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Abstract
With the widespread adoption of Mixture-of-
Experts (MoE) models, there is a growing demand
for efficient inference on memory-constrained
devices. While offloading expert parameters to
CPU memory and loading activated experts on
demand has emerged as a potential solution, the
large size of activated experts overburdens the lim-
ited PCIe bandwidth, hindering the effectiveness
in latency-sensitive scenarios. To mitigate this,
we propose FloE, an on-the-fly MoE inference
system on memory-constrained GPUs. FloE is
built on the insight that there exists substantial
untapped redundancy within sparsely activated
experts. It employs various compression tech-
niques on the expert’s internal parameter matri-
ces to reduce the data movement load, combined
with low-cost sparse prediction, achieving percep-
tible inference acceleration in wall-clock time on
resource-constrained devices. Empirically, FloE
achieves a 9.3× compression of parameters per
expert in Mixtral-8×7B; enables deployment on a
GPU with only 11GB VRAM, reducing the mem-
ory footprint by up to 8.5×; and delivers a 48.7×
inference speedup compared to DeepSpeed-MII
on a single GeForce RTX 3090—all with only a
4.4% ∼ 7.6% average performance degradation.

1. Introduction
Mixture of Experts (MoE) models including DeepSeek-
R1 (DeepSeek-AI, 2025), GPT-4 (OpenAI, 2023), Phi-
4 (Abdin et al., 2024b), Mixtral (Jiang et al., 2024), etc.,
offer a paradigm shift in the large language model (LLM) ar-

*Equal contribution 1The State Key Laboratory of Blockchain
and Data Security, Zhejiang University 2Hangzhou High-Tech
Zone (Binjiang) Institute of Blockchain and Data Security
3Paul G. Allen School of Computer Science & Engineering,
University of Washington. Correspondence to: Zhongle Xie
<xiezl@zju.edu.cn>, Lidan Shou <should@zju.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

chitecture by introducing sparsely activated experts. These
sparse LLMs contextually activate only a subset of experts
per token, significantly reducing inference costs while main-
taining generative performance. However, the abundance
of idle, non-activated experts during MoE inference signifi-
cantly hampers efficient GPU memory utilization, making it
challenging to deploy MoE models on memory-constrained
GPUs. For instance, running inference for Mixtral-8×7B,
where two experts are activated, requires approximately
94GB of VRAM in FP16 precision. Of this, 30% of the
activated parameters (27.3GB) are utilized during decoding,
while the remaining 66.8GB is occupied by non-activated ex-
perts, resulting in significant inefficiency (Shin et al., 2024).

To address the problem, offloading techniques (Sarkar et al.,
2023; Eliseev & Mazur, 2023; Hwang et al., 2024; Song
et al., 2024a; Xue et al., 2024a; Tang et al., 2024), which
unmount expert parameters to CPU memory and load them
into GPU memory on demand for each input, offers a nat-
ural solution. However, offloading shifts the decoding
bottleneck from memory-bound to I/O-bound, as transfer-
ring billions of parameters through the low-bandwidth PCIe
bus incurs substantial data transfer delays. For comparison,
the DRAM-to-VRAM bandwidth (32GB/s for PCIe 4.0)
is orders of magnitude lower than the bandwidth between
GPU memory and on-chip computation units (300GB/s).
Consequently, existing MoE inference systems with expert
offloading, designed for edge-side continuous serving sce-
narios (i.e., single-batch latency-sensitive inference) (Kong
et al., 2024; Eliseev & Mazur, 2023; Hwang et al., 2024;
Sarkar et al., 2023; Tang et al., 2024), still fail to support
on-the-fly inference, where the loading process is percepti-
ble to the user because its overhead cannot be hidden by the
model computation. Ultra-low-bit quantization effectively
reduces the size of transmitted parameters to mitigate the
latency of activated expert loading (Eliseev & Mazur, 2023;
Sarkar et al., 2023), but at the cost of significantly degraded
generation performance. Thus, a pressing question emerges:

How can we hide the I/O overhead of activated experts
within model computation to enable on-the-fly MoE infer-
ence on the memory-constrained GPU while minimizing
generation performance degradation?

