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Abstract

The mainstream workflow of image recognition applications is first training one global
model on the cloud for a wide range of classes and then serving numerous clients. Images
uploaded by each client typically come from a small subset of classes. From the cloud-
client discrepancy on the range of image classes, the recognition model is desired to have
strong adaptiveness, intuitively by focusing on each client’s local dynamic class subset,
while incurring negligible overhead. In this work, we propose to plug a new intra-client and
inter-image attention (ICIIA) module into existing backbone recognition models, requiring
only one-time cloud-based training to be client-adaptive. In particular, given an
image to be recognized from a certain client, ICIIA introduces multi-head self-attention
to retrieve relevant images from the client’s local images, thereby calibrating the focus
and the recognition result. We further identify the bottleneck of ICIIA’s overhead being
in linear projection, propose to group and shuffle the features before the projections, and
allow increasing the number of feature groups to dramatically improve efficiency without
scarifying much accuracy. We extensively evaluate ICIIA and compare its performance
against several baselines, demonstrating effectiveness and efficiency. Specifically, for a
partitioned version of ImageNet-1K with the backbone models of MobileNetV3-L and Swin-
B, ICIIA improves the classification accuracy to 83.37% (+8.11%) and 88.86% (+5.28%),
while adding only 1.62% and 0.02% of FLOPs, respectively. Source code is available in the
supplementary materials.

Keywords: image recognition, model adaptation

1. Introduction

Nowadays, many computer vision (CV) models have been deployed to recognize client-side
images in practice, such as identifying everything with Google Lens, categorizing images
in Google Photos, and taking photos to search for products on Amazon Shopping. Let’s
examine the workflow of Google Lens, a mobile camera app with strong image recognition
capabilities, in detail. A global recognition model is trained on the cloud using a large scale
of labeled images, spanning a wide range of classes (e.g., various species of animals and
plants, documents, commodities, etc.). Then, the recognition model will serve numerous
app users once they take photos in daily life, and the photos taken by each user tend to
involve a few classes.
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Figure 1: Image recognition from a new cloud-client view.

By probing image recognition from a new cloud-client perspective, we find several im-
portant but often neglected characteristics, as illustrated in Figure 1. (1) The recognition
model is optimized for the full set of classes on the cloud, whereas the images to be recog-
nized on each individual client normally come from a small subset of classes. Specifically,
the class subsets of different clients differ from each other, and as a client collects new
images over time, the client’s class subset will change dynamically. (2) Different from the
cloud with labeled images for training, the images on each client are unlabeled for real-time
recognition. It is also practically infeasible to let non-expert users label images and take
their annotations as the ground truth. More generally, the missing of labels on the side of
clients is an atypical setting of CV scenarios, compared with natural language processing
(NLP) and recommendation applications, which typically predict user interactive behaviors
(e.g., next input word, click or browse) and take practical user feedback as labels.

The above cloud-client discrepancies raise the new requirement of strong adaptiveness on
the image recognition model, from the cloud’s full set of classes to each client’s local subset,
across different clients’ heterogeneous class subsets, and over a certain client’s dynamic
image dataset. Intuitively, the focus of the recognition model was originally distributed on
all the classes. When serving a specific client, if the focus can be concentrated on the client’s
class subset and further be dynamically adjusted as more local images are accumulated, the
recognition accuracy can be significantly improved.

To achieve model adaptation effectively and efficiently, there still exist several practical
challenges. From model architecture, the design should be model-agnostic. In particular, the
design should be compatible with existing backbone networks for image recognition (e.g.,
convolutional neural network (CNN), transformer, etc.), thereby inheriting their strong
representation abilities. In addition, no matter whether the recognition model was originally
deployed on the cloud to serve a large scale of clients or offloaded to resource-constrained
and heterogeneous clients for local serving, the design would better introduce only few
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Figure 2: Comparison of traditional recognition paradigm with our framework. All clients
share the same attention module which is regularly trained on the cloud.

parameters and negligible overhead to guarantee high efficiency. Of course, in the resource-
rich context, scaling up the design for better accuracy should be an available option. From
learning algorithm, although client-specific fine-tuning is model-agnostic and even does not
need extra parameters, the missing of labels and the resource constraints of clients make
such type of methods inapplicable to image recognition. Therefore, it is highly desirable, yet
challenging, to adapt the model only once on the cloud and circumvent on-client re-training.

