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Abstract
Large language models (LLMs) have emerged
as a cornerstone in real-world applications with
lengthy streaming inputs (e.g., LLM-driven
agents). However, existing LLMs, pre-trained
on sequences with a restricted maximum length,
cannot process longer sequences due to the out-
of-domain and distraction issues. Common so-
lutions often involve continual pre-training on
longer sequences, which will introduce expen-
sive computational overhead and uncontrollable
change in model capabilities. In this paper, we un-
veil the intrinsic capacity of LLMs for understand-
ing extremely long sequences without any fine-
tuning. To this end, we introduce a training-free
memory-based method, InfLLM. Specifically, In-
fLLM stores distant contexts into additional mem-
ory units and employs an efficient mechanism to
lookup token-relevant units for attention computa-
tion. Thereby, InfLLM allows LLMs to efficiently
process long sequences with a limited context win-
dow and well capture long-distance dependencies.
Without any training, InfLLM enables LLMs that
are pre-trained on sequences consisting of a few
thousand tokens to achieve comparable perfor-
mance with competitive baselines that continually
train these LLMs on long sequences. Even when
the sequence length is scaled to 1, 024K, InfLLM
still effectively captures long-distance dependen-
cies. Our code will be released to advance the
processing of extremely long sequences.

1. Introduction
Recently, large language models (LLMs) have achieved
profound accomplishments in various tasks (Brown et al.,
2020; Bommasani et al., 2021; Han et al., 2021; Touvron
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et al., 2023; Meta, 2024). Their ability to follow complex
instructions shed light on the realization of artificial general
intelligence (OpenAI, 2023; Ouyang et al., 2022). With the
blooming of LLM-driven applications, such as agent con-
struction (Park et al., 2023; Qian et al., 2023; Wang et al.,
2024a) and embodied robotics (Driess et al., 2023; Liang
et al., 2023), enhancing the capability of LLMs to process
streaming long sequences become increasingly crucial. For
instance, LLM-driven agents are required to process infor-
mation continuously received from external environments
based on all their historical memories, necessitating a robust
capability for handling long streaming sequences.

Due to limitations caused by unseen lengthy inputs (Han
et al., 2023) and distracting noisy contexts (Liu et al., 2023;
Tworkowski et al., 2023), most LLMs, pre-trained on se-
quences consisting of only a few thousand tokens, cannot
process longer sequences (Press et al., 2022; Zhao et al.,
2023). Common solutions usually involve continually train-
ing LLMs on longer sequences but further result in substan-
tial costs and require large-scale high-quality long-sequence
datasets (Xiong et al., 2023; Li et al., 2023). And the con-
tinual training process on longer sequences may weaken the
performance of LLMs on short contexts (Ding et al., 2024).
In view of this, improving the length generalizability of
LLMs without further training receives extensive attention,
trying to make LLMs trained on short sequences directly
applicable to long sequences.

In this paper, we propose a training-free memory-based
approach, named InfLLM, for streamingly processing ex-
tremely long sequences with limited computational costs.
Specifically, InfLLM incorporate the sliding window atten-
tion (Xiao et al., 2023; Han et al., 2023) with an efficient
context memory, where each token only attends to local
contexts and relevant contexts from the memory. Consid-
ering the sparsity of attention score matrices, processing
each token typically requires only a small portion of its
contexts (Zhang et al., 2023b), and the remaining irrele-
vant contexts act as noise, leading to attention distraction
issues (Tworkowski et al., 2023). We thus construct an ex-
ternal memory containing distant context information. Only
relevant information within the memory is selected for each
computation step, and other irrelevant noises are ignored.
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Owing to this, LLMs can understand whole long sequences
using a finite-size window and avoid noisy contexts.

