© O N O g A~ W N =

21
22
23
24
25
26
27
28
29
30

31
32
33
34

LLM-Driven Multi-step Translation from C to Rust
using Static Analysis

Anonymous Author(s)
Affiliation
Address
email

Abstract

Translating software written in C to Rust has significant benefits in improving
memory safety while maintaining high performance. However, manual translation
is cumbersome, error-prone, and often produces unidiomatic code. Large language
models (LLMs) have demonstrated promise in producing idiomatic translations,
but offer no correctness guarantees as they lack the ability to capture the semantic
differences between the source and target languages. We propose SACTOR, an
LLM-driven C-to-Rust translation tool that employs a two-step process: an initial
“unidiomatic” translation to preserve semantics, followed by an “idiomatic” refine-
ment to align with Rust standards. SACTOR leverages static analysis of the C
source to handle pointer semantics and dependency resolution. To validate the cor-
rectness of step-wise translation, we use end-to-end testing via the foreign function
interface. We evaluate the translation of 200 programs from two datasets and two
case studies, comparing the performance of GPT-40, Claude 3.5 Sonnet, Gemini
2.0 Flash, Llama 3.3 70B and DeepSeek-R1 in SACTOR. Our results demon-
strate that SACTOR achieves high correctness and enhanced idiomaticity, with
the best-performing model (DeepSeek-R1) reaching 93% and 84% correctness (on
each dataset, respectively), while generating more idiomatic, Rust-compliant code,
reducing Clippy lint alerts by up to 7 x, and producing unsafe-free translations on
both datasets compared to existing methods.

1 Introduction

The C language is the most widely used language in system-level programming, because of its ability
to directly manipulate memory and raw hardware [1]. However, its manual memory management has
led to memory-related bugs, such as buffer overflows, dangling pointers, and memory leaks, which
have been the root cause of many security vulnerabilities [2]. To address these shortcomings, Rust
has emerged as a promising alternative; it is a modern system-programming language that offers
memory safety without relying on garbage collection by imposing a strict object ownership model [3]].
Rust is adopted by projects like the Linux kernel in developing new hardware driver and Mozilla
Firefox. Translating legacy C code to Rust — particularly into idiomatic Rust rather than a direct,
unidiomatic mapping — can improve safety and performance, but doing so manually is time-intensive,
error-prone, and requires expertise in both languages.

Traditional automatic translation tools such as C2Rust [4] analyze the abstract syntax tree (AST) of C
code to generate syntactically equivalent Rust code. However, these rule-based or statically analyzed
approaches [5 4} 16l [7, |8]] often fail to produce “idiomatic” Rust: code that follows the Rust program-
ming model and conventions with the least use of unsafe blocks. Due to fundamental differences

'nttps://github.com/Rust-for-Linux/linux

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

https://github.com/Rust-for-Linux/linux

in semantics and memory management between C and Rust, idiomatic translations are crucial to
compiler-enforced memory safety, as well as improving code readability and maintainability.

While large language models (LLMs) demonstrate the ability to “understand” syntax and code
semantics [9], they are prone to hallucinations and often generate incorrect or semantically mis-
aligned code [10]. In C-to-Rust translation, naive LLMs lacking structure awareness frequently
produce unsafe or code. Prior work has explored translation quality through various prompting
strategies [[11, 12} [13] or ensure correctness via verification techniques, such as fuzz testing and
symbolic execution [14}[15]), to validate LLM-generated code. While these methods improve semantic
alignment or enforce correctness, they often struggle with complex code and fall short of producing
idiomatic, safety-compliant Rust. For example, Vert [14] struggles to verify programs involving
data structures through symbolic execution, and C2SaferRust [[12] still produces Rust code with
substantial use of unsafe.

In this paper, we introduce Structure-Aware C-to-Rust Translator (or SACTOR), an LLM-driven
zero-shot translation tool. An overview of SACTOR is presented in Figure We divide the
translation process into two stages:
1. C to Unidiomatic Rust — This phase performs a syntactic translation, preserving C-like semantics
with unsafe blocks to handle low-level memory operations.
2. Unidiomatic Rust to Idiomatic Rust — This phase refines the translation to Rust’s semantic
standards, eliminating unsafe blocks to guarantee memory safety.

Throughout both stages, we leverage static analysis to extract pointer semantics and dependency
information, guiding the translation. To efficiently verify LLM-generated code, we embed the
translated Rust alongside the original C implementation via Foreign Function Interface (FFI), enabling
end-to-end testing of the complete program for correctness. The two-phase strategy separates
syntax from semantics, allowing the LLM to focus on a simplified task at each step and improving
translation correctness, while static analysis further enhances this process by supplying precise
program semantics, helping the LLM generate idiomatic, memory-safe Rust. These steps combined
significantly improve translation quality, achieves high-level correctness, and provides a broader
applicability to different types of C programs.

In summary, we make the following contributions:

* We present SACTOREL a tool that integrates information extracted from static analysis into a
two-step translation pipeline. SACTOR reliably produces idiomatic, unsafe-free Rust from C
(§). A full example translation is provided in Appendix [G|

* We introduce a novel verification approach that embeds the translated Rust code alongside the
original C implementation using FFI. This enables practical, scalable, and efficient end-to-end
testing for LLM-generated code (§ 4.3).

* We evaluate SACTOR on a diverse set of C programs across two datasets and five LLMs. Our
best-performing model, DeepSeek-R1, achieves a 93% and 84% success rate on each dataset,
respectively (§[6.I). Notably, SACTOR generates more idiomatic, unsafe-free Rust compared to
four existing methods (§[6.2). These results demonstrate SACTOR s effectiveness.

* Finally, we present a comprehensive cost and diagnostic analysis:

1. Token Efficiency: GPT-4o0 is the most token-efficient, while DeepSeek-R1 consumes 5-7x
more tokens. The average number of queries varies less, with Llama 3.3 taking only ~1.4x
more queries than Gemini 2.0 (Appendix K.

2. Feedback Improvement: Incorporating compilation and testing feedback significantly boosts
the success rate of weaker models such as Llama 3.3 by around 17% (Appendix [C).

3. Temperature Sensitivity: Temperature adjustments have a negligible effect, with only slight
improvements observed at lower values (Appendix [M).

4. Failure Analysis: Reasoning models like DeepSeek-R1 excel at resolving complex issues such
as format string and array manipulation errors (Appendix [J).

2 Background

Primer on C and Rust: C is one of the most widely used programming languages [16]. It is a
low-level language that provides direct access to memory and hardware through pointers and abstracts

2SACTOR code: https://anonymous. 4open.science/r/sactor-C8D6; datasets: https://anonymous
4open.science/r/sactor-datasets-DE21.

https://anonymous.4open.science/r/sactor-C8D6
https://anonymous.4open.science/r/sactor-datasets-DE21
https://anonymous.4open.science/r/sactor-datasets-DE21

87
88
89
90
91
92

93
94
95
96
97
98
99
100

101
102
103
104

106

107
108
109
110
111
112
113
114
115
116
17
118
119
120

121
122
123
124
125
126
127
128
129
130
131

132

133
134
135
136
137

the machine-level instructions. While this makes it efficient, it suffers from memory vulnerabilities
such as buffer overflow [17,[18]], dangling pointers [[19], and memory leaks [20]. Rust, in contrast,
is a modern programming language that provides memory safety without additional performance
penalty, and has the same ability to access low-level hardware as C. Instead, Rust enforces strict
compile-time memory safety through ownership, borrowing, and lifetimes—mechanisms designed
and undergoing formal verification to eliminate memory vulnerabilities [3} 21].

Challenges in Code Translation: Despite its advantages, Rust is a relatively new language; many
widely-used system-level programs remain in C, which lacks memory safety and is prone to vulnera-
bilities. It’s desirable to translate such programs to Rust and gain security and reliability benefits,
but the process is challenging due to fundamental language differences. Figure [5]in Appendix [C|
shows an example of a simple C program and its Rust equivalent to illustrate the differences of two
languages in terms of memory management and error handling. While Rust permits unsafe blocks
for C-like pointer operations, their use is discouraged due to the absence of compiler guarantees and
their non-idiomatic nature for further maintenance.

Other differences include string representation, pointer usage, array handling, reference lifetimes, and
error propagation. A non-exhaustive summary appears in Appendix [C} These gaps make translation
non-trivial: an effective translator must (1) understand the semantics of both languages, (2) reason
over memory management differences, and (3) handle language-specific constructs. In addition, a
practical correctness verification approach for the translated code is also essential.

3 Related Work

LLMs for C-to-Rust Translation: Vert [14] uses LLMs to generate translation candidates and
applies fuzz testing and symbolic execution to verify equivalence. While this ensures syntactic and
semantic correctness, this verification method is too strict and struggles with scalability and complex
C features. Flourine [15] guides LLMs using error feedback and verifies correctness via fuzz testing,
while employing data type serialization to address type mismatches; however, serialization issues still
account for half of the translation errors. Shiraishi and Shinagawa [13] segment C code into smaller
sub-tasks and guide LLMs to translate specific constructs (e.g., macros) using predefined Rust idioms,
but only evaluate compilation success without verifying functional correctness. Shetty et al. [11] use
dynamic analysis to analyze the runtime behavior of the C code, and uses this information to guide
LLM translation. However, dynamic analysis is limited by input coverage, making it challenging to
generalize across all execution paths. Nitin et al. [12]] refine C2Rust outputs using LLMs to reduce
unidiomatic Rust (unsafe, 1ibc), but the output still rely heavily on them. The overall translation
quality is restricted by C2Rust, which removes comments and preprocessor directives (§ and
makes the LLM harder to interpret the code and produce a more idiomatic translation.

