
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FLOW OF SPANS: GENERALIZING LANGUAGE MODELS
TO DYNAMIC SPAN-VOCABULARY VIA GFLOWNETS

Anonymous authors
Paper under double-blind review

ABSTRACT

Standard autoregressive language models generate text token-by-token from a fixed
vocabulary, inducing a tree-structured state space when viewing token sampling
as an action, which limits flexibility and expressiveness. Recent work introduces
dynamic vocabulary by sampling retrieved text spans but overlooks that the same
sentence can be composed of spans of varying lengths, lacking explicit modeling of
the directed acyclic graph (DAG) state space. This leads to restricted exploration
of compositional paths and is biased toward the chosen path. Generative Flow
Networks (GFlowNets) are powerful for efficient exploring and generalizing over
state spaces, particularly those with a DAG structure. However, prior GFlowNets-
based language models operate at the token level and remain confined to tree-
structured spaces, limiting their potential. In this work, we propose Flow of
SpanS (FoSS), a principled GFlowNets framework for span generation. FoSS
constructs a dynamic span vocabulary by segmenting the retrieved text flexibly,
ensuring a DAG-structured state space, which allows GFlowNets to explore diverse
compositional paths and improve generalization. With specialized reward models,
FoSS generates diverse, high-quality text. Empirically, FoSS improves MAUVE
scores by up to 12.5% over Transformer on text generation and achieves 3.5% gains
on knowledge-intensive tasks, consistently outperforming state-of-the-art methods.
Scaling experiments further demonstrate FoSS benefits from larger models, more
data, and richer retrieval corpora, retaining its advantage over strong baselines.
Code will be released at anonymous.url.com.

Transformer

PREFIX: AB

ABC

ABCDE

ABCDEF

ABCDEFGZ

ABCD

ABCDEFGH

ABC

ABCD

ABCE

ABCDE

ABCDF

ABDE
ABDEF

KNN Retriever

CorpusSpan Encoder

DE

CD
EFGZ

GH

F

D

GZ

C
C

D

D

E

E

F

E

F

GFlowNet loss NTP loss

A B ··· Z

··· ···

ABCDEFH

ABCDEG

G

H

ABDEG

EFGH

···

ABD G

State

DE
Action

Transition

C

Policy
Network

Credit

Vocabulary

Reward
Models A B ··· ZCD EFGH ··· GH

Docs

AB

Figure 1: Given the prefix, a standard language model generates token-by-token and forms a tree
state space, trained with next-token prediction (NTP) loss; while in FoSS, since a sentence can be
composed of spans in multiple ways, we construct a DAG state space and optimize it with GFlowNets.

1 INTRODUCTION

Standard autoregressive language models generate text token-by-token from a fixed, finite vocabu-
lary (Brown et al., 2020; Radford et al., 2019; Sennrich et al., 2016). However, this approach has

1

anonymous.url.com

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

inherent limitations. The fixed vocabulary restricts the granularity of generation, and the resulting
tree-structured state space, as illustrated in Figure 1, where each state has a unique prefix predecessor,
limits the model’s ability to efficiently explore alternative generation paths. In such a structure,
each sample can only follow a single path, whereas a directed acyclic graph (DAG) structure allows
simultaneous exploration of multiple paths, covering a broader region of the state space (see the
green area in the DAG and tree state space in Figure 1). To address these limitations, recent work has
introduced dynamic vocabularies and variable-length generation units, enabling models to construct
context-aware, multi-word vocabularies (Cao et al., 2024; Martins et al., 2022; Li et al., 2024; Lan
et al., 2023). However, these methods overlook the inherent DAG nature of sentence composition,
where the same sentence (e.g., ”ABCDEFGH”) can be formed through different span combinations,
such as ”AB”→”CD”→”EFGH” or ”AB”→”C”→”DE”→”FG”→”H”. Consequently, existing ap-
proaches do not explicitly model the DAG-structured state space, relying instead on training data to
incidentally reflect such structures and lacking theoretical guarantees for coverage or generalization.

Generative Flow Networks (GFlowNets) are a promising method for solving the aforementioned
problems. GFlowNets are a class of generative model that samples with a probability proportional
to the reward, known for their excellent performance and theoretical guarantees in exploring and
generalizing over state spaces, especially those with a DAG structure (Shen et al., 2023; Krichel
et al., 2024; Atanackovic & Bengio, 2024). There has been limited work on applying GFlowNets to
language models (Hu et al., 2024; Yu et al., 2025; Lee et al., 2025), and these efforts primarily treat
GFlowNets as a trainable alternative sampling strategy for language models, without constructing
a DAG-structured state space. This reduces the GFlowNets framework to a degraded learning
paradigm that limits the exploration of state transitions and is unable to fully leverage the potential
of GFlowNets (Li et al., 2023; Shen et al., 2023; Malkin et al., 2022; Bengio et al., 2023). In this
work, we introduce the GFlowNets framework to span language models for the first time, explicitly
constructing a DAG-structured state space that allows GFlowNets to fully unleash its power in the
context of span generation. At the same time, unlike previous scenarios such as reasoning, where
clear answers are available (Yu et al., 2025), we explore the design of reward models within the
GFlowNets framework to enhance the performance of general text generation.

We propose FoSS, a span language model within a principled GFlowNets framework. FoSS introduces
a flexible text segmentation algorithm to construct the DAG-structured state space. Then, we explicitly
model the DAG space with GFlowNets, enabling efficient exploration and generalization over the
state space. Benefiting from the specialized reward models, FoSS can be efficiently trained while
maintaining both the quality and diversity of text generation. Our extensive evaluation demonstrates
that FoSS significantly outperforms existing methods across various tasks. In text generation, FoSS
achieves a 5.51% MAUVE score improvement over the state-of-the-art, while attaining consistently
higher scores in GPT-4-based evaluations, which aligned with human preferences (Zheng et al.,
2023). In the domain adaptation task, FoSS outperforms fully fine-tuned models without any
training, showing robust generalization ability. Comprehensive ablation studies show that without the
DAG-state space design or GFlowNets training, the model’s performance drops sharply, validating
our design as an indispensable component. Furthermore, scaling experiments confirm that FoSS
effectively leverages larger model capacities, increased training data, and richer retrieval corpora,
revealing the tremendous potential of FoSS when allocating a larger computational budget.

2 PRELIMINARIES

GFlowNets are designed to learn stochastic policies that sample from an unnormalized distribution
over complex objects through a sequence of discrete actions within a Markov Decision Process
(MDP) framework (Pan et al., 2024; Jain et al., 2022; Shen et al., 2023). Let the state space be S
and the set of edges be E ⊂ S × S for a directed acyclic graph (DAG) G = (S,E), where vertices
represent states and edges represent transitions between states. The process begins from an initial
state s0 ∈ S , with no incoming edges, and terminates at a terminal state x ∈ X ⊆ S , where X is the
set of terminal states.

