolic execution to verify equivalence. While this ensures syntactic and108

semantic correctness, this verification method is too strict and struggles with scalability and complex109

C features. Flourine [15] guides LLMs using error feedback and verifies correctness via fuzz testing,110

while employing data type serialization to address type mismatches; however, serialization issues still111

account for half of the translation errors. Shiraishi and Shinagawa [13] segment C code into smaller112

sub-tasks and guide LLMs to translate specific constructs (e.g., macros) using predefined Rust idioms,113

but only evaluate compilation success without verifying functional correctness. Shetty et al. [11] use114

dynamic analysis to analyze the runtime behavior of the C code, and uses this information to guide115

LLM translation. However, dynamic analysis is limited by input coverage, making it challenging to116

generalize across all execution paths. Nitin et al. [12] refine C2Rust outputs using LLMs to reduce117

unidiomatic Rust (unsafe, libc), but the output still rely heavily on them. The overall translation118

quality is restricted by C2Rust, which removes comments and preprocessor directives (§ 4.2.1) and119

makes the LLM harder to interpret the code and produce a more idiomatic translation.120

Non-LLM Approaches for C-to-Rust Translation: C2Rust [4] translates C to Rust by converting121

the C abstract syntax tree (AST) into a Rust AST, followed by a rule-based transformation into Rust122

code. Although it ensures syntactic accuracy, the output remains a purely structural translation that123

relies heavily on unsafe blocks and suffers from low readability due to direct construct mapping124

and explicit type conversions. Crown [5] is a tool that can analyze the pointer information in C125

code based on its static ownership tracking. It uses this information to generate Rust code with the126

corresponding semantics and reduce the pointer usage in the translated code. Hong and Ryu [7]127

proposed an approach to handle the return value of functions in C-to-Rust translation. Ling et al. [8]128

translate Rust based on a set of predefined rules and heuristics. Although these approaches reduce the129

use of unsafe blocks compared to C2Rust, the translated code still heavily relies on unsafe blocks130

and remains largely unidiomatic.131

4 SACTOR Methodology132

We propose SACTOR, an LLM-driven C-to-Rust translation tool using a two-step translation133

methodology. The overview of SACTOR’s methodology is shown in Figure 4 in Appendix B.134

Recall that the semantics of Rust is different from that of C (§ 2). To assist the LLM, and capture135

more nuanced semantic information, we utilize a suite of static analysis tools to provide additional136

information in the form of hints to the LLM. We outline SACTOR’s four main stages below.137
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4.1 Task Division138

We begin by dividing the program into smaller parts that can be processed by the LLM independently.139

This enables the LLM to focus on a narrower scope for each translation task and ensures the program140

fits within its context window. This strategy is supported by studies showing that LLM performance141

degrades on long-context understanding and generation tasks [22, 23]; by breaking the program into142

smaller pieces, we can mitigate these limitations and improve performance on each individual task. To143

facilitate task division and extract relevant language information–such as definitions, declarations, and144

dependencies–from C code, we developed a static analysis tool called C Parser based on libclang.145

libclang is a library that provides a C compiler interface, allowing access to semantic information of146

the code. Our C Parser analyzes the input program and splits the program into fragments consisting147

of a single type, global variable, or function definition. This step also extracts semantic dependencies148

between each part (e.g., a function definition depending on a prior type definition). We then process149

each program fragment in dependency order: all dependencies of a code fragment are processed150

before the fragment. In Appendix D, we provide more details on how we divide the program.151

4.2 Code Translation152

To ensure that each program fragment is translated only after its dependencies have been processed,153

we begin by translating data types, as they form the foundational elements for functions. This is154

followed by global variables and functions. We divide the translation process into two steps.155

4.2.1 Unidiomatic Rust Translation156

We aim to produce semantically equivalent Rust code from the original C code, allowing the use of157

unsafe blocks and C standard library functions. For data type translation, we leverage C2Rust [4]158

to convert C code into Rust. While C2Rust provides reliable data type translation, it struggles159

with function translation due to its compiler-based approach, which omits source-level details like160

comments, macros, and other elements. These omissions significantly reduce the readability and161

usability of the generated Rust code. Thus, we use C2Rust only for data type translation, and162

use an LLM to translate global variables and functions. For functions, we rely on our C Parser163

to automatically extract dependencies (e.g., function signatures, data types, and global variables)164

and reference the corresponding Rust code. This approach guides the LLM to accurately translate165

functions by leveraging the previously translated components and directly reusing or invoking them166

as needed. For other language primitives like global variables, we extract them via static analysis167

and map them to their Rust equivalents using C2Rust-derived hints, preserving their mutability and168

visibility semantics.169

4.2.2 Idiomatic Rust Translation170

The goal of this step is to refine unidiomatic Rust into idiomatic Rust by removing unsafe blocks171

and following Rust idioms. Handling pointers from C code is a key challenge, as they are considered172

unsafe in Rust. Unsafe pointers should be replaced with Rust types such as references, arrays, or173

owned types. To address this, we use Crown [5] to facilitate the translation by analyzing pointer174

mutability, fatness (e.g., arrays), and ownership. This information provided by Crown helps the LLM175

assign appropriate Rust types to pointers. Owned pointers are translated to Box, while borrowed176

pointers use references or smart pointers. Crown assists in translating data types like struct177

and union, which are processed first as they are often dependencies for functions. For function178

translations, Crown analyzes parameters and return pointers, while local variable pointers are inferred179

by the LLM. Dependencies are extracted using our C Parser to guide accurate function translation.180

4.3 Verification181

To verify the equivalence between source and target languages, prior work has relied on symbolic ex-182

ecution and fuzz testing. However, these methods are impractical for real-world C-to-Rust translation183

(details in Appendix E). We propose a new approach to validate the correctness of translated Rust184

code by focusing on soft equivalence–ensuring functional equivalence of the entire program based on185

success on end-to-end (E2E) tests. This approach avoids the complexity of generating specific inputs186

or constraints for individual functions and is well-suited for real-world programs where such E2E187

tests are often available and reusable. Correctness confidence under this framework depends on the188
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code coverage of accompanying E2E tests: the broader the coverage, the stronger the assurance of189

equivalence.190

4.3.1 Verifying Unidiomatic Rust Code191

Verifying the unidiomatic Rust code is straightforward, as it is semantically equivalent to the original192

C code and maintains compatible function signatures and data types. This compatibility ensures193

a consistent Application Binary Interface (ABI) between the two languages, enabling direct use194

of the FFI for cross-language linking. The verification process involves two main steps. First, the195

unidiomatic Rust code is compiled using the Rust compiler to check for successful compilation. Then,196

the original C code is recompiled with the Rust translation linked as a shared library. This setup197

ensures that when the C code calls the target function, it invokes the Rust translation instead. To198

verify correctness, E2E tests are run on the entire program, comparing the outputs of the original C199

code and the unidiomatic Rust translation. If all tests pass, the target function is considered verified.200

4.3.2 Verifying Idiomatic Rust Code201

The verification of idiomatic Rust code is more complex, as the idiomatic Rust code does not align202

with the original C code in data types or function definitions. Direct linking between the original203

C code and the idiomatic Rust code is therefore infeasible. To address this, we use the LLM to204

create a test harness for each target function. The test harness mirrors the function definition of the205

unidiomatic Rust version, allowing it to accept C data types as input and return C data types as output.206

Within the harness, inputs are converted from C data types to their corresponding Rust types before207

calling the target function. The output is then converted back from Rust types to C types to maintain208

type consistency. Due to space constraints, Figure 6 in Appendix F presents an example of such209

a harness. To ensure reliability, all harnesses are automatically synthesized and validated through210

compilation and end-to-end testing. If any test fails, we regenerate both the test harness and the target211

function, and repeat the verification process until all tests pass. Once the harness is constructed, it212

can be linked to the original C code, as in § 4.3.1. E2E tests are then executed for the entire program,213

enabling verification of the idiomatic Rust code even when it diverges from the original C code in214

data types and function definitions.215

What does the harness do? The harness relies on type conversions to bridge the semantic gap216

between C and Rust representations. We categorize these conversions into two cases:217

• Basic types: Simple conversions like int to i32, float to f32, and char* to String or &str,218

which are straightforward for the LLM to handle.219

• Custom data structures: These conversions are more complex due to layout differences between C220

and Rust structures. For such cases, the LLM firstly generates two conversion functions for each221

structure–one for converting from C-to-Rust and another for converting from Rust-to-C. These222

functions are tailored to specific data structures and are invoked by the test harness.223

4.3.3 Feedback Mechanism224

For code that fails the verification process, feedback is provided to the translation process to help the225

LLM correct the issues. If the Rust code fails to compile, the compiler errors are directly passed back226

to the translation process to guide the LLM in fixing the translation. For E2E test failures, a Rust227

procedural macro is employed to insert debugging code into the target function during compile time.228

This debugging code logs the inputs and outputs of the target function when a test fails. The E2E229

tests are then re-executed, and the collected information is fed back to the translation process.230

4.4 Code Combination231

By translating and verifying all functions and data types, we can integrate them into a unified Rust232

code-base. We first gather the translated Rust code from each sub-task, then eliminate duplicate use233

statements and other redundancies needed for individual sub-task compilation. Next, we organize the234

code into a well-structured, idiomatic implementation of the original C program. Once combined, the235

entire program is subjected to E2E tests to verify the correctness of the final Rust code. If all tests236

pass, the translation process is deemed successful.237
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5 Experimental Setup238

