
Causal language modeling can elicit search and
reasoning capabilities on logic puzzles

Kulin Shah ∗

UT Austin
kulinshah@utexas.edu

Nishanth Dikkala
Google Research

nishanthd@google.com

Xin Wang
Google Research

wanxin@google.com

Rina Panigrahy
Google Research

rinap@google.com

Abstract

Causal language modeling using the Transformer architecture has yielded remark-
able capabilities in Large Language Models (LLMs) over the last few years. How-
ever, the extent to which fundamental search and reasoning capabilities emerged
within LLMs remains a topic of ongoing debate. In this work, we study if causal
language modeling can learn a complex task such as solving Sudoku puzzles. To
solve a Sudoku, the model is first required to search over all empty cells of the
puzzle to decide on a cell to fill and then apply an appropriate strategy to fill the
decided cell. Sometimes, the application of a strategy only results in thinning
down the possible values in a cell rather than concluding the exact value of the
cell. In such cases, multiple strategies are applied one after the other to fill a single
cell. We observe that Transformer models trained on this synthetic task can indeed
learn to solve Sudokus (our model solves 94.21% of the puzzles fully correctly)
when trained on a logical sequence of steps taken by a solver. We find that training
Transformers with the logical sequence of steps is necessary and without such
training, they fail to learn Sudoku. We also extend our analysis to Zebra puzzles
(known as Einstein puzzles) and show that the model solves 92.04% of the puzzles
fully correctly. In addition, we study the internal representations of the trained
Transformer and find that through linear probing, we can decode information about
the set of possible values in any given cell from them, pointing to the presence of a
strong reasoning engine implicit in the Transformer weights 2.

1 Introduction

Language models using the Transformer architecture [VSP+17] have displayed remarkable abilities
on a variety of Machine Learning tasks over the last few years [BMR+20, RWC+19]. Trained
with simply the task of predicting the next token on huge amounts of text, these models display
highly performant and deep language understanding skills. In order to make progress on achieving a
human-like artificial intelligence, one of the most important ability is the ability to perform human-
like reasoning and planning. Although LLMs have displayed a seemingly remarkable ability to
excel at reasoning and planning tasks as well, it is a ongoing debate as to whether this ability
comes from a true understanding and reasoning of the underlying problem or some other process
which simulates reasoning but can be highly brittle. For instance, although LLMs show remarkable

∗Work done during an internship at Google Research.
2The code is available at https://github.com/kulinshah98/llm-reasoning-logic-puzzles

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/kulinshah98/llm-reasoning-logic-puzzles

Model Percent of puzzles solved fully Percent of cells answered correctly
GPT-4o 0% 9.5%

Gemini-1.5 Pro 0% 10.2%
Table 1: Results of 4-shot with CoT prompting on Sudoku solving by two of the frontier LLM models.
They solved 0 % of the puzzles completely right and their accuracy on a per cell basis was around
9-10% (close to random guessing).

performance on benchmarks requiring non-trivial reasoning and planning skills such as MATH
[HBK+21], HumanEval [CTJ+21] and others, there is research showing that these abilities can
be extremely brittle or worse, the model is simply performing ‘approximate retrieval’ [VOSK22,
DLS+24].

In this work, we aim to understand how complex a reasoning task can Transformers trained with
next-token prediction solve by focusing on a set of synthetic tasks: logic puzzles. In this work we
focus our analysis on two types of logic puzzles: Sudoku puzzles and Zebra puzzles.

• Sudoku. In the classic variant of Sudoku, we are given a 9× 9 grid where each cell is to
be occupied by a number in the range {1, 2, . . . , 9}. The constraints are that the numbers
along each row and column should be unique. In addition, the numbers within each 3× 3
mini-grid should also be unique. Given a set of initially filled positions, the goal is to figure
out the values that can occur in the unfilled cells. In standard Sudoku puzzles, there will
always only exist a unique solution to the puzzle.

• Zebra Puzzles. There are a more verbal style of a puzzle (Figure 3) where we need to fill in
values in a grid again but this time the type of possible constraints is much richer. These are
also known as Einstein riddles.

Focusing on synthetic tasks like this gives a precise handle on what data the model has seen, and
allows us to also control the difficulty of reasoning required for the task, see e.g. [LHB+23, AZL23,
LSL+23, LAG+22]. Prior works have studied how causal language modeling with Transformers
performs on synthetic tasks such as learning how to make valid moves in Othello, learning context-free
grammars, learning deterministic finite automata and learning specific algorithmic tasks [LAG+22,
LHB+23, NLW23, AZL23, YXLAZ24a, YXLAZ24b] (See Appendix B for a detailed discussion on
related work). Compared to these, Sudoku puzzles present a more challenging task. The Sudoku
environment is a highly challenging Constraint Satisfaction Problem (CSP) and determining the value
in even a single cell can require highly complex reasoning involving multiple steps. In general the
extension of the puzzle to n × n grids is known to be NP-complete [YS03]. Same is the case for
Zebra puzzles. However, we will consider a class of logic puzzles which can be solved in polynomial
time. This class still remains non-trivial to learn. For an idea of how challenging these can be, we
performed a small experiment on how well some frontier LLM’s of today can solve Sudoku puzzles.
We prompted them in a 4-shot manner with 4 Sudoku puzzles (we serialize a puzzle by converting
it into a sequence of (row, column, value) triplets) and their corresponding solutions given before
asking for the solution for a 5th test Sudoku puzzle. We evaluated 3000 examples on Gemini-1.5 Pro
and GPT-4o. We observed that neither models are able to solve any of the puzzles fully correctly.
The results are summarized in Table 1.

1.1 Our setup

We treat each Sudoku/Zebra puzzle as a sequence to sequence problem. In a Sudoku, given the
sequence of filled cell positions and their values, the model needs to output the sequence of unfilled
cell positions and their corresponding values. Similarly in a Zebra puzzle, we are given all the clues
and the possible values for the characteristics in a sequential manner and we need to predict the values
in the grid. To focus attention on a model’s reasoning abilities, we abstract out symbolic versions of
the Zebra puzzles. This means we refer to each person as an entity indexed by a number and their
favorite color or car becomes an attribute number. For both types of puzzles, clearly, the order in
which the model outputs the sequence of filled cells doesn’t matter as long as the values are correct.
However, we will see that the order in which the solutions are presented to the model during training
makes a significant difference in the final performance of the model.

2

We consider a dataset of Sudoku puzzles of varying difficulty levels from [Rad20]. In addition, we
use a Sudoku solver which employs a set of 7 strategies that humans commonly use for solving
Sudokus. Given these set of 7 strategies the solver iteratively scans through all unfilled cells and
checks if progress can be made using one or more of the strategies. If it finds a cell where progress
can be made if fills in its value and repeats the process of searching for the next cell to fill. Although
some of the 7 strategies are simple and direct, some of them are highly non-trivial and non-local.
From the dataset, we filter out those puzzles which cannot be solved by our solver and end up with
1.9M examples. This ensures that all our puzzles are solvable in polynomial time 3.

We can characterize the size of a Zebra puzzle by a tuple of two numbers: the number of entities
and the number of attributes. Each clue in a puzzle is one of 7 different types. We generate around
320,000 Zebra puzzles of sizes varying between (3,3) to (6,6) in the following manner. We first
design a human-like solver for these puzzles which tries to solve the puzzles in an iterative manner
without backtracking. This solver runs in time cubic in the number of clues of the puzzle. When
generating a puzzle of a certain size, we iteratively keep adding clues to a clue set until our solver
is able to solve the puzzle. This way, we can ensure that, similar to our Sudoku puzzles, all our
sampled Zebra puzzles are also solvable efficiently. Note that, even in the symbolic format, there are
an exponential number of puzzles possible implying that our train set and test set won’t overlap with
a very high probability.

1.2 Our results

In this section, we provide an overview of our results. We mainly focus on the Sudoku puzzles to
explain our results and include a brief discussion on the Zebra puzzles.

Our first experiment studies whether a Transformer is capable of solving the Sudoku puzzle in a fixed
cell order (from top-left to bottom-right). This would amount to the model knowing what values
to fill in each unfilled cell in a single forward pass. We observe that although the model learns to
predict the values for some cells in a puzzle (average cell accuracy 58.64% across all unfilled cells),
in general, this leads to poor accuracy of solving the complete puzzle (7.2%).

