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ABSTRACT

With the widespread application of deep learning in computer vision, deep mod-
els often experience a significant drop in performance when facing unseen data,
which negatively impacts their practical deployment. In this work, a dynamic
feature construction and fusion method (DFCF) based on vision-language mod-
els is proposed for the task of source-free domain generalization. This method
introduces the concept of Effective Coverage Space (ECS) and utilizes vision-
language models to dynamically generate diverse feature representations and con-
struct a virtual dataset, which transforms the source-free domain generalization
into a supervised learning task. In the absence of source domain images, the ef-
fective coverage of the feature space is extended by improving the diversity of
styles and features, thereby enhancing the model’s adaptability to the unseen do-
main. Experimental results demonstrate that this method significantly improves
performance of source-free domain generalization tasks across multiple datasets,
effectively enhancing the generalization capability of the model.

1 INTRODUCTION

With the wide application of deep learning techniques in the field of computer vision, there exists
a growing expectation for models to migrate to target domains and perform effectively without
the need for fine-tuning. Consequently, the Domain Generalization (DG) technique (Blanchard
et al., 2011) proposed to address this problem has emerged as a critical research direction aimed at
enhancing model performance in unknown domains.

Notable progress has been achieved in domain generalization methods, such as those based on
domain-invariant features (Li et al., 2018a;b; Ding et al., 2022; Liu et al., 2023; Xie et al., 2024),
and data augmentation (Li & Spratling, 2022; Su et al., 2023; Xu et al., 2023; Ren et al., 2023a);
however, several shortcomings remain. First, these methods typically depend on data from single or
multiple source domains for training and impose stringent requirements on the data distribution and
diversity of these domains. Consequently, effective generalization is often hindered when there is a
substantial distribution difference between the target and source domains or when the source domain
data lack sufficient diversity. Additionally, source-domain data may exhibit bias or noise, resulting
in suboptimal performance of the trained model in the target domain. As a result, existing methods
exhibit substantial limitations in addressing these challenges.

To address these problems, this paper introduces the concept of effective coverage space (ECS) to
address the limitations associated with source domain generalization. The ECS refers to the area
that encompasses correctly classifiable features within the feature space. The size of this area is
closely linked to the model’s generalization capability. Thus, a broader coverage area corresponds
to enhanced generalization performance. Therefore, expanding the effective coverage of the feature
space is essential for enhancing the model’s adaptability in unknown domains.

Based on this concept, this paper proposes a dynamic method for feature construction and fusion
(DFCF) within joint visual-language model. The overall structure of DFCF is illustrated in Fig. 1.
Style information is dynamically generated using a Gaussian random generation method with multi-
ple predefined text templates, and this generated style information is combined with category infor-
mation to create diverse expressions for each style-category combination. Incorporating the concept
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Figure 1: The overall diagram of the dynamic method for feature construction and fusion (DFCF).

of feature fusion, multiple expressions of the same style-category combination are fused to gen-
erate several vectors that contain style and category information. These vectors serve as feature
representations and form a virtual dataset alongside the category labels provided during generation,
facilitating the transformation of the source-free domain generalization problem into a supervised
learning problem. In the absence of the source domain, the effective coverage of the feature space
is expanded by enhancing the diversity of styles and features, thereby improving the model’s adapt-
ability and accuracy in the target domain. The main contributions are summarized as follows:

• The concept of ECS is introduced, and it is demonstrated both theoretically and experi-
mentally that the model’s generalization ability is closely linked to the size of its ECS. It is
believed that expanding the size of ECS is crucial for enhancing the model’s adaptability in
unseen domains, thus providing a new perspective on the theoretical understanding of the
domain generalization problem and the design of subsequent methods.

• The source-free domain generalization problem is transformed into a supervised learning
problem via utilizing a joint vision-language model. Constructing a virtual dataset com-
posed of text vectors and fusion vectors generated from multiple templates ensures that the
model can be effectively trained even in the absence of source-domain data, demonstrating
strong generalization ability and adaptability in the presence of unknown domains.

• A dynamic method for feature construction and fusion (DFCF) is proposed, which expands
the ECS and enhances the model’s adaptability across different domains by dynamically
generating styles and fusing features from text vectors produced by multiple templates.

• Extensive experiments conducted on several standard datasets validate the superior perfor-
mance of the proposed method in the source-free domain generalization task, particularly
in the context of unseen domains, which exhibits substantial adaptability and robustness.