In this paper, we present an on-the-fly MoE inference sys-
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tem, coined FloE, for consumer-grade devices. FloE re-
duces the I/O overhead of the experts, namely the transfer
cost of the matrices for up, gate, and down projections, via
a hybrid compression mechanism (Section 3.2). Despite the
utilization of the well-known inter-expert sparsity, the com-
pression exploits the vast, untapped intra-expert sparsity in
MoE models with a novel contextual sparsification scheme
(Section 3.2.1), balancing the transfer cost and the down-
stream performance. In detail, the system first identifies
low-magnitude, no-salient output activations of up projec-
tion and then removes the corresponding channel weights
from the gate and down projections. Meanwhile, we ob-
serve that the up projection matrix has limited sensitivity on
performance against quantization, motivating us to enable
the ultra-low-bit quantization in FloE to reduce the transfer
overhead further (Section 3.2.2).

Although the hybrid compression reduces per-transfer cost
for MoE models, the pipelining between transfer and compu-
tation is prevented due to the sequential execution of routing,
quantized up projection computation, and DRAM expert
fetching, inhibiting on-the-fly inference. Therefore, we in-
vestigate the weights and the input during the computation
and locate a high similarity between the shared hidden state
input before routing and up projection of the MoE model.
Based on the finding, we devise two efficient yet effective
sparsity predictors: (1) an inter-expert learning-based pre-
dictor to guide the routing of the activation expert of the
next layer with the hidden state of the current layer; (2) an
intra-expert reused-based predictor precomputing the con-
text sparsity distribution with the hidden state of the current
layer and the reused up projection. The two predictors, with
the help of prefetching, enable the pipelining of transfer and
computation for on-the-fly inference. (Section 3.3)

To integrate all the techniques above, we at last propose an
efficient sparse kernel and compact asynchronous transfer
from DRAM to VRAM to achieve system-wide efficiency
(Section 3.4). The experimental study on various GPU specs
and downstream tasks evidence the efficiency and efficacy
of FloE (Section 4). Notably, for the popular Mixtral-8×7B,
FloE achieves 9.3× parameter compression per expert, en-
ables deployment on a GPU with just 11GB VRAM , and
delivers a 2.6× inference speedup on an RTX 3090, with
only 4.4%∼7.6% average performance degradation.

2. Related Work
Experts Offloading. Efficient deployment of MoE mod-
els faces substantial challenges due to their parameter
counts, particularly under resource constraints. Current
inference frameworks like Llama.cpp (llama.cpp), Hugging-
Face Accelerate (Gugger et al., 2022), and DeepSpeed In-
ference (Aminabadi et al., 2022) employ experts offloading
by selectively transferring VRAM-dominant expert weights

to DRAM (Sheng et al., 2023). However, constrained PCIe
bandwidth creates transfer bottlenecks during CPU-GPU
expert transfers (Kamahori et al., 2024).

To mitigate this, prefetching strategies predict and preload
required experts through two paradigms: experience-based
statistical methods using offline activation traces (Sarkar
et al., 2023) (limited to top-1 expert activation strategy (Fe-
dus et al., 2022)), and intermediate result-driven approaches
leveraging hidden states (Eliseev & Mazur, 2023; Hwang
et al., 2024; Song et al., 2024a; Tang et al., 2024) or prior ex-
pert indices (Xue et al., 2024a). The former fails under multi-
expert activation due to exponential path growth (Dai et al.,
2024), while the latter faces an accuracy-latency tradeoff:
early-stage predictions from intermediate results (Song et al.,
2024a) diminish prefetching accuracy, necessitating costly
expert reloads, whereas adjacent-layer predictions (Hwang
et al., 2024; Eliseev & Mazur, 2023) prevent computation-
communication overlap.

While ultra-low-bit expert quantization reduces transfer
overhead at the cost of accuracy (Eliseev & Mazur, 2023;
Sarkar et al., 2023), CPU-based partial computation (Kama-
hori et al., 2024; Xue et al., 2024b; Tang et al., 2024)
achieves limited acceleration due to insufficient through-
put for high-dimensional matrix operations.