The vast amount of noisy context tokens in long sequences
poses significant challenges to effective and efficient mem-
ory lookup. To address these challenges, we design a block-
level context memory mechanism. Specifically, InfLLM
organizes past key-value vectors into blocks, each contain-
ing a continuous token sequence. Within each block, the
semantically most significant tokens that receive the highest
attention scores are selected as the unit representation for
subsequent relevance computation in memory lookup. This
design offers two primary benefits: (1) Effective Lookup:
The coherent semantics of each block can more effectively
fulfill the requirements for relevant information retrieval
compared to single tokens. The selection of unit represen-
tations minimizes the interference of unimportant tokens
in relevance computation, enhancing the overall hit rate
of memory lookup. (2) Efficient Lookup: The block-level
memory unit eliminates the need for per-token relevance
computation, significantly reducing computational costs.
Moreover, block-level units ensure contiguous memory ac-
cess, thus minimizing memory loading costs and enhancing
computational efficiency. Furthermore, considering the in-
frequent usage of most units, InfLLM offloads all units on
CPU memory and dynamically retains the frequently used
units on GPU memory, significantly reducing GPU memory
usage. Notably, the block-level memory mechanism in
InfLLM does not involve any additional training, and
can be directly applied to any LLMs.

We use a widely-used benchmark, ∞-Bench (Zhang et al.,
2023a) for evaluation. Especially, the average sequence
length in ∞-Bench exceeds 100K tokens, which is challeng-
ing for most existing LLMs. The results show the effec-
tiveness of InfLLM. Moreover, we examine InfLLM on the
sequences containing 1, 024K tokens, and InfLLM can still
effectively capture long-distance dependencies.

2. Methodology
As shown in Figure 1, InfLLM builds a training-free context
memory to efficiently provide highly-relevant contexts for
each token, endowing the sliding window attention mecha-
nism with the ability to capture long-distance dependencies.

2.1. Overall Framework

The main restrictions for improving the length generalizabil-
ity of LLMs come from the out-of-domain and distraction
issues caused by the lengthy and noisy contexts. To ad-
dress these, following previous works (Xiao et al., 2023;
Han et al., 2023), we adopt the sliding window attention
mechanism, which only considers local tokens for each
step. Additionally, we construct an extra context memory

module to provide relevant context information to capture
long-distance dependencies.

Specifically, we denote the long input sequence as s =
{ti}li=1. Due to the limited GPU memory, instead of
encoding the whole s at once, we encode the input se-
quence s chunk-by-chunk and generate the output token-by-
token. For each computation step, the inputs consist of past
key-value vectors P = {(kj ,vj)}lPj=1 and current tokens
X = {ti+lP }

lX
i=1. For encoding steps, lX equals the chunk

size, and for decoding steps, lX equals one.

According to the distances from current tokens, we can
divide P into three groups: initial tokens, I = P[1:lI ],
evicted tokens, E = P[lI+1:lP−lL], and local tokens, L =
P[lP−lL+1:lP ], arranged from the furthest to the nearest rel-
ative to the current tokens. Here, lP , lI , lL refer to the
length of past key-value vectors, initial tokens, and the local
window size. All evicted tokens, E, are stored in the context
memory, consisting of multiple memory units. For each
step, InfLLM concatenates the initial tokens, relevant mem-
ories units from context memory, and local tokens to form
the current key-value cache, C = Concat(I, f(X,E),L).
f(·) refers to the lookup operation of context memory. The
attention output is calculated as:

O = Attn [QX,Concat(Ck,KX),Concat(Cv,VX)] .

Here, Q, K, and V are parameters in attention layers, Ck

and Cv refer to the key and value vectors in C.

2.2. Context Memory

Previous findings indicate that the attention score matri-
ces of LLMs are sparse (Zhang et al., 2023b). Inspired
by this, we design a context memory to efficiently look
up relevant contexts from large-scale evicted tokens and
ignore irrelevant ones to save computational costs. The
most intuitive way is to construct a memory consisting of
token-level memory units for every past key-value vectors,
and every attention head separately, which would result
in massive memory units, unacceptable computation, and
non-contiguous memory access costs. Thus, considering
the local semantic coherence of long sequences, we split
the past key-value vectors into blocks, each serving as a
memory unit, and conduct memory lookup at the block level
to reduce the costs while preserving the performance.