2 RELATED WORK

Domain Generalization: Domain Generalization (DG) is a core topic in the field of machine learn-
ing (Blanchard et al., 2011), with the aim of improving the performance of models in previously
unseen domains. Traditional approaches rely on shared knowledge learned from source domain data
to address tasks in the target domain. Researchers employ various techniques, including adversarial
training (Li & Spratling, 2022; Ren et al., 2023a; Li et al., 2024), feature alignment (Chen et al.,
2023a;b), and meta-learning (Qiao et al., 2020; Chen et al., 2023a), to minimize distributional dis-
crepancies between the source and target domains. The goal of these approaches is to enable models
to learn more robust and invariant feature representations, thereby improving their generalization
ability across different data distributions. However, researchers are encountering growing chal-
lenges as data privacy concerns become more prominent and the cost of acquiring source domain
data rises, prompting the exploration of source-free domain generalization methods.

Source-Free Domain Generalization: Source-free domain generalization is an emerging area
within domain generalization techniques, aimed at enabling models to be trained without the use
of source domain data for adaptation to unseen target domains (Niu et al., 2022). Current research
emphasizes achieving this objective through the utilization of large pre-trained models, for instance,
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by generating cross-domain consistent representations via visual-language modeling or employ-
ing prompt-driven approaches to produce diverse stylistic features that simulate distributional shifts
(Cho et al., 2023). These studies not only circumvent the stringent data diversity and distribution
requirements of traditional single or multi-domain generalization techniques but also offer novel
perspectives for enhancing model performance in entirely new domains.

Vision-Language Models: In recent years, research on joint vision-language models (VLM) has
attracted significant attention, through the use of contrastive learning, cross-modal attention mecha-
nisms, and generative adversarial networks. These approaches combine image and language models
to enhance the understanding of complex tasks. Models such as CLIP (Radford et al., 2021) and
ERNIE-ViL (Yu et al., 2021) are widely employed in fields like image quizzing, image captioning,
and multi-modal sentiment analysis. VLM have been applied in various applications, such as im-
age classification and instance segmentation (Menon & Vondrick, 2023; Ren et al., 2023b). VLM
integrate textual and visual information for source-free domain generalization, producing improved
feature representations that enhance model adaptability.

3 METHODOLOGY

3.1 MOTIVATION

In domain generalization research, particularly in the context of source-free domain generalization,
two core challenges arise: first, how to effectively model the diversity of unseen domains without
access to source domain data; and second, how to construct a feature space with stronger general-
ization capability. These two issues are directly tied to the model’s performance in unseen domains.

To address the first challenge, large-scale pre-trained models, such as BERT (Devlin et al., 2019)
and CLIP (Radford et al., 2021), can be used as a foundation. These models have acquired a rich
feature reserve through the input of large amounts of pre-training data. A method can be developed
to filter potentially useful features from pre-trained feature spaces to construct a training set, thereby
improving the model’s generalization ability. In other words, source-free domain generalization
does not imply the complete absence of data, but rather shifts the source of the training set from
a directly provided dataset to one filtered from the feature space of pre-trained models. Therefore,
once an effective method for filtering the feature space is identified, the problem of source-free
domain generalization can be transformed into a straightforward supervised learning task, with the
filtered features serving as the training set for classification model training.

To filter effective features, a method is required to identify them, leading to the introduction of the
vision-language model. Since the VLM model has already achieved alignment between text and
image features, different texts can be constructed from the desired categories and converted into
aligned features via the VLM model, thereby covering the image features.

Based on the above ideas, the concept of ECS is proposed. This concept is used to mean the extent
to which the model’s feature space covers the unknown domain. In a 2D space, the region occupied
by all feature points from each category is termed the ECS of the current category.

For the entire feature space Ω of a pre-trained model, it is required to contain the feature representa-
tions of all categories. Assuming that the number of classifiable categories for the model is K, there
should be K sets of feature points Sk (1 ≤ k ≤ K) in Ω, each of which corresponds to a category.
Let nk be the number of feature points contained in Sk, then Sk can be simply represented as:

Sk = {s1, s2, . . . , snk
}, 1 ≤ k ≤ K, (1)

where si (1 ≤ i ≤ nk) stands for a specific feature point in Sk. Due to variations in the representa-
tion of features within the feature sets, intersections may occur between different feature sets. In an
ideal scenario, a model performs better in recognition accuracy and generalization, intuitively im-
plying two aspects: (1) the features of each category should be as exhaustive as possible, so that the
feature space is as fully populated by the features of all categories as possible; and (2) the features
of different categories should minimize redundancy and maintain a certain distance to ensure that
the descriptions of different categories remain relatively independent, as shown in Fig. 2. Therefore,
Sk should satisfy the following constraint:

K⋃
k=1

Sk = Ω and
K⋂

k=1

Sk = ∅. (2)
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Figure 2: Optimized and disordered feature distribution.