5.1 Datasets Used239

For the selection of datasets for evaluation, we consider the following criteria:240

• Absence of Corresponding Rust Code: The dataset must not include equivalent Rust code to prevent241

LLMs from simply memorizing the dataset instead of performing genuine translation.242

• Sufficient Number of C Programs: The dataset should contain a substantial number of C programs243

to ensure a robust evaluation of the approach’s performance across a diverse set of examples.244

• Presence of Non-Trivial C Features: The dataset should include C programs with advanced features245

such as multiple functions, structs, and other non-trivial constructs as it enables the evaluation to246

assess the approach’s ability to handle complex features of C.247

• Availability of E2E Tests: The dataset should either include E2E tests or make it easy to generate248

them as this is essential for accurately evaluating the correctness of the translated code.249

Based on the above aspects, we select two datasets TransCoder-IR [24] and Project CodeNet [25],250

which are widely used in the code translation domain, as well as two real-world projects: avl-251

tree and urlparser. For evaluation purposes, we randomly sample 100 C programs from each of252

the TransCoder-IR and Project CodeNet (with input arguments) datasets to ensure computational253

feasibility while maintaining statistical significance. The avl-tree and urlparser projects are real-254

world C projects with around 1000 and 500 lines of code, respectively. The complete details of these255

datasets are presented in Appendix H.256

5.2 Evaluation Metrics257

Success Rate: This is defined as the ratio of the number of programs that can (a) successfully258

be translated to Rust and (b) successfully pass the E2E tests for both unidiomatic and idiomatic259

translation phases to the total number if programs. To enable the LLMs to utilize feedback from260

previous failed attempts, we allow the LLM to make up to 6 attempts for each translation process261

(each using feedback from “all” previous attempts). After 6 attempts, we treat this test case as failure.262

Idiomaticity: To evaluate the idiomaticity of the translated code, we use three metrics:263

• Lint Alert Count is measured by running Rust-Clippy [26], a tool that provides lints on unidiomatic264

Rust code (including improper use of unsafe code and other common style issues). By collecting265

the warnings and errors generated by Rust-Clippy for the translated code, we can assess its266

idiomaticity: fewer alerts indicate more idiomatic translation. Previous works [14, 15] have also267

used Rust-Clippy for similar evaluations.268

• Unsafe Code Fraction, inspired by Shiraishi and Shinagawa [13], is defined as the ratio of tokens269

inside unsafe code blocks or functions to total tokens for a single program. High usage of unsafe270

is considered unidiomatic in Rust, as it bypasses compiler safety checks, introduces potential271

memory safety issues and reduces code readability.272

• Unsafe Free Fraction indicates the percentage of translated programs in a dataset that do not273

contain any unsafe code. Since unsafe code represents potential points where the compiler274

cannot guarantee safety, this metric helps determine the fraction of results that can be achieved275

without relying on unsafe code.276

5.3 LLMs Used277

We evaluate our approach using GPT-4o (OpenAI), Claude 3.5 Sonnet (Anthropic), Gemini 2.0278

Flash (Google), DeepSeek-R1 (DeepSeek) and Llama 3.3 70B Instruct (Meta)–a fine-tuned variant of279

Llama 3.3 70B optimized for text generation. Except for DeepSeek-R1, all models are non-reasoning280

models, i.e., directly generate output without chain-of-thought reasoning. LLM configurations are281

detailed in Appendix I.282

6 Evaluation283

Through our evaluation, we aim to answer the following research questions: (1) How successful is284

SACTOR in generating idiomatic Rust code using different LLM models?; (2) How idiomatic is285
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the Rust code produced by SACTOR compared to existing approaches?; and (3) How well does286

SACTOR generalize to complex code-bases?287

Our results show that: (1) DeepSeek-R1 achieves the highest success rates (93%) with SACTOR on288

TransCoder-IR and also reaches the highest success rates (84%) on Project CodeNet (§ 6.1), while289

failure reasons vary between datasets and models (Appendix J); (2) SACTOR’s idiomatic translation290

results outperforms all previous baselines, producing Rust code with fewer Clippy warnings and 100%291

unsafe-free translations (§ 6.2); and (3) SACTOR successfully generates the verified unidiomatic292

translation results on complex code-bases like avl tree and urlparser, but has difficulties verifying293

idiomatic translations when handling function pointers and complex data conversions (§ 6.3).294

We also evaluate the computational cost of SACTOR (Appendix K), the impact of the feedback295

mechanism (Appendix L), and temperature settings (Appendix M) . GPT-4o and Gemini 2.0 achieve296

the best cost-performance balance, while Llama 3.3 consumes the most tokens among non-reasoning297

models. DeepSeek-R1 uses 3-7 × more tokens than others. The feedback mechanism boosts Llama298

3.3’s success rate by 17%, but has little effect on GPT-4o, suggesting it benefits lower-performing299

models more. Temperature has minimal impact.300

6.1 Success Rate Evaluation301
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Figure 1: Success rates (SR) across different LLM models for the TransCoder-IR and CodeNet
datasets. SR 1-6 represent the number of attempts made to achieve a successful translation.

We evaluate the success rate (as defined in § 5.2) for two datasets on different models. For idiomatic302

translation, we also plot how many attempts are needed.303

(1) TransCoder-IR (Figure 1a): DeepSeek-R1 achieves the highest success rate (SR) in both304

unidiomatic (94%) and idiomatic (93%) steps, only 1% drop in the idiomatic translation step,305

demonstrating strong consistency in code translation. GPT-4o follows with 84% in the unidiomatic306

step and 80% in the idiomatic step. Gemini 2.0 comes next with 78% and 75%, respectively. Claude307

3.5 struggles in the unidiomatic step (55%) but does not show substantial degradation when converting308

unidiomatic Rust to idiomatic Rust (54%, only a 1% drop), but it is still the worst model compared309

to the others. Llama 3.3 performs well in the unidiomatic step (76%) but drops significantly in the310

idiomatic step (64%), and requiring more attempts for correctness.311

(2) Project CodeNet (Figure 1b): DeepSeek-R1 again leads with 86% in the unidiomatic step and312

84% in the idiomatic step, showing only a 2% drop in the idiomatic translation step. Claude 3.5313

follows closely with 86% success rate in the unidiomatic step and 83% in the idiomatic step. GPT-4o314

performs consistently well in the unidiomatic step (84%) but drops to 79% in the idiomatic step,315

indicating a 5% drop between the two steps. Gemini 2.0 comes next with 78% in the unidiomatic316

step and 74% in the idiomatic step, showing a consistent performance between two datasets. Llama317

3.3 still exhibits a significant drops (83% to 76%) in both steps and comes to the last place in the318

idiomatic step.319

The results demonstrates that DeepSeek-R1’s SRs remain high and consistent–94%/93% (unid-320

iomatic/idiomatic) on TransCoder-IR versus 86%/84% on CodeNet–while other models exhibit321
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notable performance drops when moving to TransCoder-IR. This suggests that models with reasoning322

capabilities may be better for handling complex code logic and data manipulation.323

6.2 Measuring Idiomaticity324

We compare our approach with four baselines: C2Rust [4], Crown [5], C2SaferRust [12] and Vert [14].325

Of these baselines, C2Rust is the most versatile3, supporting most C programs, while Crown is also326

broad but lacks support for some language features. C2SaferRust focuses on refining the unsafe code327

produced by C2Rust, allowing it to handle a wide range of C programs. In contrast, Vert targets a328

specific subset of simpler C programs. We assess the idiomaticity of Rust code generated by C2Rust,329

Crown, and C2SaferRust on both datasets. Since Vert produced Rust code only for TransCoder-IR,330

we evaluate it solely on this dataset. All the experiments are conducted using GPT-4o as the LLM for331

baselines and our approach, with max 6 attempts per translation.332
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Figure 2: Total Clippy Issues (Warnings + Errors)
Across Different Method

METHOD DATASET SR (%) UF (%) AU (%)

C2Rust TransCoder-IR 100 0 100
CodeNet 100 0 75.9

Crown TransCoder-IR 100 0 100
CodeNet 100 0 75.9

C2SaferRust TransCoder-IR 90 45.6 10.8
CodeNet 93 0 75.8

Vert TransCoder-IR 92 95.7 1.6

SACTOR (Unid.) TransCoder-IR 84 3.6 91.7
CodeNet 84 1.1 42.7

SACTOR (Idiom.) TransCoder-IR 80 100 0
CodeNet 79 100 0

Table 1: Unsafe Code Statistics. UF denotes Un-
safe Free and AU denotes Avg. Unsafe

Results: Figure 2 presents the lint alert count (sum up of Clippy warnings and errors count for a single333

program) across all approaches. C2Rust consistently exhibits high Clippy issues, and Crown shows334

little improvement over C2Rust, indicating both struggle to generate idiomatic Rust. C2SaferRust335

reduces Clippy issues, but it still retains a significant number of warnings and errors. Notably, even336

the unidiomatic output of SACTOR surpasses all of these 3. This underscores the advantage of337