Block-Level Memory Units. Block-level memory units
can save computation costs compared to token-level ones. It
also poses new challenges for unit representations, which are
supposed to contain the semantics of the entire unit for effec-
tive relevance score computation and be memory-efficient
for context length scalability. Traditional methods usually
involve training an additional encoder to project a given unit
into a low-dimension vector. Inspired by the token redun-
dancy in hidden states (Goyal et al., 2020; Dai et al., 2020),
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Figure 1: The illustration of InfLLM. Here, the current tokens refer to tokens that need to be encoded in the current
computation step. For each step, the context window consists of the initial tokens, relevant memory units, and local tokens.

we select several representative tokens from the entail
blocks as the unit representation. For the m-th token, we de-
fine the representative score as: rm = 1

lL

∑lL
j=1 qm+j ·km,

where qm+j is the query vector for (m + j)-th token and
km is the key vector m-th token. Intuitively, rm represents
the significance of the m-th token in its corresponding local
window, indicating the extent of its influence on other tokens
within the local window. The computation of representative
scores requires no additional parameters.

Formally, given the evicted tokens, E, we split it into several
memory units, each containing lbs tokens. For each unit,
the rk tokens with the highest representative scores are
selected as representative tokens. Generally, rk is a small
positive integer. Let us denote a memory unit as B =
{(kB

j ,v
B
j )}

lbs
j=1, and the representative tokens of this unit

as R(B) = {(kB
bj
,vB

bj
)}rkj=1.

For the memory lookup phrase, only km units with the high-
est relevance scores are loaded for the current attention com-
putation. We calculate the relevance score between B and
current tokens X as: sim(X,B) =

∑lX
i=1

∑rk
j=1 qi+lP ·kB

bj
.

Notably, the representative tokens selection is a training-free
method to obtain the unit representations. Here, we can also
train an additional encoder to generate more expressive unit
representations, which we leave for future work.

Positional Encoding. Existing LLM training usually em-
ploys a finite number of positional encodings, which en-
counter out-of-domain distribution challenges when directly
applied to longer sequence processing (Han et al., 2023).
We assign all tokens beyond the local window size with the
same positional encodings, and the distance between tokens
in context memory units and current tokens is set as lL.

Cache Management. To enable LLMs to process extremely
long sequence streams while capturing the semantic rele-
vance contained in the long contexts, we need to retain all
memory units and look up them at each computation step.
Considering the infrequent usage of most units, we employ
an offloading mechanism, storing most memory units in

CPU memory and only preserving the representative to-
kens and memory units needed in current steps in GPU
memory. Additionally, given the semantic coherence of
long sequences, where adjacent tokens often require similar
memory units, we allocate a cache space in GPU memory,
managed using a least recently used strategy. This approach
allows for efficient encoding of extremely long sequences
using limited GPU memory. From the observation, our of-
floading mechanism enables InfLLM to process sequences
consisting of 100K tokens with only 26G VRAM. Besides,
the miss rate of our GPU cache is quite low, which means the
offloading mechanism does not introduce significant time
overhead in memory loading while saving GPU memory
usage. The details can be found in the Appendix.

3. Experiments
3.1. Settings

Datasets. We adopt representative tasks in a widely-used
long document benchmark, ∞-Bench (Zhang et al., 2023a)
for evaluation. The average length for ∞-Bench is 145.1K.
The 95% quantile for sequence lengths is 214K, which is
far beyond the maximum length of the base models.

Baseline Models. To verify the effectiveness of our
proposed method, we compare InfLLM with the fol-
lowing competitive baseline models: (1) Original mod-
els; (2) Position downscaling and resuing: NTK-aware
scaled RoPE (NTK) (LocalLLaMA, 2023) and Self-
Extend (Jin et al., 2024); (3) Sliding window: LM-
Infinite (Infinite) (Han et al., 2023) and StreamingLLM
(Stream) (Xiao et al., 2023); (5) Key-value eviction:
H2O (Zhang et al., 2023b). The detailed description about
the baseline models can be found in the Appendix.

3.2. Main Results

The results for Mistral-based models and Llama-3-based
models are reported in Table 1. From the results, we can ob-
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Table 1: The results of InfLLM and baseline models on ∞-Bench. The context window size for sliding window models
refers to the local window size, and for InfLLM refers to “local window size + selected memory size”.