Since the feature space contains categories that are much larger in number and scope than the number
of categories that the model is required to classify, situations may arise in which the ECS cannot
cover the entire feature space. However, for specific tasks, by expanding the size of the ECS for
each category, it is expected that the model will be better adapted to unseen domains. From this
perspective, the optimization problem of ECS can be formally formulated as the following:

argmax
Sk

(
α ·
∣∣∣∣ K⋃
k=1

Sk

∣∣∣∣− β ·
∣∣∣∣ K⋂
k=1

Sk

∣∣∣∣
)
, (3)

where α and β are tradeoff parameters.

As discussed earlier, the core goal of ECS optimization is to maximize the intra-class feature cov-
erage (to adapt to unseen domains) and minimize inter-class feature overlap (to avoid confusion),
which is formally described in Eq. 3. However, directly quantifying the total feature space Ω is infea-
sible due to its high dimensionality and abstract nature. To measure this, a computable proxy metric
for ECS is proposed, which aligned with the aforementioned optimization goals and the contrastive
learning paradigm. The ECS proxy metric M is defined as:

M = λintra
1

K

nk∑
i=1

d(si, µk) + λinter

∑
1≤i<j≤K

d(µi, µj) (4)

where λintra, λinter > 0 are trade-off parameters for balancing the importance of intra-class and
inter-class objectives. d(a, b) = 1− cos(a, b) denotes cosine distance selected for consistency with
CLIP’s normalized feature space to avoid bias from feature magnitude. µk = 1

nk

∑nk

i=1 si denote
the mean feature vector of Sk. The first term in Eq. 4, labeled as average intra-class coverage,
is derived from the average distance between each feature point in Sk and its centroid µk. This
term quantifies the coverage range of a category’s features, where a larger value indicates more
dispersed features and wider coverage of potential unseen domain variations. The second term
in Eq. 4, referred to as total inter-class separation, equals the sum of pairwise distances between
centroids of distinct categories. This term quantifies inter-class discriminability, where a larger
value indicates smaller feature overlap and aligns with the ideal ECS property

⋂K
k=1 Sk = ∅. From

a physical perspective, an increase in M implies broader intra-class coverage and better inter-class
discriminability—exactly the core goal of expanding ECS.

3.2 STYLE GENERATION VIA STOCHASTIC PERTURBATION

To enhance feature coverage, we propose a novel style generation method via Gaussian stochastic
perturbation to dynamically generate diverse style embeddings during model training. The method
has two strategies: random and hybrid. When a style refresh is required, one strategy is selected ran-
domly. If the random is chosen, a new set of style embeddings is generated, expanding the diversity
of style representations beyond the base embeddings. If the hybrid is selected, a subset of embed-
dings is randomly chosen from the existing pool, which are then combined using linear weighting
and injected with Gaussian noise to further increase style diversity and mitigate overfitting.

Specifically, let E = {e1, e2, . . . , eQ} be the embedding pool of basic styles, from which n embed-
dings are randomly selected. The generated style embedding, ẽ, is given by:

ẽ =
∑
i∈ϕ

wi · ei + ϵ, ϵ ∼ N(0, σ2I) (5)
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Algorithm 1 Dynamic Style Generation
Input: The number of styles n, the pool of base
style embeddings E
Output: List of generated styles Ẽ

1: for k = 1 to n do
2: choice = random(0,1)
3: if choice < 0.5 then
4: ẽ← Perturb(E)
5: //Gaussian perturbation
6: else
7: ẽ ∼ N (0, I)
8: //Random Gaussian
9: end if

10: Ẽ ← Ẽ ∪ ẽ
11: end for
12: return Ẽ

Algorithm 2 Contrastive Feature Fusion
Input: Templates T
Output: Dynamic weights w, fused feature zf ,
fused loss L

1: w ← [0, 0, 0], zf ← 0 //Initial
2: while not converged do
3: for i = 1 to 3 do
4: zi ← CLIP(Ti)

5: Li ←
∑3

j ̸=i Sim(zi, zj)
6: end for
7: wi ← Li∑

L //Dynamic weight calculation
8: zf ← w1 · z1 + w2 · z2 + w3 · z3
9: L ← w1 · L1 + w2 · L2 + w3 · L3

10: Update model parameters using L
11: end while
12: return w,zf ,L

where wi are random weights sampled and normalized from a uniform distribution, and ϵ denotes
Gaussian noise. Q = |E| is the sample size of E and ϕ is the index set of n selected embeddings.

Through the mechanism in Alg. 1, the dynamics and balance of style generation are achieved. On
one hand, the stochastic mixing method generates diverse style representations by reorganizing the
base style embeddings and injecting noise. On the other hand, the random initialization strategy
expands the exploration space of style embeddings, thereby enhancing diversity for model training.