In contrast to our focus on on-the-fly inference in latency-
sensitive scenarios, alternative offloading solutions, such as
MoE-lightning (Cao et al., 2024), are primarily designed for
high-throughput inference in offline scenarios.

Sparsity in LLMs. Maintaining model quality while min-
imizing parameter transfer necessitates synergistic sparsity
and quantization. Weight pruning (Sun et al., 2023; Frantar
& Alistarh, 2023; Ma et al., 2023) zeroes subsets of LLM
weights to reduce computational/memory overhead but faces
performance degradation and hardware compatibility issues
on consumer-grade devices.

Activation sparsity—conditional computation via zero-rich
hidden states—naturally occurs in ReLU-based MLPs (Liu
et al., 2023; Alizadeh et al., 2023; Shin et al., 2024) but
diminishes in modern architectures using non-ReLU MLPs
(e.g., SwiGLU (Shazeer, 2020)), limiting direct applicability.
Recent research has thus concentrated on reintroducing acti-
vation sparsity within newer architectures (Mirzadeh et al.,
2023; Zhang et al., 2024; Song et al., 2025; 2024b), but
requires extensive pretraining (billions of tokens). Training-
free activation sparsity (Lee et al., 2024a; Liu et al., 2024),
achieved through activation magnitude pruning in SwiGLU-
based LLMs, remains tailored for dense models with uni-
form parameter utilization across inputs.
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Figure 1. Comparison of MoE inference offloading systems for memory-constrained GPUs: (a) Naive MoE Inference with Offloading; (b)
Advanced MoE Inference with Offloading; (c) On-the-Fly MoE Inference (FloE).

3. FloE: On-the-Fly MoE Inference
3.1. MoE Inference with Offloading

Figure 1(a) illustrates naive MoE inference with offloading.
Non-expert weights, frequently activated during inference,
reside persistently in VRAM and are computed on the GPU.
Expert weights, due to their sparse activation, are offloaded
to DRAM. If certain experts’ weights are missing from
VRAM (Figure 1(a) ➊), the system transfers these weights
over the PCIe bus (Figure 1(a) ➋), after which the GPU
proceeds with subsequent computations (Figure 1(a) ➌).

As mentioned in the introduction, expert offloading shifts
the decoding bottleneck from memory-bound to I/O bound.
Specifically, the expert transferring from DRAM to VRAM
incurs long latency. For example, the expert in the Mixtral-
8×7B model has over 300MB of FP16 parameters, taking
nearly 15ms to transfer over a 16-channel PCIe 4.0 bus,
whilst a single expert’s computation on a GeForce RTX
3090 takes only about 5ms.

Figure 1(b) shows advanced MoE offloading (Eliseev &
Mazur, 2023; Sarkar et al., 2023; Hwang et al., 2024; Song
et al., 2024a; Xue et al., 2024a; Tang et al., 2024)(detailed
related works discussion in Section 2). Despite the process
in the naive solution, an extra expert predictor (Figure 1(b)
➍) is implemented to prognosticate the expert visiting in
the near future. The prognosticated expert, as shown as
Figure 1(b) ➎, is quantized and preloaded in a GPU-resident
expert cache (Figure 1(b) ➌), managed by a replacement
policy. Compared to the naive solution, the advanced MoE
offloading can achieve better transfer efficiency due to the
usage of the expert predictor and the cache.

Next, we present FloE, an inference system that delivers
on-the-fly MoE model inference on consumer-grade GPUs.
FloE uses a hybrid compression scheme—integrating con-
textual sparsity and ultra-low-bit quantization (Figure 1(c)
➏)—detailed in Section 3.2. In Section 3.3, FloE intro-

duces dual predictors (Figure 1(c) ➍) for inter- and intra-
expert sparsity to accurately prefetch activated compressed
weights (Figure 1(c) ➎) while minimizing DRAM usage.
Finally, Section 3.4 describes system co-optimizations that
further enhance FloE’s efficiency.

3.2. Expert Hybrid Compression

As shown in Figure 1, in a SwiGLU-based MoE model, each
expert Eij consists of three matrices {Wgate

ij ,Wdown
ij ,Wup

ij }.
We denote the number of layers and the number of experts
per layer as m and n, respectively. Although advanced
MoE offloading proposes compressing experts using ultra-
low-bit quantization (e.g., INT2, INT1) to reduce transfer
costs, this significantly degrades model performance.