In this work, we propose an Intra-Client and Inter-Image Attention (ICITA) module,
which is plugable between the feature extractor and the classifier of an arbitrary backbone
model for image recognition. After one-time training on the cloud as regular, ICITA can
well adapt to heterogeneous clients without local re-training. As shown in Figure 2, dif-
ferent from the conventional image recognition paradigm, which treats the images to be
recognized independently, ICIIA instead adopts a sequence modeling method and exploits
a client’s historical images to benefit recognizing a certain image. In fact, sequence mod-
eling of data is common and widely used in NLP and recommendation, where a sample
is represented by a sequence of tokens (i.e., words in NLP or items in recommendation),
and the dependence among the tokens is captured with attention mechanism. ICITA also
introduces multi-head self-attention Vaswani et al. (2017) to mine inter-image dependence
for each individual client. In particular, when serving a client, given an image to be recog-
nized, ICITA retrieves the relevant images from the client’s historically recognized images
and enables the recognition model to concentrate on the local dynamic subset of classes,
thereby calibrating the features and the recognition results. Through naturally inputting
the personalized images from the client without manually inserting additional client-specific
parameters, ICIIA can achieve adaptiveness in a desired one-for-all way. Further, as the
client accumulates more images for attention, the performance of ICIIA will become bet-
ter. However, when applying intra-client and inter-image attention, different from NLP and
recommendation with a small token size, the dimension of each image’s feature vector is
high, and the linear projections pose a new bottleneck. ICITA thus divides the features into
several groups, linearly projects each group individually, and shuffles the features across
groups, thereby reducing the overhead to the reciprocal of the number of feature groups.
We summarize the key contributions as follows:

e From a new cloud-client perspective to view image recognition, we find the discrep-
ancies and the variations on the range of candidate classes, raising the practical re-
quirement of one-time model adaptation.
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e We propose a plugable ICITA module upon existing backbone image recognition mod-
els. To the best of our knowledge, ICITA is the first to leverage the attention mech-
anism to mine intra-client and inter-image dependencies, thereby achieving strong
model adaptiveness without local re-training. We further propose feature grouping
and shuffling to sharply reduce the overhead of linear projections in ICIITA.

o We extensively evaluate ICIIA, with several baselines for comparison and variants for
ablation study. Evaluation results reveal ICITA’s effective and efficient adaptation
to heterogeneous clients, significant improvements over the original backbone models
and tuning methods, and the necessity of each ingredient.

2. Related Work

Model adaptation. Adapting the global model trained on the cloud to serve heterogeneous
clients is an important and practical problem. Rather than the cloud-to-client adaptation
considered in this work, existing literature mainly considered task-to-task adaptation, either
from upstream to downstream Devlin et al. (2019) (e.g., from masked auto-encoding to
classification), from one domain to another Ye et al. (2022) (e.g., from daytime scenes to
nighttime scenes), or across multiple modalities Radford et al. (2021) (e.g., natural language
and vision). Among these work, some resorted to fine-tuning the pre-trained model on the
labeled data of each target task and developed new pre-training techniques to facilitate
the subsequent fine-tuning process Devlin et al. (2019). Other work proposed to modify
the backbone model, by inserting learnable task-specific adapters Houlsby et al. (2019)
or providing tunable prompts Li and Liang (2021); Lester et al. (2021). These methods
consider model adaptation to a few target tasks normally with labeled samples. However,
our cloud-to-client model adaptation involves a large number of target clients with only
UNLABELED images, making previous designs inapplicable.