Each complete trajectory τ = (s0 → s1 → · · · → sn = x) consists of a sequence of states, with
transitions (si → si+1) ∈ E corresponding to actions taken at each step. The objective of GFlowNets
is to learn a forward policy PF (si+1|si), which defines the probability of transitioning from one state
to the next. The probability of a trajectory τ is the product of the transition probabilities along the
sequence: PF (τ) =

∏n−1
i=0 PF (si+1|si).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1: FoSS Training
Input: Training corpus D, Forward policy PF (·|·; θ), Reward function R(·) (Eq. 3), Learning

rate η, Bernoulli mixing probability π
Output: Fine-tuned parameters θ⋆

Pre-processing: Apply DAG-Inducing Span Segmentation algorithm to D to obtain D′

Initialize prefix-trajectory buffer B ← ∅, epoch counter e← 0
while not converged do

e← e+ 1 // Mini-batch implicitly handled
foreach segmented document d ∈ D′ do

Truncate d to prefix c and residual d \ c
Build vocabulary V conditioned on d
if e = 1 then

τ ← construct trajectory using spans from d \ c as action sequence
B ← B ∪ {(τ,R(τ))}

else
if Bernoulli(π) = 1 then // Online sampling

τ ← sample trajectory from PF (· |·;V, θ) from s0 = c
B ← B ∪ {(τ,R(τ))}

else // offline sampling
τ ← sample trajectory from B(c) and compute PF (· |·;V, θ)

θ ← θ − η∇θL(τ ; θ) (Eq. 2)

return θ⋆ ← θ

The terminal distribution P⊤
F (x) represents the marginal distribution over terminal states, defined as:

P⊤
F (x) =

∑
τ→x PF (τ), where the sum is taken over all trajectories τ that terminate in terminal state

x. The objective of GFlowNets is to learn the forward policy such that the terminal distribution P⊤
F (x)

is proportional to a reward function R(x), i.e., P⊤
F (x) ∝ R(x), where R(x) is an unnormalized

density over terminal states (Bengio et al., 2023). To achieve this, GFlowNets associate a flow with
each state in the graph. Concretely, a state-flow function F : S → R+ is defined that assigns a
non-negative value to each state, representing the total flow passing through it. This function enables
various training objectives for GFlowNets. In addition to the forward policy, GFlowNets incorporate
a backward policy PB(si|si+1), which sequentially deconstructs compositional objects, transforming
the intractable matching of marginal distributions over terminal states into a tractable one of matching
distributions over complete trajectories (Gritsaev et al., 2025; Jang et al., 2024).

3 SPAN-GENERATION WITH GFLOWNETS

In this section, we introduce our novel span-based text generation approach utilizing GFlowNets. Prior
language modeling approaches typically operate with word-level vocabularies where each element
is referred to as a token. These static vocabularies impose constraints on generation granularity.
In our framework, vocabulary elements can be either single words or multi-word phrases, which
we collectively refer to as spans. We first formalize the span-generation problem within a MDP
framework, establishing a comprehensive formulation that enables flexible span sampling. Then, we
present our learning objective and training policy that effectively navigates the DAG-structured state
space. Furthermore, we detail the key components that parameterize our model: the policy network
architecture that generates spans from a dynamic vocabulary, and our reward function formulation
that balances text fluency and alignment with human-written text.

3.1 MARKOV DECISION PROCESS FORMULATION FOR GFLOWNETS LEARNING

To formalize span-based text generation within the GFlowNets framework, we establish a complete
MDP formulation with the following components: State: Each state si ∈ S is represented as a string
si = CONCAT(c, ti), where c is the prefix text, ti denotes the text generated so far consisting of
previously sampled spans, and CONCAT represents string concatenation. Action: We denote by a a

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

candidate action from the action space, and by ai the actual action sampled. An action ai involves
selecting a span to be appended to the current state si. Transition: Given a state si and an action ai,
the transition function deterministically yields the next state si+1 by appending the selected span to
si. Reward: The reward function R : X → R+ assigns a non-negative value to each terminal state
x ∈ X ⊆ S, where we employ specialized reward models to evaluate the quality and coherence of
the generated text.

Since actions involve spans of variable length, multiple distinct trajectories can lead to the same
state, ensuring the underlying graph G is a DAG. For example, in Figure 1, the state ”ABCD” can be
reached via two different trajectories: (AB→ ABCD) and (AB→ ABC→ ABCD). This contrasts
with conventional token-by-token autoregressive language models, where each state can only be
reached by a single unique trajectory, forming a tree (Lee et al., 2025; Hu et al., 2024; Yu et al.,
2025). As shown in Figure 1, token-by-token autoregressive language models generate single words
sequentially with accumulative prefixes. This structure restricts each non-initial state to have exactly
one parent node. For example, the state ”ABCD” can only be reached from state ”ABC”, creating a
rigid tree structure. This makes the backward policy deterministic with PB(si|si+1) = 1. In such
degenerated case, GFlowNets reduces to discrete-action soft Q-learning (Malkin et al., 2022), limiting
the number of possible transitions and impeding exploration of the expression space (Li et al., 2023).

We instantiate the forward policy PF with a span language model parameterized by θ, denoted
by PSLM(·; θ). GFlowNets in this setup learn stochastic policies for sampling terminal states by
taking actions drawn from the action space. Given an unnormalized reward function R defined
over terminal states, the GFlowNets navigates through the state space following the forward policy
PF (si+1|si; θ). Concretely, for sequence generation, the states si = CONCAT(c, ti) represent the
partial sequence thus far, and action corresponds to a span sampled from the span language model:
ai ∼ PSLM(a|si; θ). Since the action ai directly determines the next state through span concatenation,
we write: PF

(
si+1|si; θ

)
= PSLM(ai|si; θ), where si+1 = CONCAT(si, ai). This continues until

a terminal action ⊤ is sampled, yielding a terminal state sn ∈ X that consists of the prefix, all
generated spans, and the termination symbol ⊤.

3.2 LEARNING OBJECTIVE AND TRAINING POLICY

We adopt the subtrajectory balance learning objective for training GFlowNets, which, compared
to flow matching (Bengio et al., 2021), detailed balance (Bengio et al., 2023) and trajectory bal-
ance (Malkin et al., 2022), enables more efficient exploration of DAG-structured state space while
providing improved stability, particularly for longer sequence generation (Madan et al., 2023). Given
a forward policy PF , a backward policy PB , and a state flow function F , the objective over a partial
trajectory τ = (sb → · · · → se) is defined as:

LSubTB(τ) =

(
log

F (sb)
∏e−1

i=b PF (si+1|si)
F (se)

∏e−1
i=b PB(si|si+1)

)2

. (1)

When GFlowNets converge, for a valid state se that contains a complete sentence, we define s⊤e
as the terminal state reached after sampling the termination symbol ⊤ from se. We then have
R(s⊤e) = F (se)PF (⊤ | se) for such states (Deleu et al., 2022; Pan et al., 2023; Hu et al., 2024).
Using this, we derive the final learning objective by summing over all partial valid trajectories within
a complete trajectory τ = (s0 → s1 → · · · → sn) with equal weight:

L(τ) =
∑

0≤i<j≤n

Ivalid(si, sj)

(
log

R(s⊤i)
∏j

k=i+1 PF (sk|sk−1)PF (⊤|sj)
R(s⊤j)

∏j
k=i+1 PB(sk−1|sk)PF (⊤|si)

)2

, (2)

where Ivalid(si, sj) is an indicator function that equals 1 if both si and sj are complete sentences, and
0 otherwise. This selective summation focuses the learning signal on transitions between meaningful,
complete sentences, leading to more efficient and stable training.

To address the challenge of exploring the combinatorially large sampling space, we propose a hybrid
online-offline training approach leveraging readily available training data. While replay buffers

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

enhance GFlowNets training (Jain et al., 2022), these online off-policy methods often suffer from
high variance and can become trapped in suboptimal trajectories (Fedus et al., 2020; Vemgal et al.).
Drawing inspiration from offline pretraining strategies (Pandey et al., 2025), our approach constructs
high-reward trajectories from training data, providing more effective exploration initialization. Specif-
ically, we compose the mini-batch during training using trajectories from three sources: (1) the
policy PF , (2) a reward-prioritized replay buffer containing past high-reward trajectories, and (3)
trajectories from the training set. This hybrid approach is crucial for FoSS to effectively navigate
the combinatorially large DAG-structured state space. Meanwhile, to ensure that the trajectories
derived from the training set naturally induce a DAG, we employ a DAG-Inducing span segmentation
algorithm that applies a controlled stochastic early-stopping mechanism to standard forward maxi-
mum matching. This mechanism results in multiple distinct segmentation trajectories per training set
sentence, where different span paths share common sub-sequences, explicitly modeling the DAG
structure. For more details, please refer to Appendix E. To further mitigate variance in sparse reward
regimes and stabilize training, we follow (Hu et al., 2024) and initially fine-tune the policy network on
readily available training set data before standard GFlowNets training, equipping it with the capacity
to sample high-reward states.