Non-LLM Approaches for C-to-Rust Translation: C2Rust [4] translates C to Rust by converting
the C abstract syntax tree (AST) into a Rust AST, followed by a rule-based transformation into Rust
code. Although it ensures syntactic accuracy, the output remains a purely structural translation that
relies heavily on unsafe blocks and suffers from low readability due to direct construct mapping
and explicit type conversions. Crown [3] is a tool that can analyze the pointer information in C
code based on its static ownership tracking. It uses this information to generate Rust code with the
corresponding semantics and reduce the pointer usage in the translated code. Hong and Ryu [7]
proposed an approach to handle the return value of functions in C-to-Rust translation. Ling et al. [8]
translate Rust based on a set of predefined rules and heuristics. Although these approaches reduce the
use of unsafe blocks compared to C2Rust, the translated code still heavily relies on unsafe blocks
and remains largely unidiomatic.

4 SACTOR Methodology

We propose SACTOR, an LLM-driven C-to-Rust translation tool using a two-step translation
methodology. The overview of SACTOR’s methodology is shown in Figure] in Appendix [B]
Recall that the semantics of Rust is different from that of C (§ . To assist the LLM, and capture
more nuanced semantic information, we utilize a suite of static analysis tools to provide additional
information in the form of hints to the LLM. We outline SACTOR’s four main stages below.

138

139
140
141
142
143
144
145
146
147
148
149
150
151

152

153
154
155

156

157
158
159

161
162
163
164
165
166
167
168
169

170

171
172
173
174
175
176
177
178
179
180

181

182
183
184
185
186
187
188

4.1 Task Division

We begin by dividing the program into smaller parts that can be processed by the LLM independently.
This enables the LLM to focus on a narrower scope for each translation task and ensures the program
fits within its context window. This strategy is supported by studies showing that LLM performance
degrades on long-context understanding and generation tasks [22} 23]]; by breaking the program into
smaller pieces, we can mitigate these limitations and improve performance on each individual task. To
facilitate task division and extract relevant language information—such as definitions, declarations, and
dependencies—from C code, we developed a static analysis tool called C Parser based on libclang.
libclang is a library that provides a C compiler interface, allowing access to semantic information of
the code. Our C Parser analyzes the input program and splits the program into fragments consisting
of a single type, global variable, or function definition. This step also extracts semantic dependencies
between each part (e.g., a function definition depending on a prior type definition). We then process
each program fragment in dependency order: all dependencies of a code fragment are processed
before the fragment. In Appendix [D] we provide more details on how we divide the program.

4.2 Code Translation

To ensure that each program fragment is translated only after its dependencies have been processed,
we begin by translating data types, as they form the foundational elements for functions. This is
followed by global variables and functions. We divide the translation process into two steps.

4.2.1 Unidiomatic Rust Translation

We aim to produce semantically equivalent Rust code from the original C code, allowing the use of
unsafe blocks and C standard library functions. For data type translation, we leverage C2Rust [4]]
to convert C code into Rust. While C2Rust provides reliable data type translation, it struggles
with function translation due to its compiler-based approach, which omits source-level details like
comments, macros, and other elements. These omissions significantly reduce the readability and
usability of the generated Rust code. Thus, we use C2Rust only for data type translation, and
use an LLM to translate global variables and functions. For functions, we rely on our C Parser
to automatically extract dependencies (e.g., function signatures, data types, and global variables)
and reference the corresponding Rust code. This approach guides the LLM to accurately translate
functions by leveraging the previously translated components and directly reusing or invoking them
as needed. For other language primitives like global variables, we extract them via static analysis
and map them to their Rust equivalents using C2Rust-derived hints, preserving their mutability and
visibility semantics.

4.2.2 Idiomatic Rust Translation

The goal of this step is to refine unidiomatic Rust into idiomatic Rust by removing unsafe blocks
and following Rust idioms. Handling pointers from C code is a key challenge, as they are considered
unsafe in Rust. Unsafe pointers should be replaced with Rust types such as references, arrays, or
owned types. To address this, we use Crown [3]] to facilitate the translation by analyzing pointer
mutability, fatness (e.g., arrays), and ownership. This information provided by Crown helps the LLM
assign appropriate Rust types to pointers. Owned pointers are translated to Box, while borrowed
pointers use references or smart pointers. Crown assists in translating data types like struct
and union, which are processed first as they are often dependencies for functions. For function
translations, Crown analyzes parameters and return pointers, while local variable pointers are inferred
by the LLM. Dependencies are extracted using our C Parser to guide accurate function translation.

4.3 Verification

To verify the equivalence between source and target languages, prior work has relied on symbolic ex-
ecution and fuzz testing. However, these methods are impractical for real-world C-to-Rust translation
(details in Appendix [E). We propose a new approach to validate the correctness of translated Rust
code by focusing on soft equivalence—ensuring functional equivalence of the entire program based on
success on end-to-end (E2E) tests. This approach avoids the complexity of generating specific inputs
or constraints for individual functions and is well-suited for real-world programs where such E2E
tests are often available and reusable. Correctness confidence under this framework depends on the

189
190

191

192
193
194
195
196
197

199
200

201

202
203
204
205
206
207
208
209
210
211
212
213
214
215

216
217

218
219

220
221
222
223

224

225
226
227
228
229

231

232
233
234

236
237

code coverage of accompanying E2E tests: the broader the coverage, the stronger the assurance of
equivalence.

4.3.1 Verifying Unidiomatic Rust Code

Verifying the unidiomatic Rust code is straightforward, as it is semantically equivalent to the original
C code and maintains compatible function signatures and data types. This compatibility ensures
a consistent Application Binary Interface (ABI) between the two languages, enabling direct use
of the FFI for cross-language linking. The verification process involves two main steps. First, the
unidiomatic Rust code is compiled using the Rust compiler to check for successful compilation. Then,
the original C code is recompiled with the Rust translation linked as a shared library. This setup
ensures that when the C code calls the target function, it invokes the Rust translation instead. To
verify correctness, E2E tests are run on the entire program, comparing the outputs of the original C
code and the unidiomatic Rust translation. If all tests pass, the target function is considered verified.

4.3.2 Verifying Idiomatic Rust Code

The verification of idiomatic Rust code is more complex, as the idiomatic Rust code does not align
with the original C code in data types or function definitions. Direct linking between the original
C code and the idiomatic Rust code is therefore infeasible. To address this, we use the LLM to
create a test harness for each target function. The test harness mirrors the function definition of the
unidiomatic Rust version, allowing it to accept C data types as input and return C data types as output.
Within the harness, inputs are converted from C data types to their corresponding Rust types before
calling the target function. The output is then converted back from Rust types to C types to maintain
type consistency. Due to space constraints, Figure [6]in Appendix [F| presents an example of such
a harness. To ensure reliability, all harnesses are automatically synthesized and validated through
compilation and end-to-end testing. If any test fails, we regenerate both the test harness and the target
function, and repeat the verification process until all tests pass. Once the harness is constructed, it
can be linked to the original C code, as in §4.3.1] E2E tests are then executed for the entire program,
enabling verification of the idiomatic Rust code even when it diverges from the original C code in
data types and function definitions.

What does the harness do? The harness relies on type conversions to bridge the semantic gap
between C and Rust representations. We categorize these conversions into two cases:

* Basic types: Simple conversions like int to 132, float to f32, and char#* to String or &str,
which are straightforward for the LLM to handle.

* Custom data structures: These conversions are more complex due to layout differences between C
and Rust structures. For such cases, the LLM firstly generates two conversion functions for each
structure—one for converting from C-to-Rust and another for converting from Rust-to-C. These
functions are tailored to specific data structures and are invoked by the test harness.

4.3.3 Feedback Mechanism

For code that fails the verification process, feedback is provided to the translation process to help the
LLM correct the issues. If the Rust code fails to compile, the compiler errors are directly passed back
to the translation process to guide the LLM in fixing the translation. For E2E test failures, a Rust
procedural macro is employed to insert debugging code into the target function during compile time.
This debugging code logs the inputs and outputs of the target function when a test fails. The E2E
tests are then re-executed, and the collected information is fed back to the translation process.

4.4 Code Combination

By translating and verifying all functions and data types, we can integrate them into a unified Rust
code-base. We first gather the translated Rust code from each sub-task, then eliminate duplicate use
statements and other redundancies needed for individual sub-task compilation. Next, we organize the
code into a well-structured, idiomatic implementation of the original C program. Once combined, the
entire program is subjected to E2E tests to verify the correctness of the final Rust code. If all tests
pass, the translation process is deemed successful.

238

239

240

241
242

243
244

245
246
247

248
249

250
251
252
253
254
255
256

257

259
260
261
262

263

264
265

267
268

269
270
271
272

273
274
275
276

277

278
279
280
281
282

283

284
285

S Experimental Setup

5.1 Datasets Used

For the selection of datasets for evaluation, we consider the following criteria:

* Absence of Corresponding Rust Code: The dataset must not include equivalent Rust code to prevent
LLMs from simply memorizing the dataset instead of performing genuine translation.

* Sufficient Number of C Programs: The dataset should contain a substantial number of C programs
to ensure a robust evaluation of the approach’s performance across a diverse set of examples.

* Presence of Non-Trivial C Features: The dataset should include C programs with advanced features
such as multiple functions, structs, and other non-trivial constructs as it enables the evaluation to
assess the approach’s ability to handle complex features of C.

* Availability of E2E Tests: The dataset should either include E2E tests or make it easy to generate
them as this is essential for accurately evaluating the correctness of the translated code.

Based on the above aspects, we select two datasets TransCoder-IR [24] and Project CodeNet [25]],
which are widely used in the code translation domain, as well as two real-world projects: avi-
tree and urlparser. For evaluation purposes, we randomly sample 100 C programs from each of
the TransCoder-IR and Project CodeNet (with input arguments) datasets to ensure computational
feasibility while maintaining statistical significance. The avi-tree and urlparser projects are real-
world C projects with around 1000 and 500 lines of code, respectively. The complete details of these
datasets are presented in Appendix [H]

5.2 Evaluation Metrics

Success Rate: This is defined as the ratio of the number of programs that can (a) successfully
be translated to Rust and (b) successfully pass the E2E tests for both unidiomatic and idiomatic
translation phases to the total number if programs. To enable the LLMs to utilize feedback from
previous failed attempts, we allow the LLM to make up to 6 attempts for each translation process
(each using feedback from “all” previous attempts). After 6 attempts, we treat this test case as failure.