On-client training. Some work focused on recommendation or next-word prediction
with the samples naturally labeled by each client and explored on-client model tuning over
local data Yan et al. (2022). When extended to the setting of cloud-client collaborative
training, an emerging federated learning McMahan et al. (2017) framework allows het-
erogeneous clients to jointly train a global model without uploading local data. Recent
work further adapted the global model to each client’s heterogeneous data Mansour et al.
(2020). The designs mainly fall into the pattern of letting each client maintain a personal-
ized model with client-specific parameters, by multi-task learning Smith et al. (2017), meta
learning Chen et al. (2018), continual learning Yoon et al. (2021), hypernetworks Ma et al.
(2022), knowledge distillation Zhu et al. (2021), etc. However, on-client training requires
labeled samples, which are unavailable in the scenario of image recognition. Training on
resource-constrained mobile devices also leads to problems like longer training time. ICIIA
instead requires only cloud-based training as regular and does not need on-client re-training.

Attention mechanism. For NLP and recommendation tasks, each sample is repre-
sented by a sequence of tokens. The attention mechanism has been widely adopted to mine
cross-token dependencies within each sample, such that the model can focus on the related
tokens. In particular, Vaswani et al. Vaswani et al. (2017) proposed a novel architecture,
called transformer, based on multi-head self-attention with residual connections He et al.
(2016) and layer normalization Ba et al. (2016). Transformer has achieved state-of-the-art
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Figure 3: The plugged ICIIA module in an arbitrary image recognition backbone network.
Features extracted from historical images are cached to assist the recognition of
the current target image.

performance initially in NLP and later in CV Dosovitskiy et al. (2021), by capturing the
INTRA-sample dependencies among words or image patches. At a totally different level,
ICITA captures the INTER-image dependencies for each client.

3. Design and Analysis

3.1. Overall Architecture

As illustrated in Figure 3, the ICIIA module is plugable between the feature extractor
and the classifier of an arbitrary recognition backbone network. Same as the backbone,
the parameters of this new module are shared by all clients and are trained on the cloud
as regular. The entire model is either deployed for conventional cloud-based serving or
offloaded to perform on-client inference. The key difference is that each batch of images
to be recognized is fed as a sequence, rather than as individual samples. By default, the
client-side images are recognized in a batch mode: the flattened feature vectors of the
images in the same batch are calibrated with each other using self-attention. If the images
are recognized one by one, then for a certain image, the features of the recent B unlabeled
images are cached and can be used for attention.

3.2. Intra-Client and Inter-Image Attention

We adopt the standard transformer encoder layer Vaswani et al. (2017) as the building
block of ICITA to retrieve relevant images for calibrating the recognition of a certain image.
Other architectures such as CNN are also compatible with our design, but according to the
evaluation in Section 4.4, they are less effective than the transformer architecture.
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Each ICITA module consists of a multi-head self-attention (MSA) layer and a MLP layer
with residual connections and LayerNorm (LN). Given the features of B image input to the
I-th ICIIA module, denoted as a B x D matrix I' = (Il ... IL)T| the output is computed
as:

I' = LN(I' + MSA(IY, I, 1Y), I = LN(I' + MLP(1')).

The MSA(Q, K, V') operation across images is defined as:

H
Z ((softmax(W)VWf) Wf) ) (1)
h=1

where H is the number of attention heads; W(;‘, W,?, Wh e RD*D/H Wh e RP/HXD are the
weight matrices for the query, key, value, and output subspaces, respectively; and the bias
terms are omitted for simplicity. With multi-head self-attention, the feature vector of each
image is calibrated using the weighted average of the feature vectors of the images in the
same batch, where the weights take the attention scores softmaX(Qth (KWhT/\/D/H).

3.3. Model Training

Algorithm 1 Training process of ICIIA on the cloud

Input: The original recognition model backbone M, including the feature extractor My
and the classifier M..

Output: The trained ICIIA module M.

1: Collect image datasets D} from each available client i.

2: Extract the features of each raw image using M; and annotate the images on the cloud.
The resulted feature-label pairs form the training datasets D;.