3.3 POLICY NETWORK

We instantiate the forward policy PF using a span language model that processes the current state
si = CONCAT(c, ti) with a transformer-based prefix encoder, mapping the input to a contextual
vector hi ∈ Rd via causal attention (Vaswani et al., 2017). For the action space, we consider
a ∈ T ∪ V ∪ {⊤}, where T represents phrases from external corpora and V is the fixed word-
level vocabulary. A span encoder computes context-dependent representations for each potential
action a, yielding embedding va ∈ Rd. For phrases from T , we compute vector representations
for all candidate phrases from the supporting documents, ensuring the internal state space forms
a DAG. We employ a bidirectional Transformer (Devlin et al., 2019) to generate contextualized
representations, then transform and concatenate start and end position embeddings through MLPs
to form the complete phrase representation. For word-level actions from V and the terminal action
⊤, we utilize standard token embeddings. Our architecture draws inspiration from recent advances
in dynamic vocabulary language models, particularly CoG (Lan et al., 2023), the forward policy
distribution over actions is formulated as: PSLM (a|si; θ) ∝ exp

(
h⊤
i va

)
. For the PB(si|si+1), we

employed an uniform distribution over all possible suffixes of si+1 in the dynamic vocabulary. Details
on dynamic vocabulary construction and policy network are provided in Appendices C and D.

3.4 REWARD FUNCTION

Our reward function for span-based text generation balances fluency and alignment with the distri-
bution of human-written text through two components: a language model (LM) and a preference
model (PM). The LM component encourages grammatical correctness and contextual relevance (Ide
et al., 2024; Fu et al., 2024). However, high-likelihood regions of language model distributions often
correspond to repetitive, generic patterns but fail to represent the diversity and quality of human
text (Holtzman et al.; Welleck et al., 2020). To mitigate this, our PM component discriminates be-
tween human-written text and model-generated outputs, guiding generation toward more human-like
expressions. Specifically, the LM component provides a natural measure of textual quality through
pLM(sn|c), which represents the likelihood of the complete generated sequence given the prefix. For
the PM component, our approach employs a Bradley-Terry (Bradley & Terry, 1952) log-likelihood
loss with a score-centering regularizer (Eisenstein et al., 2023), which trains the model to assign
higher scores to human-written references from the training set than to sequences generated by the
policy network. The sigmoid-transformed score pPM(sn) serves as the learned reward signal.

Combining these complementary objectives, we formulate reward function for a terminal state sn as:
R(sn) = exp (α log pLM(sn|c) + (1− α) log pPM(sn)), α ∈ (0, 1), (3)

where α controls the trade-off between language model fluency and preference model alignment.
Both models operate at the word-level, requiring tokenization of sn = CONCAT(c, tn) into its
constituent tokens [w1, w2, ..., wN], where the first M tokens correspond to the prefix c and the
remaining tokens represent the generated text tn in a total sequence of N tokens. The language model
likelihood can then be computed as: pLM(tn|c) =

∏N
i=M+1 pLM(wi|w1, ..., wi−1).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Comparison of Mauve Scores Among Methods for Open-Ended Text Generation

Method In Domain Out of Domain Scaling Data Store

Greedy Nucleus Greedy Nucleus Greedy Nucleus

Transformer w/o FT 18.64 22.37 20.32 25.21 19.87 23.43
Transformer w/ FT 19.87 23.43 23.00 26.85 20.21 21.31
kNN-LM(Khandelwal et al., 2020) 19.92 22.50 23.31 24.75 23.21 23.39
RETRO(Borgeaud et al., 2022) 21.19 22.86 18.70 20.35 19.75 22.87
CoG(Lan et al., 2023) 26.01 26.14 21.31 28.14 24.68 26.97
GFlowNets-FT(Hu et al., 2024) 26.58 29.61 26.49 28.62 - -
GDV(Liu et al., 2024) 25.69 24.34 26.35 24.80 - -

FoSS 30.78 31.65 27.84 32.17 27.88 33.79

For the preference model, we compute pPM(sn) = σ(fPM(w1, w2, . . . , wN)), where fPM represents
the discriminator function of the preference model that maps the token sequence to a scalar logit, and
σ(·) denotes the sigmoid function. A detailed description of the initialization processes for both the
LM and PM components is provided in the Appendix C.3.

4 EXPERIMENTS

For our experimental evaluation, we compare our approach against base model and state-of-the-art
methods: Transformer (Vaswani et al., 2017), the de facto standard architecture for neural language
modeling; kNN-LM (Khandelwal et al., 2020) extends a pre-trained language model by interpolating
its predictions with a k-nearest neighbors retrieval, using similar context examples from a datastore
to refine next token predictions; RETRO (Borgeaud et al., 2022) integrates a frozen BERT (Devlin
et al., 2019) retriever with a chunked cross-attention mechanism, allowing the model to condition on
retrieved document chunks to predict the next token; CoG (Lan et al., 2023) uses a phrase encoder
to index the training corpus and a prefix encoder for the current context, retrieving similar phrases
based on prefix for sentence continuation, which inspired the architecture of our policy network;
GFlowNets-FT (Hu et al., 2024) leverages GFlowNets to fine-tune standard Transformers under the
token-by-token autoregressive paradigm, resulting in a tree-structured graph G; GDV (Generation
with Dynamic Vocabulary) (Liu et al., 2024) builds upon a similar retrieval framework as CoG, but
introduces a novel dynamic vocabulary loss during training to encourage generation beyond the static
vocabulary.

To ensure a fair comparison, the prefix encoders in the Transformer, kNN-LM, CoG, GFlowNets-FT,
GDV, and FoSS are all initialized from pre-trained GPT-2 (Radford et al., 2019). For the phrase
encoder in both CoG and FoSS, we fine-tune the pre-trained BERT-base-cased model (Devlin et al.,
2019). In GFlowNets-FT, the reward model employs both the LM and PM components from FoSS.
For more implementation details, please refer to the Appendix C. We report baseline results from
their original publications where possible.

Following previous work (Su et al., 2022; Liu et al., 2024; Li et al., 2024), we evaluate models using
MAUVE (Pillutla et al., 2021) and Diversity (Welleck et al., 2020) metrics. MAUVE measures
the divergence between model-generated and human-written text distributions using a quantized
embedding space and Diversity quantifies the non-repetitive nature of generated content through
n-gram statistics. Further details on the evaluation metrics are provided in Appendix B.

4.1 IN DOMAIN EVALUATION

For in-domain evaluation, models are trained on the training set of the WikiText-103 (Merity et al.,
2016) dataset and evaluated on its test set. The WikiText-103 dataset is a large-scale corpus com-
prising 1,801,350 training samples, 3,760 development samples, and 4,358 test samples derived
from Wikipedia articles, which serves as a standard benchmark for assessing language modeling
performance (Su et al., 2022; Li et al., 2024).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: GPT4 evaluation results comparing FoSS with baseline methods

In Domain

FoSS vs. GPT4 Preference

Better Neutral Worse

Transformer 53% 19% 28%
kNN-LM 67% 15% 18%
CoG 42% 31% 27%
GFlowNets-FT 55% 29% 16%

Out of Domain

FoSS vs. GPT4 Preference

Better Neutral Worse

Transformer 56% 23% 21%
kNN-LM 75% 13% 12%
CoG 74% 6% 20%
GFlowNets-FT 49% 24% 27%

Table 1 presents the performance comparison between the baselines and our proposed FoSS on the
WikiText-103 test set. Our FoSS achieves MAUVE score absolute improvements of 5.51 and 8.22
over CoG and fine-tuned Transformer with nucleus sampling, respectively. This improvement can
be attributed to GFlowNet’s ability to model DAG-structured internal state space and generalize
better. Meanwhile, FoSS outperforms GFlowNets-FT by 2.04, highlighting the advantage of our
DAG-structured state space over the tree-structured approach used in GFlowNets-FT, which enables
more comprehensive exploration of state transitions. Notably, despite the established tendency of
greedy search to produce degeneration problems (Welleck et al., 2020), FoSS with greedy search
outperforms both the fine-tuned Transformer and the CoG with nucleus sampling by 7.35 and 4.64 in
MAUVE, respectively.