Observe that solving a Sudoku puzzle can be thought of as finding easy-to-decode cells and then
finding correct value at such cells. We combine this observation with insights from Chain-of-Thought
prompting and use our solver to provide the order to fill cells for a given puzzle. In this setting, we
use the cell positions provided by the solver during the decoding (i.e., position hints of easy to decode
cells) and calculate how many cell values the model gets right. In other words, given a prefix of a
partially solved puzzle, we query the solver to find out the "easiest" cell position to solve next and
then, conditioning on this position, query the model for its value. The average cell accuracy only
goes up marginally by about 3%.

To exploit the full value of the order given by our solver, we train the model from scratch using the
solver order. This allows the model to learn what is a good strategic order in which to fill the cells.
Importantly this order is adaptive based on the puzzle. To train it in this manner, we first feed each
puzzle to our solver and collect the sequence of cells it fills in order. We use these sequences as our
training data which acts as our Chain-of-Thought data for the model. This leads to a much stronger
model which is able to solve full Sudoku puzzles to an accuracy of 87.18% (see Section 3.4).

Given this new model, we again try giving position hints during decoding as above and we see the
average cell accuracy shoot up to 99.02%. This indicates the following. The iterative process of
solving Sudokus can be broken down into two steps: (1) searching and finding a cell position where
we can apply a subset of the strategies, (2) given a cell position, computing the value that needs to be
filled in that position. Step (1) is the harder task for a model to learn. We provide examples of Sudoku
puzzles where the model makes a mistake in step (1) where step (2) is quite trivial (see Section 4.1
for more details). To make the model more proficient at solving the puzzle without the position hints,
we perform a beam search of width 3 or 5 and notice that this suffices to get stronger full puzzle
solving accuracies of 91.36% and 94.21% respectively (see Section 3.5).

In an environment where the model needs to search over a set of candidates to take as the next step,
recent work by [BN24] demonstrated that next-token prediction might be a flawed objective. Another
recent work [LSM+24] posit including the entire search trace as part of the training Chain-of-Thought

3Each of the 7 strategies the solver uses can be generalized to a general n× n grid and they can be applied in
poly(n) time

3

data to help a Transformer learn tasks involving search and planning dynamics. In contrast to these
works, we observe that Transformers trained with the next-token prediction objective and without
access to the entire search trace can learn complex reasoning tasks.

Finally, we further ask if we can see a similarity between the model’s way of solving the puzzles to a
humans/solvers way of solving the puzzle. We study this via probing which has been a technique to
understand the latent conceptual content, see e.g. [LHB+23, AZL23, PCV23, NLW23, JRR+24]. In
particular, works such as [PCV23, NLW23, JRR+24] argue that often simple functions of the model’s
activations or weights can extract useful latent information (See Appendix B for more details). We
study the following via probing. Generally, humans and algorithmic solvers for Sudoku keep track of
a possible set of values for each cell at a given state of the board to make progress on solving the
Sudoku puzzle. We see that the model also implicitly keeps track of a candidate set and this candidate
set matches with the solver’s candidate set (see Section 4.2 for more details).

We perform a similar set of experiments as above on Zebra puzzles and observe qualitatively similar
trends giving evidence that our conclusions are not limited to the domain of Sudoku (See Appendix I
for more details). In summary, our contributions are

1. We show that causal language modeling with the Transformer architecture is capable of
learning to perform search and reasoning in highly non-trivial domains like Sudoku and
Zebra puzzles.

2. We present evidence that the right form of training data which decomposes the problem into
smaller constituents is crucial. However this data is not required to be too descriptive. In
particular, it need not contain search traces similar to those provided in [LSM+24].

3. We perform a probing analysis to show that human-like abstract reasoning concepts such as
candidate set of values emerge implicitly within the model’s activations.

2 Preliminaries and setup

In this section, we provide a brief overview of the logic puzzles we consider and the input/output
data format that is fed to the model. More details about Zebra puzzle, dataset, architectures and
hyperparameters can be found in Appendix D.

Sudoku puzzle and solver. The goal of the sudoku puzzle is to fill out the whole board with numbers
1 to 9 without having duplicates in each row, column, and box (See appendix H for more details).
Unless specified otherwise, we will use (r, c) to denote the position of a cell on the board and v(r, c)
to denote the value at position (r, c) where r ∈ {1, 2, . . . , 9} denotes the row number of the cell and
c ∈ {1, 2, . . . , 9} denotes the column number of the cell. Additionally, we use b(r, c) to denote the
block number (among one of the nine 3× 3 blocks) of the cell at position (r, c). To solve a Sudoku
puzzle, a sudoku-solver (and humans up to an extent) keeps track of the candidate set for each of the
empty cells. See more details about Candidate set in Appendix H.

As mentioned earlier, the generalized version of Sudoku with board size n×n is NP-complete [YS03].
This implies that for some Sudoku puzzles, progress likely can not be made using any strategy that
executes in polynomial time. We avoid such puzzles by restricting our focus to those Sudoku puzzles
that can be solved using a set of 7 well-known and commonly used strategies which are executable
efficiently4. Further details about each of the strategies is provided in Appendix C. An important
point to note is that not all the strategies fill a value in a cell. In fact, only 2 out of 7 strategies that
we use, fill a value in a cell and the other strategies are used to eliminate possible values of a cell
and narrow down the candidate set at a particular cell. Additionally, some strategies (e.g., XY wing,
Unique rectangle) involve reasoning on multiple cells in different rows/columns/blocks and these
strategies don’t fill a value at any cell and therefore, these strategies need to be applied in combination
with other strategies to deduce a value at a cell. Additionally, we only provide the solution list of cell
values to the puzzle during training, therefore the model is not getting any direct signal about the
strategies that eliminate possible values of a cell and is only getting a signal in combinations of the
strategies that deduce a value.

Dataset, model architecture and training. Our training dataset for the Sudoku experiment contains
1.8M puzzles and the test dataset contains 0.1M puzzles. Each puzzle also comes with a difficulty

4The list of the strategies we consider is Lone Single, Hidden Single, Naked Pair, Naked Triplet, Locked
Candidate, XY Wing, Unique Rectangle,

4

rating calculated as follows. To rate a puzzle, a backtracking based solver (different from the one
we use to generate our solver-order data) is employed. This solver tries to iteratively make progress
on a puzzle using some elimination techniques. When it gets stuck, it makes guesses and tries to
solve the puzzle. The difficulty rating is the maximum depth of the guess stack the solver had to
use to solve the puzzle. Therefore, even a puzzle rated 0.5 can require complex strategies beyond
simple scanning to solve them without guessing. We train a sequence-to-sequence model that takes
in as input a representation of a Sudoku puzzle as a sequence and needs to output the solution of the
puzzle as a sequence. During the training, we provide information about a single cell using three
tokens (r, c, v(r, c)): the first two tokens (r, c) contain information about the position of the cell (row
and column number) and the third token contains the number in that cell. Each training sequence is
divided into two parts. The first part contains the information about cells whose values are given in
the puzzle question and the second part contains information about unfilled cells in the solution. Note
that there can multiple valid orders for the solution. Also, note that the length of the first part depends
on the number of cells filled in the puzzle. We train the model using the next-token prediction loss
but we don’t apply the loss corresponding to the prediction of the filled cells given in the question.

We use a Transformer-based GPT-2 [RWC+19] architecture with 8 layers for both puzzles. Each
layer has 8 attention heads with a model dimension of 576 and an MLP of hidden dimension 3456
(6× model dimension) follows in each layer. The total number of parameters of our model is 42M.
We use causal masking in the attention layers to avoid looking into the future.

Evaluation metrics. To evaluate the performance of our model, we use the following two metrics
primarily: 1) Cell accuracy: denotes the percentage of the unfilled cells whose values are correctly
predicted by the model. 2) Complete puzzle accuracy: denotes the percentages of the correctly
solved puzzles in the evaluation dataset. A puzzle with even a single mistake is counted as incorrect.