Idiomaticity: To evaluate the idiomaticity of the translated code, we use three metrics:

* Lint Alert Count is measured by running Rust-Clippy [26], a tool that provides lints on unidiomatic
Rust code (including improper use of unsafe code and other common style issues). By collecting
the warnings and errors generated by Rust-Clippy for the translated code, we can assess its
idiomaticity: fewer alerts indicate more idiomatic translation. Previous works [14} [15] have also
used Rust-Clippy for similar evaluations.

» Unsafe Code Fraction, inspired by Shiraishi and Shinagawa [[13]], is defined as the ratio of tokens
inside unsafe code blocks or functions to total tokens for a single program. High usage of unsafe
is considered unidiomatic in Rust, as it bypasses compiler safety checks, introduces potential
memory safety issues and reduces code readability.

» Unsafe Free Fraction indicates the percentage of translated programs in a dataset that do not
contain any unsafe code. Since unsafe code represents potential points where the compiler
cannot guarantee safety, this metric helps determine the fraction of results that can be achieved
without relying on unsafe code.

5.3 LLMs Used

We evaluate our approach using GPT-40 (OpenAl), Claude 3.5 Sonnet (Anthropic), Gemini 2.0
Flash (Google), DeepSeek-R1 (DeepSeek) and Llama 3.3 70B Instruct (Meta)—a fine-tuned variant of
Llama 3.3 70B optimized for text generation. Except for DeepSeek-R1, all models are non-reasoning
models, i.e., directly generate output without chain-of-thought reasoning. LLM configurations are
detailed in Appendix

6 Evaluation

Through our evaluation, we aim to answer the following research questions: (1) How successful is
SACTOR in generating idiomatic Rust code using different LLM models?; (2) How idiomatic is

286
287

288
289
290
291
292
293
294

295
296
297
298
299
300

301

302
303

304
305
306

308
309
310
311

312
313
314
315

317
318
319

320
321

the Rust code produced by SACTOR compared to existing approaches?; and (3) How well does
SACTOR generalize to complex code-bases?

Our results show that: (1) DeepSeek-R1 achieves the highest success rates (93%) with SACTOR on
TransCoder-IR and also reaches the highest success rates (84%) on Project CodeNet (§ , while
failure reasons vary between datasets and models (Appendix [I); (2) SACTOR’s idiomatic translation
results outperforms all previous baselines, producing Rust code with fewer Clippy warnings and 100%
unsafe-free translations (§ @); and (3) SACTOR successfully generates the verified unidiomatic
translation results on complex code-bases like avl_tree and urlparser, but has difficulties verifying
idiomatic translations when handling function pointers and complex data conversions (§ [6.3).

We also evaluate the computational cost of SACTOR (Appendix [K)), the impact of the feedback
mechanism (Appendix [[J), and temperature settings (Appendix [M) . GPT-40 and Gemini 2.0 achieve
the best cost-performance balance, while Llama 3.3 consumes the most tokens among non-reasoning
models. DeepSeek-R1 uses 3-7 x more tokens than others. The feedback mechanism boosts Llama
3.3’s success rate by 17%, but has little effect on GPT-40, suggesting it benefits lower-performing
models more. Temperature has minimal impact.

6.1 Success Rate Evaluation

B3 Unidiomatic SR 1 HEHH Unidiomatic SR 4 BZ72 |diomatic SR 1 HHH Idiomatic SR 4
BN Unidiomatic SR 2 Unidiomatic SR 5 Idiomatic SR 2 Idiomatic SR 5
222 Unidiomatic SR 3 M Unidiomatic SR 6 BXA Idiomatic SR 3 [Idiomatic SR 6

100

80

60

40

Success Rate (%)
Success Rate (%)

20

Claude 3.5 Gemini 2.0 Llama 3.3 GPT-40 DeepSeek-R1 0 Claude 3.5 Gemini 2.0 Llama 3.3 GPT-40 DeepSeek-R1
LLM Models LLM Models
(a) TransCoder-IR SR (b) CodeNet SR

Figure 1: Success rates (SR) across different LLM models for the TransCoder-IR and CodeNet
datasets. SR 1-6 represent the number of attempts made to achieve a successful translation.

We evaluate the success rate (as defined in § [5.2)) for two datasets on different models. For idiomatic
translation, we also plot how many attempts are needed.

(1) TransCoder-IR (Figure [Ia): DeepSeek-R1 achieves the highest success rate (SR) in both
unidiomatic (94%) and idiomatic (93%) steps, only 1% drop in the idiomatic translation step,
demonstrating strong consistency in code translation. GPT-40 follows with 84% in the unidiomatic
step and 80% in the idiomatic step. Gemini 2.0 comes next with 78% and 75%, respectively. Claude
3.5 struggles in the unidiomatic step (55%) but does not show substantial degradation when converting
unidiomatic Rust to idiomatic Rust (54%, only a 1% drop), but it is still the worst model compared
to the others. Llama 3.3 performs well in the unidiomatic step (76%) but drops significantly in the
idiomatic step (64%), and requiring more attempts for correctness.

(2) Project CodeNet (Figure[Ib): DeepSeek-R1 again leads with 86% in the unidiomatic step and
84% in the idiomatic step, showing only a 2% drop in the idiomatic translation step. Claude 3.5
follows closely with 86% success rate in the unidiomatic step and 83% in the idiomatic step. GPT-40
performs consistently well in the unidiomatic step (84%) but drops to 79% in the idiomatic step,
indicating a 5% drop between the two steps. Gemini 2.0 comes next with 78% in the unidiomatic
step and 74% in the idiomatic step, showing a consistent performance between two datasets. Llama
3.3 still exhibits a significant drops (83% to 76%) in both steps and comes to the last place in the
idiomatic step.

The results demonstrates that DeepSeek-R1’s SRs remain high and consistent—-94%/93% (unid-
iomatic/idiomatic) on TransCoder-IR versus 86%/84% on CodeNet—while other models exhibit

322
323

324

325
326
327

329
330
331
332

333
334
335
336
337
338
339

340
341
342
343
344
345
346
347

348

349
350

352
353

355

notable performance drops when moving to TransCoder-IR. This suggests that models with reasoning
capabilities may be better for handling complex code logic and data manipulation.

6.2 Measuring Idiomaticity

We compare our approach with four baselines: C2Rust [4], Crown [5]], C2SaferRust [12]] and Vert [14].
Of these baselines, C2Rust is the most Versatileﬂ supporting most C programs, while Crown is also
broad but lacks support for some language features. C2SaferRust focuses on refining the unsafe code
produced by C2Rust, allowing it to handle a wide range of C programs. In contrast, Vert targets a
specific subset of simpler C programs. We assess the idiomaticity of Rust code generated by C2Rust,
Crown, and C2SaferRust on both datasets. Since Vert produced Rust code only for TransCoder-IR,
we evaluate it solely on this dataset. All the experiments are conducted using GPT-40 as the LLM for
baselines and our approach, with max 6 attempts per translation.

o ° Dataset METHOD DATASET SR (%) UF (%) AU (%)
© [TransCoder-IR
15.0 =9 CodeNet C2Rust TransCoder-IR 100 0 100
CodeNet 100 0 75.9
12.5
I Crown TransCoder-IR 100 0 100
3100 ° CodeNet 100 0 75.9
et ° °
g 75 ° o C2SaferRust TransCoder-IR 90 45.6 10.8
£ : Z : . Z . CodeNet 93 0 75.8
3
30 ° R R Vert TransCoder-IR 92 95.7 16
25 ° o SACTOR (Unid) TransCoder-IR 84 36 91.7
[E] o o CodeNet 84 1.1 427
0.0
SACTOR (Idiom.) TransCoder-IR 80 100 0
S <& & & > .
& o & ¥ & 5 CodeNet 79 100 0
4 C @ & ¥
&

Figure 2: Total Clippy Issues (Warnings + Errors) Table 1: Unsafe Code Statistics. UF denotes Un-
Across Different Method safe Free and AU denotes Avg. Unsafe

Results: Figure 2] presents the lint alert count (sum up of Clippy warnings and errors count for a single
program) across all approaches. C2Rust consistently exhibits high Clippy issues, and Crown shows
little improvement over C2Rust, indicating both struggle to generate idiomatic Rust. C2SaferRust
reduces Clippy issues, but it still retains a significant number of warnings and errors. Notably, even
the unidiomatic output of SACTOR surpasses all of these 3. This underscores the advantage of
LLMs over rule-based methods. While Vert improves idiomaticity, SACTOR’s idiomatic phase
yields fewer Clippy issues, outperforming some existing LLM-based approaches.

Table |1| summarizes unsafe code statistics. Unsafe-Free indicates the percentage of programs
without unsafe code, while Avg. Unsafe represents the average proportion of unsafe code across all
translations. C2Rust and Crown generate unsafe code in all programs with a high average unsafe
percentage. C2SaferRust has the ability to reduce unsafe code and able to generate unsafe-free
programs in some cases (45.6% in TransCoder-IR), but cannot sufficiently reduce the unsafe uses
in the CodeNet dataset. Vert has a higher success rate than SACTOR but occasionally introduces
unsafe code. SACTOR’s unidiomatic phase retains C semantics, leading to a high unsafe percentage.
However, its idiomatic phase eliminates all unsafe code, achieving a 100% Unsafe-Free rate.

6.3 Complex Code-bases

We evaluate the generalization of our approach to complex code-bases by two case studies: the
avl_tree and the urlparser; more details are in Appendix For both two case studies, we use the
GPT-40 model to generate Rust code from the C code. In summary, SACTOR successfully translates
the entire C project into unidiomatic Rust, achieving 10/23 function and 4/5 data type conversions.
Failures stem from the LLM’s difficulty in generating correct test harnesses for verification.

Case Study 1: avl_tree. The avl_tree project consists of two parts: avl_data, which provides
helper functions for data management, and avl_bf, which implements the AVL tree. We successfully

3Versatility refers to an approach’s applicability to diverse C programs.