To further evaluate the quality of generated text, we employ GPT-4 to assess the continuations
generated by the models for each test prefix. Prior work has shown that powerful LLMs, such as
GPT-4, are capable of matching human preferences well, achieving over 80% agreement, which is
comparable to the agreement between humans (Zheng et al., 2023). Our evaluation focuses on key
aspects of text quality: fluency, coherence, informativeness, and grammatical correctness. Further
details can be found in the Appendix G. As shown in Table 2, the GPT-4 evaluation results reveal that
our FoSS model consistently outperforms all baselines across all quality dimensions.

4.2 OUT OF DOMAIN EVALUATION

In the domain adaptation setting, the models trained on the WikiText-103 dataset are tested on a
different domain. Following previous work(Liu et al., 2024; Cao et al., 2024), we use the English
portion of Law-MT (Koehn & Knowles, 2017), which is an English-German translation dataset in
the legal domain containing 389,292 training samples with 2,000 samples each for development and
testing purposes. The memory of kNN-LM, RETRO, CoG, GDV and FoSS are constructed from
the training set of Law-MT. Transformer w/o ft is fine-tuned on the WikiText103 training set, and
Transformer w/ ft is additionally trained on the Law-MT training set.

As shown in Table 1, FoSS consistently outperforms all baseline methods, including the Law-MT
fine-tuned Transformer. Specifically, FoSS achieves MAUVE score improvements of 6.96 and
4.03 over the fine-tuned Transformer and CoG, respectively. These results demonstrate that FoSS
effectively adapts to new domains by simply updating the source text collection without requiring
domain-specific training. The superior performance can be attributed to the generalization capabilities
of GFlowNets, which enable more effective knowledge transfer across domains.

Additionally, we conducted a GPT-4 evaluation under this setting, which follows a similar procedure
as outlined in Section 4.1. As presented in Table 2, FoSS-generated continuations were preferred in
56% and 74% of cases when compared to the fine-tuned Transformer and CoG, respectively. These
human-aligned evaluation results demonstrate the effectiveness of FoSS in cross-domain generation
scenarios without requiring domain-specific parameter updates.

4.3 SCALING EVALUATION

In this section, we evaluate the scaling properties of FoSS across three dimensions: memory size,
training data volume, and model scale. For memory scaling, we constructed retrieval datastores for
kNN-LM, RETRO, CoG, and FoSS from the En-Wiki corpus and evaluated on the WikiText-103

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.001 0.003 0.01 0.03 0.1 0.3 1.0
The proportion of 3B En-Wiki dataset

24

26

28

30

32

34

M
A

U
V

E
sc

or
e

FoSS

CoG

Transformer

Figure 2: Generation quality of
FoSS with different sizes of the
span index.

0.47 0.94 1.88 3.75 7.5 15
The propotion of GFlowNets training data (%)

24

26

28

30

32

M
A

U
V

E
sc

or
e

FoSS

CoG

Transformer

Figure 3: Generation quality of
FoSS with different sizes of of-
fline data trained.

Base Medium Large XL
Model Size

24

26

28

30

32

M
A

U
V

E
sc

or
e

FoSS

CoG

Transformer

Figure 4: Generation quality
of FoSS with different sizes of
models.

test set. The Transformer w/o FT was trained solely on WikiText-103, while Transformer w/ FT was
additionally trained on the En-Wiki.

As shown in Table 1, FoSS with the En-Wiki memory consistently outperforms other strong baselines,
including FoSS with the smaller WikiText-103 memory. This demonstrates the plug-and-play
capability of FoSS, which can leverage larger memory resources for performance gains without
requiring additional training. To further investigate the impact of memory size on generation quality,
we created subsets of En-Wiki at varying scales to serve as the retrieval datastore. Figure 2 illustrates
that as we increase the FoSS memory size, text generation quality consistently improves. For
comparative purposes, we use Transformer w/o FT as the baseline, since the fine-tuned Transformer
exhibited performance degradation when trained on the additional En-Wiki data.

To assess the impact of training data volume on FoSS performance, we sampled subsets of the
WikiText-103 training set at different scales and trained both models accordingly, evaluating them on
the test set. As illustrated in Figure 3, FoSS outperforms fully-trained CoG and Transformer models
even when trained on an extremely limited data fraction (0.47%). Furthermore, FoSS demonstrates
robust scaling behavior, with performance consistently improving as training data volume increases.
This finding highlights the sample efficiency of our approach and suggests that FoSS effectively
leverages the compositional nature of the DAG-structured state space to generalize from limited
examples, while maintaining strong scaling properties with additional training data.

Finally, to evaluate model scaling effects, we initialized the prefix encoder with progressively larger
versions of GPT-2: GPT-2 (base), GPT-2-Medium, GPT-2-Large, and GPT-2-XL. All models were
trained on WikiText-103 and evaluated on its test set. Figure 4 shows that text generation quality
consistently improves as we scale up the model size, confirming that FoSS effectively leverages
increased model capacity.

4.4 DOWNSTREAM EVALUATION

Consistent with prior research (Sanh et al., 2021; Brown et al., 2020), we adopt a classification-
with-options approach to evaluate model performance. For assessment, we employ five diverse
knowledge-intensive datasets: TruthfulQA (Lin et al., 2022) for evaluating factual accuracy, Open-
BookQA (Mihaylov et al., 2018) and ARC-Challenge (Clark et al., 2018) for testing scientific
reasoning at different complexity levels, and MedMCQA (Pal et al., 2022) and Med-USMLE (Jin
et al., 2021) for assessing specialized medical knowledge.

In this framework, the model is presented with a set of candidate options, and the likelihood of each
option being the correct answer is computed. The option with the highest probability is selected as
the model’s prediction. We then report the accuracy of the model’s predictions. To calculate the
likelihood of a given text, we approximate the likelihood by summing over all possible generation
paths using dynamic programming (Cao et al., 2024).

Table 3 presents the accuracy comparisons between the baselines and our proposed FoSS on five
question-answering datasets. The Transformer w/ FT baseline was fine-tuned on the WikiText-103
dataset. Our results show that the proposed FoSS consistently outperforms the baselines across most

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Accuracy of Different Methods on Knowledge-Intensive Tasks

Method TruthfulQA OpenbookQA ARC-Challenge MedMCQA Med-USMLE
Transformer (w/o FT) 28.02 22.67 23.82 26.70 24.89
Transformer (w FT) 28.76 22.71 24.00 26.95 24.15
CoG 29.38 24.29 24.34 27.55 25.06
FoSS 30.45 26.20 24.63 27.44 25.27

datasets. Specifically, compared to the standard Transformer w/ FT, our model improves accuracy on
the TruthfulQA and OpenBookQA datasets, increasing from 28.76% to 30.45% and from 22.71% to
26.20%, respectively. While CoG shows competitive performance on MedMCQA, our method still
achieves the best overall performance across the majority of the benchmarks.