3.3 FEATURE FUSION VIA CONTRASTIVE LEARNING

Another aspect of enhancing feature coverage is the template that combines category and style.
The template is processed by a text encoder that incorporates style (S) and category (C), resulting in
feature representations containing comprehensive information. These representations are aggregated
into clusters covering the feature space. Since different templates convey the same content using
different forms, the features generated by each template will differ, leading to varying coverage of
the feature space and thus impacting the final performance. Fig. 3 demonstrates this effect comparing
images generated from different templates and style descriptions for the same category.

One way to improve feature coverage is to use more templates. However, if features from different
templates are considered equally important, the model’s representational capacity could be limited.
Therefore, we propose a dynamically weighted feature fusion by contrastive learning. By dynami-
cally adjusting the weights of each feature, the method can optimally utilize the unique information
from each template to expand ECS more effectively and reasonably.

3.3.1 SIMILARITY COMPUTATION BASED ON CONTRASTIVE LEARNING

As previously mentioned, the distribution of features {z1, z2, z3} generated by CLIP with differ-
ent templates in the feature space may differ due to variations in expression across text templates.
Evaluating the similarity between these distinct features is crucial for the effectiveness of the fused
features. We quantify the similarity of features from different templates using contrastive learning
loss, specifically the InfoNCE formulation (Oord et al., 2019).

Sim(zi, zj) = − log
exp(cos(zi, zj)/τ)∑3

k=1,k ̸=i exp(cos(zi, zk)/τ)
. (6)

InfoNCE uses noise-contrastive estimation to measure loss, maximizing positive and minimizing
negative sample similarity. In the feature space, same-class samples cluster closely while different-
class samples separate, aligning with ECS. cos(zi, zj) in Eq. 6 denotes the cosine similarity between
the template features zi and zj ; τ is the temperature coefficient.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Different Template & Same Style

Same Template & Different Style

a dog in a illustration style a illustration style of a dog a photo of a dog with 
illustration like style

a dog in a cartoon style a dog in a chiaroscuro style a dog in a landscape style

Figure 3: Effect: Templates & style descriptions.

PromptStyler – 2 Stages Model

Text

Encoder

Stage 1 – Generate all [S] embeddings

[S]

Preset Styles Embeddings

Stage 2 – Train Classifer

A [C] in  [S] style

Prompts with 

Class and Style

Text

Encoder C
la

s
s
if
ie

r

B
a
c
k
b
o
n
e

Text

Encoder D
y
n
a
m

ic

F
e
a
tu

re
s
 F

u
s
io

n

Virtual Training

Datasets

C
la

s
s
if
ie

r

B
a
c
k
b
o
n
e

DFCF – 1 Stage Model

Figure 4: Structure: PromptStyler & DFCF.

To synthesize a comprehensive measure of similarity between each template and the other templates,
we calculate the total similarity score Li =

∑3
j=1
j ̸=i

Sim(zi, zj) for each text template. The total

similarity score reflects the relative distribution of each template relative to other templates in the
semantic space. A higher score indicates the template holds greater significance in the global space.

3.3.2 DYNAMIC WEIGHT COMPUTATION AND FUSION OF FEATURE WEIGHTS

After calculating the total similarity scores of the template features, we assign dynamic weights to
each template to adaptively adjust its contribution to global feature fusion. Specifically, we normal-
ize the total similarity scores to obtain the dynamic weights wi =

Li∑3
j=1 Lj

for each template. The

weights wi satisfy the condition w1 + w2 + w3 = 1 with wi for all i. The final feature representa-
tion zf = w1 · z1 + w2 · z2 + w3 · z3 is obtained by performing a weighted fusion of all template
features with dynamic weights. The fused loss L = w1 ·L1+w2 ·L2+w3 ·L3 is used for backward
propagation and updating the model parameters to guide the model in its gradual optimization of
key features. The pseudo-code in Alg. 2 illustrates the entire method.

4 EXPERIMENTS

4.1 EXPERIMENT SETS

4.1.1 BENCHMARKS

We evaluate our approach using four widely recognized public datasets for domain generalization:
PACS (Li et al., 2017), VLCS (Choi et al., 2022), OfficeHome (Venkateswara et al., 2017), and Do-
mainNet (Leventidis et al., 2023). These datasets represent a gradient across size, class distribution,
domain variation, and complexity, effectively addressing both the fundamental generalization prob-
lem and model performance in more challenging scenarios. Arranged from PACS to DomainNet,
they encompass not only simple visual style variations but also extensive cross-domain tasks, re-
flecting a gradual transition from experimental validation to real-world challenges. This framework
facilitates a comprehensive analysis of models’ strengths and weaknesses across scenarios.