Window Streaming R.PK R.Num R.KV Choice QA Sum Math.F Avg.

Mistral-based Models (7B)

Mistral 32K ✗ 28.8 28.8 14.8 44.5 12.9 25.9 20.6 25.2
NTK 128K ✗ 100.0 86.8 19.2 40.2 16.9 20.3 26.9 44.3
SelfExtend 128K ✗ 100.0 100.0 15.6 42.8 17.3 18.8 19.1 44.8
Infinite 32K ✓ 28.8 28.8 0.4 42.8 11.4 22.5 16.3 21.6
Streaming 32K ✓ 28.8 28.5 0.2 42.4 11.5 22.1 16.9 21.5
H2O 32K ✓ 8.6 4.8 2.6 48.0 15.6 24.4 26.9 18.7

InfLLM 16K ✓ 100.0 96.1 96.8 43.7 15.7 25.8 25.7 57.7

Llama-3-based Models (8B)

Llama-3 8K ✗ 8.5 7.8 6.2 44.1 15.5 24.7 21.7 18.4
NTK 128K ✗ 0.0 0.0 0.0 0.0 0.4 6.4 2.6 1.3
SelfExtend 128K ✗ 100.0 100.0 0.2 19.7 8.6 14.7 22.6 38.0
Infinite 8K ✓ 6.8 7.6 0.2 41.5 14.6 20.8 20.6 16.0
Streaming 8K ✓ 8.5 8.3 0.4 40.6 14.3 20.4 21.4 16.3
H2O 8K ✓ 2.5 2.4 0.0 0.0 0.7 2.8 6.0 2.1

InfLLM 8K ✓ 100.0 99.0 5.0 43.7 19.5 24.3 23.7 45.0

serve that: (1) Compared to models with the sliding window
mechanism, which can also read extremely long sequences,
our method demonstrates a significant performance improve-
ment. This indicates that the context memory in InfLLM
can accurately supplement LLMs with relevant contextual
information, enabling efficient and effective understanding
and reasoning on long sequences. (2) The position down-
scaling and resuing methods, NTK and SelfExtend, tend
to compromise model performance while extending the se-
quence length to 128K. That is because these models cannot
address the distraction issue caused by noisy contexts. In
contrast, our model can consistently enhance performance
for extremely long sequences. We successfully generalize
Llama-3 from a 8K length to more than 16 times its length,
achieving commendable performance on the ∞-Bench. (3)
The position downscaling and resuing methods can increase
the maximum sequence length of LLMs but also raise the
computational and memory costs, limiting these methods’
application. In contrast, InfLLM utilizes block-level mem-
ory and offloading mechanism, enabling efficient processing
of long sequences within limited resources.

3.3. Scaling to 1,024K Context

To assess the effectiveness of InfLLM on extremely long
sequences, in this subsection, we scale the sequence length
to 1024K to evaluate the capacity of InfLLM to capture
contextual relevance in long sequences. The results are
shown in Figure 2. From the results, we can observe that
InfLLM can accurately locate the key information from
length noises and achieve 100% accuracy even when the
context length scales to 1024 thousand tokens. However,
LM-Infinite can only attend to the tokens within the local
window, which leads to a rapid decline in its performance
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Figure 2: The results on sequences with different lengths.

as the sequence length increases. It proves that InfLLM
can accurately capture the long-distance dependencies for
effective long-sequence reasoning.

4. Conclusion
In this paper, we propose a training-free method to im-
prove the length generalizability of LLMs. Based on the
sliding window attention mechanism, we construct an ad-
ditional context memory module, which can help LLMs
select relevant information from massive contexts to cap-
ture long-distance dependencies. The experiments on two
widely-used long-text benchmarks show that InfLLM can ef-
fectively improve the ability of LLMs, which are trained on
sequences with a few thousand tokens, to process extremely
long sequences. In the future, we will explore efficient
training of the context memory module to further enhance
the model performance. Besides, combining the key-value
cache compression methods with InfLLM can further reduce
the computational and memory costs. We hope InfLLM can
boost the development of streaming applications of LLMs.
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Broader Impact
This paper presents work whose goal is to advance the field of long sequence processing for large language models. There
are many potential societal consequences of our work, none of which we feel must be specifically highlighted here.