LLMs over rule-based methods. While Vert improves idiomaticity, SACTOR’s idiomatic phase338

yields fewer Clippy issues, outperforming some existing LLM-based approaches.339

Table 1 summarizes unsafe code statistics. Unsafe-Free indicates the percentage of programs340

without unsafe code, while Avg. Unsafe represents the average proportion of unsafe code across all341

translations. C2Rust and Crown generate unsafe code in all programs with a high average unsafe342

percentage. C2SaferRust has the ability to reduce unsafe code and able to generate unsafe-free343

programs in some cases (45.6% in TransCoder-IR), but cannot sufficiently reduce the unsafe uses344

in the CodeNet dataset. Vert has a higher success rate than SACTOR but occasionally introduces345

unsafe code. SACTOR’s unidiomatic phase retains C semantics, leading to a high unsafe percentage.346

However, its idiomatic phase eliminates all unsafe code, achieving a 100% Unsafe-Free rate.347

6.3 Complex Code-bases348

We evaluate the generalization of our approach to complex code-bases by two case studies: the349

avl tree and the urlparser; more details are in Appendix H. For both two case studies, we use the350

GPT-4o model to generate Rust code from the C code. In summary, SACTOR successfully translates351

the entire C project into unidiomatic Rust, achieving 10/23 function and 4/5 data type conversions.352

Failures stem from the LLM’s difficulty in generating correct test harnesses for verification.353

Case Study 1: avl tree. The avl tree project consists of two parts: avl data, which provides354

helper functions for data management, and avl bf, which implements the AVL tree. We successfully355

3Versatility refers to an approach’s applicability to diverse C programs.
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Figure 3: Attempts Distribution for Case Studies in Unidiomatic Translation

generate idiomatic Rust for avl data, passing verification tests. However, for avl bf, we only356

produce unidiomatic Rust, though it still passes verification.357

Figure 3a shows the generation attempts. Failures stem from Rust compilation errors, which are used358

as feedback to refine subsequent attempts. Within 4 attempts per function, we achieve idiomatic Rust359

for avl data and unidiomatic Rust for avl bf.360

The key challenge in generating idiomatic Rust for avl bf lies in handling function pointers with361

void types:362

int (* compare)(const void *, const void *);363

In unidiomatic Rust, this translates directly using raw pointers:364

Option <unsafe extern "C" fn(*const c_void , *const c_void) -> c_int >365

For idiomatic Rust, raw pointers should be replaced with generics:366

Option <Box <dyn Fn(&T, &T) -> i32 >>367

where T represents the AVL tree’s data type. However, since our verification tests rely on FFI368

compatibility, maintaining the C interface requires raw pointers. Rust’s generics are determined369

at compile time, making it impossible to seamlessly convert them to raw pointers. This constraint370

prevents our approach from producing idiomatic Rust for avl bf.371

Case Study 2: urlparser. The urlparser project is a simple C-based URL parser. We successfully372

generate unidiomatic Rust code that passes verification, as shown in Figure 3b.373

For idiomatic Rust, we successfully translate 10 of 23 functions and 4 of 5 data types (enums,374

structures, and constants). However, the key challenge for the remaining functions is constructing375

a correct harness function to verify the generated code. As discussed in § 4.3.2, idiomatic Rust376

functions require a harness to convert C data structures to Rust and transfer outputs back. While the377

translated Rust code may be correct, the inability to generate a proper harness prevents verification.378

Without verification, we cannot confirm the correctness of these functions.379

7 Conclusion380

Translating C to Rust enhances memory safety but is error-prone and often unidiomatic. While381

LLMs improve translation, they lack correctness guarantees and struggle with semantic differences.382

SACTOR tackles this with a two-step approach, preserving semantics first, then refining for Rust383

conventions. Leveraging static analysis and FFI-based validation, it outperforms existing methods,384

with DeepSeek-R1 reaching 93% and 84% success rates on TransCoder-IR and Project CodeNet,385

respectively. However, key challenges remain: ensuring correctness, handling complex C features,386

scaling, interoperability, and efficiency (see Appendix A for details). Some examples of prompts387

used in SACTOR are shown in Appendix N.388
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Appendix467

Note: For better formatting, each appendix section is on a new page.468

A Limitations469

While SACTOR has proven effective in producing correct, idiomatic Rust translations, it has several470

limitations: our soft-equivalence checks depend on existing end-to-end tests, so incomplete or shallow471

coverage can allow subtle semantic errors to go undetected. Integrating automated test-generation or472

fuzzing tools could fill coverage gaps and catch subtle semantic mismatches; Also, the translation473

quality hinges on the underlying LLM—although GPT-4o and DeepSeek-R1 perform well, other474

models may yield significantly lower accuracy; Our current implementation does not support certain C475

features–such as complex macros, pervasive function pointers, global variables, and inline assembly—476

which restricts SACTOR’s applicability to those codebases (see § 6.3); Incorporating more advanced477

static analysis tools that capable of extracting more precise information from such constructs could478

further enhance SACTOR’s translation capabilities.479
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C Differences Between C and Rust481

C.1 Code Snippets482

Here is a code example to demonstrate the differences between C and Rust. The example shows a483

simple C program and its equivalent Rust program. The create sequence function takes an integer484

n as input and returns an array with a sequence of integers. In C, the function needs to allocate485

memory for the array using malloc and will return the pointer to the allocated memory as an array. If486

the size is invalid, or the allocation fails, the function will return NULL. The caller of the function is487

responsible for freeing the memory using free when it is done with the array to prevent memory488

leaks.489

C Code:

int* create_sequence(int n) {
    if (n <= 0) {
        return NULL;
    }
    int* arr = malloc(n * sizeof(int));
    if (!arr) {
        return NULL;
    }
    for (int i = 0; i < n; i++) {
        arr[i] = i;
    }
    return arr;
}

int* sequence = create_sequence(5);
if (sequence == NULL) {
    ...
}
...
free(sequence); // Need to free the memory when done

Rust Code:

fn create_sequence(n: i32) -> Option<Vec<i32>> {
    if n <= 0 {
        return None;
    }
    let mut arr = Vec::with_capacity(n as usize);
    for i in 0..n {
        arr.push(i);
    }
    Some(arr)
}
match create_sequence(5) {
    Some(sequence) => {
        ... // Does not need to free the memory
    }
    None => {
        ...
    }
}

Figure 5: Example of a simple C program and its equivalent Rust program, both hand-written for
illustration.

C.2 Tabular Summary490

Here, we present a non-exhaustive list of differences between C and Rust in Table 2, highlighting491

the key features that make translating code from C to Rust challenging. While the list is not492

comprehensive, it provides insights into the fundamental distinctions between the two languages,493

which can help developers understand the challenges of migrating C code to Rust.494
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Table 2: Key Differences Between C and Rust
FEATURE C RUST

MEMORY MANAGEMENT Manual (through
malloc/free)

Automatic (through ownership
and borrowing)

POINTERS Raw pointers like *p Safe references like &p/&mut p,
Box and Rc

LIFETIME MANAGEMENT Manual freeing of memory Lifetime annotations and borrow
checker

ERROR HANDLING Error codes and manual
checks

Explicit handling with Result
and Option types

NULL SAFETY Null pointers allowed (e.g.,
NULL)

No null pointers; uses Option for
nullable values

CONCURRENCY No built-in protections for
data races

Enforces safe concurrency with
ownership rules

TYPE CONVERSION Implicit conversions allowed
and common

Strongly typed; no implicit con-
versions

STANDARD LIBRARY C stand library with direct sys-
tem calls

Rust standard library with utilities
for strings, collections, and I/O

LANGUAGE FEATURES Procedure-oriented with mini-
mal abstractions

Modern features like pattern
matching, generics, and traits

D Algorithm for Task Division495

The task division algorithm is used to determine the order in which the items should be translated.496

The algorithm is shown in Algorithm 1.497

Algorithm 1 Translation Task Order Determination

Require: Li: List of items to be translated
Require: dep(a): Function to get dependencies of item a
Ensure: Lsorted: List of groups resolving dependencies

1: Lsorted ← ∅ ▷ Empty list
2: while |Lsorted| < |Li| do
3: Lprocessed ← ∅
4: for a ∈ Li do
5: if a /∈ Lprocessed and dep(a) ⊆ Lprocessed then
6: Lsorted ← Lsorted + a ▷ Add to sorted list
7: Lprocessed ← Lprocessed ∪ a
8: end if
9: end for

10: if Lprocessed = ∅ then
11: Lcircular ← DFS(Li, dep) ▷ Circular dependencies
12: Lsorted ← Lsorted + Lcircular ▷ Add a group to sorted list
13: end if
14: end while
15: return Lsorted

In the algorithm, Li is the list of items to be translated, and dep(a) is a function that returns the498

dependencies of item a. The algorithm returns a list Lsorted that contains the items in the order in499

which they should be translated. DFS(Li, dep) is a depth-first search function that returns a list of500

items involved in a circular dependency. It begins by collecting all items (e.g., functions, structs) to501

be translated and their respective dependencies (in both functions and data types). Items with no502

unresolved dependencies are pushed into the translation order list first, and other items will remove503

them from their dependencies list. This process continues until all items are pushed into the list, or504

circular dependencies are detected. If circular dependencies are detected, we resolve them through505

a depth-first search strategy, ensuring that all items involved in a circular dependency are grouped506

together and handled as a single unit.507
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E Equivalence Testing Details in Prior Literature508