3 Experiments on Sudoku puzzles

We study the performance of a Transformer model when the model is trained with the next-token
prediction objective. We set up the model architecture and training of the model as discussed in
Section 2 however, the question remains how to order cells in the input sequences of the Sudoku
puzzle during the training of the model. Note that given the state of a Sudoku puzzle, some cells
might be easier to solve than others so the order of the cells of input sequences provided during
training could be important. We first try using a predefined fixed order or a random order of the cells
during the training and inference in Section 3.1. However, this leads to poor performance. Thereafter,
we turn our focus on using a solver to create a better order which we call solver-decomposed
reasoning order (Section 3.2). Inspired by Chain-of-Thoughts literature [WWS+22b], Section 3.3
uses solver-decomposed reasoning order only during the inference on the above trained models to
provide position hints. Yet, conditioning on these position hints during decoding only provides a
relatively small improvement in the performance showing that even if we tell the model to find the
value in a particular cell, it has not learnt fully how to do so.

Therefore, in Section 3.4, we explore training the model using cells provided in solver-decomposed
reasoning order. This provides a huge boost to the performance allowing the model to solve over 85%
of the puzzles in the test set accurately. However, it still does not achieve near-perfect cell accuracy.
Therefore, Section 3.5 uses beam search decoding to improve the performance.

3.1 Training using fixed or random order of the cells

A natural choice for the cell order in the input sequence would be to use a fixed order of the cells or a
random order of the cells in the puzzle for the input sequence. Note that the order of the puzzle is
only provided during the training and we do not penalize the model for wrong order during evaluation
as long as it solves the given sudoku puzzle correctly.

Fixed order of the cells. In this ordering of the cells, we arrange the cells in a predefined fixed order
of top-left to bottom-right of the board of the puzzle. To be more precise, for any two cells (r, c)
and (r′, c′) where r and r′ denote the row numbers and c and c′ denote the column number, we will
order the first cell (r, c) before (r′, c′) if r < r′ or r = r′ and c < c′. We order both parts of the
puzzle (input sequence) - given cells in the puzzle and the remaining solution of the puzzle using the
above-mentioned ordering.

5

Figure 1: Comparison of cell accuracy and full puzzle accuracy for fixed order training, random order
training and solver-decomposed reasoning order training.

Random order of the cells. Another way to arrange the cells that we consider is to randomly order
cells in given cells of the puzzle and solution of the inputs. For any given prefix (state of the puzzle),
we randomly pick a cell from the set of empty cells and append that cell and corresponding value to
the prefix.

Results. We provide the experimental results for the fixed order in Figure 1. We see that the model
trained with fixed order achieves 58.64% cell accuracy and only 7.2% full puzzle accuracy whereas
the model trained with random order only achieves around 52% cell accuracy and only 1% complete
puzzle accuracy.

In the above ordering of the cells, given a state of the puzzle, the model decides on a random cell
or fixed cell to output value but at that state, only a few cells might be easier to solve than others
and the model trained using random or fixed order of cells do not necessarily decode the easier cells
at that state. Therefore, inspired by Chain-of-thought literature [WWS+22b], we ask the following
question: if we provide the model information during inference which cells are easier to fill then does
the performance improve? Before we answer the above question, we define the solver-decomposed
reasoning order which will be useful in finding cells that are easier to fill.

3.2 Solver-decomposed reasoning order

A natural way humans solve Sudoku is by iteratively trying to find cells that look easier to fill. The
search process involves trying to see if any of a given set of strategies can be applied to fill in the
value or otherwise make progress on a cell. Inspired by this analogy, we construct an order of filling
cells using a solver. The solver uses 7 strategies as mentioned in Section 2. At any given state of
the puzzle, it tries to apply to an easier strategy first and if it can not make progress with an easier
strategy then it goes to a harder strategy. To apply a strategy, the solver goes through all the cells and
tries to apply the strategy for each cell to make progress toward solving the puzzle. Progress doesn’t
necessarily mean filling a value in a cell but simply eliminating possible values from the candidate
set (set of possible values) of a cell also counts as progress. We call the order given by the solver as
solver-decomposed reasoning order or decomposed reasoning order for brevity when it is clear from
the context. Note that the decomposed reasoning order arranges the cells based on how easy they are
to fill in, as the solver initially employs simpler strategies to make progress.

3.3 Hinted cell accuracy

In recent years, chain-of-thought (CoT) prompting [WWS+22b] has emerged as one of the effective
techniques to extract complex reasoning abilities from a model. The main idea of CoT is to lead the
model to the correct output by providing intermediate steps to help the model. Inspired by the CoT
prompting, we ask if providing the model additional information about easier-to-decode cells during
inference improves the performance?

Specifically, we use decomposed reasoning order to provide position hints during inference. Recall
that to infer a value at position (r, c) at a state of the puzzle s, we provide (s, r, c) as input to the
transformer model and the random-order baseline model is trained to predict value v as next token
given positions in previous two-tokens (r, c), and because positions are chosen randomly during the
training, the model is forced to use the positions in previous two-tokens (r, c) while predicting the

6

value. (Note that this is not the case for the model trained with fixed order and therefore, we don’t
consider them in this experiment).

Now, to provide additional information to the model about the easier cells to predict, we use the
decomposed reasoning order. Specifically, for any given state s, we provide the state s to the solver
to obtain the position of the easiest cell. Suppose the solver picks (r′, c′), then we provide (s, r′, c′)
to the trained model to predict a value at (r′, c′). We reiterate this process for every non-empty cell
of the puzzle. We measure the cell accuracy in this setting and we call this accuracy as hinted cell
accuracy to denote the provided hints about easy-to-decode positions from the solver.

Results. We see that the model trained using random order achieves 54.57% hinted cell accuracy.
This means that providing hints about easy-to-decode positions improves the accuracy by around 3%
over without any hints. At first glance, it seems like the model is struggling significantly to implement
the correct strategy even when we provide information about the positions of easy-to-fill cells as hints
during the inference. However, this might not be the correct conclusion because of the following
reasons: during the training, the model is trained to predict the value from random cells, and the
model needs to learn and apply very hard strategies as well to improve its training loss. In the process
of learning hard strategies, the model might fail to learn easier strategies as well because of various
reasons (e.g., limited data corresponding to easier strategies, limited model size, etc.).

When we use decomposed reasoning order during the inference, it helps to improve the performance
for the model trained using random-order of the cells but because the model needs to perform a
hard search and reasoning task while decoding a value at a single cell, it not only seems to hurt the
model in searching easy-to-decode cells but also affects its reasoning capabilities to decode a value at
given cells even after we explicitly provide positions of easy to fill cells. This motivates us to use
decomposed reasoning order during the training.

3.4 Using solver for CoT training

Solving the sudoku puzzle can be decomposed into two sub-tasks: 1) Search across the board to find
the cells that are easy to fill and 2) After finding the easy-to-fill cell, apply the correct strategy on
the cell to obtain a correct value in it. As mentioned earlier, the model trained for fixed-order and
random-order does not have explicit incentives to perform a search for easy-to-fill cells. Therefore,
the motivation for providing the solver-decomposed reasoning order during the training is to provide
an order of cells such that training a model using the order helps the model to decompose the complex
task of solving sudoku into smaller sub-tasks.

To provide decomposed reasoning order of cells during the training, we arrange the cells according to
how easy to fill they are. Note that we can obtain this using Then, we use these sequences during the
training with the next-token-prediction loss for all the tokens. Therefore, given a board state s, the
loss corresponding to position tokens incentivizes the model to learn to find easy-to-decode cells, and
the loss corresponding to value tokens incentivizes the model to learn the strategy.

Result. We provide the result for the decomposed reasoning order training in Figure 1. We see
that using the decomposed reasoning order achieves the cell accuracy 94.23 % and complete puzzle
accuracy 87.18% accuracy. Training the model on the decomposed reasoning order improves cell
accuracy by around 36% over the fixed-order training and by around 43% over the random-order
training. The most noticeable improvement comes in complete puzzle accuracy where decomposed
reasoning order training achieves 87.18 % accuracy whereas the fixed-order training achieves around
8 % accuracy and the random-order training achieves around 1 %.

Hinted accuracy for training using solver-decomposed reasoning order. Even though solver-
decomposed reasoning order training significantly improves performance over fixed-order training and
random-order training, it does not achieve near-perfect accuracy. Therefore, to understand whether
the model is struggling to perform a search for easy-to-decode training or to employ a strategy given
a position, we perform the experiment of providing hints about easy-to-decode positions (presented
in Section 3.3). Recall that to measure the hinted cell accuracy for a model, we provide information
about easy-to-decode cells to the model during inference and measure cell accuracy in that setting.
We see that the model with solver-decomposed reasoning order training achieves 99.02 % hinted
cell accuracy. This means that the model can employ the correct strategy assuming it has access to
information about easy-to-decode cells and that the performance gap in cell accuracy (94.23 % to
near-perfect accuracy) is mainly due to searching for easy-to-decode cells.