Limitations
In this paper, we propose InfLLM, a method for extending the context window of LLMs without additional training. We
verify the effectiveness of our model using a widely-used long-text evaluation benchmark ∞-Bench. However, our method
still has the following limitations: (1) We store a large amount of past key-value (KV) cache in the CPU memory, which
increases CPU memory usage. In the future, we can reduce CPU memory requirements by integrating techniques like KV
cache quantization. (2) While InfLLM reduces the computational overhead for processing long texts in LLMs, there is still
room for speed-up. In the future, we can further enhance the inference speed of InfLLM by integrating it with inference
frameworks like llama.cpp1 and vllm (Kwon et al., 2023).

A. Comparing to Models with Continual Training
In this paper, we focus on expanding the context window of LLMs without additional training. In this section, we compare
InfLLM with models that undergo continual training on long sequences in terms of both performance and efficiency.
Specifically, we select Llama-3-8B-Instruct-Gradient-1048k (Llama-1M)2, which has been further fine-tuned on long-text
data and chat datasets, extending its context window to 1048K. Besides, we also employ InfLLM on the Llama-1M, where
we set the local window as 4K and selected memory size as 4K.

Table 2: The comparison between InfLLM and Llama-3-8B-Instruct-Gradient-1048k (Llama-1M), which is further fine-
tuned on long sequences. InfLLM can achieve comparable performance with Llama-1M with less computation consumption
and memory usage.

Train-Free R.PK R.Num R.KV Choice QA Sum Math.F VRAM Time

Llama-1M ✗ 100.0 99.8 23.2 51.5 13.6 18.5 18.3 76.6G 40.4s
InfLLM ✓ 100.0 99.0 5.0 43.7 19.5 24.3 23.7 26.3G 26.7s

Llama-1M+InfLLM ✗ 100.0 100.0 55.8 39.3 20.3 17.1 31.4 26.3G 26.7s

We present the results on ∞-Bench, the GPU memory usage, and time consumption in Table 2. From the results, we can
observe that: (1) Compared to models that have undergone continual training on long sequences, InfLLM can achieve
comparable or even superior results without any additional training. This suggests that LLMs inherently possess the
capability to identify key information in long sequences and to understand and reason effectively. Notably, Llama-1M
requires 512 GPUs for continual training, which is unaffordable for many researchers. In contrast, InfLLM does not require
any training, which indicates the practicability of InfLLM. (2) In terms of efficiency, InfLLM achieves a 34% decrease in
time consumption while using only 34% of the GPU memory compared to the full-attention models. Moreover, at longer
sequence lengths of 256K tokens, the full-attention baseline fails due to out-of-memory errors, while InfLLM can efficiently
process sequences up to 1024K tokens on a single GPU. (3) InfLLM can also be directly combined with the model with
continual training and achieve comparable or even superior results with only 8K context window. It indicates that InfLLM
can also serve as an efficient way to improve the inference speed.

B. Comparing to Retrieval-Augmented Generation
InfLLM leverages the intrinsic capacity of LLMs to construct a context memory for gathering token-relevant information, a
concept similar to retrieval augmented generation (RAG) (Lewis et al., 2020; Nakano et al., 2021). However, compared
to using RAG, where historical contexts are treated as a searchable database for long-sequence understanding (Xu et al.,
2023), InfLLM has several advantages: (1) Training-Free: RAG requires additional retrieval data to train a retrieval model,
whereas InfLLM is training-free and applicable to any LLMs. Besides, RAG also necessitates fine-tuning LLMs to adapt

1https://github.com/ggerganov/llama.cpp
2https://huggingface.co/gradientai/Llama-3-8B-Instruct-Gradient-1048k
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Figure 3: Extra studies about InfLLM. Here, (a), (b), and (c) investigate the impact of the context memory under different
numbers of representative tokens, different numbers of selected units, and memory unit sizes, respectively.

to the inputs augmented by the retrieved knowledge. (2) Broader Applicability: RAG models are usually limited by the
performance of their retrieval components. Besides, existing retrieval models will suffer from out-of-distribution issues,
struggling to perform well on tasks outside their training distribution (Lin et al., 2023; Muennighoff et al., 2023). This
limitation adversely affects the overall performance of the RAG system. In contrast, InfLLM has no specific requirements
for tasks and can be feasibly used for long sequences.