E.1 Symbolic Execution-Based Equivalence509

Symbolic execution explores all potential execution paths of a program by using symbolic inputs to510

generate constraints [27, 28, 29]. While theoretically powerful, this method is impractical for verifying511

C-to-Rust equivalence due to differences in language features. For instance, Rust’s RAII (Resource512

Acquisition Is Initialization) pattern automatically inserts destructors for memory management, while513

C relies on explicit malloc and free calls. These differences cause mismatches in compiled code,514

making it difficult for symbolic execution engines to prove equivalence. Additionally, Rust’s compiler515

adds safety checks (e.g., array boundary checks), which further complicate equivalence verification.516

E.2 Fuzz Testing-Based Equivalence517

Fuzz testing generates random or mutated inputs to test whether program outputs match expected518

results [30, 31, 32]. While more practical than symbolic execution, fuzz testing faces challenges in519

constructing meaningful inputs for real-world programs. For example, testing a URL parsing function520

requires generating valid URLs with specific formats, which is non-trivial. For large C programs,521

this difficulty scales, making it infeasible to produce high-quality test cases for every translated Rust522

function.523

16



F An Example of the Test Harness524

Here, we provide an example of the test harness used to verify the correctness of the translated code in525

Figure 6, which is used to verify the idiomatic Rust code. In this example, the concat str idiomatic526

function is the idiomatic translation we are testing, while the concat str c function is the test harness527

function that can be linked back to the original C code. where a string and an integer are passed as528

input, and an owned string is returned. Input strings are converted from C’s char* to Rust’s &str,529

and output strings are converted from Rust’s String back to C’s char*.530

fn concat_str_idiomatic(orig: &str, num: i32) -> String {
    format!("{}{}", orig, num)
}

fn concat_str(orig: *const c_char, num: c_int) -> *const c_char {
    // convert input
    let orig_str = CStr::from_ptr(orig)
        .to_str()
        .expect("Invalid UTF-8 string");
    // call target function
    let out = concat_str_idiomatic(orig_str, num as i32);
    // convert output
    let out_str = CString::new(out).unwrap();
    // `into_raw` transfers ownership to the caller
    out_str.into_raw()
}

Figure 6: Test harness used for verifying concat str translation
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G An Example of SACTOR Translation Process531

To demonstrate the translation process of SACTOR, we present a straightforward example of532

translating a C function to Rust. The C program includes an atoi function that converts a string to an533

integer, and a main function that parses command-line arguments and calls the atoi function. The C534

code is shown in Figure 7a.535

#include <stdio.h>

int atoi(char *str) {
    int result = 0;
    int sign = 1;

    while (*str == ' ' || *str == '\t' || *str == '\n' ||
           *str == '\r' || *str == '\v' || *str == '\f') {
        str++;
    }

    if (*str == '+' || *str == '-') {
        if (*str == '-') {
            sign = -1;
        }
        str++;
    }

    while (*str >= '0' && *str <= '9') {
        result = result * 10 + (*str - '0');
        str++;
    }

    return sign * result;
}

int main(int argc, char *argv[]) {
    if (argc != 2) {
        printf("Usage: %s <number>\n", argv[0]);
        return 1;
    }

    int value = atoi(argv[1]);
    printf("Parsed integer: %d\n", value);
    return 0;
}

(a) C implementation of atoi
use libc::c_char;
use std::env;
use std::ffi::CString;
use std::process;
pub unsafe fn atoi(str: *const c_char) -> i32 {
    let mut result: i32 = 0;
    let mut sign: i32 = 1;
    let mut ptr = str;
    while *ptr == ' ' as c_char
        || *ptr == '\t' as c_char
        || *ptr == '\n' as c_char
        || *ptr == '\r' as c_char
        || *ptr == '\x0B' as c_char
        || *ptr == '\x0C' as c_char
    {
        ptr = ptr.add(1);
    }
    if *ptr == '+' as c_char || *ptr == '-' as c_char {
        if *ptr == '-' as c_char {
            sign = -1;
        }
        ptr = ptr.add(1);
    }
    while *ptr >= '0' as c_char && *ptr <= '9' as c_char {
        let digit = (*ptr - '0' as c_char) as i32;
        if let Some(new_result) = result.checked_mul(10).and_then(
            |r| r.checked_add(digit),
        ) {
            result = new_result;
        } else {
            return if sign == 1 { i32::MAX } else { i32::MIN };
        }
        ptr = ptr.add(1);
    }
    sign * result
}
pub fn main() {
    let args: Vec<String> = env::args().collect();
    if args.len() != 2 {
        println!("Usage: {} <number>", args[0]);
        process::exit(1);
    }
    let c_str = match CString::new(args[1].as_str()) {
        Ok(cstring) => cstring,
        Err(_) => {
            eprintln!("Failed to create CString from input");
            process::exit(1);
        }
    };
    let value = unsafe { atoi(c_str.as_ptr() as *const c_char) };
    println!("Parsed integer: {}", value);
}

(b) Unidiomatic Rust translation from C

use std::env;
use std::process;
pub fn atoi(input: &str) -> i32 {
    let mut result: i32 = 0;
    let mut sign: i32 = 1;
    let mut chars = input.chars().peekable();
    while let Some(&c) = chars.peek() {
        if c.is_whitespace() {
            chars.next();
        } else {
            break;
        }
    }
    if let Some(&c) = chars.peek() {
        if c == '+' || c == '-' {
            if c == '-' {
                sign = -1;
            }
            chars.next();
        }
    }
    for c in chars {
        if let Some(digit) = c.to_digit(10) {
            if let Some(new_result) = result
                .checked_mul(10)
                .and_then(|r| r.checked_add(digit as i32))
            {
                result = new_result;
            } else {
                return if sign == 1 { i32::MAX } else { i32::MIN };
            }
        } else {
            break;
        }
    }
    sign * result
}
pub fn main() {
    let args: Vec<String> = env::args().collect();
    if args.len() != 2 {
        println!("Usage: {} <number>", args[0]);
        process::exit(1);
    }
    let input = &args[1];
    let value = atoi(input);
    println!("Parsed integer: {}", value);
}

(c) Idiomatic Rust translation from unidiomatic Rust

Figure 7: SACTOR translation process for atoi program

We assume that there are numerous end-to-end tests for the C code, allowing SACTOR to use them536

for verifying the correctness of the translated Rust code.537

First, the divider will divide the C code into two parts: the atoi function and the main function, and538

determine the translation order is first atoi and then main, as atoi is the dependency of main and539

the atoi function is a pure function.540

Next, SACTOR proceeds with the unidiomatic translation, converting both functions into unidiomatic541

Rust code. This generated code will keep the semantics of the original C code while using Rust syntax.542
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Once the translation is complete, the unidiomatic verifier executes the end-to-end tests to ensure543

the correctness of the translated function. If the verifier passes all tests, SACTOR considers the544

unidiomatic translation accurate and progresses to the next function. If any test fails, SACTOR will545

retry the translation process using the feedback information collected from the verifier, as described546

in § 4.3.1. After translating all sections of the C code, SACTOR will combine the unidiomatic Rust547

code segments to form the final unidiomatic Rust code. The unidiomatic Rust code is shown in548

Figure 7b.549

Then, the SACTOR will start the idiomatic translation process and translate the unidiomatic Rust550

code into idiomatic Rust code. The idiomatic translator requests the LLM to adapt the C semantics551

into idiomatic Rust, eliminating any unsafe and non-idiomatic constructs, as detailed in § 4.2.2. Based552

on the same order, the SACTOR will translate two functions accordingly, and using the idiomatic553

verifier to verify and provide the feedback to the LLM if the verification fails. After all parts of the554

Rust code are translated into idiomatic Rust, verified, and combined, the SACTOR will produces555

the final idiomatic Rust code. The idiomatic Rust code is shown in Figure 7c, representing the final556

output of SACTOR.557
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H Dataset Details558

Table 3: Summary of datasets and real-world projects used for evaluation.

DATASET SIZE PREPROCESSING E2E TESTS CORRESPONDING RUST

TRANSCODER-IR [24] 100 Removed buggy programs (compilation and
memory errors) and programs that have Rust
translation

Present Absent

PROJECT CODENET [25] 100 Filtered for programs with external input
(argc/argv)

Absent Absent

REAL-WORLD PROJECTS 2 Extend macros, combine the whole project to
a single file

Present (Limited) Absent

H.1 TransCoder-IR Dataset [24]559

The TransCoder-IR dataset is used to evaluate the TransCoder-IR model and consists of solutions560

to coding challenges in various programming languages. For evaluation, we focus on the 698 C561

programs available in this dataset. First, we filter out programs that already have corresponding Rust562

code. Several C programs in the dataset contain bugs, which are removed by checking their ability563

to compile. We then use valgrind to identify and discard programs with memory errors during the564

end-to-end tests. Finally, we select 100 programs with the most lines of code for our experiments.565

H.2 Project CodeNet [25]566

Project CodeNet is a large-scale dataset for code understanding and translation, containing 14 million567

code samples in over 50 programming languages collected from online judge websites. From this568

dataset, which includes more than 750,000 C programs, we target only those that accept external input.569

Specifically, we filter programs using argc and argv, which process input from the command line.570