We argue that applying a uniform ultra-low-bit quanti-
zation strategy Q(·) across all matrices (see Figure 1(b)
{WQ(gate)

ij ,WQ(down)
ij ,WQ(up)

ij } ) within an expert fails to
strike an optimal balance between efficiency and perfor-
mance. Thus, FloE introduces a unique twist with a hybrid
strategy that tailors compression methods to the proper-
ties of the projection matrices. Specifically, contextual
activation sparsity S(·) is applied to the gate projection
Wgateij and down projection Wdown

ij to produce WS(gate)
ij

and WS(down)
ij . Meanwhile, ultra-low-bit quantization Q(·)

(INT2) is used for the up projection Wup
ij to yield WQ(up)

ij .

3.2.1. CONTEXTUAL SPARSIFICATION FOR GATE &
DOWN PROJECTIONS

Contextual activation sparsity reduces model computations
dependent on low-magnitude, non-salient contextual activa-
tions by pruning the corresponding channel weights, with
minimal impact on model performance (Liu et al., 2023; Lee
et al., 2024a; Liu et al., 2024). However, the MoE model
already performs sparse activation inference through the
router, selecting the experts to participate in the computa-
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Figure 2. Activation distributions of Mixtral-8×7B’s three hidden
states at experts E0,0 (shallow layer), E15,7 (middle layer), and
E35,4 (deep layer).

tion based on the given context.
Question 1. Does internal sparsity in experts of MoE
models exist and persist consistently across layers?
Observation 1. The experts within a sparsely activated
MoE model maintain a high internal sparsity across layers.

We conducted a preliminary study on the activation distri-
bution within experts, analyzing output activations from
the Wgate and Wup matrices, and input hidden states to
the Wdown matrix of the Mixtral-8×7B (Jiang et al., 2024)
model on the C4 dataset (Raffel et al., 2019), visualized
in Figure 21. Consistent with findings from CATS (Lee
et al., 2024a) and TEAL (Liu et al., 2024), we observed that
many activations are concentrated around zero. This con-
centration motivates the use of a magnitude-based activation
sparse strategy, where activations close to zero are set to ex-
actly zero, eliminating corresponding weight computations
and transfers during inference.

Given an input vector x and three projection weight matri-
ces Wgate,Wdown,Wup in an expert E , the corresponding
activation output aE is computed as following forward pass:

aE(x) :=
(
SiLU(xWgate)⊙ (xWup)

)
Wdown, (1)

SiLU(x) := x · σ(x) = x

1 + e−x
, (2)

where ⊙ denotes the Hardmard product and SiLU(·) is the
activation function. Therefore, magnitude-based sparsity
can be determined from the outputs of the SiLU activation
function, Wup, and the inputs to Wdown. We define three

1Phi-3.5-MoE-instruct (Abdin et al., 2024a) and DeepSeek-
V2 (DeepSeek-AI, 2024) are validated in the Appendix D.

activation functions:

agate(x) = SiLU(xWgate), aup(x) = xWup, (3)

adown(x) = agate(x)⊙ aup(x), (4)

and produce the following sparsity function:

St(a(x)) =

{
a(x), if |a(x)| ≥ t,

0, if |a(x)| < t.
(5)

Here, a ∈ {agate,aup,adown}. The threshold t is derived
from the sampled dataset based on the desired sparsity ratio:

t := min{t′ : F (t′) ≥ k}, (6)

where F (·) represents the empirical cumulative distribution
function of absolute activation values for each expert, and
k specifies the target sparsity ratio (e.g., 70%). The dis-
tribution is empirically estimated offline using activations
sampled from a general text corpus.