7

Cell accuracy Complete puzzle accuracy
Beam width k = 1 94.23 % 87.18 %
Beam width k = 3 96.07 % 91.36 %
Beam width k = 5 98.03 % 94.21 %

Table 2: Performance (cell accuracy and complete puzzle accuracy) change as we increase beam-
width in beam-search.

Next, we try to bridge the gap between 94.23% cell accuracy and 99.02% hinted cell accuracy
achieved by the model trained using decomposed reasoning order. To improve the accuracy, we first
understand the number of cells that are filled for a puzzle when the model is making the first mistake
for the puzzle. Note that when the model makes a mistake by filling in an incorrect value on the
puzzle, then the probability of the model making a mistake on the remaining empty cells increases.
We also see this happen in our experiments (See Appendix E).

A hypothesis about lower cell accuracy than hinted cell accuracy is that given a certain state of the
puzzle, the model might be confused between several cells about which cells are easier to decode.
However, if the model is allowed to explore multiple potential cells of the puzzle, it might figure out
the true solution as the model will make a prediction confidently for the true solution of the puzzle
compared to other wrong solutions. Because of this reason, we try beam-search decoding for the
model trained using solver-decomposed reasoning order.

3.5 Beam-search decoding

Beam-search decoding (used in many popular NLP systems, e.g. [WSC+16]) in language modeling
allows the model to explore multiple partial decoding of the sequences during the inference of a
language model and output the most probable explored sequence. The beam width k of the beam
search decoding denotes how many partial sequences (hypotheses) are kept at each step. At each step
of the decoding, it expands all partial solutions of the puzzle by decoding one more token. Then,
among this expanded partial solution set, the model selects the top k most probable partial solutions.
This process is repeated for the decoding of every token. Note that beam search only maintains k
possible output sequences throughout the decoding process. Compared to standard decoding, beam
search incurs a computational overhead of a factor of k2. In the Sudoku puzzle, It is important to
note that the beam search can not try out all possible outputs for the Sudoku puzzle. After all, the
total number of outputs can be arbitrarily large because many of the empty cells will have on average
2 to 5 possible values and the total number of empty cells in the puzzle is at least 50.

Results. We present our results for beam-search decoding in Table 2. The beam search with k = 1 is
equivalent to greedy decoding as it only keeps one partial sequence. We see that beam search with
k = 3 improves the cell accuracy by around 2% and complete puzzle accuracy by around 4%. We
see a similar improvement when we increase beam width from k = 3 to k = 5. Note that the cell
accuracy with beam width k = 5 is able to bridge the gap from the hinted cell accuracy up to a large
extent but does not need hints about easy-to-decode positions.

4 Analysis
In the above section, we showed that solver-decomposed reasoning order during the training can
greatly help improve the model’s performance. In this section, we analyze the trained model on
several fronts. Section 4.1 contains a discussion about failure cases of the model in searching easy-
to-decode cells. In Section 4.2, we show that the candidate set information emerges in the model
to explain how the learned model is solving the puzzles. We compare the model’s performance
to a neural network-based method designed to solve the Sudoku puzzle [PPW18] in appendix F.1.
Appendix F.2 contains the breakdown of the complete puzzle accuracy across various difficulties.

4.1 Failure in search for easy-to-decode cells

As discussed in section 3.4, the model trained using solver-decomposed reasoning order solves 94.23
% cells of the sudoku puzzles correctly. To understand the failure modes of the model, we measure
the hinted cell accuracy by providing information about easy-to-decode cells to the model during
inference. We see that the model achieves 99.02% accuracy. This shows that the model can find

8

Figure 2: A failure case of the model in searching for easy-to-decode cells. The left figure shows
the sudoku puzzle state when the model makes the first mistake and the right figure shows the puzzle’s
solution. Numbers given in the blue are provided in the puzzle. The puzzle makes a mistake by
choosing to fill the red-colored cell whereas the green background cell can be easily filled.

the correct value at the cell when it is provided the information about easy-to-decode cells and the
performance gap in cell accuracy is mainly due to the inability to search for easy-to-decode cells.

We also provide some examples of the puzzle situations in Figure 2 and Figure 7 (in Appendix) when
the model makes a mistake by trying to fill a cell but there is another cell for which it is easier to fill.
This supports our finding by hinted cell accuracy that the performance gap of our trained model to
the perfect accuracy is due to the inability to search for easy-to-decode cells.

Additionally, a cell can be easy-to-decode because of either row, column or block constraint of the
Sudoku puzzle. We found that our trained model misses more cells which are easy-to-decode because
of the block constraint. This might be due to the input format being not explicit for block and explicit
for row and column of a cell (recall that a cell is in the format of (r, c, v(r, c)) as input to the model).
A natural extension in this case could be to provide a block number also as an input to the model. We
leave it for future work.

4.2 Emergence of candidate set information in the model

We saw in the previous section that a model trained with puzzles given in solver-decomposed
reasoning order performs very well. Therefore, we focus on how the model is learning such a task
that requires planning and reasoning. As mentioned earlier, the sudoku solver (and to an extent
humans) keeps track of possible values that a cell can take for the given puzzle. Therefore, we ask
the following question: does the model also keep track of possible values of a cell? Can we extract
them from the model?

We answer both of these questions (perhaps surprisingly) positively by showing that for a given
puzzle, the candidate set of the solver can be extracted from the logits of the model. The candidate
set of an empty cell keeps track of possible values that the cell can take given a state of the puzzle.
Note that given some state of the puzzle, the candidate set at an empty cell (r, c) can be different
from {1, 2, . . . , 9}−{set of filled values in row r, column c and box b(r, c)} as some of the strategy
removes a value which does not occur in the same row, column or box.

Calculating candidate set equivalence. For all puzzles in the validation dataset, we obtain the
candidate set of all empty cells from the solver when the number of filled cells is in the set S =
{35, 40, 45, 50, 55, 60, 65, 70, 75}. For a state s of a puzzle, we denote the candidate set of the solver
at an empty cell (r, c) as f∗(s, r, c). We use |f∗(s, r, c)| to denote the number of possible values in
the candidate set f∗(s, r, c). To extract the candidate set from the model at the state s of the puzzle
and at an empty cell (r, c), we feed (s, r, c) as the prefix to the model and values corresponding

9

Number of filled cells 35 40 45 50 55 60 65 70 75
Accuracy (%) 93.19 93.23 94.14 94.81 94.70 96.60 97.71 98.54 99.37

Table 3: Candidate set equivalence accuracy when the number of filled cells is different in the given
puzzle. The candidate-set equivalence accuracy measures the average overlap between the solver’s
and the model’s candidate set for the correctly solved puzzles.

to top-k output logits where k = |f∗(s, r, c)| becomes the candidate set of the model. We denote
the model’s candidate set as m(s, r, c). Importantly, note that we DO NOT only evaluate the top-k
candidates on the cell the model chooses to predict. Although during its natural course of decoding
the model might wish to decode cell location A, we force it (by conditioning) to decode at every
other location and evaluate the top-k candidates. This ensures that we are looking at what the model
thinks is the set of possible candidates of cell location (r1, c1) even when it has decided to decode
cell (r2, c2) ̸= (r1, c1) next. We note that this style of probing differs from the more common way
to perform a probing analysis which involves learning a linear/non-linear probe which takes in the
embedding and outputs a label indicating a concept. However, we use probing in more general sense
to refer to understand some of the inner workings of the model.

The accuracy for the candidate set equivalence between the solver and the model at a state s of a
puzzle and at an empty (r, c) is measured by |f∗(s, r, c) ∩ m(s, r, c)|/|f∗(s, r, c)|. The reported
accuracy at position n ∈ S in Table 3 is the average over all empty cells when the number of filled
cells is n for the puzzles which are correctly solved by the model. Intuitively, the candidate-set
equivalence accuracy measures the average overlap between solver’s and model’s candidate set for
the correctly solved puzzles.