As the end-to-end tests are not available for this dataset, we develop the SACTOR test generator to571

automatically generate end-to-end tests for these programs based on the source code. For evaluation,572

we select 200 programs and refine the dataset to include 100 programs that successfully generate573

end-to-end tests.574

H.3 Real-World Projects575

For § 6.3, we use two real-world projects for evaluation: avl-tree4 and urlparser5. Both projects are576

written in C and have some non-trivial C code features. While earlier works may have used different577

versions, we selected these projects because they include end-to-end tests, enabling us to evaluate the578

correctness of the translated code. To make the projects fit the input requirements, we use the cpp579

preprocessor to expand macros and combine the entire project into a single file. The avl-tree project580

contains 12 end-to-end tests to test the different functionalities of the AVL tree implementation. The581

urlparser project contains 3 end-to-end tests to test the different functionalities of the URL, we582

manually create 7 additional end-to-end tests to test the different functionalities of the URL parser.583

4https://github.com/xieqing/avl-tree
5https://github.com/jwerle/url.h
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I LLM Configurations584

Table 4 shows our configurations for different LLMs in evaluation. All other hyper-parameters, like585

Top-P or Top-K, are set as the model’s default values.586

Table 4: Configurations of Different LLMs in Evaluation
Model Version Temperature Hosting Platform
GPT-4o gpt-4o-latest (As of 2024-12) 1 AzureOpenAI API
Claude 3.5 Sonnet claude-3-5-sonnet-20241022 1 Anthropic API
Gemini 2.0 Flash gemini-2.0-flash-exp default Google Cloud API
Llama 3.3 Instruct 70B Llama 3.3 Instruct 70B Q4 0.8 4xH100 GPU
DeepSeek-R1 DeepSeek-R1 671B 1 DeepSeek API
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J Failure Analysis in Evaluating SACTOR587

Table 5: Failure reason categories for translating TransCoder-IR and Project CodeNet datasets.

(a) TransCoder-IR

CATEGORY DESCRIPTION

R1 Memory safety violations in array operations due to improper bounds checking
R2 Mismatched data type translations
R3 Incorrect array sizing and memory layout translations
R4 Incorrect string representation conversion between C and Rust
R5 Failure to handle C’s undefined behavior with Rust’s safety mechanisms
R6 Use of C-specific functions in Rust without proper Rust wrappers

(b) Project CodeNet

CATEGORY DESCRIPTION

S1 Improper translation of command-line argument handling or attempt to fix wrong handling
S2 Function naming mismatches between C and Rust
S3 Format string directive mistranslation causing output inconsistencies
S4 Original code contains random number generation
S5 SACTOR unable to translate mutable global state variables
S6 Mismatched data type translations
S7 Incorrect control flow or loop boundary condition translations

GPT-4o Claude 3.5 Llama 3.3 Gemini 2.0 DeepSeek-R1
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Figure 8: Failure reasons across different LLM models for both datasets.

Here, we analyze the failure cases of SACTOR in translating C code to Rust that we conducted in588

Section 6.1. as cases where SACTOR fails offer valuable insights into areas that require refinement.589

For each failure case in the two datasets, we conduct an analysis to determine the primary cause590

of translation failure. This process involves leveraging DeepSeek-R1 to identify potential reasons591

(prompts available in Appendix N.5), followed by manual verification to ensure correctness. We only592

focus on the translation process from C to unidiomatic Rust because: (1) it is the most challenging593

step, and (2) it can better reflect the model’s ability to fit the syntactic and semantic differences594

between the two languages. Table 5 summarize the categories of failure reasons, and Figure 8a and 8b595

illustrate failure reasons (FRs) across models.596

(1) TransCoder-IR (Table 5a, Figure 8a): Based on the analysis, we observe that different models597

exhibit varying failure reasons. Claude 3.5 shows a particularly high incidence of string representation598

conversion errors (R4), with 25 out of 45 total failures in the unidiomatic translation step. In contrast,599

GPT-4o has only 1 out of 17 failures in this category. Llama 3.3 demonstrates consistent challenges600

with both R3 (incorrect array sizing and memory layout translations) and R6 (using C-specific601

functions without proper Rust wrappers), with 10 files for each category. GPT-4o shows a more602

balanced distribution of errors, with its highest count in R3. All models except GPT-4o struggle with603

string handling (R4) to varying degrees, suggesting this is one of the most challenging aspects of the604

translation process. For R6 (use of C-specific functions in Rust), which primarily is a compilation605

failure, only Llama 3.3 and Gemini 2.0 consistently fail to resolve the issue in some cases, while all606
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other models can successfully handle the compilation errors through feedback and avoid failure in607

this category. DeepSeek-R1 has the fewest overall errors across categories, with failures only in R1608

(1 file), R3 (2 files), and R4 (3 files), while completely avoiding errors in R2, R5, and R6.609

(2) Project CodeNet (Table 5b, Figure 8b): Similar to the TransCoder-IR dataset, we also observe that610

different models in Project CodeNet demonstrate varying failure reasons. C-to-Rust code translation611

challenges in the CodeNet dataset. Most notably, S6 (mismatched data type translations) presents612

a significant barrier for Llama 3.3 and Gemini 2.0 (7 files each), while GPT-4o and Claude 3.5613

completely avoid this issue. Input argument handling (S1) and format string mistranslations (S3)614

emerge as common challenges across all models in CodeNet, suggesting fundamental difficulties in615

translating these language features regardless of model architecture. Only Llama 3.3 and DeepSeek-616

R1 encounter control flow translation failures (S7), with 2 files each. S4 (random number generation)617

and S5 (mutable global state variables) are unable to be translated by SACTOR because the current618

SACTOR implementation does not support these features.619

Compared to the results in TransCoder-IR, string representation conversion (R4 in TransCoder-IR,620

S3 in CodeNet) remains a consistent challenge across both datasets for all models, though the issue is621

significantly more severe in TransCoder-IR, particularly for Claude 3.5 (24 files). This also suggests622

that reasoning models like DeepSeek-R1 are better at handling complex code logic and string/array623

manipulation, as they exhibit fewer failures in these areas, demonstrating the potential of reasoning624

models to address complex translation tasks.625
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K SACTOR Cost Analysis626

Table 6: Average Cost Comparison of Different LLMs Across Two Datasets. The color intensity
represents the relative cost of each metric for each dataset.

LLM DATASET TOKENS AVG. QUERIES

Claude 3.5 TransCoder-IR 4595.33 5.15
CodeNet 3080.28 3.15

Gemini 2.0 TransCoder-IR 3343.12 4.24
CodeNet 2209.38 2.39

Llama 3.3 TransCoder-IR 4622.80 5.39
CodeNet 4456.84 3.80

GPT-4o TransCoder-IR 2651.21 4.24
CodeNet 2565.36 2.95

DeepSeek-R1 TransCoder-IR 17895.52 4.77
CodeNet 13592.61 3.11

Here, we conduct a cost analysis of SACTOR for experiments in § 6.1 to evaluate the efficiency627

of different LLMs in generating idiomatic Rust code. To evaluate the cost of our approach, we628

measure (1) Total LLM Queries as the number of total LLM queries made during translation and629

verification for a single test case in each dataset, and (2) Total Token Count as the total number of630

tokens processed by the LLM for a single test case in each dataset. To ensure a fair comparison across631

models, we use the same tokenizer (tiktoken) and encoding (o200k base).632

In order to better understand costs, we only analyze programs that successfully generate idiomatic633

Rust code, excluding failed attempts (as they always reach the maximum retry limit and do not634

contribute meaningfully to the cost analysis). We evaluate the combined cost of both translation635

phases to assess overall efficiency. Table 6 compares the average cost of different LLMs across636

two datasets, measured in token usage and query count per successful idiomatic Rust translation as637

mentioned in § 5.2.638

Results: Gemini 2.0 and GPT-4o are the most efficient models, requiring the fewest tokens and639

queries. GPT-4o maintains a low token cost (2651.21 on TransCoder-IR, 2565.36 on CodeNet)640

with 4.24 and 2.95 average queries, respectively. Gemini 2.0 is similarly efficient, especially on641

CodeNet, with the lowest token usage (2209.38) and requiring only 2.39 queries on average. Claude642

3.5, despite its strong performance on CodeNet, incurs higher costs on TransCoder-IR (4595.33643

tokens, 5.15 queries), likely due to additional translation steps. Llama 3.3 is the least efficient in644

non-thinking model (GPT-4o, Claude 3.5, Gemini 2.0), consuming the most tokens (4622.80 and645

4456.84, respectively) and requiring the highest number of queries (5.39 and 3.80, respectively),646

indicating significant resource demands.647

As a reasoning model, DeepSeek-R1 consumes significantly more tokens (17,895.52 vs. 13,592.61)648

than non-reasoning models–5-7 times higher than GPT-4o–despite having a similar average query649

count (4.77 vs. 3.11) for generating idiomatic Rust code. This high token usage comes from the650

“reasoning process” required before code generation.651
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L Ablation Study on the Feedback Mechanism652

To evaluate the effectiveness of the feedback mechanism proposed in § 4.3.3, we conduct an ablation653

study by removing the mechanism and comparing the model’s performance with and without it. We654

consider two experimental groups: (1) with the feedback mechanism enabled, and (2) without the655

feedback mechanism. In the latter setting, if any part of the translation fails, the system simply restarts656

the translation attempt using the original prompt, without providing any feedback from the failure.657

We use the same dataset and evaluation metrics described in § 5, and focus our evaluation on only658

two models: GPT-4o and Llama 3.3 70B. We choose these models because GPT-4o demonstrated one659

of the highest performance and Llama 3.3 70B the lowest in our earlier experiments. By comparing660

the success rates between the two groups, we assess whether the feedback mechanism improves661

translation performance across models of different capabilities.662

The results are shown in Figure 9.663
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Figure 9: Ablation study on the feedback mechanism. The success rates of the models with and
without the feedback (marked as -FBK) mechanism are shown for both TransCoder-IR and CodeNet
datasets.