356
357

358
359
360

361
362

363

364

365

366

367

368
369
370
371

372
373

374
375
376
377
378
379

380

381
382
383
384
385
386
387
388

121 15
3 10 @
wn 1%}
8 8
8 4
5 5 10
T 61 @
Q Q
€ 4 £
=2 2 5
2 4
o/ : ‘ 0
1 2 3 4 >4 2 3 4 >4
Number of Successful Attempts Number of Successful Attempts
(a) avl_tree Attempts Distribution (b) urlparser Attempts Distribution

Figure 3: Attempts Distribution for Case Studies in Unidiomatic Translation

generate idiomatic Rust for avl_data, passing verification tests. However, for avl_bf, we only
produce unidiomatic Rust, though it still passes verification.

Figure [3a shows the generation attempts. Failures stem from Rust compilation errors, which are used
as feedback to refine subsequent attempts. Within 4 attempts per function, we achieve idiomatic Rust
for avl_data and unidiomatic Rust for avl_bf.

The key challenge in generating idiomatic Rust for avl_bf lies in handling function pointers with
void types:

int (*compare)(const void *, const void *);

In unidiomatic Rust, this translates directly using raw pointers:

Option<unsafe extern "C" fn(*const c_void, *const c_void) -> c_int>

For idiomatic Rust, raw pointers should be replaced with generics:

Option<Box<dyn Fn(&T, &T) -> i32>>

where T represents the AVL tree’s data type. However, since our verification tests rely on FFI
compatibility, maintaining the C interface requires raw pointers. Rust’s generics are determined
at compile time, making it impossible to seamlessly convert them to raw pointers. This constraint
prevents our approach from producing idiomatic Rust for avl_bf.

Case Study 2: urlparser. The urlparser project is a simple C-based URL parser. We successfully
generate unidiomatic Rust code that passes verification, as shown in Figure 35}

For idiomatic Rust, we successfully translate 10 of 23 functions and 4 of 5 data types (enums,
structures, and constants). However, the key challenge for the remaining functions is constructing
a correct harness function to verify the generated code. As discussed in § [4.3.2] idiomatic Rust
functions require a harness to convert C data structures to Rust and transfer outputs back. While the
translated Rust code may be correct, the inability to generate a proper harness prevents verification.
Without verification, we cannot confirm the correctness of these functions.

7 Conclusion

Translating C to Rust enhances memory safety but is error-prone and often unidiomatic. While
LLMs improve translation, they lack correctness guarantees and struggle with semantic differences.
SACTOR tackles this with a two-step approach, preserving semantics first, then refining for Rust
conventions. Leveraging static analysis and FFI-based validation, it outperforms existing methods,
with DeepSeek-R1 reaching 93% and 84% success rates on TransCoder-IR and Project CodeNet,
respectively. However, key challenges remain: ensuring correctness, handling complex C features,
scaling, interoperability, and efficiency (see Appendix [A] for details). Some examples of prompts
used in SACTOR are shown in Appendix [N]

389

390
391

392
393
394

395
396

397

398
399
400

401
402

404
405

407
408
409

410
411
412

413
414
415

416
417
418

419
420
421

422
423

424
425
426

427
428
429

430
431

432
433

434
435

References

[1] Robert Love. Linux system programming: talking directly to the kernel and C library. ” O’Reilly
Media, Inc.”, 2013.

[2] Jiahao Fan, Yi Li, Shaohua Wang, and Tien N Nguyen. A c/c++ code vulnerability dataset
with code changes and cve summaries. In Proceedings of the 17th International Conference on
Mining Software Repositories, pages 508-512, 2020.

[3] Nicholas D Matsakis and Felix S Klock. The rust language. ACM SIGAda Ada Letters, 34(3):
103-104, 2014.

[4] Immunant. C2rust, 2020. URL https://c2rust.com/.

[5] Hanliang Zhang, Cristina David, Yijun Yu, and Meng Wang. Ownership guided c to rust
translation. In International Conference on Computer Aided Verification, pages 459—482.
Springer, 2023.

[6] Mehmet Emre, Ryan Schroeder, Kyle Dewey, and Ben Hardekopf. Translating c to safer rust.
Proceedings of the ACM on Programming Languages, 5(OOPSLA):1-29, 2021.

[7] Jaemin Hong and Sukyoung Ryu. Don’t write, but return: Replacing output parameters
with algebraic data types in c-to-rust translation. Proceedings of the ACM on Programming
Languages, 8(PLDI):716-740, 2024.

[8] Michael Ling, Yijun Yu, Haitao Wu, Yuan Wang, James R Cordy, and Ahmed E Hassan. In
rust we trust: a transpiler from unsafe c to safer rust. In Proceedings of the ACM/IEEE 44th
international conference on software engineering: companion proceedings, pages 354-355,

2022.

[9] Rangeet Pan, Ali Reza Ibrahimzada, Rahul Krishna, Divya Sankar, Lambert Pouguem Wassi,
Michele Merler, Boris Sobolev, Raju Pavuluri, Saurabh Sinha, and Reyhaneh Jabbarvand.
Understanding the effectiveness of large language models in code translation. CoRR, 2023.

[10] Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. Do users write more insecure
code with ai assistants? In Proceedings of the 2023 ACM SIGSAC Conference on Computer
and Communications Security, pages 2785-2799, 2023.

[11] Manish Shetty, Naman Jain, Adwait Godbole, Sanjit A Seshia, and Koushik Sen. Syzygy:
Dual code-test c to (safe) rust translation using llms and dynamic analysis. arXiv preprint
arXiv:2412.14234, 2024.

[12] Vikram Nitin, Rahul Krishna, Luiz Lemos do Valle, and Baishakhi Ray. C2saferrust: Transform-
ing ¢ projects into safer rust with neurosymbolic techniques. arXiv preprint arXiv:2501.14257,
2025.

[13] Momoko Shiraishi and Takahiro Shinagawa. Context-aware code segmentation for c-to-rust
translation using large language models. arXiv preprint arXiv:2409.10506, 2024.

[14] Aidan ZH Yang, Yoshiki Takashima, Brandon Paulsen, Josiah Dodds, and Daniel Kroening. Vert:
Verified equivalent rust transpilation with few-shot learning. arXiv preprint arXiv:2404.18852,
2024.

[15] Hasan Ferit Eniser, Hanliang Zhang, Cristina David, Meng Wang, Maria Christakis, Brandon
Paulsen, Joey Dodds, and Daniel Kroening. Towards translating real-world code with llms: A
study of translating to rust. arXiv preprint arXiv:2405.11514, 2024.

[16] TIOBE. TIOBE Index for January 2025, 2025. URL https://www.tiobe.com/
tiobe-index/\

[17] MITRE. CWE-121: Stack Buffer Overflow, 2006. URL https://cwe.mitre.org/data/
definitions/121.html.

[18] MITRE. CWE-122: Heap Buffer Overflow, 2006. URL https://cwe.mitre.org/data/
definitions/122.html.

10

https://c2rust.com/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/122.html

436
437

438
439

440
441
442

443
444

445
446

447
448

449
450
451
452

453

454
455

456
457

459
460

461
462

464

465
466

[19] MITRE. CWE-416: Use After Free, 2006. URL https://cwe.mitre.org/data/
definitions/416.html.

[20] MITRE. CWE-401: Missing Release of Memory after Effective Lifetime, 2006. URL https:
//cwe.mitre.org/data/definitions/401.html.

[21] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. Rustbelt: Securing
the foundations of the rust programming language. Proceedings of the ACM on Programming
Languages, 2(POPL):1-34, 2017.

[22] Xiang Liu, Peijie Dong, Xuming Hu, and Xiaowen Chu. Longgenbench: Long-context genera-
tion benchmark. arXiv preprint arXiv:2410.04199, 2024.

[23] Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle
with long in-context learning. arXiv preprint arXiv:2404.02060, 2024.

[24] Marc Szafraniec, Baptiste Roziere, Hugh Leather Francois Charton, Patrick Labatut, and Gabriel
Synnaeve. Code translation with compiler representations. /CLR, 2023.

[25] Ruchir Puri, David Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladmir Zolotov,
Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, Veronika Thost, Luca Buratti,
Saurabh Pujar, Shyam Ramji, Ulrich Finkler, Susan Malaika, and Frederick Reiss. Codenet: A
large-scale ai for code dataset for learning a diversity of coding tasks, 2021.

[26] The Rust Team. Clippy, 2016. URL https://github.com/rust-lang/rust-clippy.

[27] James C King. Symbolic execution and program testing. Communications of the ACM, 19(7):
385-394, 1976.

[28] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi.
A survey of symbolic execution techniques. ACM Computing Surveys (CSUR), 51(3):1-39,
2018.

[29] P David Coward. Symbolic execution systems—a review. Software Engineering Journal, 3(6):
229-239, 1988.

[30] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang. Fuzzing: a survey for roadmap.
ACM Computing Surveys (CSUR), 54(11s):1-36, 2022.

[31] Barton P Miller, Lars Fredriksen, and Bryan So. An empirical study of the reliability of unix
utilities. Communications of the ACM, 33(12):32—44, 1990.

[32] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and Jian Zhang. Fuzzing: State of
the art. IEEE Transactions on Reliability, 67(3):1199-1218, 2018.

11

https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/401.html
https://github.com/rust-lang/rust-clippy

467

468

469

470
471
472
473
474
475
476
477
478
479

Appendix

Note: For better formatting, each appendix section is on a new page.

A Limitations

While SACTOR has proven effective in producing correct, idiomatic Rust translations, it has several
limitations: our soft-equivalence checks depend on existing end-to-end tests, so incomplete or shallow
coverage can allow subtle semantic errors to go undetected. Integrating automated test-generation or
fuzzing tools could fill coverage gaps and catch subtle semantic mismatches; Also, the translation
quality hinges on the underlying LLM—although GPT-40 and DeepSeek-R1 perform well, other
models may yield significantly lower accuracy; Our current implementation does not support certain C
features—such as complex macros, pervasive function pointers, global variables, and inline assembly—
which restricts SACTOR’s applicability to those codebases (see § [6.3)); Incorporating more advanced
static analysis tools that capable of extracting more precise information from such constructs could
further enhance SACTOR’s translation capabilities.