4.5 ABLATION STUDY

Table 4: Ablation Results of FoSS

Method In Domain Out of Domain Scaling Data Store

Mauve Diversity Mauve Diversity Mauve Diversity

FoSS w/o DAG 29.61 65.72 28.62 81.44 - -
FoSS w/o PM 28.25 89.91 30.49 92.53 29.81 91.42
FoSS w/o LM 29.09 92.77 29.79 94.72 29.53 92.46

FoSS 31.65 92.48 32.17 93.00 33.79 92.51

To validate the effectiveness of modeling G as a general DAG rather than a tree, we conducted
an experiment where we removed all phrases from the vocabulary during training, ensuring that
G forms a tree structure. As shown in Table 4, the results demonstrate that FoSS significantly
outperforms the tree-structured variant across all evaluation settings. Specifically, the DAG-based
model achieves a 9.65% relative improvement in MAUVE score and a 27.46% increase in Diversity
score across different settings. This indicates that the DAG structure allows for more diverse and
flexible generation paths, enabling better exploration of the generation space and mitigating the
limitations posed by tree-structured generation, which restricts the ability to explore diverse phrase
combinations.

To assess the impact of different reward components, we conducted ablation experiments by separately
removing the LM and PM from Equation 3. As demonstrated in Table 4, removing either component
leads to decreased MAUVE scores across all settings, indicating that both components are essential
and complementary. It is worth noting that the PM-only variant (FoSS w/o LM) achieves the highest
Diversity scores in both in-domain and out-of-domain settings, suggesting that PM inherently favors
text with greater diversity. This aligns with PM’s objective to differentiate human-written text, which
typically exhibits richer diversity from model-generated texts (Zhang et al., 2025).

5 CONCLUSION

In this work, we construct a dynamic span-vocabulary for text generation, framing the state space as a
DAG. We then model the span generation within the GFlowNets framework, unleashing the potential
of GFlowNets in language models within the DAG-structured space. Our proposed FoSS excels in
text generation, domain adaptation, and knowledge-intensive tasks, consistently outperforming strong
baseline models. The scaling experiment further demonstrated that FoSS consistently improves
in performance with increases in model parameters, training data, and retrieval data, validating its
scalability and potential with greater computational budgets.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Lazar Atanackovic and Emmanuel Bengio. Investigating generalization behaviours of generative
flow networks. In ICML 2024 Workshop on Structured Probabilistic Inference {\&} Generative
Modeling, 2024.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Bowen Cao, Deng Cai, Leyang Cui, Xuxin Cheng, Wei Bi, Yuexian Zou, and Shuming Shi. Retrieval
is accurate generation. In The Twelfth International Conference on Learning Representations,
2024.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. In Uncertainty in
Artificial Intelligence, pp. 518–528. PMLR, 2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Razvan-Gabriel Dumitru, Minglai Yang, Vikas Yadav, and Mihai Surdeanu. Copyspec: Accel-
erating llms with speculative copy-and-paste without compromising quality. arXiv preprint
arXiv:2502.08923, 2025.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvijotham,
Adam Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or herd-
ing? reward model ensembles mitigate but do not eliminate reward hacking. arXiv preprint
arXiv:2312.09244, 2023.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International
conference on machine learning, pp. 3061–3071. PMLR, 2020.

Jinlan Fu, See Kiong Ng, Zhengbao Jiang, and Pengfei Liu. Gptscore: Evaluate as you desire.
In Proceedings of the 2024 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 6556–
6576, 2024.

Giorgio Giannone, Neil Tenenholtz, James Hall, Nicolo Fusi, and David Alvarez-Melis. Enhancing
language models for technical domains with dynamic token injection. In NeurIPS 2023 Generative
AI and Biology (GenBio) Workshop.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Timofei Gritsaev, Nikita Morozov, Sergey Samsonov, and Daniil Tiapkin. Optimizing backward
policies in gflownets via trajectory likelihood maximization. In The Thirteenth International
Conference on Learning Representations, 2025.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. In International Conference on Learning Representations.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Edward J Hu, Nikolay Malkin, Moksh Jain, Katie E Everett, Alexandros Graikos, and Yoshua Bengio.
Gflownet-em for learning compositional latent variable models. In International Conference on
Machine Learning, pp. 13528–13549. PMLR, 2023.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. In The Twelfth
International Conference on Learning Representations, 2024.

Yusuke Ide, Yuto Nishida, Justin Vasselli, Miyu Oba, Yusuke Sakai, Hidetaka Kamigaito, and Taro
Watanabe. How to make the most of llms’ grammatical knowledge for acceptability judgments.
arXiv preprint arXiv:2408.09639, 2024.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning, pp.
9786–9801. PMLR, 2022.

Hyosoon Jang, Yunhui Jang, Minsu Kim, Jinkyoo Park, and Sungsoo Ahn. Pessimistic backward
policy for gflownets. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng, Hanyi Fang, and Peter Szolovits. What
disease does this patient have? a large-scale open domain question answering dataset from medical
exams. Applied Sciences, 11(14):6421, 2021.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. In International Conference on
Learning Representations, 2020.

Hyeonah Kim, Minsu Kim, Taeyoung Yun, Sanghyeok Choi, Emmanuel Bengio, Alex Hernández-
Garcı́a, and Jinkyoo Park. Improved off-policy reinforcement learning in biological sequence
design. In NeurIPS 2024 Workshop on AI for New Drug Modalities.

Philipp Koehn and Rebecca Knowles. Six challenges for neural machine translation. In Proceedings
of the First Workshop on Neural Machine Translation, pp. 28–39, 2017.

Michał Koziarski, Andrei Rekesh, Dmytro Shevchuk, Almer van der Sloot, Piotr Gaiński, Yoshua
Bengio, Chenghao Liu, Mike Tyers, and Robert Batey. Rgfn: Synthesizable molecular generation
using gflownets. Advances in Neural Information Processing Systems, 37:46908–46955, 2024.

Anas Krichel, Nikolay Malkin, Salem Lahlou, and Yoshua Bengio. On generalization for generative
flow networks. arXiv preprint arXiv:2407.03105, 2024.

Tian Lan, Deng Cai, Yan Wang, Heyan Huang, and Xian-Ling Mao. Copy is all you need. In The
Eleventh International Conference on Learning Representations, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Seanie Lee, Minsu Kim, Lynn Cherif, David Dobre, Juho Lee, Sung Ju Hwang, Kenji Kawaguchi,
Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, et al. Learning diverse attacks on large language
models for robust red-teaming and safety tuning. In The Thirteenth International Conference on
Learning Representations, 2025.

Minghan Li, Xilun Chen, Ari Holtzman, Beidi Chen, Jimmy Lin, Scott Yih, and Victoria Lin. Nearest
neighbor speculative decoding for llm generation and attribution. Advances in Neural Information
Processing Systems, 37:80987–81015, 2024.

Sida Li, Ioana Marinescu, and Sebastian Musslick. Gfn-sr: Symbolic regression with generative flow
networks. In NeurIPS 2023 AI for Science Workshop, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3214–3252, 2022.

Yanting Liu, Tao Ji, Changzhi Sun, Yuanbin Wu, and Xiaoling Wang. Generation with dynamic
vocabulary. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing, pp. 18931–18948, 2024.

Stephen Zhewen Lu, Ziqing Lu, Ehsan Hajiramezanali, Tommaso Biancalani, Yoshua Bengio,
Gabriele Scalia, and Michał Koziarski. Cell morphology-guided small molecule generation with
gflownets. In ICML 2024 Workshop on Structured Probabilistic Inference {\&} Generative
Modeling, 2024.

Pouya M Ghari, Alex Tseng, Gokcen Eraslan, Romain Lopez, Tommaso Biancalani, Gabriele Scalia,
and Ehsan Hajiramezanali. Gflownet assisted biological sequence editing. Advances in Neural
Information Processing Systems, 37:106841–106869, 2024.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from
partial episodes for improved convergence and stability. In International Conference on Machine
Learning, pp. 23467–23483. PMLR, 2023.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems, 35:
5955–5967, 2022.