To evaluate the impact of magnitude-based activation prun-
ing on model performance, we set thresholds for the outputs
of the SiLU activation function, Wup, and the inputs to
Wdown at various sparsity levels, then measured text per-
plexity on WikiText-2 (Merity et al., 2016). As shown in
Figure 3(a), we find that pruning based on the Wdown in-
puts is the least sensitive to sparsity: at 50% sparsity, the
perplexity increases by only about 0.5%, and even at 90%
sparsity, perplexity remains relatively stable. In contrast,
pruning the Wup outputs is slightly more sensitive, where
80% sparsity roughly matches the 90% sparsity level of the
Wdown inputs. Pruning the SiLU outputs is the most sensi-
tive, pushing perplexity above 7 at 70% sparsity. We provide
further evaluations on downstream tasks in Section 4.2 and
have a theoretical interpretation for this phenomenon (Refer
to Appendix A.1 for more details):

Theorem 3.1 (informal). From the definition of St in Equa-
tion (5), we define:

Ldown = E
∥∥(adown − St(adown)

)
Wdown

∥∥2
2
, (7)

Lup = E
∥∥(adown − agate ⊙ St(aup)

)
Wdown

∥∥2
2
, (8)

Lgate = E
∥∥(adown − St(agate)⊙ aup

)
Wdown

∥∥2
2
. (9)

Then under assumptions consistent with experimental obser-
vations, we have

Ldown ≤ Lup < Lgate. (10)

While the input pruning of down projection shows theo-
retical optimality for downstream tasks, its effectiveness
is constrained by two factors: (1) Dependency on gate/up
projection outputs limits computational savings to the final
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Figure 3. Compression sensitivity of expert parameters: (a) Sparsi-
fication sensitivity; (b) Quantization sensitivity.

projection, and (2) Non-linear operations (SiLU, Hadamard
product) hinder prediction for offloading. Empirical evalua-
tions and theoretical analysis show that the output sparsity
of up projection, compared to the SiLU activation function,
yields superior generative performance at equivalent spar-
sity ratios. This motivates our design to replace the original
expert forward pass computation in Equation (1) as follows:

aS(x) := (SiLU(xWgate)⊙ St((xW
up)))Wdown (11)

3.2.2. ULTRA-LOW-BIT QUANTIZATION FOR THE UP
PROJECTION

Thanks to contextual sparsity, only 10% of the weights in the
gate and down projections ({Wgate,Wdown}) are activated.
However, the full parameter set of the up projection Wup is
required for computation, as its output activations determine
the sparsity threshold for truncating Wgate and Wdown. As
mentioned, prior work (Eliseev & Mazur, 2023) deploying
MoE models on consumer-grade devices suffers from sub-
stantial performance loss due to the uniform ultra-low-bit
quantization on the three projection matrices. Building
upon the fact that the contextual sparsity of gate and down
projections has minimal impact on performance, thus alle-
viating the quantization burden on experts, the following
question arises:
Question 2. Can we quantize only the full up projection,
from Wup to WQ(up), and effectively reverse the inherent
performance degradation caused by uniform quantization?
Observation 2. The up projection exhibits low sensitivity
to ultra-low-bit quantization.

We employ Half-Quadratic Quantization (HQQ) (Badri &
Shaji, 2023) with various bit-widths to quantize the three
projection matrices within each expert of Mixtral 8×7B
and evaluate their quantization sensitivity using perplexity
on WikiText-2 (Merity et al., 2016)2. As shown in Fig-
ure 3(b), quantizing the projection matrices at INT8 and

2Phi-3.5-MoE-instruct (Abdin et al., 2024a), DeepSeek-MoE-
16B-Base (Dai et al., 2024) and Qwen1.5-MoE-A2.7B (Team,
2024) are validated in the Appendix E.

INT4 results in minimal performance impact, with per-
plexity changes under 3%. At INT3 and INT2, perplexity
increases, with the down projection exhibiting the most sig-
nificant change, followed by the gate projection, while the
up projection remains the least sensitive. At INT1, up pro-
jection quantization yields only 46.01% of the perplexity of
gate projection quantization and 27.23% of the perplexity
for down projection quantization. Across all bit-widths, the
up projection consistently shows the lowest perplexity.