4.1.2 BASELINE

We select PromptStyler (Cho et al., 2023) as the baseline for source-free domain generalization and
evaluate its performance across different backbones. PromptStyler is a representative approach in
domain generalization research, simulating domain diversity via style prompts to enhance adapt-
ability to unknown target domains as shown in Fig. 4. Since PromptStyler’s code is unavailable, we
reproduce its results. For comprehensive comparison, we include other mainstream methods, such as
MLDG (Min et al., 2022), SagNet (Nam et al., 2021), SelfReg (Kim et al., 2021), MIRO (Cha et al.,
2022), Text Regularization (TR)(Zhang et al., 2024), Model Ratatouille (MR)(Rame et al., 2023),
ZS-CLIP (Radford et al., 2021), CAD (Dubois et al., 2021), DCLIP (Menon & Vondrick, 2023),
Cp-CLIP (Ren et al., 2023b), DPStyler(Tang et al., 2025) to build a multi-dimensional benchmark.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.1.3 SETUP

We adopt a dynamic learning rate strategy balancing rapid initial convergence and late-stage opti-
mization stability, enhancing model generalization via progress-based adaptation. Three mainstream
models of varying sizes serve as classification backbones: ResNet-50 (He et al., 2016), ViT-B/16,
and ViT-L/14 (Dosovitskiy et al., 2020). All models are initialized with pre-trained weights pro-
vided by CLIP, which were trained using large-scale image-text alignment, thereby equipping them
with stronger semantic comprehension, cross-domain adaptability, and a foundational feature space.
Experiments were conducted on an NVIDIA RTX 3090 GPU and an Intel Xeon Platinum 8255C
CPU. These components meet the computational requirements of large-scale data processing and
model optimization, ensuring robust hardware support for reliable experimental results.

4.2 EVALUATIONS

4.2.1 MAIN RESULTS

As shown in Table 1, we perform three average tests on the benchmarks. On ResNet-50, the av-
erage accuracy of the PromptStyler method is 73.3%, while our method achieves 73.8%, resulting
in an improvement of 0.5%. Specifically, PACS and VLCS show improvements of 0.4% and 1.4%,
respectively, demonstrating the effectiveness of our method in addressing style variations and multi-
source data. The overall performance remains stable, with slightly fluctuating results observed in
OfficeHome and DomainNet. Although the results on DomainNet exhibit minor fluctuations, overall
performance stability is maintained. ResNet-50, as a traditional convolutional neural network, has
a local receptive field that restricts its ability to model global context, particularly in complex do-
main distributions such as DomainNet. Consequently, performance gains are more moderate under
this architecture, indicating that our method enhances generalization capabilities based on existing
feature representations, albeit limited by the model’s expressive power.

When upgrading to ViT-B/16 (base-scale), the PromptStyler method achieves an average accuracy of
79.8%, while our method reaches 80.3%, showing a 0.5% improvement. Notably, the improvements
of 0.8% and 0.9% on the OfficeHome and DomainNet datasets, respectively, with stable performance
on PACS and VLCS, indicate that our method better adapts to domain distribution differences and
leverages stronger global modeling capabilities. Moreover, it provides enhanced feature information
for the backbone network, thus further boosting cross-domain generalization performance.

Under the ViT-L/14 (large-scale) architecture, the average accuracy of the PromptStyler method is
82.2%, whereas our method achieves 83.2%, representing a significant 1.0% improvement. The
notable increases of 1.8% and 1.7% on VLCS and OfficeHome, respectively, along with stable
performance growth in the DomainNet dataset, fully demonstrate the strong potential of our method
under the robust modeling capabilities of large-scale backbone networks. This reflects our method’s
generalization advantage for complex cross-domain tasks.

From ResNet-50 to ViT-L/14, the increase in model complexity boosts overall performance, indicat-
ing that stronger global modeling capabilities, combined with richer feature representations, are cru-
cial for domain generalization tasks. Our approach outperforms the PromptStyler method across all
models, achieving the largest performance gain specifically on ViT-L/14. For PACS, which exhibits
large stylistic differences, and VLCS, which displays significant source differences, our method
maintains consistent performance across architectures. In contrast, for OfficeHome and Domain-
Net, which involve numerous categories and complex domains, the combination of ViT-L/14 with
our method reveals more pronounced performance advantages, indicating that our method is better
suited for high-dimensional distributions and complex cross-domain tasks. As shown in Appendix,
detailed results for each domain in PACS, VLCS, OfficeHome, and DomainNet are presented to
further evaluate the effectiveness of DFCF. The letters in the table titles are abbreviations of the data
domain names, with the full names provided below each table.

Through the experiments and analysis, our method demonstrates superior performance across var-
ious architectures, with performance gains becoming more evident as model complexity increases.
This indicates that our method effectively utilizes pre-trained features with global modeling capa-
bilities, offering an efficient and scalable solution for source-free domain generalization tasks.