Results. The results of candidate set equivalence accuracy are given in Table 3. We see that for all
positions the average overlap between the solver’s and the model’s candidate set is above 93 %. This
overlap improves to around 96.5 % when the prefix has information about 60 cells and to around
98.5 % when the prefix contains information about 70 cells. Note that to extract the candidate set of
the model, we are just reading the logits and not even training a linear function. Additionally, the
candidate set equivalence result is not only for cells that are easy to decode but for all empty cells.
Moreover, during the training of the model, no direct information about the candidate set is provided
and the model is only trained to predict the correct value for a cell and therefore is not directly
incentivized to predict the correct candidate set for all the empty cells with such a high accuracy.

5 Conclusion

We have shown that even on complex logical reasoning tasks such as Sudoku and Zebra puzzles,
simple next-token prediction provided with a high-level decomposition of the reasoning steps during
training is able to learn to solve the task. This suggests that, given the right level of detail and
breakdown of reasoning steps in the training data, a pre-trained model might already present as a
strong reasoning engine (without the need for post-training techniques such as fine-tuning, prompt
engineering, self-consistency, tree-of-thoughts etc). These techniques might help significantly boost
the baseline performance of a model or potentially make up for deficiencies in the pre-training data
however. To move towards more general reasoning systems, an interesting challenge to overcome
would be to simulate the decomposed reasoning data in an efficient manner. These tasks capture
many different types of constraint satisfaction problems and we believe the framework and results
should generalize to other settings as well.

Finally, we conclude with some limitations of our study. Firstly, we note that we studied a synthetic
setting on a toy task and real-world reasoning and planning tasks can be much more abstract and
challenging. More specifically, Sudoku is a task which doesn’t require the same degree of long-term
planning as some harder benchmarks. That is, any cell we can make progress on is progress unlike
constraint problems where one might need to backtrack. Moreover, we focused on a reasoning setting
where creative thinking was not required. That is, the model did not need to invent new strategies
to solve any test time puzzle. It is an interesting future direction to study to what extent causal
language modeling can yield novel reasoning strategies. Moreover, there can be many different types
of reasoning tasks which are not logic puzzles (for instance probabilistic puzzles or rule-less puzzles,
see e.g. [GLFS24]) and our experiments do not explore those.

10

Acknowledgments and Disclosure of Funding

Authors would like to thank Erik Vee for guiding them to use the hinted cell accuracy to understand
the failure modes of the trained model.

References
[AAA+23] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Flo-

rencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[ABB+22] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron
David, Chelsea Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al.
Do as i can, not as i say: Grounding language in robotic affordances. arXiv preprint
arXiv:2204.01691, 2022.

[AG23] Pranjal Awasthi and Anupam Gupta. Improving length-generalization in transformers
via task hinting. arXiv preprint arXiv:2310.00726, 2023.

[AZL23] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 1, context-free
grammar. arXiv preprint arXiv:2305.13673, 2023.

[BMR+20] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. Language models are few-shot learners. In NeurIPS, 2020.

[BN24] Gregor Bachmann and Vaishnavh Nagarajan. The pitfalls of next-token prediction.
arXiv preprint arXiv:2403.06963, 2024.

[BPL+16] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio.
Neural combinatorial optimization with reinforcement learning. arXiv preprint
arXiv:1611.09940, 2016.

[CFK+23] Constantine Caramanis, Dimitris Fotakis, Alkis Kalavasis, Vasilis Kontonis, and
Christos Tzamos. Optimizing solution-samplers for combinatorial problems: The
landscape of policy-gradient method. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems,
volume 36, pages 14035–14069. Curran Associates, Inc., 2023.

[CMWC22] Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts
prompting: Disentangling computation from reasoning for numerical reasoning tasks.
arXiv preprint arXiv:2211.12588, 2022.

[CTJ+21] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-
man, et al. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374, 2021.

[DLS+24] Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen
Lin, Sean Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and
fate: Limits of transformers on compositionality. Advances in Neural Information
Processing Systems, 36, 2024.

[GLFS24] Panagiotis Giadikiaroglou, Maria Lymperaiou, Giorgos Filandrianos, and Giorgos
Stamou. Puzzle solving using reasoning of large language models: A survey. arXiv
preprint arXiv:2402.11291, 2024.

11

[GTLV22] Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can
transformers learn in-context? a case study of simple function classes. Advances in
Neural Information Processing Systems, 35:30583–30598, 2022.

[HBK+21] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric
Tang, Dawn Song, and Jacob Steinhardt. Measuring mathematical problem solving
with the math dataset. arXiv preprint arXiv:2103.03874, 2021.

[HXX+22] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy
Zeng, Jonathan Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner mono-
logue: Embodied reasoning through planning with language models. arXiv preprint
arXiv:2207.05608, 2022.

[JRR+24] Yibo Jiang, Goutham Rajendran, Pradeep Ravikumar, Bryon Aragam, and Victor
Veitch. On the origins of linear representations in large language models. arXiv
preprint arXiv:2403.03867, 2024.

[KGR+22] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. Large language models are zero-shot reasoners. Advances in neural
information processing systems, 35:22199–22213, 2022.

[LAD+22] Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk
Michalewski, Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, et al. Solving quantitative reasoning problems with language models.
Advances in Neural Information Processing Systems, 35:3843–3857, 2022.

[LAG+22] Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang.
Transformers learn shortcuts to automata. arXiv preprint arXiv:2210.10749, 2022.

[LH16] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983, 2016.

[LHB+23] Kenneth Li, Aspen K. Hopkins, David Bau, Fernanda B. Viégas, Hanspeter Pfister,
and Martin Wattenberg. Emergent world representations: Exploring a sequence model
trained on a synthetic task. In ICLR, 2023.

[Lon23] Jieyi Long. Large language model guided tree-of-thought. arXiv preprint
arXiv:2305.08291, 2023.

[LSL+23] Nayoung Lee, Kartik Sreenivasan, Jason D Lee, Kangwook Lee, and Dimitris Papail-
iopoulos. Teaching arithmetic to small transformers. arXiv preprint arXiv:2307.03381,
2023.

[LSM+24] Lucas Lehnert, Sainbayar Sukhbaatar, Paul Mcvay, Michael Rabbat, and Yuandong
Tian. Beyond a*: Better planning with transformers via search dynamics bootstrapping.
arXiv preprint arXiv:2402.14083, 2024.

[MHF+23] Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa
Jojic, Hamid Palangi, Robert Ness, and Jonathan Larson. Evaluating cognitive maps
and planning in large language models with cogeval. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

[MKPZ11] Valeri Mladenov, P Karampelas, C Pavlatos, and E Zirintsis. Solving sudoku puzzles
by using hopfield neural networks. Proc. of ICACM, 11:174–179, 2011.

[MP23] Aleksei Maslakov and Basil Papadimas. Sudoku solver with step-by-step guidance.
https://github.com/unmade/dokusan, 2023.

[MSIB21] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforce-
ment learning for combinatorial optimization: A survey. Computers & Operations
Research, 134:105400, 2021.

[NB21] David Noever and Ryerson Burdick. Puzzle solving without search or human knowl-
edge: An unnatural language approach. arXiv preprint arXiv:2109.02797, 2021.

12

https://github.com/unmade/dokusan

[NCL+23] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt.
Progress measures for grokking via mechanistic interpretability. arXiv preprint
arXiv:2301.05217, 2023.

[NLW23] Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in
world models of self-supervised sequence models. arXiv preprint arXiv:2309.00941,
2023.

[PCV23] Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis
and the geometry of large language models. arXiv preprint arXiv:2311.03658, 2023.

[PPW18] Rasmus Palm, Ulrich Paquet, and Ole Winther. Recurrent relational networks. Ad-
vances in neural information processing systems, 31, 2018.

[Rad20] David G. Radcliffe. 3 million sudoku puzzles with ratings, 2020.

[RDM+24] Anian Ruoss, Grégoire Delétang, Sourabh Medapati, Jordi Grau-Moya, Li Kevin
Wenliang, Elliot Catt, John Reid, and Tim Genewein. Grandmaster-level chess without
search. arXiv preprint arXiv:2402.04494, 2024.

[RWC+19] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

[SBM+23] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan
Tremblay, Dieter Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating
situated robot task plans using large language models. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 11523–11530. IEEE, 2023.