Analysis: Some works (Geva et al., 2021; Yu & Ananiadou,
2024) treat the MLP layer (i.e., the expert in MoE) as a key-
value memory model, where the up and gate projections
serve as keys to selectively activate the values in the down
projection, which stores knowledge related to the input.
This theory aligns with our experimental results. The down
projection, storing knowledge as values, requires higher pre-
cision than the gate and up projection, as evidenced by its
significant performance degradation across different quanti-
zation bit-widths. The gate projection, influenced by nonlin-
ear activations, e.g., SwiGLU (Shazeer, 2020), demonstrates
greater sensitivity at ultra-low bit-widths (INT2, INT1).

Implementation: The observation and analysis of quantiza-
tion sensitivity above suggest that the up projection is the
least sensitive to quantization, and therefore we choose to
apply the INT2 of HQQ method for its compression.

3.3. Expert Sparsity Prediction

In MoE models, each MoE layer uses a router to determine
activated experts for each input hidden state x, followed by a
forward pass according to Equation (1). Although the hybrid
compression reduces per-transfer cost for MoE models, the
pipelining between transfer and computation is prevented
due to the sequential execution of routing, quantized up
projection computation, and DRAM expert fetching, inhibit-
ing on-the-fly inference. Recalling sparsity prediction in
dense LLMs (Liu et al., 2023; Lee et al., 2024b), the resid-
ual structure of the model leads to high similarity between
hidden state inputs before consecutive MLP layers. This
allows the hidden state of the i-th MLP layer to be fed into a
trained predictor to forecast the sparsity distribution for the
(i+ 1)-th layer. Inspired by this approach and considering
the same inputs to the router and quantized up projection,
we pose the following question:

Question 3. Can the hidden states x of the existing layer
be used in sparsity prediction in prefetching the activated
compressed experts for the successive layer, replacing the
router and up projection computations?

Fortunately, in sparse MoE models, we empirically validate
the core principle behind sparsity prediction:

Observation 3. The hidden states input to the router and up
projection in consecutive MoE layers exhibit high similarity.
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Specifically, we randomly sample 100 sequences of length
256 from the ShareGPT (ShareGPT, 20023) and feed them
into Mixtral-8×7B. Then, we compute the average next
layer similarity, defined as the cosine similarity between
the hidden states before the i-th layer and (i+ 1)-th layer.
Figure 4 shows that the next layer similarity consistently
remains above 0.95, except for the first layer.

Building on the observation, we devise two efficient yet
effective predictors for inter- and intra-expert sparsity. They
both consume the input hidden states of the existing layer
and prefetch the activated compressed experts to be visited
in the next layer, hence excluding the upcoming computation
of router and up projection.

3.3.1. INTER-EXPERT SPARSITY PREDICTOR

For inter-expert sparsity, we introduce a learning-based pre-
dictor that proactively predicts the experts required for the
(i+ 1)-th layer while computing the i-th layer.

The core idea of the learning-based predictor is to collect
the input from the previous layer along with the histori-
cal trajectory of expert selections, capturing the underlying
correlations between them. Leveraging these correlations,
the predictor makes informed decisions about future expert
selections. We observe that the complexity of prediction
diminishes as the layer depth increases. To adapt to this,
we dynamically adjust the predictor’s parameters in prac-
tice, scaling from a single-layer MLP with 32K parameters
to a two-layer MLP with 2M parameters. The orange line
in Figure 4 illustrates an average precision of 0.88, high-
lighting the inter-experts predictor’s capability to maintain
high accuracy while adapting to varying layer depths.

3.3.2. INTRA-EXPERT SPARSITY PREDICTOR

For intra-expert sparsity, we introduce a parameter-free,
reuse-based predictor. This predictor estimates the output
activations of the up projection in the (i+ 1)-th layer by di-
rectly performing matrix multiplication between the hidden

Algorithm 1 Efficient Sparse Kernel
1: Input: hidden states x, threshold tij , Eij =

{Wgate
ij ,Wdown,⊤

ij ,Wup
ij }

2: v← xWup
ij

3: mask← (|v| > tij)
4: x′ ← SiLU

(
xWgate

ij [mask]
)
⊙ v[mask]

5: y← (Wdown,⊤
ij [mask]x′)⊤

6: Return: y

states before the i-th MoE layer and the reused up projection
matrix of the (i+ 1)-th layer. Once the approximate output
activations of the up projection are obtained, the contextual
sparsity distribution can be computed in advance.