3: Initialize the ICIIA module M

4: for Each dataset D;, i € {1,2,--- ,n} do

5.  for Each batch B in ID; do

6

7

Do the forward pass M.(My(B)).
Do backward pass by freezing the feature extractor My and passing gradients
through only the classifier M. and the ICITA module M.

end for

9: end for

®

We describe the training process of ICITA in Algorithm 1. It only additionally requires
that each batch comes from the same client. All other procedures are identical to a standard
cloud-based training process. Furthermore, if a well-trained backbone recognition model M
is already available, it is possible to pre-compute the image features (Line 2) and skip both
the forward and backward passes of the computationally expensive feature extractor My
(Lines 6-7).

3.4. Feature Grouping and Shuffling

In standard NLP tasks, the transformer encoder layer involves a small token size and a
large number of tokens Child et al. (2019). In contrast, ICITA involves a large token size
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(i.e., the feature dimension D) and a small number of tokens (i.e., the batch size B). As
a result, when computing and applying the attention scores, the linear projections, whose
parameter size is the square of the token size, dominate the overhead and become a new
bottleneck.

projections _ shuffle projections
D=4 »

#FLOPs= P(D/P)2 =D?/P attention

Figure 4: Linear projection with feature grouping and shuffling. Each D-dimensional input
feature vector is divided into P D/P-dimensional groups (one black group and
one white group in the figure), and each group is linearly projected individually.
The features are then shuffled across groups before the attention heads.

To improve efficiency, as shown in Figure 4, we propose to divide the D-dimensional
input features into P groups, each being D/P-dimensional, and create a small D/P x
D/P linear projection for each group. Without feature grouping, a complete D-dim linear
projection needs D? parameters and FLOPs, while by individually project each D/P-dim
group, the parameter size and FLOPs are reduced to P(D/P)? = D?/P, i.e., reduced by a
factor of 1/P. However, feature grouping incurs a side effect: the outputs from a certain
group are derived from only the features in the same group. This isolates the information
flow across feature groups and will degrade the model’s representation ability. To handle
this problem, we shuffle the features across different groups after each linear projection.
In particular, given P feature groups with each group being D/P-dimensional, we simply
transpose the P x D/P matrix and reshape it back into P x D/P. From Figure 4, we
can see that both the upper and the lower groups have both black and white features after
feature shuffling, and the information are mixed in the next projection.

3.5. Overhead Analysis

Suppose N layers of the ICIIA module is adopted, and the attention scores are computed
among a batch of B images. Each layer has 6 groups of linear projections, including 3
input projections for the query, key, and value vectors, 1 output projection, as well as
2 projections in the MLP layer, requiring 6D?/P parameters and 6 3D?/P FLOPs. In
addition, computing the attention scores requires B>D FLOPs and applying the scores also
requires B2D FLOPs. Therefore, the total size of ICIIA-related parameters' is #Param. =
6D2?/P x N. The ICIIA-related computational cost! of recognizing B images in a batch
(e.g., in the scenario of Google Photos for categorizing one client’s many local images) or
recognizing one image given B — 1 historical images is #FLOPs = (6BD?/P +2B?D) x N.

To give more intuitions about the efficiency of ICIIA, we introduce two different config-
urations: one is the base version without feature grouping (i.e., P = 1), called ICITA-B; the

1. The parameter size and computational cost of the residual connections and layer normalization are
negligible and thus omitted.
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Table 1: The size of parameters and the number of FLOPs for ICIIA-B and ICITA-T on
ImageNet-1K with different backbone models. The #additional FLOPs are re-
ported as the total computation for a sequence of B images (i.e., (6BD?/P +
2B%D) x N). The percentages in the parentheses denote the relative ratios to the
backbone model.