12

0 B SACTOR Overview Figure

Static Analysis Tools

C2Rust AST parser
/ Static Analysis Hints \

C Rust
Code Code
1
Cc ‘ C Rust Rust
Code Code Inidi ic 4 . A\ Code Code
Gemini
C Rust
Code Code

\Verification Feedback l Verification Feedback /

FFl-based E2E Verifier]

Figure 4: Overview of the SACTOR methodology.

13

481

482

484
485
486
487
488
489

490

491
492
493
494

C Differences Between C and Rust

C.1 Code Snippets

Here is a code example to demonstrate the differences between C and Rust. The example shows a
simple C program and its equivalent Rust program. The create_sequence function takes an integer
n as input and returns an array with a sequence of integers. In C, the function needs to allocate
memory for the array using malloc and will return the pointer to the allocated memory as an array. If
the size is invalid, or the allocation fails, the function will return NULL. The caller of the function is
responsible for freeing the memory using free when it is done with the array to prevent memory
leaks.

C Code:

int* create_sequence(int n) {
if (n <= 0) {
return NULL;

intx arr = malloc(n * sizeof(int));
if (larr
return NULL;

for (int i = 0; i < n; i++) {
arr[i] = 1i;
return arr;
}
int* sequence = create_sequence(5);
if (sequence == NULL) {
}
%fée(sequence);
Rust Code:

fn create_sequence(n: i32) -> Option<Vec<i32>> {
if n <= 0 {
return None;

let mut arr = Vec::with_capacity(n as usize);

for i in 0..5.
arr.push(i);
Some(arr)
match create_sequence(5) {
Some(sequence) =>
None => {

}

Figure 5: Example of a simple C program and its equivalent Rust program, both hand-written for
illustration.

C.2 Tabular Summary

Here, we present a non-exhaustive list of differences between C and Rust in Table [2] highlighting
the key features that make translating code from C to Rust challenging. While the list is not
comprehensive, it provides insights into the fundamental distinctions between the two languages,
which can help developers understand the challenges of migrating C code to Rust.

14

495

496
497

498

500
501
502
503
504
505
506
507

Table 2: Key Differences Between C and Rust

FEATURE C RUST
MEMORY MANAGEMENT Manual (through Automatic (through ownership
malloc/free) and borrowing)
POINTERS Raw pointers like *p Safe references like &p/&mut p,
Box and Rc
LIFETIME MANAGEMENT Manual freeing of memory Lifetime annotations and borrow
checker
ERROR HANDLING Error codes and manual Explicit handling with Result
checks and Option types
NULL SAFETY Null pointers allowed (e.g., No null pointers; uses Option for
NULL) nullable values
CONCURRENCY No built-in protections for Enforces safe concurrency with
data races ownership rules
TYPE CONVERSION Implicit conversions allowed Strongly typed; no implicit con-
and common versions
STANDARD LIBRARY C stand library with direct sys- Rust standard library with utilities
tem calls for strings, collections, and I/O
LANGUAGE FEATURES Procedure-oriented with mini- Modern features like pattern
mal abstractions matching, generics, and traits

D Algorithm for Task Division

The task division algorithm is used to determine the order in which the items should be translated.
The algorithm is shown in Algorithm [I]

Algorithm 1 Translation Task Order Determination

Require: L;: List of items to be translated
Require: dep(a): Function to get dependencies of item a
Ensure: Lg,.;cq: List of groups resolving dependencies
1: Lyorteq < 0 > Empty list
2: while |Lgprteq| < |Li| do
Lp?"ocessed —
fora € L; do
ifa ¢ Lprocessed and dep(a) g Lprocessed then
Lsorted < Lsorted + a > Add to sorted list
Lprocessed — Lprocesscd Ua
end if
9: end for
10: if Lyrocessed = 0 then

A A

11: Leircutar < DFS(L;, dep) > Circular dependencies
12: Lsorted < Lsorted + Leircular > Add a group to sorted list
13: endif

14: end while
15: return L, t0q

In the algorithm, L; is the list of items to be translated, and dep(a) is a function that returns the
dependencies of item a. The algorithm returns a list Lt that contains the items in the order in
which they should be translated. DF'S(L;, dep) is a depth-first search function that returns a list of
items involved in a circular dependency. It begins by collecting all items (e.g., functions, structs) to
be translated and their respective dependencies (in both functions and data types). Items with no
unresolved dependencies are pushed into the translation order list first, and other items will remove
them from their dependencies list. This process continues until all items are pushed into the list, or
circular dependencies are detected. If circular dependencies are detected, we resolve them through
a depth-first search strategy, ensuring that all items involved in a circular dependency are grouped
together and handled as a single unit.

15

508

509

511
512
513
514
515
516

517

518
519
520
521
522
523

E Equivalence Testing Details in Prior Literature

E.1 Symbolic Execution-Based Equivalence

Symbolic execution explores all potential execution paths of a program by using symbolic inputs to
generate constraints [27,128|29]. While theoretically powerful, this method is impractical for verifying
C-to-Rust equivalence due to differences in language features. For instance, Rust’s RAII (Resource
Acquisition Is Initialization) pattern automatically inserts destructors for memory management, while
C relies on explicit malloc and free calls. These differences cause mismatches in compiled code,
making it difficult for symbolic execution engines to prove equivalence. Additionally, Rust’s compiler
adds safety checks (e.g., array boundary checks), which further complicate equivalence verification.

E.2 Fuzz Testing-Based Equivalence

Fuzz testing generates random or mutated inputs to test whether program outputs match expected
results [30,[31}132]]. While more practical than symbolic execution, fuzz testing faces challenges in
constructing meaningful inputs for real-world programs. For example, testing a URL parsing function
requires generating valid URLs with specific formats, which is non-trivial. For large C programs,
this difficulty scales, making it infeasible to produce high-quality test cases for every translated Rust
function.

16

524

525
526
527
528
529
530

F An Example of the Test Harness

Here, we provide an example of the test harness used to verify the correctness of the translated code in
Figure[6] which is used to verify the idiomatic Rust code. In this example, the concat_str_idiomatic
function is the idiomatic translation we are testing, while the concat_str_c function is the test harness
function that can be linked back to the original C code. where a string and an integer are passed as
input, and an owned string is returned. Input strings are converted from C’s char* to Rust’s &str,
and output strings are converted from Rust’s String back to C’s char*.

fn concat_str_idiomatic(orig: &str, num: i32) -> String {
format!("{}{}", orig, num
fn concat_str(orig: *const c_char, num: c_int) -> xconst c_char {
let orig_str = CStr::from_ptr(orig)
.to_str§)) .
.expect("Invalid UTF-8 string");
let out = concat_str_idiomatic(orig_str, num as i32);
let out_str = CString::new(out).unwrap();

out_str.into_raw()

Figure 6: Test harness used for verifying concat_str translation

17

531

532
533

535

536
537

538
539
540

541
542

G An Example of SACTOR Translation Process

To demonstrate the translation process of SACTOR, we present a straightforward example of
translating a C function to Rust. The C program includes an atoi function that converts a string to an
integer, and a main function that parses command-line arguments and calls the atoi function. The C
code is shown in Figure[7a]

~
#include <stdio.h>
int atoi(char *str) {
int result = 0;
int sign = 1;
while (*str == ' ' || *str == '\t' || *str == '\n' |
*str == ‘\r' || *str == "\v' || *str == '\f') {
Str++;
if (#str == '+' || #str == '-") {
if (xstr =) {
sign = -1;
str++;
while (#str >= '0' && #str <= '9") {
result = result * 10 + (*st - '0");
str++;
} return sign % result;
int ma1n(1nt argc, char *argv[]) {
f (argc !=2
pr1ntf(Usage: %s <number>\n", argv[0]);
return 1;
int value = atoi(argv[1]);
printf("Parsed integer: Vd\n" value);
} return 0;

(a) C implementation of atoi

use std::env;
use std::process;
pub fn atoi(input: &str) -> i32 {
let mut result: i32 0;
let mut sign: 132 = 1
let mut chars = anut Ichars().peekable();
while let Some(&c) = chars.peek() {

Tet mut pt tr;
while *pgr '"as c_char if c.is whltespace() {
| ' as c_char chars.next();
as c_char } else
as c_char break;
' as c_char
" as c_char

ptr = ptr.add(1);

if *ptr == '+' as c_char || *ptr == '-' as c_char { it ¢ == '~
if *ptr == '-' as c_char { sign = -1;
sign = -1;
chars.next();
ptr = ptr.add(1);

whjli *p;r >= u(as c_char && *ptﬁ <S ‘9" as c_char { for c 1n chars é

et digit = (#ptr - '0' as c_char) as

S S (R o) S S S)) e ?‘;T%S;E%ﬁgw rgsﬁ"t'il%lﬁééﬂ{t{
Ir| r.checked_add(digit), -checked_muT(10)

5 result = new_result; .and_then(|r| r.checked_add(digit as i32))
1
N igturn if sign == 1 { i32::MAX } else { i32::MIN }; } 1result = new_result;
else
ptr = ptr.add(1); return if sign == 1 { i32::MAX } else { i32::MIN };
' sign * result } else {
pub fn main() { break;
let args: Vec<String> = env::args().collect();
if args.len() != 2 .
println! (" Usa%e {} <number>", args[0]); ! sign * result
process: :exit Lib fn main() {
let ¢ str = match CString: :new(args[1].as_str()) { let args: Vec<String> = env::args().collect();
SE(gegeaze) = cstrin, i ares Lol bers*, args(o)
ﬁ?ﬂéSf}"'gxfil}Ed to create CString from input"); 31{;2;52 (exﬁ%e’.“ ey EREEO;
let input = sargs[1];
{4t value - unsafe { ata](c str.as_ptr() as *const c_char) }; let value = atoi(inplt); N
h println!("Parsed integer: {}", value); ' println!("Parsed integer: {}", value);
N
(b) Unidiomatic Rust translation from C (c) Idiomatic Rust translation from unidiomatic Rust

Figure 7: SACTOR translation process for atoi program
We assume that there are numerous end-to-end tests for the C code, allowing SACTOR to use them
for verifying the correctness of the translated Rust code.