Different from existing learning-based predictors (Liu et al.,
2023; Shin et al., 2024; Xue et al., 2024b), which, for
example, impose an additional 2.19GB∼9GB of memory
footprint for models like Mixtral-8×7B (detailed in Ap-
pendix F), an unbearable burden for memory-constrained
GPUs, our intra-expert sparsity predictor incurs little extra
memory cost. Furthermore, the red line in Figure 4 shows an
average recall of 0.95, demonstrating the predictor’s ability
to maintain high accuracy across varying layer depths.

3.4. System Co-optimization

3.4.1. EFFICIENT SPARSE KERNEL

To translate the reduction in computational complexity intro-
duced by sparsity into clock time acceleration, we developed
a specialized sparse GEMV kernel using the Triton (Tillet
et al., 2019)-based kernel introduced by CATS (Lee et al.,
2024a). We achieve maximal data read efficiency by trans-
posing Wdown

ij and utilizing column-major storage. By se-
lectively loading the columns of the weight matrices Wgate

ij

and Wdown,⊤
ij based on a threshold, we reduce the number

of memory accesses, thereby accelerating clock time.

As shown in Algorithm 1, this kernel accepts the input
hidden state x, sparse threshold tij , and expert weights

Eij =
{
Wgate

ij ,Wdown,⊤
ij ,Wup

ij

}
. First, a mask vector is

generated based on the absolute values of the hidden vectors
output by xWup and the magnitude of the threshold. The
SiLU activation and element-wise multiplication are fused
into each block computed by Wgate

ij [mask]x, which con-
serves memory operations required for multiple storage and
loading of x′ and reduces kernel launch time. Subsequently,
the resulting x′ is multiplied by the transposed Wdown,⊤

ij to
produce the output of the sparse MLP. Section 4.1 shows
our sparse GEMV kernel effectively reduces expert compu-
tation time as sparsity increases.
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Figure 5. Process of FloE’s compact asynchronous transfer: com-
pacting weights layout in DRAM for reduced access latency and
multi-threaded packaging of activated experts to enable asyn-
chronous data transfer.

3.4.2. COMPACT ASYNCHRONOUS TRANSFER

Due to the sparse activation of weights, the expert trans-
fer process occurs across multiple non-contiguous memory
blocks in DRAM and VRAM, making it difficult to fully
utilize the PCIe bus bandwidth. The Pytorch (Paszke et al.,
2019) naive implementation can only achieve a fraction
of the PCIe bandwidth, significantly affecting inference la-
tency. Therefore, we compacted the arrangement of the
gate and down projection matrices to transfer data in larger
chunks and further enhance data throughput using SIMD
and multithreaded asynchronous transfer techniques. Next,
we detail the optimization of the data transfer strategy.

Compact weights Layout In an expert, the activation of
the i-th intermediate neuron corresponds to the usage of
the i-th column from the gate and up projection matrix,
along with the i-th row from the down projection matrix.
By co-locating the corresponding columns of the gate pro-
jection and rows of the down projection in DRAM, we can
compact the data into larger contiguous chunks for efficient
transfer. Assuming each element of the dhidden × dintermediate
weight matrices is stored in num bytes, this layout strat-
egy increases the chunk size from dhidden × num bytes to
2dhidden × num bytes, as illustrated in Figure 5.

SIMD Asynchronous Transfer To fully leverage modern
CPU capabilities, we use the AVX-512 instruction set and
multithreaded asynchronous transfer. As shown in the Fig-
ure 5, we allocate a pinned memory in the CPU (transferring
data from pinned memory significantly improves transfer
speed) to send weights to VRAM. We use multithreading
in combination with SIMD instructions to bundle several
weights groups for transfer into pinned memory, and asyn-
chronously send transfer requests across multiple streams,
minimizing idle time on the PCIe bus.