Backbone ICTIA-B ICTIA-T
#Param. #FLOPs | #Additional Param. #Additional FLOPs | #Additional Param. #Additional FLOPs
MobileNetV3-L | 5.5M  0.23G 30M (538%) 0.47G (202%) 0.14M (2.47%) 3.8M (1.62%)
ResNet-152 60M 12G 76M (126%) 1.2G (10.4%) 0.33M (0.54%) 7.9M (0.07%)
EfficientNet-B4 | 19M 416G 58M (299%) 0.93G (20.2%) 0.25M (1.32%) 6.4M (0.14%)
Swin-B 88M 15G 19M (21.5%) 0.30G (1.97%) 0.09M (0.10%) 2.8M (0.02%)
ConvNeXt-L 198M 34G 43M (21.5%) 0.68G (1.98%) 0.19M (0.10%) 5.0M (0.01%)
EfficientNet-B7 | 66M 39G 118M (178%) 1.9G (4.86%) 0.50M (0.76%) 11M (0.03%)

Table 2: The practical inference latency and memory for recognizing one image with
MobileNetV3-L. When plugging in the ICITA module, we report the TOTAL over-
head of recognizing one image with the assistance of the cached features of 15
historical images.

‘ Inference Latency Memory
Original Backbone 5.0ms 1042MB
With ICITA 5.2ms (+4%)  1042MB (4-0%)

Table 3: The datasets and their client-level statistics. For the train-test split, “by client”
means the training and testing datasets come from different clients, and “within
client” means each client has some samples for training and the others for testing.

. s . . . Classes per Client

Dataset Client Partition Train-Test Split #Clients #Samples #Classes

mean stdev
iNaturalist 2019 by user by client 2,295 193,210 1,010 45.5 41.8
FEMNIST by writer within client 3,597 817,851 62 55.0 6.6
CelebA by face ID by client 9,343 200,288 N/A N/A N/A
ImageNet-1K by class within client 3,161 1,331,167 1,000 15.2 7.1
UCF101 by class within client 121 13,320 101 22.8 9.2

other is the tiny version with P = 256 groups, called ICITA-T. We take the 6 different back-
bone models to be evaluated over ImageNet-1K, set the number of ICITA layers to N = 3,
and set the number of images for computing attention scores to B = 16. Table 1 lists the
number of parameters and FLOPs for ICITA-B and ICIIA-T, as well as their relative ratios
to the backbone. We find that compared with ICIIA-B, ICITA-T sharply reduces the num-

ber of pa
overhead

rameters and FLOPs via feature grouping, and meanwhile, introduces negligible
compared with the backbone. Even for MobileNetV3-L Howard et al. (2019), a

lightweight network that can be deployed on mobile devices, the theoretical overhead is only
2.47% additional parameters and 1.62% additional FLOPs. We also measured the practical

inference

latency and memory consumption for MobileNetV3-L in Table 2, and observe only

4% additional latency and zero additional memory.
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4. Evaluation

4.1. Setup

Datasets and recognition tasks. We extensively evaluate ICIIA on 5 representative
datasets with 9 benchmark models, involving 3 different tasks. We list the statistics of the
datasets in Table 3 and introduce them as follows.

iNaturalist 2019 Horn and Aodha (2019) contains images of 1,010 species of plants and
animals collected by the users from iNaturalist?, a citizen science website for naturalists.
The task is to recognize the species of the images. We adopt the natural user partition of
FedScale Lai et al. (2022), allocating each image to the corresponding user who holds the
rights, while splitting the user pool into 1,901 users for training and 394 ones for testing.
We leave out 20% of the users originally for training now for validation use. We take
EfficientNet-B0O Tan and Le (2019) as the recognition model.

FEMNIST Caldas et al. (2018) is a dataset for recognizing hand-written digits and char-
acters, and was built by LEAF Caldas et al. (2018) through partitioning EMNIST LeCun
et al. (1998); Cohen et al. (2017) based on the writer. LEAF originally takes 90% and
10% of each writer’s samples for on-client training and testing, respectively. We separate
out 20% of the training samples for validation. We adopt the CNN architecture officially
provided by LEAF.