Pedro Henrique Martins, Zita Marinho, and André FT Martins. Chunk-based nearest neighbor
machine translation. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 4228–4245, 2022.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2381–2391, 2018.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
multi-subject multi-choice dataset for medical domain question answering. In Conference on
health, inference, and learning, pp. 248–260. PMLR, 2022.

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of gflownets with
local credit and incomplete trajectories. In International Conference on Machine Learning, pp.
26878–26890. PMLR, 2023.

Ling Pan, Moksh Jain, Kanika Madan, and Yoshua Bengio. Pre-training and fine-tuning generative
flow networks. In The Twelfth International Conference on Learning Representations, 2024.

Mohit Pandey, Gopeshh Subbaraj, Artem Cherkasov, Martin Ester, and Emmanuel Bengio. Pretraining
generative flow networks with inexpensive rewards for molecular graph generation. In Forty-second
International Conference on Machine Learning, 2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, John Thickstun, Sean Welleck, Yejin Choi,
and Zaid Harchaoui. Mauve: Measuring the gap between neural text and human text using
divergence frontiers. Advances in Neural Information Processing Systems, 34:4816–4828, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training enables
zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725, 2016.

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards understanding and improving gflownet training. In International
conference on machine learning, pp. 30956–30975. PMLR, 2023.

Tony Shen, Seonghwan Seo, Grayson Lee, Mohit Pandey, Jason R Smith, Artem Cherkasov,
Woo Youn Kim, and Martin Ester. Tacogfn: Target-conditioned gflownet for structure-based
drug design. Transactions on Machine Learning Research.

Yixuan Su, Tian Lan, Yan Wang, Dani Yogatama, Lingpeng Kong, and Nigel Collier. A contrastive
framework for neural text generation. Advances in Neural Information Processing Systems, 35:
21548–21561, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Nikhil Murali Vemgal, Elaine Lau, and Doina Precup. An empirical study of the effectiveness of
using a replay buffer on mode discovery in gflownets. In ICML 2023 Workshop on Structured
Probabilistic Inference {\&} Generative Modeling.

Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Lingpeng Kong,
Qi Liu, Tianyu Liu, et al. Large language models are not fair evaluators. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 9440–9450, 2024.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, and Jason Weston.
Neural text generation with unlikelihood training. In International Conference on Learning
Representations, 2020.

Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning: Training
llms for divergent reasoning with minimal examples. In Forty-second International Conference on
Machine Learning, 2025.

Yiming Zhang, Harshita Diddee, Susan Holm, Hanchen Liu, Xinyue Liu, Vinay Samuel, Barry Wang,
and Daphne Ippolito. Noveltybench: Evaluating language models for humanlike diversity, 2025.
URL https://arxiv.org/abs/2504.05228.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

13

https://arxiv.org/abs/2504.05228

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 MODELS BEYOND FIXED VOCABULARY

Recent advancements in language modeling have shifted towards dynamic vocabularies and flexible
text spans to address the limitations of traditional token-by-token autoregressive generation. Retrieval-
based methods have gained significant attention, with approaches like CoG-2 (Cao et al., 2024)
and CoG (Lan et al., 2023) leveraging external datastores to dynamically retrieve and assemble
contextually relevant phrases. This allows for a flexible vocabulary that enhances both semantic
richness and fluency in generated text. Similarly, chunk-based methods, such as the kNN machine
translation model by (Martins et al., 2022), retrieve variable-length token sequences, improving
translation coherence and fluency. Speculative decoding techniques, like CopySpec (Dumitru et al.,
2025), further optimize this idea by reusing repeated token sequences, which accelerates inference
and reduces redundancy. Domain-specific enhancements, such as those proposed by (Giannone et al.),
dynamically inject specialist tokens into the model’s vocabulary, enabling more effective handling
of domain-specific knowledge without the need for extensive fine-tuning. In the realm of semi-
parametric methods, NEST (Li et al., 2024) introduces text span retrieval from a corpus, allowing
for more diverse and semantically coherent text generation. Additionally, (Liu et al., 2024) propose
a dynamic vocabulary approach that incorporates arbitrary text spans as fundamental generation
units, demonstrating improvements in both generation quality and efficiency across various tasks.
Collectively, these approaches represent a paradigm shift from static token generation to more flexible,
context-aware methods, enabling language models to produce semantically richer and more diverse
content.

However, while methods such as (Lan et al., 2023), (Cao et al., 2024), and (Liu et al., 2024) implicitly
induce a DAG-structured internal state space (each state can be reached via two segmentation
paths), this structural property remains unrecognized and unexploited. Consequently, existing
approaches exhibit biases towards specific segmentation patterns. Moreover, thoroughly exploring and
generalizing over the DAG-structured state space is inherently nontrivial, as it requires exponentially
growing data to sufficiently cover the combinatorial explosion of compositional paths. To address
this challenge, we identify GFlowNets as a principled solution, enabling effective generalization and
exploration in DAG-structured spaces (Shen et al., 2023; Krichel et al., 2024; Atanackovic & Bengio,
2024).

A.2 GENERATIVE FLOW NETWORKS

Generative Flow Networks (GFlowNets) offer a framework for training stochastic policies to sample
compositional objects with probabilities proportional to a reward function (Bengio et al., 2023). This
unique property makes them particularly effective in applications that require generating diverse
yet high-reward samples, such as biological sequence design (Jain et al., 2022; M Ghari et al.,
2024; Kim et al.) and molecule generation (Koziarski et al., 2024; Lu et al., 2024). Recently,
GFlowNets have also been successfully extended to various inference tasks, including Bayesian
structure learning (Shen et al.) and variational inference with discrete latent variables (Hu et al., 2023).
In the context of language modeling, (Hu et al., 2024) introduced a method to amortize intractable
inference in large language models using GFlowNets, demonstrating its potential in guiding language
model behavior. Subsequently, (Yu et al., 2025) utilized GFlowNets to generate diverse reasoning
paths, enhancing the exploration of solutions in complex problem-solving scenarios. Additionally,
recent studies have explored the use of GFlowNets for automated red-teaming of large language
models. For instance, (Lee et al., 2025) proposed a two-stage approach combining GFlowNets
fine-tuning and MLE smoothing to generate diverse adversarial prompts, mitigating mode collapse
issues typical in reinforcement learning-based methods.

The original motivation for the GFlowNets machinery, and its primary novelty, are in MDPs with
many trajectories per state (Shen et al., 2023; Bengio et al., 2021). However, existing GFlowNets
approaches integrated with LLMs remain constrained by token-level generation. Consequently, they
inherently form tree-structured state spaces, which reduces the GFlowNets framework to a degraded
learning paradigm that limits the exploration of state transition. In contrast, our method constructs a
general DAG by employing text spans as actions, allowing for multiple generation paths to the same
state, thus fully leveraging the exploration and generalization potential of GFlowNets.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B DATASETS AND METRICS DETAILS

B.1 DATASETS DETAILS

The open-ended text generation experiments in this paper include three benchmarks: (1) WikiText-
103, a large-scale corpus comprising 1,801,350 training samples, 3,760 development samples, and
4,358 test samples derived from Wikipedia articles, containing over 100 million words and widely
used for evaluating universal language modeling performance; (2) the English portion of Law-MT, an
English-German translation dataset in the legal domain containing 389,292 training samples with
2,000 samples each for development and testing purposes; and (3) En-Wiki, an extensive corpus
utilized for enlarged phrase indexing experiments, containing over 4,848,348 long English Wikipedia
documents with more than 3 billion words, substantially larger than WikiText-103.