Table 3: The comparison between InfLLM
and RAG.

Task R.PK R.Num R.KV

RAG-E5 89.2 65.4 13.2
InfLLM 100.0 96.1 96.8

To verify the generalization capabilities of InfLLM, we conduct experiments
to comparing RAG and InfLLM on three context retrieval tasks. We utilize
E5-mistral-7B-instruct (Wang et al., 2024b) as the retrieval model. The
results are shown in Table 3. Our findings demonstrate that even without ad-
ditional data or training, InfLLM can consistently outperform RAG models,
underscoring its superior generalization capabilities. The dependency on an
external retrieval model makes RAG less flexible in handling diverse tasks.

C. The Impact of Memory Settings
InfLLM relies on the context memory to look up relevant information. We further explore the impact of core components in
the context memory, specifically the representative tokens and memory units. The results are shown in Figure 3.

Different Number of Representative Tokens. InfLLM splits key-value vectors into memory units and selects several
representative tokens from the unit to serve as the unit representations. Consequently, the ability of these representative
tokens to semantically represent the entire unit directly impacts the model’s performance. We conduct experiments with
the number of representative tokens as {1, 2, 4, 8}. The results are shown in Figure 3(a). It is observed that as the number
of representative tokens increases, there is a trend of improvement in the model performance, which indicates that more
representative tokens tend to better represent the semantic content of the memory units. However, it is noted that when the
number of representative tokens reaches 8, there is a slight performance decrease. This decline can be attributed to the
inclusion of semantically irrelevant tokens as unit representations. More efficient and powerful unit representations will
further enhance model performance for future work.

Different Number of Selected Units. The selected units are utilized to provide relevant context to LLMs. We conduct
experiments with the number of units set as {2, 4, 8, 16, 32, 64, 96, 128}. From Figire 3(b), we can observe that as the
number of selected units increases from 1 to 32, the model performance significantly improves, which is attributed to that
more units imply a greater recall rate of relevant content. Larger unit quantity also leads to an increase in the required
memory scheduling time and the computational time for attention. Therefore, further enhancing lookup accuracy remains a
crucial direction for improving the efficiency of InfLLM.

Different Memory Unit Size. Each memory unit is supposed to be a coherent semantic unit. Excessively large unit sizes can
hinder precise lookup, while a small size will increase the computational overhead of memory lookup. We evaluate InfLLM
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with the unit size as {32, 64, 128, 256} and keep the total context length as 12K. The results are shown in Figure 3(c). It can
be observed that the optimal unit size varies for different tasks due to the varying characteristics of input sequences. For
example, in Retrieve.KV, a key-value pair constitutes a semantic unit, while in Math.Find, a single number represents a
semantic unit. Employing heuristic rules to segment context can easily lead to suboptimal performance. Therefore, exploring
how to dynamically segment context is an important direction for future research.

D. Cache Management Strategy

0.0 0.2 0.4 0.6 0.8 1.0
Score Decay

3%

4%

5%

Missing Rate

LRU
random
FIFO

Figure 4: Missing rates of different cache man-
agement strategies.

Due to the massive amount of memory units for extremely long se-
quences, we adopt an offloading mechanism to save GPU memory
costs. Considering the infrequent usage of memory units, we offload
most memory units to CPU memory and only preserve the frequently
used memory units and current needed memory units in the GPU
memory. To this end, we maintain a cache in GPU memory to effec-
tively utilize GPU memory and reduce the communication between
CPU and GPU. The size for our GPU cache is fixed, and therefore we
design a least recently used (LRU) strategy for cache management. In
this section, we will introduce the management strategy in detail.