(1) TransCoder-IR (Figure 9a): Incorporating the feedback mechanism increased the number of664

successful translations for Llama 3.3 70B from 57 to 76 in the unidiomatic setting and from 46 to665

64 in the idiomatic setting. In contrast, GPT-4o performed slightly worse with feedback, decreasing666

from 87 to 84 (unidiomatic) and from 83 to 80 (idiomatic).667

(2) Project CodeNet (Figure 9b): A similar trend is observed where Llama 3.3 70B improved from668

62 to 83 (unidiomatic) and from 59 to 76 (idiomatic), corresponding to gains of 21 and 17 percentage669

points, respectively. GPT-4o, however, showed only marginal improvements: from 82 to 84 in the670

unidiomatic setting and from 77 to 79 in the idiomatic setting.671

These results suggest that the feedback mechanism is particularly effective for lower-capability models672

like Llama 3.3, substantially improving their translation success rates. In contrast, higher-capability673

models such as GPT-4o already perform near optimal with simple random sampling, leaving little674

space for improvement. This indicates that the feedback mechanism is more beneficial for models675

with lower capabilities, as they can leverage the feedback to enhance their overall performance.676
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M SACTOR Performance with Different Temperatures677

In § 6, all the experiments are conducted with the temperature set to default values, as explained on Ap-678

pendix I. To investigate how temperature affects the performance of SACTOR, we conduct additional679

experiments with different temperature settings (0.0, 0.5, 1.0) for GPT-4o on both TransCoder-IR680

and Project CodeNet datasets, as shown in Figure 10. Through some preliminary experiments and681

discussions on OpenAI’s community forum 6, we find that setting the temperature more than 1 will682

likely to generate more random and less relevant outputs, which is not suitable for our task.683
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Figure 10: Success Rate of SACTOR with different temperature settings for GPT-4o on TransCoder-
IR and Project CodeNet datasets.

(1) TransCoder-IR (Figure 10a): Setting the decoder to a deterministic temperature of t = 0 resulted684

in 83 successful translations (83%), while both t = 0.5 and t = 1.0 yielded 80 successes (80%) each.685

This represents a slightly improvement with 3 additional correct predictions under the deterministic686

setting.687

(2) Project CodeNet (Figure 10b): Temperature does not have a significant impact: the model688

produced 79, 81, and 79 successful outputs at t = 0, t = 0.5, and t = 1.0 respectively (79–81%),689

which does not indicate any outstanding trend in performance across the temperature settings.690

The results on both datasets suggests that lowering temperature to zero can offer a slight boost in691

reliability some of the cases, but it does not significantly affect the overall performance of SACTOR.692

6https://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api/172683
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N Examples of Prompts Used in SACTOR693

The following prompts are used to guide the LLM in C-to-Rust translation and verification tasks. The694

prompts may slightly vary to accommodate different translation task, as SACTOR leverages static695

analysis to fetch the necessary information for the LLM.696

N.1 Unidiomatic Translation697

Figure 11 shows the prompt for translating unidiomatic C code to Rust.698

Translate the following C function to Rust. Try to keep the ** equivalence ** as much as
possible.

‘libc ‘ will be included as the **only** dependency you can use. To keep the equivalence , you
can use ‘unsafe ‘ if you want.

The function is:
‘‘‘c
{C_FUNCTION}
‘‘‘

// Specific for main function
The function is the ‘main ‘ function , which is the entry point of the program. The function

signature should be: ‘pub fn main() -> () ‘.
For ‘return 0;‘, you can directly ‘return;‘ in Rust or ignore it if it’s the last statement.
For other return values , you can use ‘std:: process ::exit()‘ to return the value.
For ‘argc ‘ and ‘argv ‘, you can use ‘std::env::args()‘ to get the arguments.

The function uses some of the following stdio file descriptors: stdin. Which will be included
as

‘‘‘rust
extern "C" {

static mut stdin: *mut libc::FILE;
}

‘‘‘
You should **NOT** include them in your translation , as the system will automatically include

them.

The function uses the following functions , which are already translated as (you should **NOT**
include them in your translation , as the system will automatically include them):

‘‘‘rust
{DEPENDENCIES}
‘‘‘

Output the translated function into this format (wrap with the following tags):
----FUNCTION ----
‘‘‘rust
// Your translated function here
‘‘‘
----END FUNCTION ----

Figure 11: Unidiomatic Translation Prompt

N.2 Unidiomatic Translation with Feedback699

Figure 12 shows the prompt for translating unidiomatic C code to Rust with feedback from the700

previous incorrect translation and error message.701
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Translate the following C function to Rust. Try to keep the ** equivalence ** as much as
possible.

‘libc ‘ will be included as the **only** dependency you can use. To keep the equivalence , you
can use ‘unsafe ‘ if you want.

The function is:
‘‘‘c
{C_FUNCTION}

‘‘‘

// Specific for main function
The function is the ‘main ‘ function , which is the entry point of the program. The function

signature should be: ‘pub fn main() -> () ‘.
For ‘return 0;‘, you can directly ‘return;‘ in Rust or ignore it if it’s the last statement.
For other return values , you can use ‘std:: process ::exit()‘ to return the value.
For ‘argc ‘ and ‘argv ‘, you can use ‘std::env::args()‘ to get the arguments.

The function uses some of the following stdio file descriptors: stdin. Which will be included
as

‘‘‘rust
extern "C" {

static mut stdin: *mut libc::FILE;
}

‘‘‘
You should **NOT** include them in your translation , as the system will automatically include

them.

The function uses the following functions , which are already translated as (you should **NOT**
include them in your translation , as the system will automatically include them):

‘‘‘rust
fn atoi (str : * const c_char) -> c_int;
‘‘‘

Output the translated function into this format (wrap with the following tags):
----FUNCTION ----
‘‘‘rust
// Your translated function here
‘‘‘
----END FUNCTION ----

Lastly , the function is translated as:
‘‘‘rust
{COUNTER_EXAMPLE}
‘‘‘
It failed to compile with the following error message:
‘‘‘
{ERROR_MESSAGE}
‘‘‘
Analyzing the error messages , think about the possible reasons , and try to avoid this error.

Figure 12: Unidiomatic Translation with Feedback Prompt

N.3 Idiomatic Translation702

Figure 13 shows the prompt for translating unidiomatic Rust code to idiomatic Rust. Crown is used703

to hint the LLM about the ownership, mutability, and fatness of pointers.704
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Translate the following unidiomatic Rust function into idiomatic Rust. Try to remove all the ‘
unsafe ‘ blocks and only use the safe Rust code or use the ‘unsafe ‘ blocks only when
necessary.

Before translating , analyze the unsafe blocks one by one and how to convert them into safe
Rust code.

**libc may not be provided in the idiomatic code , so try to avoid using libc functions and
types , and avoid using ‘std::ffi ‘ module .**

‘‘‘rust
{RUST_FUNCTION}
‘‘‘

"Crown" is a pointer analysis tool that can help to identify the ownership , mutability and
fatness of pointers. Following are the possible annotations for pointers:

‘‘‘
fatness:

- ‘Ptr ‘: Single pointer
- ‘Arr ‘: Pointer is an array

mutability:
- ‘Mut ‘: Mutable pointer
- ‘Imm ‘: Immutable pointer

ownership:
- ‘Owning ‘: Owns the pointer
- ‘Transient ‘: Not owns the pointer

‘‘‘‘

The following is the output of Crown for this function:
‘‘‘
{CROWN_RESULT}
‘‘‘
Analyze the Crown output firstly , then translate the pointers in function arguments and return

values with the help of the Crown output.
Try to avoid using pointers in the function arguments and return values if possible.

Output the translated function into this format (wrap with the following tags):
----FUNCTION ----
‘‘‘rust
// Your translated function here
‘‘‘
----END FUNCTION ----

Figure 13: Idiomatic Translation Prompt

N.4 Idiomatic Verification705

Idiomatic verification is the process of verifying the correctness of the translated idiomatic Rust code706

by generating a test harness. The prompt for idiomatic verification is shown in Figure 14.707
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This is the idiomatic translation of Rust code from C, the function signature is
‘‘‘rust
{FUNCTION_NAME}_idiomatic
‘‘‘
This is the unidiomatic translation of Rust code from C, the function signature is
‘‘‘rust
{FUNCTION_DEPENDENCIES}
‘‘‘
Generate the harness for the function atoi_idiomatic with the following code pattern so that

it can be tested:
Finish all the TODOs.
You should **NOT** add any dummy implementation of the function or structs , as it will be

provided by the verifier:
‘‘‘rust
// TODO: add necessary ‘use ‘s here
// Don ’t add the definitions of any other functions and structs , they will be provided by the

system

fn {FUNCTION_NAME} ({ UNIDIOMATIC_ARGS }) -> {UNIDIOMATIC_RETURN} {
// TODO: Add code here to Convert the input to the idiomatic format
let result = fn {FUNCTION_NAME}_idiomatic ({ IDIOMATIC_ARGS }) -> {IDIOMATIC_RETURN }; // Call

the idiomatic function
// TODO: Add code here to Convert the result back to the original format
//

}
‘‘‘
remove all the TODOs and replace them with the necessary code.