First, the divider will divide the C code into two parts: the atoi function and the main function, and
determine the translation order is first atoi and then main, as atoi is the dependency of main and
the atoi function is a pure function.

Next, SACTOR proceeds with the unidiomatic translation, converting both functions into unidiomatic
Rust code. This generated code will keep the semantics of the original C code while using Rust syntax.

18

543
544
545
546
547
548
549

550

552
553
554
555
556
557

Once the translation is complete, the unidiomatic verifier executes the end-to-end tests to ensure
the correctness of the translated function. If the verifier passes all tests, SACTOR considers the
unidiomatic translation accurate and progresses to the next function. If any test fails, SACTOR will
retry the translation process using the feedback information collected from the verifier, as described
in § After translating all sections of the C code, SACTOR will combine the unidiomatic Rust
code segments to form the final unidiomatic Rust code. The unidiomatic Rust code is shown in

Figure

Then, the SACTOR will start the idiomatic translation process and translate the unidiomatic Rust
code into idiomatic Rust code. The idiomatic translator requests the LLM to adapt the C semantics
into idiomatic Rust, eliminating any unsafe and non-idiomatic constructs, as detailed in §[4.2.2] Based
on the same order, the SACTOR will translate two functions accordingly, and using the idiomatic
verifier to verify and provide the feedback to the LLM if the verification fails. After all parts of the
Rust code are translated into idiomatic Rust, verified, and combined, the SACTOR will produces
the final idiomatic Rust code. The idiomatic Rust code is shown in Figure[7c] representing the final
output of SACTOR.

19

558

559

560
561
562
563
564
565

566

567
568
569
570
571
572

574

575

576
577
578
579
580
581
582
583

H Dataset Details

Table 3: Summary of datasets and real-world projects used for evaluation.

DATASET SIZE PREPROCESSING E2E TESTS CORRESPONDING RUST

TRANSCODER-IR [24] 100 Removed buggy programs (compilation and Present Absent
memory errors) and programs that have Rust
translation

PROJECT CODENET [25] 100 Filtered for programs with external input Absent Absent
(argc/argv)

REAL-WORLD PROJECTS 2 Extend macros, combine the whole project to Present (Limited) Absent
a single file

H.1 TransCoder-IR Dataset [24]

The TransCoder-IR dataset is used to evaluate the TransCoder-IR model and consists of solutions
to coding challenges in various programming languages. For evaluation, we focus on the 698 C
programs available in this dataset. First, we filter out programs that already have corresponding Rust
code. Several C programs in the dataset contain bugs, which are removed by checking their ability
to compile. We then use valgrind to identify and discard programs with memory errors during the
end-to-end tests. Finally, we select 100 programs with the most lines of code for our experiments.

H.2 Project CodeNet [25]

Project CodeNet is a large-scale dataset for code understanding and translation, containing 14 million
code samples in over 50 programming languages collected from online judge websites. From this
dataset, which includes more than 750,000 C programs, we target only those that accept external input.
Specifically, we filter programs using argc and argv, which process input from the command line.
As the end-to-end tests are not available for this dataset, we develop the SACTOR test generator to
automatically generate end-to-end tests for these programs based on the source code. For evaluation,
we select 200 programs and refine the dataset to include 100 programs that successfully generate
end-to-end tests.

H.3 Real-World Projects

For § we use two real-world projects for evaluation: avl-tree{z_r] and urlparserﬂ Both projects are
written in C and have some non-trivial C code features. While earlier works may have used different
versions, we selected these projects because they include end-to-end tests, enabling us to evaluate the
correctness of the translated code. To make the projects fit the input requirements, we use the cpp
preprocessor to expand macros and combine the entire project into a single file. The avi-tree project
contains 12 end-to-end tests to test the different functionalities of the AVL tree implementation. The
urlparser project contains 3 end-to-end tests to test the different functionalities of the URL, we
manually create 7 additional end-to-end tests to test the different functionalities of the URL parser.

4https ://github.com/xieqing/avl-tree
Shttps://github.com/jwerle/url.h

20

https://github.com/xieqing/avl-tree
https://github.com/jwerle/url.h

ss¢ 1 LLM Configurations

sss Table[]shows our configurations for different LLMs in evaluation. All other hyper-parameters, like
sss Top-P or Top-K, are set as the model’s default values.

Table 4: Configurations of Different LLMs in Evaluation

Model Version Temperature Hosting Platform
GPT-40 gpt-4o-latest (As of 2024-12) 1 AzureOpenAl API
Claude 3.5 Sonnet claude-3-5-sonnet-20241022 1 Anthropic API
Gemini 2.0 Flash gemini-2.0-flash-exp default Google Cloud API
Llama 3.3 Instruct 70B Llama 3.3 Instruct 70B Q4 0.8 4xH100 GPU
DeepSeek-R1 DeepSeek-R1 671B 1 DeepSeek API

21

587

588
589
590
591
592
593
594
595
596

598
599
600
601
602
603
604
605
606

J Failure Analysis in Evaluating SACTOR

Table 5: Failure reason categories for translating TransCoder-IR and Project CodeNet datasets.

(a) TransCoder-IR
CATEGORY DESCRIPTION
R1 Memory safety violations in array operations due to improper bounds checking
R2 Mismatched data type translations
R3 Incorrect array sizing and memory layout translations
R4 Incorrect string representation conversion between C and Rust
RS Failure to handle C’s undefined behavior with Rust’s safety mechanisms
R6 Use of C-specific functions in Rust without proper Rust wrappers
(b) Project CodeNet
CATEGORY DESCRIPTION
S1 Improper translation of command-line argument handling or attempt to fix wrong handling
S2 Function naming mismatches between C and Rust
S3 Format string directive mistranslation causing output inconsistencies
S4 Original code contains random number generation
S5 SACTOR unable to translate mutable global state variables
S6 Mismatched data type translations
S7 Incorrect control flow or loop boundary condition translations

B GPT-40 B Claude 3.5 B llama 3.3 H Gemini 2.0 B DeepSeek-R1

Number of Files
7
Number of Files

S

R1 R2 R3 R4 RS R6 s1 52 s3 54
Categories Categories

(a) TransCoder-IR (b) Project CodeNet

Figure 8: Failure reasons across different LLM models for both datasets.

Here, we analyze the failure cases of SACTOR in translating C code to Rust that we conducted in
Section[6.1] as cases where SACTOR fails offer valuable insights into areas that require refinement.
For each failure case in the two datasets, we conduct an analysis to determine the primary cause
of translation failure. This process involves leveraging DeepSeek-R1 to identify potential reasons
(prompts available in Appendix [N.3), followed by manual verification to ensure correctness. We only
focus on the translation process from C to unidiomatic Rust because: (1) it is the most challenging
step, and (2) it can better reflect the model’s ability to fit the syntactic and semantic differences
between the two languages. Table[5]summarize the categories of failure reasons, and Figure [8a]and [8b]
illustrate failure reasons (FRs) across models.

(1) TransCoder-IR (Table[5a] Figure[8a): Based on the analysis, we observe that different models
exhibit varying failure reasons. Claude 3.5 shows a particularly high incidence of string representation
conversion errors (R4), with 25 out of 45 total failures in the unidiomatic translation step. In contrast,
GPT-40 has only 1 out of 17 failures in this category. Llama 3.3 demonstrates consistent challenges
with both R3 (incorrect array sizing and memory layout translations) and R6 (using C-specific
functions without proper Rust wrappers), with 10 files for each category. GPT-40 shows a more
balanced distribution of errors, with its highest count in R3. All models except GPT-4o0 struggle with
string handling (R4) to varying degrees, suggesting this is one of the most challenging aspects of the
translation process. For R6 (use of C-specific functions in Rust), which primarily is a compilation
failure, only Llama 3.3 and Gemini 2.0 consistently fail to resolve the issue in some cases, while all

22

607
608
609

610
611
612
613
614

616
617
618
619

620
621
622
623
624
625

other models can successfully handle the compilation errors through feedback and avoid failure in
this category. DeepSeek-R1 has the fewest overall errors across categories, with failures only in R1
(1 file), R3 (2 files), and R4 (3 files), while completely avoiding errors in R2, RS, and R6.

(2) Project CodeNet (Table@ Figure[g_ﬁl): Similar to the TransCoder-IR dataset, we also observe that
different models in Project CodeNet demonstrate varying failure reasons. C-to-Rust code translation
challenges in the CodeNet dataset. Most notably, S6 (mismatched data type translations) presents
a significant barrier for Llama 3.3 and Gemini 2.0 (7 files each), while GPT-40 and Claude 3.5
completely avoid this issue. Input argument handling (S1) and format string mistranslations (S3)
emerge as common challenges across all models in CodeNet, suggesting fundamental difficulties in
translating these language features regardless of model architecture. Only Llama 3.3 and DeepSeek-
R1 encounter control flow translation failures (S7), with 2 files each. S4 (random number generation)
and S5 (mutable global state variables) are unable to be translated by SACTOR because the current
SACTOR implementation does not support these features.

Compared to the results in TransCoder-IR, string representation conversion (R4 in TransCoder-IR,
S3 in CodeNet) remains a consistent challenge across both datasets for all models, though the issue is
significantly more severe in TransCoder-IR, particularly for Claude 3.5 (24 files). This also suggests
that reasoning models like DeepSeek-R1 are better at handling complex code logic and string/array
manipulation, as they exhibit fewer failures in these areas, demonstrating the potential of reasoning
models to address complex translation tasks.

23

626

627

629
630
631
632

633
634
635
636
637
638

639

641
642
643
644
645
646
647

648

650
651

K SACTOR Cost Analysis

Table 6: Average Cost Comparison of Different LLMs Across Two Datasets. The color intensity
represents the relative cost of each metric for each dataset.