7
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Table 1: Performance comparison of different methods on various datasets.
Backbone Methods Accuracy (%) Average Improvement

PACS VLCS OfficeHome DomainNet Accuracy (%)

R
es

N
et

50
(I

m
ag

eN
et

) MLDG 84.9 77.2 66.8 41.2 67.5 0
SagNet 86.3 77.8 68.1 40.3 68.1 +0.6
SelfReg 85.6 77.8 67.9 42.8 68.5 +1.0
MIRO 85.4 79.0 70.5 44.3 69.8 +2.3

TR 87.2 80.3 70.4 44.0 70.5 +3.0
MR 89.8 78.3 73.5 47.7 72.3 +4.8

R
es

N
et

50
(C

L
IP

)

ZS-CLIP(C) 90.6 79.4 67.4 45.9 70.8 0
CAD 90.0 81.2 70.5 45.5 71.8 +1.0

ZS-CLIP(PC) 90.7 82.0 71.1 46.1 72.5 +1.7
TR 91.3 82.8 71.6 44.6 72.6 +1.8

DPStyler 92.1 81.3 70.5 47.6 72.9 +2.1
PromptStyler 93.1 82.2 71.0 46.9 73.3 +2.5
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Figure 5: Model efficiency comparison on PACS & VLCS. Stage #1 & #2 are PromptStyler phases.

4.2.2 COMPUTATIONAL RESULTS

In terms of training time and maximum memory usage, both PromptStyler and our method utilize the
same batch size of 256. Fig. 5 shows that for 50 epochs on the VLCS dataset, our method achieves
a time reduction of up to 57.7% and a decrease in memory usage of over 70%, demonstrating effi-
ciency. Additionally, since PromptStyler employs a two-stage approach, the second stage operates
on the results from the first stage. Thus, while the second stage may reach convergence quickly,
the overall training time is extended due to the first stage needing to be completed. In contrast, our
method follows a one-stage approach that integrates the dynamic style generation, feature fusion,
and backbone training into a single process. This allows for rapid completion of training once the
backbone network converges, resulting in a reduction in overall training time.

4.3 ABLATION STUDY

In the ablation experiments, we thoroughly evaluate the impact of three modules: dynamic styles,
multi-templates, and feature fusion on model performance. Table 2 indicates that the introduction of
dynamic styles improves the average accuracy from 73.3% in the baseline to 73.7%. This increase
is particularly notable on the VLCS dataset, suggesting that dynamic styles effectively extend the
model’s coverage space by adapting to style variations across different domains. Similarly, the in-
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(a) T1, 26.67 (b) T2, 28.28 (c) T3, 25.78 (d) T1 + T2 + T3, 89.96

Figure 6: The feature distributions using one single template (a) ∼ (c), and that using the combina-
tion of all templates (d). The number in caption is proxy metric M .

corporation of diverse templates raises the average accuracy to 74.0%, achieving 93.5% and 83.2%
on the PACS and VLCS datasets, respectively. This improvement implies that enriching the diver-
sity of templates enables the model to learn more generalized and domain-invariant features. When
dynamic styles are used with diverse templates, the performance remains stable at 74.0%, demon-
strating the synergistic effect of these two components; dynamic styles broaden the adaptation range
for style variations, while diverse templates further enhance the richness of data representation.

Table 2: Performance comparison of ablation study.
D M F PACS VLCS OfficeHome DomainNet Avg.

93.1 82.2 71.0 46.9 73.3
✓ 93.2 83.3 70.8 47.3 73.7

✓ 93.5 83.2 72.1 47.1 74.0
✓ ✓ 93.5 83.5 72.1 47.0 74.0

✓ ✓ 93.5 83.0 72.1 46.0 73.7
✓ ✓ ✓ 93.5 83.6 72.3 46.0 73.9
D - Dynamic Style M - Multiple Template F - Features Fusion

Fig. 6 illustrates the distribution of
feature points under different condi-
tions. The t-SNE method is em-
ployed to visualize the vectors in-
put to the backbone network classi-
fier, downscaled and color-coded for
clarity. The images clearly show that
the ECS incorporating multiple tem-
plates and feature fusion is considerably larger than the ECS in the single-template case. To quanti-
tatively verify this observation, the M defined in Eq. 4 is calculated for different template configu-
rations based on the feature data in Fig. 6. The results show that: single template T1 yields 26.67,
T2 yields 28.28, T3 yields 25.78, while the combined configuration of all templates achieves 89.96.
This numerical trend aligns with the visual pattern in Fig. 6, confirming that integrating multiple
templates significantly expands the effective coverage space.