CelebA Liu et al. (2015) contains face images of 10,177 celebrities, each with 40 binary
attribute annotations. The task is to recognize the attributes. Since the attributes of being
“male” or not and being “young” or not are normally unique and easy to be inferred for
a certain user’s images, we remove these 2 attributes and keep the other 38 attributes for
recognition. We take LEAF’s Caldas et al. (2018) natural user partition based on face ID,
dividing the user pool into 8,408 users for training and 935 ones for testing. We still leave out
20% of the users originally for training now for validation. For multi-label classification, we
replace the final layer of EfficientNet-B0O Tan and Le (2019) with multiple linear classifiers,
one for each attribute.

As shown in Table 3, the local dataset of each client normally involves a small subset
of all the classes, validating the starting point of the model adaptiveness requirement.
For ImageNet-1K and UCF101 which do not provide user ID for natural partitioning, we
simulate this property as follows.

ImageNet-1K Deng et al. (2009) contains 1,331,167 images of 1,000 classes organized
under the WordNet hierarchy Miller (1995) with 85 parent categories. We take the official
train-test split and let each client hold only images from the same parent category. Each
client holds roughly 324, 81, and 16 samples for training, validation, and testing, respec-
tively. Regarding the backbone model, we adopt MobileNetV3-L Howard et al. (2019),
ResNet-152 He et al. (2016), EfficientNet-B4 and -B7 Tan and Le (2019), Swin-B Liu et al.
(2021), and ConvNeXt-L Liu et al. (2022).

UCF101 Soomro et al. (2012) contains 13,320 videos of 101 action classes from 5 gen-
eral/parent action categories. Same as ImageNet-1K, we partition the clients according to
the parent category. Each client takes roughly 62, 16, and 32 videos from a certain parent
category for training, validation, and testing, respectively. We take C3D Tran et al. (2015)
as the action recognition model.

2. www.inaturalist.org
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Baselines and implementation details. We introduce 3 baselines, including the
original backbone model, fine-tuning, and prompt tuning, for comparison.

Original backbone model takes the mainstream recognition network architectures with-
out the ICITA module. In addition, the backbone model is optimized over the global train-
ing dataset (i.e., a mixture of all the clients’ training datasets). We initialize Efficient-
Nets, the other models over ImageNet-1K, and C3D, by loading the weights pre-trained
over ImageNet-1K from efficientnet-pytorch Melas-Kyriazi (2021), torchvision Paszke et al.
(2019), and pytorch-video-recognition Zhang (2019), respectively. For iNaturalist 2019,
CelebA, and UCF101, we further tune the pre-trained models over the global training
dataset. For FEMNIST, we train the CNN model from scratch.

Fine-tuning is to let each client fine-tune the backbone model over its local training
dataset and is a classical method for model adaptation. In the experiment, we fine-tune
only the last layer of the backbone model (i.e., the classifier(s)) and freeze the other layers,
which can function as a static feature extractor. We note that fine-tuning is not applicable
to iNaturalist 2019 or CelebA, because the clients in the testing dataset do not appear in
the training dataset.

Prompt tuning, as introduced in Section 2, is an enhanced version of fine-tuning originally
designed for NLP. We adapt this method to our context by associating each client with a
prompt token and feed it as an extra input to the recognition models. We try and optimally
set the dimension of the tokens to half of the feature dimension D /2. Similar to fine-tuning,
prompt tuning is inapplicable in practice due to the lack of data annotation on the client
side.

For the settings of our ICIIA module, we evaluate the two configurations of ICIIA-B
and ICITA-T introduced in Section 3.5. The detailed hyperparameter settings and hardware
specifications are deferred to supplementary materials.

4.2. Adaptiveness to Heterogeneous Clients

Without Exploiting By Exploiting
Historical Images Historical Images
- B R

P

Historical
Images

Attenti
Target Weights )
Image
Psest
Confidence 0.0958 x
Argia Enallagma Argia Rubus Argia
Immunda  Exsulans Immunda Trivialis Immunda

Figure 5: Adaptation to client #1919 in iNaturalist 2019.