Output the translated function into this format (wrap with the following tags):
----FUNCTION ----
‘‘‘rust
// Your translated function here
‘‘‘
----END FUNCTION ----

Figure 14: Idiomatic Verification Prompt

N.5 Failure Reason Analysis708

Figure 15 shows the prompt for analyzing the reasons for the failure of the translation.709

Given the following C code:
‘‘‘c
{original_code}
‘‘‘
The following code is generated by a tool that translates C code to Rust code. The tool has a

bug that causes it to generate incorrect Rust code. The bug is related to the following
error message:

‘‘‘json
{json_data}
‘‘‘
Please analyze the error message and provide a reason why the tool generated incorrect Rust

code.

1. Append a new reason to the list of reasons.
2. Select a reason from the list of reasons that best describes the error message.

Please provide a reason why the tool generated incorrect Rust code ** FUNDAMENTALLY **.

List of reasons:
{all_current_reasons}

Please provide the analysis output in the following format:
‘‘‘json
{

"action ": "append", // or "select" to select a reason from the list of reasons
"reason ": "Format string differences between C and Rust", // the reason for the error
message , if action is "append"
"selection ": 1 // the index of the reason from the list of reasons , if action is "select"
// "reason" and "selection" are mutually exclusive , you should only provide one of them

}
‘‘‘

Please **make sure** to provide a general reason that can be applied to multiple cases , not a
specific reason that only applies to the current case.

Please provide a reason why the tool generated incorrect Rust code ** FUNDAMENTALLY ** (NOTE
that the reason of first failure is always NOT the fundamental reason).

Figure 15: Failure Reason Analysis Prompt
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NeurIPS Paper Checklist710

The checklist is designed to encourage best practices for responsible machine learning research,711

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove712

the checklist: The papers not including the checklist will be desk rejected. The checklist should713

follow the references and follow the (optional) supplemental material. The checklist does NOT count714

towards the page limit.715

Please read the checklist guidelines carefully for information on how to answer these questions. For716

each question in the checklist:717

• You should answer [Yes] , [No] , or [NA] .718

• [NA] means either that the question is Not Applicable for that particular paper or the719

relevant information is Not Available.720

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).721

The checklist answers are an integral part of your paper submission. They are visible to the722

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it723

(after eventual revisions) with the final version of your paper, and its final version will be published724

with the paper.725

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.726

While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”727

provided a proper justification is given (e.g., ”error bars are not reported because it would be too728

computationally expensive” or ”we were unable to find the license for the dataset we used”). In729

general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased730

in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your731

best judgment and write a justification to elaborate. All supporting evidence can appear either in the732

main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in733

the justification please point to the section(s) where related material for the question can be found.734

IMPORTANT, please:735

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”,736

• Keep the checklist subsection headings, questions/answers and guidelines below.737

• Do not modify the questions and only use the provided macros for your answers.738

1. Claims739

Question: Do the main claims made in the abstract and introduction accurately reflect the740

paper’s contributions and scope?741

Answer: [Yes]742

Justification: The abstract and Section 1 clearly enumerate the tool’s contributions in bullet743

list and match the empirical results reported later.744

Guidelines:745

• The answer NA means that the abstract and introduction do not include the claims746

made in the paper.747

• The abstract and/or introduction should clearly state the claims made, including the748

contributions made in the paper and important assumptions and limitations. A No or749

NA answer to this question will not be perceived well by the reviewers.750

• The claims made should match theoretical and experimental results, and reflect how751

much the results can be expected to generalize to other settings.752

• It is fine to include aspirational goals as motivation as long as it is clear that these goals753

are not attained by the paper.754

2. Limitations755

Question: Does the paper discuss the limitations of the work performed by the authors?756

Answer: [Yes]757
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Justification: We discuss the limitations of our work in Section A.758

Guidelines:759

• The answer NA means that the paper has no limitation while the answer No means that760

the paper has limitations, but those are not discussed in the paper.761

• The authors are encouraged to create a separate ”Limitations” section in their paper.762

• The paper should point out any strong assumptions and how robust the results are to763

violations of these assumptions (e.g., independence assumptions, noiseless settings,764

model well-specification, asymptotic approximations only holding locally). The authors765

should reflect on how these assumptions might be violated in practice and what the766

implications would be.767

• The authors should reflect on the scope of the claims made, e.g., if the approach was768

only tested on a few datasets or with a few runs. In general, empirical results often769

depend on implicit assumptions, which should be articulated.770

• The authors should reflect on the factors that influence the performance of the approach.771

For example, a facial recognition algorithm may perform poorly when image resolution772

is low or images are taken in low lighting. Or a speech-to-text system might not be773

used reliably to provide closed captions for online lectures because it fails to handle774

technical jargon.775

• The authors should discuss the computational efficiency of the proposed algorithms776

and how they scale with dataset size.777

• If applicable, the authors should discuss possible limitations of their approach to778

address problems of privacy and fairness.779

• While the authors might fear that complete honesty about limitations might be used by780

reviewers as grounds for rejection, a worse outcome might be that reviewers discover781

limitations that aren’t acknowledged in the paper. The authors should use their best782

judgment and recognize that individual actions in favor of transparency play an impor-783

tant role in developing norms that preserve the integrity of the community. Reviewers784

will be specifically instructed to not penalize honesty concerning limitations.785

3. Theory assumptions and proofs786

Question: For each theoretical result, does the paper provide the full set of assumptions and787

a complete (and correct) proof?788

Answer: [NA]789

Justification: The work is empirical; it presents no new theorems or formal proofs.790

Guidelines:791

• The answer NA means that the paper does not include theoretical results.792

• All the theorems, formulas, and proofs in the paper should be numbered and cross-793

referenced.794

• All assumptions should be clearly stated or referenced in the statement of any theorems.795

• The proofs can either appear in the main paper or the supplemental material, but if796

they appear in the supplemental material, the authors are encouraged to provide a short797

proof sketch to provide intuition.798

• Inversely, any informal proof provided in the core of the paper should be complemented799

by formal proofs provided in appendix or supplemental material.800

• Theorems and Lemmas that the proof relies upon should be properly referenced.801

4. Experimental result reproducibility802

Question: Does the paper fully disclose all the information needed to reproduce the main ex-803

perimental results of the paper to the extent that it affects the main claims and/or conclusions804

of the paper (regardless of whether the code and data are provided or not)?805

Answer: [Yes]806

Justification: Source code and evaluation datasets are publicly released in the footnote of807

the paper.808

Guidelines:809
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• The answer NA means that the paper does not include experiments.810

• If the paper includes experiments, a No answer to this question will not be perceived811

well by the reviewers: Making the paper reproducible is important, regardless of812

whether the code and data are provided or not.813

• If the contribution is a dataset and/or model, the authors should describe the steps taken814

to make their results reproducible or verifiable.815

• Depending on the contribution, reproducibility can be accomplished in various ways.816

For example, if the contribution is a novel architecture, describing the architecture fully817

might suffice, or if the contribution is a specific model and empirical evaluation, it may818

be necessary to either make it possible for others to replicate the model with the same819

dataset, or provide access to the model. In general. releasing code and data is often820

one good way to accomplish this, but reproducibility can also be provided via detailed821

instructions for how to replicate the results, access to a hosted model (e.g., in the case822

of a large language model), releasing of a model checkpoint, or other means that are823

appropriate to the research performed.824

• While NeurIPS does not require releasing code, the conference does require all submis-825

sions to provide some reasonable avenue for reproducibility, which may depend on the826

nature of the contribution. For example827

(a) If the contribution is primarily a new algorithm, the paper should make it clear how828

to reproduce that algorithm.829

(b) If the contribution is primarily a new model architecture, the paper should describe830

the architecture clearly and fully.831

(c) If the contribution is a new model (e.g., a large language model), then there should832

either be a way to access this model for reproducing the results or a way to reproduce833

the model (e.g., with an open-source dataset or instructions for how to construct834

the dataset).835

(d) We recognize that reproducibility may be tricky in some cases, in which case836

authors are welcome to describe the particular way they provide for reproducibility.837

In the case of closed-source models, it may be that access to the model is limited in838

some way (e.g., to registered users), but it should be possible for other researchers839

to have some path to reproducing or verifying the results.840

5. Open access to data and code841

Question: Does the paper provide open access to the data and code, with sufficient instruc-842

tions to faithfully reproduce the main experimental results, as described in supplemental843

material?844

Answer: [Yes]845

Justification: Code and datasets with run instructions are linked in the paper.846

Guidelines:847

• The answer NA means that paper does not include experiments requiring code.848

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/849

public/guides/CodeSubmissionPolicy) for more details.850

• While we encourage the release of code and data, we understand that this might not be851

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not852

including code, unless this is central to the contribution (e.g., for a new open-source853

benchmark).854

• The instructions should contain the exact command and environment needed to run to855

reproduce the results. See the NeurIPS code and data submission guidelines (https:856

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.857

• The authors should provide instructions on data access and preparation, including how858

to access the raw data, preprocessed data, intermediate data, and generated data, etc.859