However, following the introduction of the feature fusion module, average performance does not
improve and even decreases on the large-scale DomainNet dataset (from 47.1% to 46.0%). This
phenomenon can be attributed to the introduction of redundant information in complex distribution
scenarios, which leads to an overly dispersed feature distribution that narrows the ECS and dimin-
ishes generalization ability. Nevertheless, we retain this module due to its stable performance on
small-scale datasets (like PACS and VLCS), its capacity to enhance the richness of feature represen-
tations, and its role in extending the upper limit of the coverage space in conjunction with dynamic
styles and diverse templates. This ensures balanced and robust performance in general.

To validate the effectiveness of the feature generation algorithm, we conduct an experimental com-
parison evaluating the impact of using the feature generation strategy. Appendix demonstrates that
combining the flexibility of random generation with the benefits of Gaussian perturbation signifi-
cantly improves the model performance. Specifically, the average accuracy of four datasets increased
by 1.3%, confirming the effectiveness of the proposed method.

5 CONCLUSION

In this work, we propose a novel dynamic feature construction and fusion framework for source-free
domain generalization in vision-language models. We introduce the concept of ECS, a principled
approach that establishes a critical link between the generalizability of the model and the coverage
of the feature space. By dynamically synthesizing diverse feature representations and constructing
virtual training datasets, our method effectively reformulates source-free domain generalization as
a supervised learning problem. Extensive experiments demonstrate that this approach substantially
improves the model’s adaptability to unseen domains, as verified by the results.

In future work, we will focus on optimizing the feature fusion strategy to minimize irrelevant infor-
mation and enhance model accuracy. We will also incorporate quantitative ECS analysis to enhance
the model’s generalization performance in complex cross-domain tasks.
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A USE OF LLMS

We declare that Large Language Models (Doubao and Gemini) were used in the preparation of this
manuscript, with their application strictly limited to text polishing and grammatical error check-
ing. The core research content—including ideas, experimental design, data analysis, and conclusion
derivation—is the authors’ original work; LLMs only optimized written expression (e.g., refining
sentence structure, aligning with academic conventions) without participating in substantive research
or content creation. All LLM-assisted revisions were rigorously reviewed by the authors to ensure
accuracy and compliance with academic norms.

B THE DETAILS OF DATASETS IN EXPERIMENTS

Table 3 shows the specific information of each dataset used in the experiment, including the number
of data domains, categories, and data volume included.

Table 3: The details of datasets used in our experiments, including number of domains, classes, and
image counts.

dataset domains classes image numbers
PACS 4 7 9,991
VLCS 4 5 10,729

OfficeHome 4 65 15,588
DomainNet 6 345 586,575

C COMPARISON OF RANDOM AND HYBRID STRATEGIES

Table 4 shows the comparison of random and hybird strategies in DFCF.

Table 4: Comparison of random and hybrid strategies.

Method PACS VLCS Office
home

Domain
Net Avg.

hybrid 92.5 83.0 72.0 46.0 72.6
random + hybrid 92.5 83.6 72.3 46.0 73.9

D DOMAIN PERFORMANCE COMPARISON OF DIFFERENT METHODS ON
PACS, VLCS, OFFICEHOME AND DOMAINNET.

Table 5-8 show the domain performance comparison of different methods on PACS, VLCS, Office-
Home and DomainNet.
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Table 5: Domain performance comparison of different methods on PACS.

Backbone Methods Accuracy (%) Average
A C P S Accuracy

ResNet50
(ImageNet)

SelfReg 87.9 79.4 96.8 78.3 85.6
Model

Rattatouille 90.6 84.7 98.8 85.0 89.8

ResNet50
(CLIP)

ZS-CLIP(C) 88.9 94.4 99.3 79.8 90.6
ZS-CLIP(PC) 90.8 93.3 99.4 79.3 90.7
PromptStyler 93.6 95.2 99.3 84.2 93.1

DFCF (OURS) 93.9 94.5 99.5 86.0 93.5

ViT-B/16
(CLIP)

ZS-CLIP(C) 96.4 98.7 99.9 87.5 95.6
ZS-CLIP(PC) 97.3 99.0 99.9 88.0 96.1
PromptStyler 97.4 99.1 99.9 90.7 96.8

DFCF (OURS) 97.5 99.0 99.9 91.4 97.0

ViT-L/14
(CLIP)

ZS-CLIP(C) 97.2 99.4 99.9 93.9 97.6
ZS-CLIP(PC) 98.6 99.5 99.9 95.3 98.3
PromptStyler 98.8 99.8 100.0 95.1 98.4

DFCF (OURS) 98.8 99.7 100.0 95.5 98.5
A - Art C - Cartoon P - Photo S - Sketch

Table 6: Domain performance comparison of different methods on VLCS.