LLM DATASET TOKENS AVG. QUERIES
Claude 3.5 TransCoder-IR 4595.33 5.15
CodeNet 3080.28 3.15
Gemini 2.0 TransCoder-IR 3343.12 4.24
CodeNet 2209.38 2.39
Llama 3.3 TransCoder-IR 4622.80
CodeNet 4456.84
GPT-40 TransCoder-IR 2651.21 4.24
CodeNet 2565.36 2.95

DeepSeek-R1 TransCoder-IR 4.77
CodeNet 3.11

Here, we conduct a cost analysis of SACTOR for experiments in § [6.1] to evaluate the efficiency
of different LLMs in generating idiomatic Rust code. To evaluate the cost of our approach, we
measure (1) Total LLM Queries as the number of total LLM queries made during translation and
verification for a single test case in each dataset, and (2) Total Token Count as the total number of
tokens processed by the LLM for a single test case in each dataset. To ensure a fair comparison across
models, we use the same tokenizer (tiktoken) and encoding (0200k_base).

In order to better understand costs, we only analyze programs that successfully generate idiomatic
Rust code, excluding failed attempts (as they always reach the maximum retry limit and do not
contribute meaningfully to the cost analysis). We evaluate the combined cost of both translation
phases to assess overall efficiency. Table [6] compares the average cost of different LLMs across
two datasets, measured in token usage and query count per successful idiomatic Rust translation as
mentioned in §[5.2}

Results: Gemini 2.0 and GPT-40 are the most efficient models, requiring the fewest tokens and
queries. GPT-40 maintains a low token cost (2651.21 on TransCoder-IR, 2565.36 on CodeNet)
with 4.24 and 2.95 average queries, respectively. Gemini 2.0 is similarly efficient, especially on
CodeNet, with the lowest token usage (2209.38) and requiring only 2.39 queries on average. Claude
3.5, despite its strong performance on CodeNet, incurs higher costs on TransCoder-IR (4595.33
tokens, 5.15 queries), likely due to additional translation steps. Llama 3.3 is the least efficient in
non-thinking model (GPT-40, Claude 3.5, Gemini 2.0), consuming the most tokens (4622.80 and
4456.84, respectively) and requiring the highest number of queries (5.39 and 3.80, respectively),
indicating significant resource demands.

As a reasoning model, DeepSeek-R1 consumes significantly more tokens (17,895.52 vs. 13,592.61)
than non-reasoning models—5-7 times higher than GPT-40—despite having a similar average query
count (4.77 vs. 3.11) for generating idiomatic Rust code. This high token usage comes from the
“reasoning process” required before code generation.

24

652

653
654
655
656
657

658
659

661
662

663

664
665
666
667

668
669
670
671

672
673
674
675
676

L Ablation Study on the Feedback Mechanism

To evaluate the effectiveness of the feedback mechanism proposed in § f.3.3] we conduct an ablation
study by removing the mechanism and comparing the model’s performance with and without it. We
consider two experimental groups: (1) with the feedback mechanism enabled, and (2) without the
feedback mechanism. In the latter setting, if any part of the translation fails, the system simply restarts
the translation attempt using the original prompt, without providing any feedback from the failure.

We use the same dataset and evaluation metrics described in § 5] and focus our evaluation on only
two models: GPT-40 and Llama 3.3 70B. We choose these models because GPT-40 demonstrated one
of the highest performance and Llama 3.3 70B the lowest in our earlier experiments. By comparing
the success rates between the two groups, we assess whether the feedback mechanism improves
translation performance across models of different capabilities.

The results are shown in Figure[9]

B Unidiomatic SR 1 B Unidiomatic SR 4 I Unidiomatic (-FBK) EXX Idiomatic SR 3 [0 Idiomatic SR 6

BN Unidiomatic SR 2 Unidiomatic SR 5 ez |diomatic SR 1 EEE Idiomatic SR 4 B |diomatic (-FBK)
EXX] Unidiomatic SR 3 M Unidiomatic SR 6 Idiomatic SR 2 Idiomatic SR 5
100 100
))
n 80 n 80
8 8
=} o
S 60 S 60
S bS]
E 40 § 40
€ €
3 20 3 201
o o
0 0-
Llama 3.3 70B GPT-40 Llama 3.3 70B GPT-40
LLM Models LLM Models
(a) TransCoder-IR With/Without Feedback (b) CodeNet With/Without Feedback

Figure 9: Ablation study on the feedback mechanism. The success rates of the models with and
without the feedback (marked as -FBK) mechanism are shown for both TransCoder-IR and CodeNet
datasets.

(1) TransCoder-IR (Figure [9a): Incorporating the feedback mechanism increased the number of
successful translations for Llama 3.3 70B from 57 to 76 in the unidiomatic setting and from 46 to
64 in the idiomatic setting. In contrast, GPT-40 performed slightly worse with feedback, decreasing
from 87 to 84 (unidiomatic) and from 83 to 80 (idiomatic).

(2) Project CodeNet (Figure[9b): A similar trend is observed where Llama 3.3 70B improved from
62 to 83 (unidiomatic) and from 59 to 76 (idiomatic), corresponding to gains of 21 and 17 percentage
points, respectively. GPT-40, however, showed only marginal improvements: from 82 to 84 in the
unidiomatic setting and from 77 to 79 in the idiomatic setting.

These results suggest that the feedback mechanism is particularly effective for lower-capability models
like Llama 3.3, substantially improving their translation success rates. In contrast, higher-capability
models such as GPT-4o already perform near optimal with simple random sampling, leaving little
space for improvement. This indicates that the feedback mechanism is more beneficial for models
with lower capabilities, as they can leverage the feedback to enhance their overall performance.

25

677

678
679
680
681
682
683

684
685
686
687

688
689
690

691
692

M SACTOR Performance with Different Temperatures

In §[6] all the experiments are conducted with the temperature set to default values, as explained on Ap-
pendix[[} To investigate how temperature affects the performance of SACTOR, we conduct additional
experiments with different temperature settings (0.0, 0.5, 1.0) for GPT-40 on both TransCoder-IR
and Project CodeNet datasets, as shown in Figure[T0] Through some preliminary experiments and
discussions on OpenAl’s community forumlﬂ we find that setting the temperature more than 1 will
likely to generate more random and less relevant outputs, which is not suitable for our task.

B3 Unidiomatic SR 1 EHH Unidiomatic SR 4 BZ72 |diomatic SR 1 HEHH Idiomatic SR 4
BN Unidiomatic SR 2 Unidiomatic SR 5 Idiomatic SR 2 Idiomatic SR 5
222 Unidiomatic SR 3 M Unidiomatic SR 6 BXA Idiomatic SR 3 [Idiomatic SR 6

100 TransCoder-IR dataset 100 TransCoder-IR dataset

80

60

40

Success Rate (%)
Success Rate (%)

20

t=0 t=0.5 t=1 t=0 t=0.5 t=1
GPT-40 Model (Temperature) GPT-40 Model (Temperature)
(a) Success Rate on TransCoder-IR (b) Success Rate on TransCoder-IR

Figure 10: Success Rate of SACTOR with different temperature settings for GPT-40 on TransCoder-
IR and Project CodeNet datasets.

(1) TransCoder-IR (Figure[T0a): Setting the decoder to a deterministic temperature of ¢ = 0 resulted
in 83 successful translations (83%), while both ¢ = 0.5 and ¢ = 1.0 yielded 80 successes (80%) each.

This represents a slightly improvement with 3 additional correct predictions under the deterministic
setting.

(2) Project CodeNet (Figure [I0b): Temperature does not have a significant impact: the model
produced 79, 81, and 79 successful outputs at ¢ = 0, ¢ = 0.5, and ¢ = 1.0 respectively (79-81%),
which does not indicate any outstanding trend in performance across the temperature settings.

The results on both datasets suggests that lowering temperature to zero can offer a slight boost in
reliability some of the cases, but it does not significantly affect the overall performance of SACTOR.

Shttps://community.openai.com/t/cheat-sheet-mastering-temperature-and-top-p-in-chatgpt-api/1 72683

26

693

694
695
696

697

698

699

700
701

N Examples of Prompts Used in SACTOR

The following prompts are used to guide the LLM in C-to-Rust translation and verification tasks. The
prompts may slightly vary to accommodate different translation task, as SACTOR leverages static
analysis to fetch the necessary information for the LLM.

N.1 Unidiomatic Translation

Figure|l1|shows the prompt for translating unidiomatic C code to Rust.

Translate the following C function to Rust. Try to keep the xxequivalencexx as much as
possible.

‘libc ¢ will be included as the **only** dependency you can use. To keep the equivalence, you
can use ‘unsafe‘ if you want.

The function is:

6Gog

{C_FUNCTION}

// Specific for main function
The function is the ‘main‘ function, which is the entry point of the program. The function
signature should be: ‘pub fn main() -> () °.

For ‘return 0; ¢, you can directly ‘return;‘ in Rust or ignore it if it’s the last statement.
For other return values, you can use ‘std::process::exit()‘ to return the value.
For ‘argc‘ and ‘argv‘, you can use ‘std::env::args()‘ to get the arguments.

The function uses some of the following stdio file descriptors: stdin. Which will be included
as

‘‘“‘rust

extern "C" {
static mut stdin: *mut libc::FILE;

}

e

You should **NOTxx include them in your translation, as the system will automatically include
them.

The function uses the following functions, which are already translated as (you should *xxNOT=*x*
include them in your translation, as the system will automatically include them):

‘“‘rust

{DEPENDENCIES}

e

Output the translated function into this format (wrap with the following tags):
----FUNCTION----

‘‘“‘rust

// Your translated function here

I

----END FUNCTION----

Figure 11: Unidiomatic Translation Prompt

N.2 Unidiomatic Translation with Feedback

Figure [12] shows the prompt for translating unidiomatic C code to Rust with feedback from the
previous incorrect translation and error message.

27

Translate the following C function to Rust. Try to keep the x*equivalencex* as much as
possible.

‘libc ¢ will be included as the *xonlyxx dependency you can use. To keep the equivalence, you
can use ‘unsafe‘ if you want.

The function is:

coig

{C_FUNCTION}

e

// Specific for main function
The function is the ‘main‘ function, which is the entry point of the program. The function
signature should be: ‘pub fn main() -> () ‘.