[SWW+23] Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao,
and Yu Su. Llm-planner: Few-shot grounded planning for embodied agents with
large language models. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 2998–3009, 2023.

[TAB+23] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac,
Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini:
a family of highly capable multimodal models. arXiv preprint arXiv:2312.11805,
2023.

[VOSK22] Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambham-
pati. Large language models still can’t plan (a benchmark for llms on planning and
reasoning about change). arXiv preprint arXiv:2206.10498, 2022.

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

[WSC+16] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolf-
gang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s
neural machine translation system: Bridging the gap between human and machine
translation. arXiv preprint arXiv:1609.08144, 2016.

[WWS+22a] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,
Aakanksha Chowdhery, and Denny Zhou. Self-consistency improves chain of thought
reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.

[WWS+22b] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language
models. Advances in neural information processing systems, 35:24824–24837, 2022.

[XKZ+24] Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He,
and Michael Xie. Self-evaluation guided beam search for reasoning. Advances in
Neural Information Processing Systems, 36, 2024.

13

[XZC+24] Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian,
Yanghua Xiao, and Yu Su. Travelplanner: A benchmark for real-world planning
with language agents. arXiv preprint arXiv:2402.01622, 2024.

[YIL23] Zhun Yang, Adam Ishay, and Joohyung Lee. Learning to solve constraint satisfaction
problems with recurrent transformer. In The Eleventh International Conference on
Learning Representations, 2023.

[YS03] Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another
solution and its application to puzzles. IEICE transactions on fundamentals of
electronics, communications and computer sciences, 86(5):1052–1060, 2003.

[YXLAZ24a] Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language
models: Part 2.1, grade-school math and the hidden reasoning process. arXiv preprint
arXiv:2407.20311, 2024.

[YXLAZ24b] Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models:
Part 2.2, how to learn from mistakes on grade-school math problems, 2024.

[YYZ+24] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and
Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language
models. Advances in Neural Information Processing Systems, 36, 2024.

[YZY+22] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. React: Synergizing reasoning and acting in language models. arXiv
preprint arXiv:2210.03629, 2022.

[ZCS+23] Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu Ding, Joshua B Tenenbaum,
and Chuang Gan. Planning with large language models for code generation. arXiv
preprint arXiv:2303.05510, 2023.

[Zhu] Richard Zhu. Solving sudoku puzzles with recurrent neural networks.

[ZLH24] Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense
knowledge for large-scale task planning. Advances in Neural Information Processing
Systems, 36, 2024.

[ZSH+22] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang,
Dale Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most
prompting enables complex reasoning in large language models. arXiv preprint
arXiv:2205.10625, 2022.

14

A Example of a Zebra puzzle

There are 3 people next to each other in a row. Everyone has a different name: Ali, Rose, Randy.
Every one lives in a different colored house: gold, silver, indigo. Everyone likes a different drink:
orange juice, beer, coffee. Match the people to the correct value for each of their characteristics
using the clues.

1. The person who likes orange juice is immediately to the left of the person who likes coffee.

2. The person who likes beer is somewhere to the left of the person who lives in the indigo
house.

3. The person at the 1st position is Rose.

4. Randy is not the person who likes orange juice.

5. Randy is the person who lives in the gold house.

Figure 3: An example Zebra puzzle with 3 entities, each having 3 attributes.

B Related work

There are many works which study the ability of language models to perform reasoning tasks which
involve search and planning with mixed evidence as to whether they are actually learning to reason
and plan. [BMR+20] was a seminal work which showed that large language models (LLMs) are
few-shot learners and [KGR+22] argued that they can be zero-shot reasoners. [LAD+22] shows that
by fine-tuning on the appropriate data LLMs can exhibit a high performance on the non-trivial MATH
[HBK+21] dataset. In addition, the reports of frontier models like GPT-4 [AAA+23] and Gemini
[TAB+23] also contain support for the idea that LLMs can perform reasoning and planning. Building
on these lines of work, [HXX+22, SBM+23, ABB+22, SWW+23] employ LLMs in planning tasks
in the robotics domain.

A number of follow-up works study how we can improve the reasoning and planning capabil-
ities of LLMs using various techniques such as prompt engineering, tool use, using LLMs in
combination with an external deduction engine. Some of the prominent works in this bracket are
Chain-of-Thought prompting [WWS+22b], least-to-most prompting [ZSH+22], self-consistency
[WWS+22a], tree-of-thought prompting [Lon23, YYZ+24, XKZ+24], program of thoughts
[CMWC22], planning for code generation [ZCS+23]. Of these, [Lon23] evaluate the efficact
of Tree-of-Thought reasoning using LLMs like GPT-4 on solving Sudoku puzzles and only
achieve results on 5x5 Sudoku puzzles, Moreover, the tree-of-thought prompting technique is
known to quite expensive to run. [ZLH24] use LLMs to provide a commonsense world model
and a policy which can be fed to a Monte-Carlo tree search algorithm. The ReAct framework
[YZY+22] uses LLMs to generate reasoning traces and task-specific actions in an interleaved manner.

In contrast to the above, [VOSK22] show that LLMs when acting alone or when combined with
techniques such as Chain-of-Thought or Tree-of-thought cannot solve some standard planning and
reasoning benchmarks when the questions are rephrased with a new terminology. This is even
when we use techniques such as Chain-of-Thought, fine-tuning etc. [XZC+24] show that even
the biggest LLMs perform very poorly at real-world travel planning tasks with a multitude of soft
and hard constraints. [DLS+24] show that LLMs are limited and brittle in their ability to perform
compositional tasks such as multi-digit multiplication, logic grid puzzles and dynamic programming.
[MHF+23] argue that LLMs have weak cognitive maps which are crucial for planning. [BN24] show
that rather than the architecture, the training objective of next-token prediction might be crippling the
planning and reasoning ability of a language model.

There are many works which use the help of synthetic tasks to gain insights into how Transformer
language models work. We present a non-exhaustive list here. [LHB+23] use the synthetic task of
learning to predict valid next moves in an Othello game to study whether an internal model of the
Othello board emerges in the model or not. [AZL23] use synthetic tasks such as learning context-free
grammars to understand the mechanics of how large-scale learning in LLMs works. [GTLV22] use

15

linear regression from in-context examples to study the in-context learning phenomenon. [NCL+23]
use the task of modular addition to understand the specific algorithm a shallow Transformer
implements to solve the problem. [AG23] use the task of sorting a list of numbers to study length
generalization.

Comparison to traditional solvers and other ML approaches. Traditional constraint satisfaction
libraries use very powerful combinatorial search algorithms to solve logic puzzles and are much more
powerful than any deep model we learn here. In addition, many prior works study machine learning-
based approaches for solving general combinatorial problems [BPL+16, MSIB21, CFK+23]. In
addition, there are several approaches that tend to handcraft the architecture or loss to the puzzle
using human understanding of the puzzle structure [MKPZ11, PPW18, Zhu]. Even though our goal
is to understand the capabilities and limitations of causal language modeling and not to compete with
such solvers, we discuss some of these works more in detail.

[MKPZ11] try to setup a Hopfield network to solve Sudoku puzzles. [PPW18] handcrafts the
recurrent network to match the puzzle structure (and obey the constraints) and performs multiple
rounds of message passing between cells of the sudoku puzzle to arrive at a solution. We evaluate
our trained model (trained using causal language modeling) on the test dataset proposed in this work
and we observe a comparable performance without handcrafting the network or loss function. [Zhu]
achieves a 65% accuracy of RNN based solvers on 3x3 Sudoku puzzles. [NB21] study how well
GPT-2 models trained on natural language perform on puzzle tasks such as Rubik’s cube and Sudoku.
[YIL23] study solving Sudokus using a recurrent form of Transformers by baking the knowledge
of Sudoku’s constraints into the model architecture and training pipeline. For chess, works like
[RDM+24] use a chess engine such as Stockfish to provide supervised labels for different board
states and train a Transformer network to predict the value function of a board state. This can then be
used to play expert level chess.

C Details about our list of strategies

As mentioned earlier, we consider puzzles with 7 strategies for both Sudoku and Zebra puzzles.

C.1 Strategies for Sudoku puzzles

We first list all the strategies used in Sudoku puzzles with an explanation.