Loading Memory Units For each computation step, we first compute
the relevance scores for each memory unit to determine which units
should be used. Then, for each needed memory unit, we first search it
in our cache. If there is no hit, then we proceed with the transfer from
CPU memory to GPU memory.

Offloading Memory Units After the attention computation, we need to offload redundant memory units to keep the GPU
cache fixed. To this end, we apply an LRU strategy. Specifically, for each memory unit loaded into our GPU cache, we
assign a frequency score sb for it, which will be used to determine whether this unit should be maintained in the GPU cache
or offloaded to CPU memory to save GPU memory costs. The frequency scores are updated after the attention computation.
Specifically, we update the score as follows:

sb = sb · d+
lX∑
j=1

lbs∑
i=1

attention_score(qj+lP ,ki), (1)

where lu represents the number of current tokens involved in this lookup, attention_score(q,k) denotes the attention
score between Q with respect to k (ranging from 0 to 1) obtained after performing the attention computation. d is a
hyper-parameter, representing the decay coefficient, used to incorporate the influence of previous lookups. After each
attention computation, we sort all the memory units in our GPU cache according to their frequency scores sb, and offload
the units with the lowest scores back to the CPU memory.

To verify the effectiveness of our cache management strategy, we evaluate the cache missing rate of different cache
management strategies on a sample of data from the GovReport dataset. Specifically, we compare our LRU strategy with (1)
Random: randomly selecting units from the GPU cache to offload. (2) First-in-first-out (FIFO): offload the unit that is first
loaded in the GPU cache. The results are illustrated in Figure 4. It is observable that the LRU strategy we employed exhibits
a lower missing rate, which ensures that the offloading mechanism does not introduce significant time overhead. In the
experiments described in the main text, we chose a decay value of 0.1.

E. Positional Encoding
In InfLLM, we assign all tokens beyond the local window size with the same positional encoding. Therefore, for the current
tokens, we do not explicitly provide positional information for the context. But we think that the unidirectional nature of
a decoder-only model allows it to recognize the positional information of the context. For instance, assume a sequence
contains three spans SA, SB , and SC in order. When encoding SC , although SA and SB are assigned the same positional
encoding, the unidirectional nature of the decoder-only model allows the key-value hidden states of SA and SB inherently
embeds their relative positional information: SB can utilize information from SA during its encoding, while SA can only
access information from preceding parts of the sequence.
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Table 4: The results of InfLLM and baseline models on LongBench. The 95% quantile for text lengths in LongBench is
31K. The context window size for sliding window models refers to the local window size, and for InfLLM refers to “local
window size + selected memory size”.

Window NQA Qasper MFQA HQA 2WikiMQA Musique

Mistral-based Models (7B)
Mistral 32K 22.06 29.16 47.65 37.53 21.96 19.03
Infinite 6K 18.44 30.02 39.05 32.02 22.27 15.81
Streaming 6K 17.92 30.05 39.09 32.18 21.83 14.71
InfLLM 6K 22.12 29.33 47.42 36.56 22.31 17.68
InfLLM 12K 23.03 29.52 47.62 39.53 23.61 18.92

Llama-3-based Models (8B)
Llama-3 8K 19.85 42.36 41.03 47.38 39.20 22.96
Infinite 8K 19.39 42.80 40.44 43.77 37.89 18.33
Streaming 8K 20.05 42.46 39.54 43.69 37.89 19.68
InfLLM 8K 22.64 43.70 49.03 49.04 35.61 26.06

Window GovReport QMSum MultiNews TREC TQA SAMSum

Mistral-based Models (7B)
Mistral 32K 31.12 23.87 26.62 71.00 85.97 42.29
Infinite 6K 29.74 21.92 26.65 70.00 85.22 41.60
Streaming 6K 29.83 21.94 26.64 70.00 85.57 41.31
InfLLM 6K 31.03 23.49 26.70 69.00 86.67 42.52
InfLLM 12K 31.37 23.77 26.66 71.00 87.34 41.80

Llama-3-based Models (8B)
Llama-3 8K 29.94 21.45 27.51 74.00 90.50 42.30
Infinite 8K 29.25 21.41 27.62 74.00 90.08 41.72
Streaming 8K 29.17 21.33 27.56 73.50 90.08 41.55
InfLLM 8K 30.76 22.70 27.57 73.50 90.91 42.43

Window PsgCount PsgRetrieval LCC RepoBench-P Avg.