For knowledge-intensive evaluation tasks, we utilize several established benchmarks: (1) Open-
BookQA (Mihaylov et al., 2018), which evaluates understanding of scientific concepts through
5,957 multiple-choice elementary science questions (4,957 train, 500 development, 500 test) and
probes 1,326 core scientific facts requiring broad commonsense knowledge—we utilize its test split
comprising 500 questions; (2) ARC-Challenge (Clark et al., 2018), containing 7,787 grade-school
level, multiple-choice science questions across diverse topics, with its Challenge Set specifically
including questions answered incorrectly by retrieval-based and word co-occurrence algorithms—we
use the test split of this Challenge Set, consisting of 1,172 questions; (3) TruthfulQA (Lin et al., 2022),
a benchmark designed to evaluate the truthfulness of language models, consisting of 817 multiple-
choice questions across 38 categories including health, law, finance, and politics; (4) MedMCQA (Pal
et al., 2022), comprising 194,000 multiple-choice questions covering 21 medical subjects and 2,400
healthcare topics—we use its validation split consisting of 4,183 questions; and (5) Med-USMLE (Jin
et al., 2021), which comprises 12,723 multiple-choice questions with four options each, sourced
from the United States Medical Licensing Examination—we utilize its test split containing 1,273
questions.

B.2 METRICS DETAILS

MAUVE (Pillutla et al., 2021) measures the divergence between model-generated and human-
written text distributions using a quantized embedding space. By computing the divergence between
discrete distributions derived from neural embeddings, MAUVE effectively captures both quality
and diversity aspects of generated text, correlating strongly with human judgments while remaining
computationally efficient.

Diversity quantifies the non-repetitive nature of generated content through n-gram statistics. Formally
defined as Π4

n=2(1−
Rep−n
100)), where Rep−n represents the percentage of duplicate n-grams, this

metric penalizes redundant patterns while rewarding informative and varied text. Higher Diversity
scores indicate more information-rich generations with fewer repetitive structures.

C IMPLEMENTATION DETAILS

C.1 TRAINING SETUP AND HYPERPARAMETERS

The training of our proposed model was conducted on eight NVIDIA A800 GPUs, each equipped
with 80GB of memory. We employed the AdamW optimizer with a learning rate of 1e-7 and a linear
learning rate schedule. To manage memory constraints, we implemented gradient accumulation
with a step size of 32. For the first epoch, training relied exclusively on offline training set data.
Starting from the second epoch, at each step, we sampled trajectories with a probability of 0.2 from
the replay buffer (offline) and with a probability of 0.8 from online-generated trajectories. For the
language model, we followed the configuration in (Hu et al., 2024), applying LoRA (Hu et al., 2022)
for fine-tuning GPT-2 and BERT with the following hyperparameters: rank r = 64, scaling factor
α = 16, and LoRA dropout rate of 0.1.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C.2 DYNAMIC VOCABULARY CONSTRUCTION

To enhance the efficiency of FoSS, we pre-encoded all documents in the source text collection
offline. However, retrieving from such an extensive phrase collection poses significant engineering
challenges. To address this, we adopted a coarse-to-fine pipeline, consistent with the approach in
CoG. Specifically, during training, the dynamic vocabulary of FoSS comprises two components: (1)
a token-level vocabulary and (2) phrases derived from the batch of training documents, augmented
by the top-k documents (with k = 128) that share similar topics with the prefix of the training
documents. For the second component, we selected all substrings of length 2-8 tokens from the
documents, ensuring that the policy network can sample any sequence in an exponentially scalable
manner. Notably, experiments revealed that relying solely on the batch of training documents, which
were obtained through the span segmentation algorithm, resulted in poor-quality online-sampled
sentences that adversely affected training stability. Additionally, during the FoSS training, we
needed to segment prefixes from training samples before trajectory sampling. In our experiments,
we first used NLTK’s sentence tokenizer to split training samples into sentences, then progressively
concatenated these sentences to the prefix until its length approached 32 tokens, which matches the
prefix length used during testing. Due to computational resource constraints, we sampled 15% of the
data for GFlowNets training. During inference, we first employed a document retriever to identify the
top-k related documents for a given prefix, with k = 1024. Subsequently, the corresponding phrase
representations were collected for generation. In this work, we utilized a widely adopted semantic
matching model, DPR (Karpukhin et al., 2020), combined with the FAISS (Johnson et al., 2019)
vector search toolkit, as the document retriever to recall documents with topics similar to the prefix.

C.3 REWARD MODEL TRAINING

For both the LM and PM components of the reward function, we utilized GPT-2 for full parameter
fine-tuning. In the case of LM fine-tuning, we employed causal language modeling loss on the
training dataset. For the PM fine-tuning, we employ Bradley-Terry objective that encourages the
model to assign a higher score to the preferred continuation than to its non-preferred counterpart. We
train on a dataset DPM = {(x+, x−)}, where x+ is the human-written references from the training
set and x− the continuations produced by the initial policy. Let fPM(x) denote the scalar-valued score
predicted by the PM. Our training objective is:

LPM = −E(x+,x−)∼DPM

[
log σ(fPM(x+)−fPM(x−)−m)

]
+λE(x+,x−)∼DPM

[
(fPM(x+) + fPM(x−))2

]
,

where σ(·) is the sigmoid function, m represents an optional margin hyperparameter and λ controls the
strength of the centering regularization. Here, we employ the score-centering regularizer (Eisenstein
et al., 2023), adding an auxiliary loss that minimizes the squared sum of the scores. This encourages
the model to produce mean-zero outputs.

D POLICY NETWORK DETAILS

Our policy network architecture comprises two primary components: a prefix encoder and a span
encoder. The prefix encoder processes the current state as a sequence of tokens, where previously
sampled spans are tokenized. This sequence is then encoded using a standard Transformer architecture
with causal attention mechanisms. The representation of the prefix is derived from the final layer’s
hidden state corresponding to the last token in the sequence.

For the span encoder, we compute vector representations for all candidate phrases from the supporting
documents (constituting T). Specifically, we extract all possible substrings of length 2-8 tokens
from the supporting documents to form T , ensuring that the internal state space forms a DAG. To
encode these phrases, we employ a deep bidirectional Transformer (Devlin et al., 2019) to generate
contextualized token representations for each supporting document. For a phrase spanning from
position s to e, we apply separate MLPs to transform token representations into start and end
embeddings of dimension d

2 each, then concatenate the start embedding at position s with the end
embedding at position e to form the complete phrase representation. For single words in V and the
terminal action ⊤, we utilize standard token embeddings.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E SPAN SEGMENTATION ALGORITHM

In this work, we introduce a DAG-Inducing Probabilistic Span Segmentation algorithm that generates
stochastically varied segmentation trajectories for each training document, specifically designed to
facilitate the offline construction of DAGs over sequences. Our span segmentation algorithm draws
inspiration from CoG. Building upon the standard forward maximum matching strategy, our method
integrates a probabilistic early-stopping mechanism that allows phrase extraction to terminate at
controlled random points, governed by a set of thresholds P = {p0 = 0, p1, . . . , pn | 0 ≤ pi <
1, ∀i = 0, . . . , n}.
Concretely, given a document, we tokenize it into a sequence of tokens and iteratively scan from left
to right. At each step, we attempt to find the longest token span that appears in either the document
itself or its top-k retrieved nearest neighbors. If a candidate span is found and its length falls within
pre-specified bounds, it is selected as a phrase with probability pr, where pr ∈ P . If selected, we
commit this candidate span as a phrase in the segmentation and reset our span search to begin at
the next token. If not selected, we continue the segmentation process by extending the current span
with one additional token, repeating this procedure until either we find a selectable span, reach the
maximum span length limit, or the extended span no longer appears in the retrieved documents. The
details of our proposed DAG-Inducing Probabilistic Span Segmentation algorithm can be found in
Algorithm 2. This probabilistic termination mechanism results in multiple distinct segmentation
trajectories per document, where different span paths share common sub-sequences. Crucially, by
generating overlapping and diverging segmentations offline, we ensure that the resulting training
trajectories data naturally induce a DAG structure.