Calibration from historical recognized images. We first visualize how ICITA
adapts to each client’s local data distribution in the recognition phase. We pick client #1919
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from iNaturalist 2019’s testing set and illustrate how ICIIA-B calibrates the classification
from historical images in Figure 5. The starting point on the left is a production-ready
model that can already accurately classify most images, but still misclassifies the image
from “Argia Immunda”. To calibrate the classification, ICIIA-B calculates the dependency
between the target image and the historical images, pays the most attention to the second
image from the same class (i.e., “Argia Immunda”) with the target one, improves the
confidence on the correct class, and classifies correctly.

S
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()
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0 5 10 15 20 25 30 35 40 45 50 55 60
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Figure 6: Testing accuracy of ICITA over iNaturalist 2019 by varying the number of his-

torical samples. Dashed lines correspond to the training setting of 15 historical
samples.

We also plot how the testing accuracy of ICITA-B and ICIIA-T changes with the accu-
mulation of historical images in Figure 6. One key observation is that ICITA-B and ICITA-T
can quickly adapt to each client’s local distribution and outperform the original backbone
model using only 3 and 5 historical images, respectively. If a client has not accumulated
enough historical images yet, it can trivially switch to the original backbone model, avoid-
ing cold start. The second key observation is that as the size of historical images increases,
ICITA-B and ICITA-T achieve better performance. Further considering the attention is per-
formed on the batches of 16 images (15 historical images + 1 target image) in the training
phase, while ICITA-B and ICIIA-T continues to improve after accumulating 15 historical
images in the prediction phase, we can derive that ICIIA generalizes well.
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Figure 7: Testing accuracy of ICIIA-B and three baselines over ImageNet-1K with
EfficientNet-B4, by varying the level of cross-client class heterogeneity, where
the level “0” denotes the ideal case of homogeneity.
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Figure 8: Testing accuracy of ICITA with varying number of groups P and layers N. The
“max” on x-axis denotes that P takes the feature dimension D. Results are
averaged over 3 repeats, and the shaded region shows the standard error.

Adaptation to cross-client class heterogeneity. We next study how the hetero-
geneity of the image classes on different clients affects ICITA. We use ImageNet-1K and
vary client-level dataset splitting. In particular, the first group of clients now fetches the
samples randomly from all the 85 parent categories, while the second group still fetches
from a specific parent category. We view the ratio between the size of the second group and
the size of all the clients as a metric of cross-client class heterogeneity. If the ratio is 0, all
the clients fetches samples from all the parent categories, and cross-client class heterogene-
ity, as well as the cloud-client discrepancy, do not exist. We depict the testing accuracy of
ICITA-B and the three baselines in Figure 7. We can see that the advantage of ICITA-B,
fine-tuning, and prompt tuning over the original backbone model becomes larger as the
level of cross-client class heterogeneity increases, and ICITA-B performs the best. In the
ideal case of no cross-client class heterogeneity, due to the disappearance of the device-cloud
discrepancy, all the adaptive methods have no positive effect.

Adaptation of the number of feature groups P. We finally evaluate how ICITA
balances model performance and efficiency by taking different P. Figure 8 shows the eval-
uation results over iNaturalist 2019 and ImageNet-1K, where the number of ICITA layers
N varies to demonstrate robustness. From Figure 8, we can see that as P increases, the
parameter size is reduced to 1/P of ICITA-B’s size, and the testing accuracy of ICITA will
decrease. However, even when P reaches 256 (i.e., ICIIA-T), the testing accuracy of ICITA-
T is still higher than that of the original backbone. The advantage and the robustness of
ICITIA are more evident over ImageNet-1K. We also observe a severe accuracy drop in the
extreme case of P = D, because all the features are isolated from each other, and feature
shuffling fails to work.
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Table 4: ICITA vs. the baselines in terms of testing accuracy. Although existing approaches
require on-device training and are not applicable in practice due to the lack of
data annotation, we try to simulate two typical methods, fine-tuning and prompt
tuning, for comparison. The improvement over the original backbone model is
shown in parentheses. The results are averaged over three repeats, each repeat
randomly initializing the model parameters excluding the pre-trained weights. The
standard errors of the mean are all below 0.24%.