For ‘return 0;°‘, you can directly ‘return;‘ in Rust or ignore it if it’s the last statement.
For other return values, you can use ‘std::process::exit()‘ to return the value.
For ‘argc‘ and ‘argv‘, you can use ‘std::env::args()‘ to get the arguments.

The function uses some of the following stdio file descriptors: stdin. Which will be included
as

‘“‘rust

extern "C"
static mut stdin: *mut libc::FILE;

3}

e

You should **NOTxx include them in your translation, as the system will automatically include
them.

The function uses the following functions, which are already translated as (you should xxNOTx*x*
include them in your translation, as the system will automatically include them):

‘‘“‘rust

fn atoi (str : x const c_char) -> c_int;

e

Output the translated function into this format (wrap with the following tags):
----FUNCTION----

‘‘“‘rust

// Your translated function here

e

----END FUNCTION----

Lastly, the function is translated as:

‘“‘rust

{COUNTER_EXAMPLE }

It failed to compile with the following error message:
{ERROR_MESSAGE }

e

Analyzing the error messages, think about the possible reasons, and try to avoid this error.

Figure 12: Unidiomatic Translation with Feedback Prompt

702 N.3 Idiomatic Translation

703 Figure[T3|shows the prompt for translating unidiomatic Rust code to idiomatic Rust. Crown is used
704 to hint the LLM about the ownership, mutability, and fatness of pointers.

28

Translate the following unidiomatic Rust function into idiomatic Rust. Try to remove all the ¢
unsafe ‘ blocks and only use the safe Rust code or use the ‘unsafe‘ blocks only when
necessary.

Before translating, analyze the unsafe blocks one by one and how to convert them into safe
Rust code.

**1libc may not be provided in the idiomatic code, so try to avoid using libc functions and
types, and avoid using ‘std::ffi‘ module.xx

‘“‘rust

{RUST_FUNCTION}

e

"Crown"” is a pointer analysis tool that can help to identify the ownership, mutability and
fatness of pointers. Following are the possible annotations for pointers:

e

fatness:

- ‘Ptr‘: Single pointer

- ‘Arr ‘: Pointer is an array
mutability:

- ‘Mut ‘: Mutable pointer

- ‘Imm‘: Immutable pointer
ownership:

- ‘Owning ‘: Owns the pointer

- ‘Transient ‘: Not owns the pointer

Ceea

The following is the output of Crown for this function:

e

{CROWN_RESULT?}

e

Analyze the Crown output firstly, then translate the pointers in function arguments and return
values with the help of the Crown output.
Try to avoid using pointers in the function arguments and return values if possible.

Output the translated function into this format (wrap with the following tags):
----FUNCTION----

‘‘“‘rust

// Your translated function here

e

----END FUNCTION----

Figure 13: Idiomatic Translation Prompt

705 N.4 Idiomatic Verification

706 Idiomatic verification is the process of verifying the correctness of the translated idiomatic Rust code
707 by generating a test harness. The prompt for idiomatic verification is shown in Figure [T4]

29

708

709

Tb%s is the idiomatic translation of Rust code from C, the function signature is
gTPEE$EON_NAME}_idiomatiC

Tb%s is the unidiomatic translation of Rust code from C, the function signature is
€f9§g$§0N_DEPENDENCIES}

Generate the harness for the function atoi_idiomatic with the following code pattern so that
it can be tested:

Finish all the TODOs.

You should **NOTxx add any dummy implementation of the function or structs, as it will be
provided by the verifier:

‘‘“‘rust

// TODO: add necessary ‘use‘s here

// Don’t add the definitions of any other functions and structs, they will be provided by the
system

fn {FUNCTION_NAME} ({UNIDIOMATIC_ARGS}) -> {UNIDIOMATIC_RETURN} {
// TODO: Add code here to Convert the input to the idiomatic format
let result = fn {FUNCTION_NAME}_idiomatic ({IDIOMATIC_ARGS}) -> {IDIOMATIC_RETURN}; // Call
the idiomatic function
// TODO: Add code here to Convert the result back to the original format
//

¢

remove all the TODOs and replace them with the necessary code.

Output the translated function into this format (wrap with the following tags):
----FUNCTION----

‘‘“‘rust

// Your translated function here

e

----END FUNCTION----

Figure 14: Idiomatic Verification Prompt

N.5 Failure Reason Analysis

Figure [I3]shows the prompt for analyzing the reasons for the failure of the translation.

Given the following C code:
RS
{original_code}

The following code is generated by a tool that translates C code to Rust code. The tool has a
bug that causes it to generate incorrect Rust code. The bug is related to the following
error message:

‘¢“json

{json_data}

Please analyze the error message and provide a reason why the tool generated incorrect Rust
code.

1. Append a new reason to the list of reasons.

2. Select a reason from the list of reasons that best describes the error message.

Please provide a reason why the tool generated incorrect Rust code *xFUNDAMENTALLY xx.

List of reasons:
{all_current_reasons}

Please provide the analysis output in the following format:

<<<ison
{
"action”: "append”, // or "select” to select a reason from the list of reasons
"reason”: "Format string differences between C and Rust"”, // the reason for the error
message, if action is "append”
"selection”: 1 // the index of the reason from the list of reasons, if action is "select”

// "reason” and "selection” are mutually exclusive, you should only provide one of them

Please **make surex*x to provide a general reason that can be applied to multiple cases, not a
specific reason that only applies to the current case.

Please provide a reason why the tool generated incorrect Rust code **FUNDAMENTALLY#** (NOTE
that the reason of first failure is always NOT the fundamental reason).

Figure 15: Failure Reason Analysis Prompt

30

710

71
712
713
714
715

716

77

718

719
720

721

722
723
724
725

726
727
728
729

731
732
733
734

735

736

737

738

739

740
741

742

743
744

745

746
747

748
749
750

751
752

754

755

756

757

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ” ”, it is perfectly acceptable to answer ”
provided a proper justification is given (e.g., error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”’ ” or ’[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

I

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist”,
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Section [I|clearly enumerate the tool’s contributions in bullet
list and match the empirical results reported later.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

31

758
759
760
761
762

763
764

766
767

768
769
770

771
772
773
774
775

776
777

778
779

780
781
782
783
784

786

787
788

789

790

791

792

794
795

796
797
798

800
801

802

803
804
805

806

808

809

Justification: We discuss the limitations of our work in Section
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate “Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The work is empirical; it presents no new theorems or formal proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Source code and evaluation datasets are publicly released in the footnote of
the paper.

Guidelines:

32

810
811
812
813
814
815
816
817
818
819

821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

841

842
843
844

845

846

847

848

849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Code and datasets with run instructions are linked in the paper.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

865
866

867

868
869
870

871

872
873

874

875

876
877

878
879

880

881

883

884
885
886

887

888

889
890
891

892
893
894

895
896

897
898

900
901
902

903
904
905

906
907

908

909
910
911

912

913

914

915

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: §E] gives datasets, metrics, model versions, temperatures, and Appendix [[| lists
all hyper-parameters.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Appendix we show the results under different temperature settings,
and there is no significant difference between them. The results are also consistent across
different datasets.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the compute resources in Appendix[I|
Guidelines:

* The answer NA means that the paper does not include experiments.

34

916
917

918
919
920
921
922

923

924
925

926

927

928

930
931

932
933

934

935
936

937

938
939
940

941

942

943
944

945
946
947

949
950
951
952
953
954
955
956
957
958
959

960
961
962
963

964

965
966
967

9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We reviewed the NeurIPS Code of Ethics and found no conflicts;
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: For positive societal impact, we have discussed in §[T|and §[7] This work is
about code translation between two different languages and we don’t expect any negative
societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

35

https://neurips.cc/public/EthicsGuidelines

968

969

970

971

972
973
974
975

976
977

978
979
980

982
983
984

985

986
987

988

989
990

991
992

993

994
995

996
997
998
999

1000
1001

1002
1003
1004

1005
1006

1007

1008
1009

1010

1011
1012
1013
1014
1015
1016
1017
1018

Answer: [NA]
Justification: We do not release any high-risk pretrained model.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do

not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the datasets and code used in this paper are publicly available and properly
cited in the paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We release SACTOR-datasets in the paper and provide the documentation in
the footnote.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

36

paperswithcode.com/datasets

1019

1020
1021
1022

1023

1024

1025

1026

1027
1028
1029
1030
1031
1032
1033

1034
1035

1036
1037
1038
1039

1040

1041

1042

1043

1044
1045
1046
1047
1048
1049
1050
1051
1052

1053

1054
1055
1056
1057

1058

1059
1060

1061

1062
1063
1064
1065

14.

15.

16.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects were involved in this research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects were involved in this research.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We detail the usage of LLMs in §E} and the LLMs are the core component of
our method.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

37

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Related Work
	SACTOR Methodology
	Task Division
	Code Translation
	Unidiomatic Rust Translation
	Idiomatic Rust Translation

	Verification
	Verifying Unidiomatic Rust Code
	Verifying Idiomatic Rust Code
	Feedback Mechanism

	Code Combination

	Experimental Setup
	Datasets Used
	Evaluation Metrics
	LLMs Used

	Evaluation
	Success Rate Evaluation
	Measuring Idiomaticity
	Complex Code-bases

	Conclusion
	Limitations
	SACTOR Overview Figure
	Differences Between C and Rust
	Code Snippets
	Tabular Summary

	Algorithm for Task Division
	Equivalence Testing Details in Prior Literature
	Symbolic Execution-Based Equivalence
	Fuzz Testing-Based Equivalence

	An Example of the Test Harness
	An Example of SACTOR Translation Process
	Dataset Details
	TransCoder-IR Dataset transcoderir
	Project CodeNet codenet
	Real-World Projects

	LLM Configurations
	Failure Analysis in Evaluating SACTOR
	SACTOR Cost Analysis
	Ablation Study on the Feedback Mechanism
	SACTOR Performance with Different Temperatures
	Examples of Prompts Used in SACTOR
	Unidiomatic Translation
	Unidiomatic Translation with Feedback
	Idiomatic Translation
	Idiomatic Verification
	Failure Reason Analysis