F DIVERSITY AND LATENCY ANALYSIS

We compare the average time cost of different methods for completing the generation on the test
set following the speed testing setup of Lan et al. (2023). The results are reported in Table 5. As
can be seen, FoSS achieves comparable inference efficiency with the standard Transformer baseline.
This is because the copied phrases typically consist of multiple tokens. As a result, FoSS requires
fewer decoding steps to generate text of the same length. Unlike FoSS, which uses a coarse-to-fine
search pipeline, kNN-LM performs large-scale vector search at every decoding step. This leads to
significantly higher inference latency compared to other methods.

Meanwhile, we also compare the diversity of the methods. It can be observed that FoSS shows
improvements in diversity compared to CoG under both generation strategies, with the diversity score
increasing from 43.03 to 43.50, and from 89.07 to 92.48, respectively. This enhancement can be
attributed to the fundamental training objective of GFlowNets, which learns a policy that samples from
a distribution proportional to the reward function (P⊤

F (x) ∝ R(x)) rather than simply maximizing
the reward, which encourages exploration of diverse generation trajectories and enhances the diversity
of the generated text. While the diversity of our method under nucleus sampling is slightly lower
than kNN-LM, this can be attributed to differences in the inference strategy. kNN-LM conducts
large-scale vector search at every decoding step, whereas FoSS performs a single retrieval step during
the generation process, which affects the richness of the retrieved content and subsequently impacts
the overall diversity of the generated text.

G GPT4 EVALUATION

Due to GPT-4’s sensitivity to the order of candidate sentences (Wang et al., 2024), we adopt the
method described in (Wang et al., 2024; Liu et al., 2024), computing the final result by averaging
outcomes from pairs of evaluations with reversed presentation order. Figure 6 shows the detailed
prompt used for GPT-4, which we adopt from (Liu et al., 2024). Specifically, for each triplet
(prefix, generation 1, generation 2), we include another corresponding triplet (prefix, generation 2,
generation 1), in order to mitigate any impact that the order of the two generations might have on
GPT-4’s evaluation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 2: DAG-Inducing Probabilistic Phrase Segmentation

Data: Document set: D = {di, {dj}Kj=1}Ni=1, where di denotes the i-th document. K denotes
the number of retrieved documents. N denotes the number of documents in the training
set. Pre-defined maximum and minimum phrase lengths: Lmax and Lmin. Phrase
segmentation thresholds: P = {p0 = 0, p1, . . . , pn | 0 ≤ pi < 1, ∀i = 0, . . . , n}.

Result: DAG-inducing segmented document set:

D′ = {{V(i)
r = {(p(r)i,x , (dj , posj))}

||di||(r)p

x=1 }nr=0}Ni=1,

where p
(r)
i,x denotes the x-th phrase in the r-th segmentation of di, appearing in document dj .

Preprocess: Split each document into token-level sequences using an off-the-shelf tokenizer.
Define empty result set D′ = {}.
for i← 1 to N do

for pr ∈ P do
cursor← 0
PhraseCollection← {}
cachep ← {}
labellast ← False
while cursor ≤ ||di||t do

if Lmin ≤ len(cachep) ≤ Lmax then
if random() ≥ pr then

labelnow, rest← SearchPhrase (cachep)
else

labelnow, rest← False, {}
else

if len(cachep) > Lmax then
cachep ← {}

if labellast = True and labelnow = False then
cursor← cursor −1
PhraseCollection.append(cachep, rest)
cachep ← {}

else
if labellast = False and labelnow = False then

PhraseCollection.append(cachep, None)
cachep ← {}

cursor← cursor +1
labellast ← labelnow

D′[i].append(PhraseCollection)

Table 5: Comparison of Diversity and Latency Among Methods for In Domain Generation

Method Greedy Nucleus

Diversity↑ Latency↓ Diversity↑ Latency↓

Transformer 22.37 1.32 93.22 1.48
kNN-LM 22.13 10.36 95.80 10.42
RETRO 21.19 4.39 91.19 4.51
CoG 43.03 1.29 89.07 1.54

FoSS 43.50 1.29 92.48 1.51

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Case Prefix
The production selected two adjacent properties on the Warner backlot's
'Blondie Street' for the Burnham and Fitts' homes. The crew

Generation of FoSS
continued filming at the same location over several years, aiming to maintain
continuity for scenes set at the school. The producers noted that filming
would need several years to complete and that it was easier to edit the film
and prepare it for the same location used for other scenes in the film.

Generation of Transformer w/ FT
moved there in 1950, using three yards of undeveloped land : Hawthorne Street
between 9 and 10 Westheimer Street (the site of the National Training Center
at that time), a district section of South Main Street between 14th and 15th
Streets, and the neighborhood on North College Street opposite Latimer streets.

Figure 5: Case Study. The blue part represents directly sampling a phrase.

System：You are a helpful and precise assistant for checking the quality of the text.
User：[Prefix]
{Prefix of the Test Sample}
[The Start of Assistant 1's Generation]
{Generation_1}
[The End of Assistant 1's Generation]
[The Start of Assistant 2's Generation]
{Generation_2}
[The End of Assistant 2's Generation]
[System]
We would like to request your feedback on the performance of two AI assistants in response
to the user prefix displayed above. Please rate the fluency, coherence, informativeness, and
grammar. Each assistant receives an overall score on a scale of 1 to 10, where a higher score
indicates better overall performance. Please first provide a comprehensive explanation of
your evaluation, avoiding any potential bias and ensuring that the order in which the
responses were presented does not affect your judgment. Then, output two lines indicating
the scores for Assistant 1 and 2, respectively.
Your response should be in the following **json** format:
```json
{{
    "Evaluation evidence": "your evaluation explanation here",
    "Score of the Assistant 1": "score",
    "Score of the Assistant 2": "score"
}}```

Figure 6: The GPT-4 evaluation template with three slot {Prefix of the Test Sample}, {Generation 1},
{Generation 2}

H CASE STUDY

Figure 5 presents a comparative example between FoSS and a fine-tuned GPT2 model. Given an
identical film production prefix, FoSS generates a continuation that maintains thematic coherence,
discussing filming logistics, continuity considerations, and production planning. The text flows
naturally from the established context about Warner’s backlot filming. In contrast, the GPT2 model
produces text that, while grammatically correct, diverges semantically with abrupt shifts to specific
street locations and unrelated elements like ”National Training Center” that lack connection to the
film production theme.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

I LIMITATIONS

One limitation of FoSS is its design to perform a single retrieval operation per prefix, in contrast to
token-level retrieval strategies (e.g., kNN-LM). While this approach yields substantial gains in infer-
ence latency (as detailed in Table 5), the comparatively lower generation diversity observed against
such baselines is an anticipated trade-off. Future work could explore augmenting retrieval frequency
to potentially enhance diversity and overall performance; however, this direction is orthogonal to the
primary methodological contributions of this study and is thus reserved for subsequent investigation.

J THE USE OF LLMS

We used LLMs for minor language polishing to improve clarity and readability. Additionally, we
used GPT-4 to evaluate the quality of model-generated texts, as described in the Experiments section.

20


	Introduction
	Preliminaries
	Span-Generation with GFlowNets
	Markov Decision Process Formulation for GFlowNets Learning
	Learning Objective and Training Policy
	Policy Network
	Reward Function

	Experiments
	In Domain Evaluation
	Out of Domain Evaluation
	Scaling Evaluation
	Downstream Evaluation
	Ablation Study

	Conclusion
	Related Work
	Models beyond Fixed Vocabulary
	Generative Flow Networks

	Datasets and Metrics Details
	Datasets Details
	Metrics Details

	Implementation Details
	Training Setup and Hyperparameters
	Dynamic Vocabulary Construction
	Reward Model Training

	Policy Network Details
	Span Segmentation Algorithm
	Diversity and Latency Analysis
	GPT4 Evaluation
	Case Study
	Limitations
	The use of LLMs