Mistral-based Models (7B)
Mistral 32K 3.95 86.94 57.42 54.14 43.78
Infinite 6K 2.08 42.80 57.12 53.43 39.07
Streaming 6K 2.50 42.17 55.38 51.46 38.67
InfLLM 6K 2.87 64.00 56.67 52.97 41.90
InfLLM 12K 3.01 87.42 56.69 52.09 44.02

Llama-3-based Models (8B)
Llama-3 8K 8.50 62.50 60.83 49.14 44.73
Infinite 8K 4.50 50.00 60.12 48.62 43.03
Streaming 8K 5.00 49.00 60.35 48.95 42.99
InfLLM 8K 7.17 84.00 59.88 46.48 46.95

To verify the model’s capability to capture the relative positional information of the context, we adopt the Retrieve.Passkey
task with multiple pass keys for evaluation. In this task, each sequence contains two pass keys, and the model is required
to output these two pass keys in order. The data construction approach is consistent with that of ∞-Bench (Zhang et al.,
2023a), where the positions of the two pass keys are randomly selected. We created 50 sequences, each 64K in length. The
experimental results reveal that in this task, InfLLM can output the values of the two pass keys in the correct order 100% of
the time. This indicates that, although our positional encoding disregards the relative positional information of the context,
the model can still effectively understand the context in sequence.

F. External Experiments
F.1. Implementation Details

The context memory is constructed for all layers in LLMs. We set the size of our GPU cache as 32, which is twice the
number of loaded units for each step. We set the frequency score decay coefficient as 0.1. We adopt the half-float precision
for all experiments. We use NVIDIA A100 or A800 to conduct our experiments. For the experiment that scales to 1, 024K
context, we set the encoding chunk size as 2048, and the number of representative tokens as 1 to speed up experiments.
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F.2. Performance on LongBench

We also employ LongBench (Bai et al., 2023) as the benchmark to evaluate the effectiveness of InfLLM and baseline
models. The evaluation results are shown in Table 4. The results indicate that: (1) InfLLM outperforms other models
capable of processing streaming inputs across various diverse tasks. It proves that the context information provided by
the context memory can efficiently enhance the model performance. (2) When applying Llama-3 as the base model, both
StreamingLLM and LM-Infinite achieve only comparable or even worse performance than the original Llama-3. This
indicates that while sliding window attention can effectively extend the context window size of LLMs, these models discard
long-distance contextual information, thereby failing to achieve effective long-sequence understanding. (3) Mistral can
handle text lengths up to 32K, covering most instances in LongBench. In contrast, InfLLM, with a window size of only 12K,
achieves comparable or even superior performance on average. This further demonstrates InfLLM’s ability to filter out noise
in long contexts, leading to better long-sequence understanding.

F.3. Experiments on Vicuna

Table 5: The results of Vicuna-based models.

R.PK R.Num R.KV Math.F

Vicuna 5.08 4.41 1.40 11.71
InfLLM 99.15 81.69 0.60 11.14

In the previous sections, we demonstrated that InfLLM
can extend the context windows of Llama-3 (with a max-
imum length of 8K) and Mistral (with a maximum length
of 32K) to several hundred thousand tokens. To further
validate the effectiveness of InfLLM, we apply it to the Vi-
cuna (Chiang et al., 2023), which has a maximum length
of only 4K. The experimental results are shown in Table 5.
The results show that we effectively extend Vicuna’s context length to 128K, achieving significant performance improve-
ments on the Retrieve.Passkey and Retrieve.Number tasks. However, InfLLM can not show performance gains on the
Retrieve.KV and Math.Find tasks. This is because the hidden vectors contained in Vicuna have a limited ability to filter out
noise in extremely long texts, making it difficult for context memory to effectively locate relevant information in the more
complex contexts of the Retrieve.KV and Math.Find tasks. In the future, It deserves further exploration to design more
powerful memory mechanism.
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