Dataset Backbone Original Fine-Tuning Prompt Tuning ICITA-B ICITA-T
iNaturalist 2019  EfficientNet-BO  61.82% N/A N/A 66.70% (+4.88%) 64.03% (4+2.21%)
FEMNIST CNN 88.48% 90.03% 88.47% 91.94% (+3.46%) 91.38% (+2.89%)
CelebA EfficientNet-BO  90.84% N/A N/A 91.70% (+40.85%) 91.58% (+40.74%)
MobileNetV3 75.26% 79.06% 83.93% 84.01% (+8.75%) 83.37% (+8.11%)
ResNet-152 82.31% 83.54% 86.85% 88.16% (+5.84%) 87.90% (+5.58%)
ImaceNet-1K EfficientNet-B4  83.03% 83.65% 87.54% 88.31% (+5.28%) 88.35% (+5.32%)
gener Swin-B 83.58% 84.45% 87.00% 89.23% (+5.65%) 88.86% (+45.28%)
ConvNeXt-L 84.42% 84.84% 87.59% 89.31% (+4.89%) 89.14% (+4.72%)
EfficientNet-B7  84.58% 84.98% 88.71% 89.36% (+4.78%) 89.37% (4+4.79%)
UCF101 C3D 79.94% 79.96% 80.01% 81.09% (+1.15%) 80.87% (+40.93%)

Table 5: Drop of testing accuracy after removing or replacing different ingredients of ICITA.

Dataset ICITA-B ICIIA-B ICIIA-T
— CNN -attention -shuffling

iNaturalist 2019 -5.06% -4.78% -0.20%

ImageNet-1K -3.14% -6.50% -0.28%

4.3. Comparison with Baselines

We compare ICIIA with the baselines and report the testing accuracy in Table 4. We
can observe consistent and significant improvements of ICITA over all the baselines on all
the datasets and recognition models. (1) By comparing ICITA-B with the original back-
bone model, we can draw that ICITA indeed improves model performance by exploiting
each client’s class heterogeneity from the local samples to be recognized; (2) by comparing
ICITA-B with fine-tuning and prompt tuning, we can derive that the intra-client inter-image
attention mechanism has the strongest adaptiveness, even without on-client re-training; (3)
by comparing ICITA with the original backbone on iNaturalist 2019 and CelebA, where the
clients in the testing dataset do not appear in the training dataset, we validate ICIIA’s
generalization ability to be trained on the cloud with only public data and adapt to the
local data of unseen clients; and (4) by comparing ICITA-T with ICITA-B and the base-
lines, we can draw that although ICIIA-T compromises model accuracy for efficiency, it
still significantly outperforms the baselines.

4.4. Ablation Study

Impact of intra-client and inter-image attention. We first replace the attention op-
eration of ICITA-B with a convolution operation across images, and reserve all the linear
projections in both the original multi-head self-attention and the MLP layers. As shown in
the first column of Table 5, the testing accuracy sharply drops on both datasets, demon-
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strating that attention is indeed more effective for mining the intra-client and inter-image
dependencies. We then remove the attention operation, and from the second column, we
still observe a significant drop of the testing accuracy, validating the necessity of attention
in ICITA.

Impact of feature shufling. We remove the feature shuffling operation from ICITA-T
and observe a slight drop of testing accuracy, as shown in the third column of Table 5. We
also report the accuracy of ICITA with and without feature shuffling by varying the number
of feature groups P in supplementary materials, and see that the drop generally becomes
larger for a larger P. These results validate the necessity of feature shuffling, especially
together with a large P.

5. Conclusion

In this work, we study the ubiquitous image recognition applications from a new cloud-
client perspective. We have proposed a plugable ICIIA module to adapt the backbone
recognition model from the cloud’s full set of classes to each individual client’s local dynamic
subset of classes, while preserving the mainstream cloud-based training workflow without
on-client re-training. ICITA captures intra-client and inter-image dependencies with multi-
head self-attention and further improves efficiency by feature grouping and shuffling. We
have extensively evaluated ICITA, revealing effectiveness, efficiency, and superiority.
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