1. Lone single: This strategy is applied to a cell where only one candidate number is possible
based on the rules.

2. Hidden single: This strategy is applied the situation where a number can only be placed in
one specfic cell within a row, column or box.

3. Naked pair: This strategy is applied when two cells in a row, column or box contain
the exact same two admissible numbers. This strategy is used to eliminate the number of
possible values.

4. Naked triplet": This strategy is applied when three cells in a row, column or box contain
the exact same three admissible numbers. Similar to the "naked pair" strategy, this strategy
is used to eliminate the number of possible values.

5. Locked candidate: This strategy is applied when all the possible positions for a specific
number within a box are on the same row or column.

6. XY wing: This is a complicated strategy that involves three cells and multiple deduction
steps. First, identify a vacant cell (called a pivot) that has two admissible numbers (denoted
by X and Y); second, identify two other cells (called wing cells) such that each of them
shares a column, row or box with the pivot, and one cell has two admissible numbers X and
Z, and the other cell has two admissible numbers Y and Z. third, for every other cell that
share a column, row or box with both wing cells, Z can be eliminated from their admissible
numbers.

7. Unique rectangle: This is another complicated strategy that involves four cells. First,
identify four cells that forms a rectangle such that three of these cells have only two

16

admissible numbers and the numbers are the same, and the fourth cell share at least of
the numbers as an admissible number; second, both numbers can be eliminated from the
admissible numbers for the fourth cell.

We provide some visual examples of complex strategies in Figure 4.

Figure 4: Examples of complex strategies that involves reasoning about multiple cells. Left: XY-
Wing, where a pivot cell (gray) has two candidate values (X and Y), the wing cells (green) share a
column, row or box with the pivot and share one candidate value (X or Y) with pivot and another
common candidate value (Z), then in any cell that shares a column, row or box with both wing cells
(yellow), we can eliminate Z from the candidate set; Right: Unique Rectangle, where four cells form
a rectangle, among which three cells (gray) share the exact same 2 candidate values, and the fourth
cell (green) share at least one of the 2 values, then both values can be eliminated from the candidate
set for the fourth cell.

C.2 Relationtypes for Zebra puzzles

We now list all the relationship types for the Zebra puzzles. The examples of the following relation
types are given for the original Zebra puzzles.

1. Is equal to: This relation type provides the value for an attribute. An example of this type
of clue can be the Norwegian lives in the first house.

2. Is not equal to: This relation type provides the information that an attribute can not have a
particular value. An example of this type of clue can be the Englishman does not live in the
first house.

3. Immediate left: This relation type provides the relation order for the values either between
attribute values or entities in the solution. An example of this type of clue can be the person
with the dog is immediately left of the person who drinks the coffee.

4. Neighbour of: This relation type provides the information that an entity with a particular
attribute value is the neighbor of another entity. This relation type generalizes the "immediate
left" relationship to include the immediate neighbors of the left and right sides. An example
this type of clue is the person with a dog is next to the person who drinks milk.

5. Ends in: This relation type provides the information that an entity with the particular
attribute value is on either end of the order. For example, the person with the Zebra is on
either end of the order.

6. Left of: This relation type provides the relative order of two entities with some particular
values. Note that left-of relation does not mean the immediate left of an entity. For example,
the person who drinks tea is left of the Japanese person.

7. In between: This relation type provides the relative order of three entities with some
particular attribute values. For example, the Englishman lives in-between the person with
the Horse and the person who drinks coffee.

D Extended preliminaries

In this section, we provide additional details about the setup of the Zebra puzzle, dataset, and
hyperparameters.

17

Zebra puzzle and solver. The Zebra puzzle is characterized by the number of entities m and the
number of attributes n for each entity. e.g., in Figure 3 each person is an entity, and name, house color
and drink are attributes associated with each entity. The relationships between entities and attribute
values are given as clues in the puzzle and the task is to figure out values for all attributes and all the
entities. See Figure 3. Observe that each clue puts some constraints on the value of attributes and
entities. e.g., “The person who likes beer is somewhere to the left of the person who lives in the
indigo house.” clue says that the house (entity) which has drink attribute = beer is somewhere left
to the house whose color attribute = indigo. As we allow more and more complex relationships in
clues, the puzzles become more and more complex. In addition, increasing size makes the puzzles
more complex as well as more and more interconnected clues are required to uniquely pin down a
solution. Larger puzzles also have a higher chance of deeper and trickier reasoning chains being
utilized. Similar to Sudokus, a generalized version of m× n Zebra puzzles is also NP-hard. Unlike
Sudoku puzzles, where the constraints are only the uniqueness constraints within each row, column
and box, Zebra puzzles can have a much more diverse set of constraints which significantly increases
the number of ‘strategies’ that can be used to make progress. Moreover, Zebra puzzles are a step
closer to natural language than Sudoku puzzles.

In the Zebra puzzles, we have 7 different types of clues. Details about each of the clue types is
provided in Appendix C. We generate our own dataset of Zebra puzzles as follows. We first create
a Zebra puzzle solver. The solver for the Zebra puzzle takes in a clue set and iteratively tries to
make progress by using k-sized subsets of the clues at a time (for k ranging from 1 to 3). If it is
able to make a deduction, the solver marks that entry in the answer table and iterates over the clue
subsets again. Given this solver, a new puzzle is generated by starting with an empty clue set and
iteratively adding randomly generated clues until the solver is able to successfully solve the puzzle.
While adding new clues we ensure we do not add duplicates. Nonetheless, some clues might still be
rendered redundant due to the presence of 2 or more other clues. To keep the clue set lean, once we
have a puzzle that the solver is able to solve, we filter out the clues unused by the solver. We generate
puzzles of sizes m× n for m,n ranging in [3, 4, 5, 6].

Our training dataset for the Zebra experiment contains 0.3M puzzles and the test dataset contains 15k
puzzles. The input to the model during the training is divided into two parts. The first part (given in
the puzzle) contains the clues and the second part (solution) contains values for all attributes and all
entities. Each clue contains two parts: 1) the relationship type between attributes and entities and 2)
the specific attributes and entity values that are in this relationship whereas the solution part of the
puzzle consists of multiple triplets of entity, attribute, and the solution for that entity and attribute.
Similar to the sudoku puzzle, there can be different orders in which the solution triplets for each
entity and attribute can be provided during the training.

Dataset. We consider the Sudoku dataset from [Rad20] and then we adapt a Sudoku solver from
[MP23] to filter out the puzzles that can not be solved by the 7 strategies listed above. After filtering,
the dataset contains 1.9M puzzles. We randomly choose 0.1M puzzles from these puzzles and use
them as a validation dataset for the evaluation of the model and the remaining 1.8M puzzles are part
of our training dataset.

We use the AdamW optimizer for our experiments. For all the experiments, learning rate is set to
1 × 10−4 and models are trained for 4 million steps with a batch size of 64. We use the cosine
learning rate schedule [LH16] with the first 4000 tokens as the warmup phase and an end learning
rate factor of 0.2.

E Mistake position frequency experiment.

We present the results about the mistake frequency and first mistake frequency in Figure 5. In this
section, we show that for a puzzle, the model makes more first mistakes for that puzzle at the start of
the puzzle when there are more empty cells because for a model, it is harder to predict the correct
value for that cell but the distribution of all mistakes is more towards the later mistakes. This shows
that when a model makes a mistake on a sequence, it is likely that it will keep making a mistake
because of the invalid prefix.

18

Figure 5: Left figure: Plots the number of mistakes made after how many number of cells were filled.
Right figures: Plots the number of first mistakes that are made against number of cells that were filled
when it made the first mistake.

F Performance analysis of the model

F.1 Comparison with neural network-based Sudoku solver

The goal of our work is to understand the capabilities and limitations of causal language modeling
(and not to propose a new approach to solve the Sudoku puzzle). To understand if there exists a
performance gap between a model trained using causal language modelling and a model specifically
designed to solve Sudoku puzzles, we compare the performance of our model with a neural network
based Sudoku solver proposed in [PPW18]. Palm et al. [PPW18] handcrafts the recurrent network to
match the Sudoku puzzle structure (and obey the constraints) and perform multiple rounds of message
passing between cells of the Sudoku puzzle to arrive at a solution. We evaluate our trained model
on the test dataset proposed in [PPW18] of 18000 Sudoku puzzles (See Table 4 for the result). We
observe that our trained model (trained using solver-decomposed reasoning order and causal language
modeling) combined with the beam search obtains a comparable performance without handcrafting
the network or loss function.