• The authors should provide scripts to reproduce all experimental results for the new860

proposed method and baselines. If only a subset of experiments are reproducible, they861

should state which ones are omitted from the script and why.862

• At submission time, to preserve anonymity, the authors should release anonymized863

versions (if applicable).864
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• Providing as much information as possible in supplemental material (appended to the865

paper) is recommended, but including URLs to data and code is permitted.866

6. Experimental setting/details867

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-868

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the869

results?870

Answer: [Yes]871

Justification: § 5 gives datasets, metrics, model versions, temperatures, and Appendix I lists872

all hyper-parameters.873

Guidelines:874

• The answer NA means that the paper does not include experiments.875

• The experimental setting should be presented in the core of the paper to a level of detail876

that is necessary to appreciate the results and make sense of them.877

• The full details can be provided either with the code, in appendix, or as supplemental878

material.879

7. Experiment statistical significance880

Question: Does the paper report error bars suitably and correctly defined or other appropriate881

information about the statistical significance of the experiments?882

Answer: [Yes]883

Justification: In Appendix M, we show the results under different temperature settings,884

and there is no significant difference between them. The results are also consistent across885

different datasets.886

Guidelines:887

• The answer NA means that the paper does not include experiments.888

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-889

dence intervals, or statistical significance tests, at least for the experiments that support890

the main claims of the paper.891

• The factors of variability that the error bars are capturing should be clearly stated (for892

example, train/test split, initialization, random drawing of some parameter, or overall893

run with given experimental conditions).894

• The method for calculating the error bars should be explained (closed form formula,895

call to a library function, bootstrap, etc.)896

• The assumptions made should be given (e.g., Normally distributed errors).897

• It should be clear whether the error bar is the standard deviation or the standard error898

of the mean.899

• It is OK to report 1-sigma error bars, but one should state it. The authors should900

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis901

of Normality of errors is not verified.902

• For asymmetric distributions, the authors should be careful not to show in tables or903

figures symmetric error bars that would yield results that are out of range (e.g. negative904

error rates).905

• If error bars are reported in tables or plots, The authors should explain in the text how906

they were calculated and reference the corresponding figures or tables in the text.907

8. Experiments compute resources908

Question: For each experiment, does the paper provide sufficient information on the com-909

puter resources (type of compute workers, memory, time of execution) needed to reproduce910

the experiments?911

Answer: [Yes]912

Justification: We provide the compute resources in Appendix I.913

Guidelines:914

• The answer NA means that the paper does not include experiments.915
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,916

or cloud provider, including relevant memory and storage.917

• The paper should provide the amount of compute required for each of the individual918

experimental runs as well as estimate the total compute.919

• The paper should disclose whether the full research project required more compute920

than the experiments reported in the paper (e.g., preliminary or failed experiments that921

didn’t make it into the paper).922

9. Code of ethics923

Question: Does the research conducted in the paper conform, in every respect, with the924

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?925

Answer: [Yes]926

Justification: We reviewed the NeurIPS Code of Ethics and found no conflicts;927

Guidelines:928

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.929

• If the authors answer No, they should explain the special circumstances that require a930

deviation from the Code of Ethics.931

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-932

eration due to laws or regulations in their jurisdiction).933

10. Broader impacts934

Question: Does the paper discuss both potential positive societal impacts and negative935

societal impacts of the work performed?936

Answer: [Yes]937

Justification: For positive societal impact, we have discussed in § 1 and § 7. This work is938

about code translation between two different languages and we don’t expect any negative939

societal impact.940

Guidelines:941

• The answer NA means that there is no societal impact of the work performed.942

• If the authors answer NA or No, they should explain why their work has no societal943

impact or why the paper does not address societal impact.944

• Examples of negative societal impacts include potential malicious or unintended uses945

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations946

(e.g., deployment of technologies that could make decisions that unfairly impact specific947

groups), privacy considerations, and security considerations.948

• The conference expects that many papers will be foundational research and not tied949

to particular applications, let alone deployments. However, if there is a direct path to950

any negative applications, the authors should point it out. For example, it is legitimate951

to point out that an improvement in the quality of generative models could be used to952

generate deepfakes for disinformation. On the other hand, it is not needed to point out953

that a generic algorithm for optimizing neural networks could enable people to train954

models that generate Deepfakes faster.955

• The authors should consider possible harms that could arise when the technology is956

being used as intended and functioning correctly, harms that could arise when the957

technology is being used as intended but gives incorrect results, and harms following958

from (intentional or unintentional) misuse of the technology.959

• If there are negative societal impacts, the authors could also discuss possible mitigation960

strategies (e.g., gated release of models, providing defenses in addition to attacks,961

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from962

feedback over time, improving the efficiency and accessibility of ML).963

11. Safeguards964

Question: Does the paper describe safeguards that have been put in place for responsible965

release of data or models that have a high risk for misuse (e.g., pretrained language models,966

image generators, or scraped datasets)?967
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Answer: [NA]968

Justification: We do not release any high-risk pretrained model.969

Guidelines:970

• The answer NA means that the paper poses no such risks.971

• Released models that have a high risk for misuse or dual-use should be released with972

necessary safeguards to allow for controlled use of the model, for example by requiring973

that users adhere to usage guidelines or restrictions to access the model or implementing974

safety filters.975

• Datasets that have been scraped from the Internet could pose safety risks. The authors976

should describe how they avoided releasing unsafe images.977

• We recognize that providing effective safeguards is challenging, and many papers do978

not require this, but we encourage authors to take this into account and make a best979

faith effort.980

12. Licenses for existing assets981

Question: Are the creators or original owners of assets (e.g., code, data, models), used in982

the paper, properly credited and are the license and terms of use explicitly mentioned and983

properly respected?984

Answer: [Yes]985

Justification: All the datasets and code used in this paper are publicly available and properly986

cited in the paper.987

Guidelines:988

• The answer NA means that the paper does not use existing assets.989

• The authors should cite the original paper that produced the code package or dataset.990

• The authors should state which version of the asset is used and, if possible, include a991

URL.992

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.993

• For scraped data from a particular source (e.g., website), the copyright and terms of994

service of that source should be provided.995

• If assets are released, the license, copyright information, and terms of use in the996

package should be provided. For popular datasets, paperswithcode.com/datasets997

has curated licenses for some datasets. Their licensing guide can help determine the998

license of a dataset.999

• For existing datasets that are re-packaged, both the original license and the license of1000

the derived asset (if it has changed) should be provided.1001

• If this information is not available online, the authors are encouraged to reach out to1002

the asset’s creators.1003

13. New assets1004

Question: Are new assets introduced in the paper well documented and is the documentation1005

provided alongside the assets?1006

Answer: [Yes]1007

Justification: We release SACTOR-datasets in the paper and provide the documentation in1008

the footnote.1009

Guidelines:1010

• The answer NA means that the paper does not release new assets.1011

• Researchers should communicate the details of the dataset/code/model as part of their1012

submissions via structured templates. This includes details about training, license,1013

limitations, etc.1014

• The paper should discuss whether and how consent was obtained from people whose1015

asset is used.1016

• At submission time, remember to anonymize your assets (if applicable). You can either1017

create an anonymized URL or include an anonymized zip file.1018
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14. Crowdsourcing and research with human subjects1019

Question: For crowdsourcing experiments and research with human subjects, does the paper1020

include the full text of instructions given to participants and screenshots, if applicable, as1021

well as details about compensation (if any)?1022

Answer: [NA]1023

Justification: No human subjects were involved in this research.1024

Guidelines:1025

• The answer NA means that the paper does not involve crowdsourcing nor research with1026

human subjects.1027

• Including this information in the supplemental material is fine, but if the main contribu-1028

tion of the paper involves human subjects, then as much detail as possible should be1029

included in the main paper.1030

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1031

or other labor should be paid at least the minimum wage in the country of the data1032

collector.1033

15. Institutional review board (IRB) approvals or equivalent for research with human1034

subjects1035

Question: Does the paper describe potential risks incurred by study participants, whether1036

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1037

approvals (or an equivalent approval/review based on the requirements of your country or1038

institution) were obtained?1039

Answer: [NA]1040

Justification: No human subjects were involved in this research.1041

Guidelines:1042

• The answer NA means that the paper does not involve crowdsourcing nor research with1043

human subjects.1044

• Depending on the country in which research is conducted, IRB approval (or equivalent)1045

may be required for any human subjects research. If you obtained IRB approval, you1046

should clearly state this in the paper.1047

• We recognize that the procedures for this may vary significantly between institutions1048

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1049

guidelines for their institution.1050

• For initial submissions, do not include any information that would break anonymity (if1051

applicable), such as the institution conducting the review.1052

16. Declaration of LLM usage1053

Question: Does the paper describe the usage of LLMs if it is an important, original, or1054

non-standard component of the core methods in this research? Note that if the LLM is used1055

only for writing, editing, or formatting purposes and does not impact the core methodology,1056

scientific rigorousness, or originality of the research, declaration is not required.1057

Answer: [Yes]1058

Justification: We detail the usage of LLMs in § 5, and the LLMs are the core component of1059

our method.1060

Guidelines:1061

• The answer NA means that the core method development in this research does not1062

involve LLMs as any important, original, or non-standard components.1063

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for1064

what should or should not be described.1065
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