Backbone Methods Accuracy (%) Average
C L S V Accuracy

ResNet50
(ImageNet)

SelfReg 96.7 65.2 73.1 76.2 77.8
Model

Rattatouille 99.3 60.4 73.9 79.5 78.3

ResNet50
(CLIP)

ZS-CLIP(C) 99.5 67.8 69.5 80.8 79.4
ZS-CLIP(PC) 99.8 69.6 71.0 87.7 82.0
PromptStyler 100.0 72.5 67.9 88.4 82.2

DFCF (OURS) 100.0 72.1 72.5 89.7 83.6

ViT-B/16
(CLIP)

ZS-CLIP(C) 99.8 60.9 69.8 74.1 76.2
ZS-CLIP(PC) 100.0 70.0 74.1 88.0 83.0
PromptStyler 100.0 72.5 72.4 89.9 83.7

DFCF (OURS) 100.0 69.0 77.0 89.8 84.0

ViT-L/14
(CLIP)

ZS-CLIP(C) 100.0 57.5 70.5 82.1 77.5
ZS-CLIP(PC) 100.0 70.8 68.6 88.1 81.9
PromptStyler 100.0 66.3 71.8 87.0 81.3

DFCF (OURS) 100.0 69.6 75.3 87.6 83.1
C - Caltech L - Labelme S - SUN09 V - VOC2007

Table 7: Domain performance comparison of different methods on OfficeHome.

Backbone Methods Accuracy (%) Average
A C P R Accuracy

ResNet50
(ImageNet) SelfReg 63.6 53.1 76.9 78.1 67.9

ResNet50
(CLIP)

ZS-CLIP(C) 68.7 44.4 77.1 79.5 67.4
ZS-CLIP(PC) 71.1 50.0 81.3 82.0 71.1
PromptStyler 71.3 48.8 81.9 82.2 71.1

DFCF (OURS) 73.4 50.4 81.8 83.3 72.2

ViT-B/16
(CLIP)

ZS-CLIP(C) 80.9 64.3 85.9 87.2 79.6
ZS-CLIP(PC) 83.1 65.8 89.1 89.2 81.8
PromptStyler 81.8 66.0 89.7 89.6 81.8

DFCF (OURS) 83.6 67.2 89.8 89.9 82.6

ViT-L/14
(CLIP)

ZS-CLIP(C) 86.4 72.3 92.3 91.8 85.7
ZS-CLIP(PC) 86.8 73.6 92.9 93.2 86.6
PromptStyler 86.3 73.5 93.5 92.2 86.4

DFCF (OURS) 87.6 77.8 93.9 93.0 88.1
A - Art C - Clipart P - Product R - Real
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Table 8: Domain performance comparison of different methods on DomainNet.

Backbone Methods Accuracy (%) Average
C I P Q R S Accuracy

ResNet50
(ImageNet)

SelfReg 60.7 21.6 49.4 12.7 60.7 51.7 42.8
Model

Rattatouille 66.1 23.1 55.5 16.7 68.5 56.0 47.7

ResNet50
(CLIP)

ZS-CLIP(C) 52.8 40.1 52.9 6.5 75.3 47.6 45.9
ZS-CLIP(PC) 53.1 39.6 52.7 5.6 76.8 48.5 46.1
PromptStyler 53.9 41.4 54.6 5.6 76.8 49.2 46.9

DFCF (OURS) 52.0 41.0 53.3 6.3 75.1 48.0 46.0

ViT-B/16
(CLIP)

ZS-CLIP(C) 70.2 48.9 65.7 14.3 82.4 62.7 57.4
ZS-CLIP(PC) 70.4 47.3 65.0 13.5 83.3 63.6 57.2
PromptStyler 70.1 47.7 65.1 12.5 82.3 62.3 56.7

DFCF (OURS) 70.1 50.0 65.5 14.2 82.6 63.2 57.6

ViT-L/14
(CLIP)

ZS-CLIP(C) 77.6 52.7 71.0 21.6 58.9 70.0 63.1
ZS-CLIP(PC) 78.3 50.6 69.0 22.4 86.3 71.5 63.0
PromptStyler 77.5 52.3 70.8 21.0 86.1 69.5 62.9

DFCF (OURS) 77.5 53.8 71.0 20.9 85.9 70.2 63.2
C - Clipart I - Infograph P - Painting Q - Qucikdraw
R - Real S - Sketch

15


	Introduction
	Related Work
	Methodology
	Motivation
	Style Generation via Stochastic Perturbation
	Feature Fusion via Contrastive Learning
	Similarity Computation Based on Contrastive Learning
	Dynamic Weight Computation and Fusion of Feature Weights


	Experiments
	Experiment Sets
	Benchmarks
	Baseline
	Setup

	Evaluations
	Main Results
	Computational Results

	Ablation Study

	Conclusion
	Use of LLMs
	The details of datasets in experiments
	Comparison of random and hybrid strategies
	Domain performance comparison of different methods on PACS, VLCS, OfficeHome and DomainNet.