Eval accuracy Eval complete puzzle accuracy
Beam search width=1 98.15 % 94.76 %
Beam search width=3 98.28 % 95.12 %
Beam search width=5 98.37 % 95.43 %

Recurrent Relational Network NA 96.6 %
Table 4: Evaluating our model on the evaluation dataset of Sudoku given in Recurrent Relational
Network (RRN) by Palm et al. [PPW18]. Our trained model performs comparably to the RRN model
but does not require handcrafting the network and training procedure for training on the Sudoku
puzzles.

F.2 Performance analysis of the model using the difficulty of the puzzles

We provide the breakdown of the complete puzzle accuracy across various difficulties in Figure 6 to
better understand the performance of the trained model. We use the difficulty measure provided in
the Kaggle dataset [Rad20]. To obtain the difficulty of a puzzle, it considers a solver (different from
the one we use to generate our solver-order data) which tries to iteratively make progress on a puzzle
using some simple strategies. When the solver gets stuck, it makes guesses and tries to solve the
puzzle. The difficulty rating is the average number of guesses the solver had to make to solve the
puzzle. We wish to point out that even a puzzle rated 1.0 can require complex strategies beyond
simple scanning to solve them without guessing and therefore, this is an imperfect measure of the
difficulty.

In Figure 6, we observe that the model achieves almost perfect complete puzzle accuracy for lower
difficulty accuracy and as the difficulty of the puzzle increases, the complete puzzle accuracy goes
down. We want to note that even when the difficulty rating is between 3 to 3.5, the model can solve
around 50 % of the puzzles completely. Additionally, the advantage of beam search increases for

19

Figure 6: Complete puzzle accuracy for different difficulty Sudoku puzzles. The difficulty rating
is computed as the average number of guesses the rating-solver had to make to solve the puzzle
therefore, the difficulty rating is an imperfect measure of the difficulty.

the higher difficulty puzzles as the model can explore multiple solutions when it has confusion and
output a solution at the end.

G Additional examples of failure mode of the model

H An example of candidate set for the puzzle

H.1 Sudoku puzzle

A generalized version of Sudoku has a board of size n×n with n boxes of size
√
n×

√
n, and the goal

of the game is to fill a partially filled board so that each row, column and
√
n×

√
n boxes contains a

full set of numbers from 1 to n. Implicitly, this means that the goal is to fill out the complete board
such that none of the rows, columns, and boxes contain duplicates. In our experiments, we consider
Sudoku of board size 9× 9 which is further divided into nine 3× 3 boxes.

H.2 Candidate set example

The candidate set for a position (r, c) keeps track of all possible values that the cell can take (See
Section 4.2 for more details) and then uses the candidate sets to either deduce a value at a particular
cell or narrow down the candidate set (set of possible values) at an empty cell.

I Experiments on Zebra puzzle

To extend our results beyond Sudoku, we also conduct our experiments on the Zebra puzzle (also
known as Einstein’s Puzzle). Like Sudoku puzzles, we consider providing the solution in either a
fixed, random, or solver-decomposed reasoning order during the training.

Order of the solution The input provided for a Zebra puzzle during training consists of two parts:
the clues and the solution. The solution part contains values assigned to each entity and attribute.
Based on the given clues, certain values for specific entities and attributes are easier to determine
than others (e.g., in Figure 3, the third clue immediately reveals that the first house has a person with
the name attribute = Rose). Thus, as seen in the Sudoku puzzle, the order in which the solution is
provided is important.

Similar to Sudoku puzzles, we consider providing the solution in either a fixed, random, or solver-
decomposed reasoning order during the training. In all cases, the clues part of the input remains
unchanged. In fixed-order training, the solution is given in a predetermined sequence (we use the
order starting from the first house’s first attribute to the last house’s first attribute, followed by the

20

Figure 7: Additional examples of the failure of the model in searching for easy-to-decode cells.
Both left figures show the sudoku puzzle state when the model makes the first mistake and both
right figure shows the corresponding puzzle’s solution. Numbers given in the blue are provided in
the puzzle. The puzzle makes a mistake by choosing to fill the red-colored cell whereas the green
background cell can be easily filled.

next attribute). In random-order training, the solution is shuffled. In solver-decomposed reasoning
order, the solution is arranged based on how the solver approaches the puzzle, progressively using
smaller subsets of clues to make progress and therefore, dividing the reasoning to solve the puzzle
into multiple stages.

Results We plot the cell accuracy and complete puzzle accuracy on an evaluation set of 1k puzzles
during the training in Figure 9. We see that the training using solver-decomposed reasoning order
achieves 95.63 % cell accuracy and 91.17 % complete puzzle accuracy whereas the random order
training achieves almost zero complete puzzle accuracy and the fixed order training achieves 79.36 %
complete puzzle accuracy. We believe this is due to a larger number of small-sized Zebra puzzles
in the evaluation set (e.g., puzzles with 3 or 4 attributes and entities) which are easier to solve than
larger-sized Zebra puzzles. We also evaluate the model’s performance by using beam search decoding
and report the results in Table 5. We see that using beam search decoding with width=3 improves the
performance by 0.7 % and increasing it to width=5 improves the performance by an additional 0.2 %.

21

Figure 8: An example of the candidate set for a puzzle

Evaluation accuracy Eval complete puzzle accuracy
Beam search width=1 95.63 % 91.17 %
Beam search width=3 96.03 % 91.83 %
Beam search width=5 96.26 % 92.04 %

Table 5: Zebra puzzle results. The training dataset contains Zebra puzzles with the no. of entities
and the no. of attributes in {3, 4, 5, 6} set. For each combination of the no. of entries and attributes,
we generate 20k puzzles therefore, the complete dataset contains 320k puzzles of varying sizes. From
the complete dataset, we randomly choose 15k puzzles for evaluation and the rest of the puzzles
for training the model. Evaluation accuracy: the percentage of correctly predicted attributes on the
evaluation set and eval complete puzzle accuracy: the percentage of correctly and completely solved
puzzles.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All the main claims we make in the paper are reflected in the introduction.
Some of them are not highlighted in the abstract due to lack of space but they are all covered
in the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

22

Figure 9: Comparison of cell accuracy and full puzzle accuracy for fixed order training, random order
training, and solver-decomposed order training

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

23

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: No theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All important details of the experiment settings are discussed and presented.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

24

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The GitHub link of the code is provided.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details provided in the experiments section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Factors which can cause variability in our results include random seed used
for optimization, train/test split. Due to limited computational and temporal resources we
do not report error bars from multiple runs with different random seeds. However, we
observed during our iterations to try and find the best hyper-parameter settings for our
experiments, all runs were stable and results were robust and consistent across runs with
identical hyper-parameters.

Guidelines:

• The answer NA means that the paper does not include experiments.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details are provided in the experiments section of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not conduct research using human subjects. Our work is founda-
tional and does not directly pose a risk of negative societal impact. It helps develop our
understanding of today’s Machine Learning models.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Paper is foundational research with no tie with any real-world application.

26

https://neurips.cc/public/EthicsGuidelines

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Models trained on toy tasks. Doesn’t post risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide citation and describe the license and terms of use in Section 2 for
the dataset we use.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

27

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: As of now no new assets are being released although we plan to open-source
our code at a later point.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: NA

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

28

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Our setup
	Our results

	Preliminaries and setup
	Experiments on Sudoku puzzles
	Training using fixed or random order of the cells
	Solver-decomposed reasoning order
	Hinted cell accuracy
	Using solver for CoT training
	Beam-search decoding

	Analysis
	Failure in search for easy-to-decode cells
	Emergence of candidate set information in the model

	Conclusion
	Example of a Zebra puzzle
	Related work
	Details about our list of strategies
	Strategies for Sudoku puzzles
	Relationtypes for Zebra puzzles

	Extended preliminaries
	Mistake position frequency experiment.
	Performance analysis of the model
	Comparison with neural network-based Sudoku solver
	Performance analysis of the model using the difficulty of the puzzles

	Additional examples of failure mode of the model
	An example of candidate set for the puzzle
	Sudoku puzzle
	Candidate set example

	Experiments on Zebra puzzle