4. Evaluation
In this section, we aim to demonstrate that FloE can speed
up MoE decoding on limited GPU memory while preserv-
ing high accuracy. We first present our end-to-end system
results showing wall-clock performance, followed by FloE’s
accuracy in downstream tasks3. Specifically,

• In Section 4.1, we demonstrate that FloE enables 48.7×
end-to-end acceleration compared to DeepSpeed-MII, with
sparse kernel contributing up to 2x speedup and compact
asynchronous transfer achieving 12.6x faster performance
compared to the naive method.

• In Section 4.2, we show that FloE achieves a performance
gain of 9.8% over other methods at high sparsity.

4.1. Efficiency Evaluation

We analyze decode efficiency via end-to-end generation
tests across various input/output lengths and VRAM us-
age, assess single-expert latency speedup for sparse GEMV,
and evaluate transfer efficiency by simulating single-expert
transfer with varying chunk sizes.

Setup We use GeForce RTX 3090 with 24G VRAM
to evaluate end-to-end latency on ShareGPT (ShareGPT,
20023) prompts. The system is also equipped with a 64-
core CPU at 2.3GHz and 256G DRAM interconnected via
PCIe 4.0. For the single-expert latency test, we use C4
dataset (Raffel et al., 2019) and employ four types of GPUs,
including H100, A100, A6000, and GeForce RTX 3090.

Baseline We employ four SOTA baselines in the eval-
uation: DeepSpeed-MII (Microsoft): An inference sys-
tem utilizes ZeRO-Infinity (Rajbhandari et al., 2021) to
deal with expert offloading. Mixtral-Offloading (dvmazur,
2023): An MoE framework integrating expert prediction,
caching mechanisms, and quantization. Fiddler (Kamahori
et al., 2024): A CPU-GPU co-execution system minimiz-
ing data transfer overhead through computational offload-
ing. Mixtral-GPU: A model with HQQ INT2 quantized
enabling complete GPU residency, serving as the latency
lower-bound reference for on-the-fly scenario requirements.
Analysis We evaluate FloE’s end-to-end efficiency with
varying input/output lengths, and the results averaging over
5 runs are depicted in Figure 6. In the figure, we measure
the inference speed for single-batch generation. We select
the average output tokens per second (TPS) as the measure-
ment. As seen, FloE achieves 91% of Mixtral-GPU’s speed
(95% at most), delivering 48.7×, 2.60×and 3.14× speedups
over DeepSpeed-MII, Mixtral-Offloading and Fildder, re-
spectively. It should be noted that with longer outputs for

3We employ Mixtral-8×7B as the MoE model for all test cases.

7



FloE: On-the-Fly MoE Inference on Memory-constrained GPU

(32,128) (32,256) (32,512) (64,128) (64,256) (64,512) (128,128) (128,256) (128,512) avg
(Input Length, Output Length)

0

1

2

3

4

5

6

7

TP
S

0.87 0.90 0.95
0.92 0.91 0.91

0.89
0.95 0.90 0.91

0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.34 0.34 0.35 0.35 0.35 0.34 0.36 0.36 0.34 0.35
0.28 0.30 0.32

0.27 0.29 0.30
0.26 0.29 0.30 0.29

Mixtral-GPU FLoE Deepspeed Mixtral-Offloading Fiddler

Figure 6. Bars quantify generation speed of compared methods under 12GB VRAM constraints, with numerical labels indicating relative
speedup ratios against the Mixtral-GPU baseline. Note that DeepSpeed uses FP16 offloading.

Table 1. Single-Expert Execution Latency with Sparse GEMV Kernel (ms).
GPU MODEL 0% 50% 60% 70% 80% 90%

H100 0.169 0.134 (1.26× ↑) 0.123 (1.37× ↑) 0.114 (1.48× ↑) 0.106 (1.59× ↑) 0.103 (1.64× ↑)
A100 0.253 0.195 (1.30× ↑) 0.188 (1.35× ↑) 0.176 (1.44× ↑) 0.166 (1.52× ↑) 0.155 (1.63× ↑)
A6000 0.524 0.365 (1.44× ↑) 0.337 (1.56× ↑) 0.305 (1.72× ↑) 0.277 (1.89× ↑) 0.263 (1.99× ↑)
RTX-3090 0.542 0.379 (1.43× ↑) 0.354 (1.53× ↑) 0.316 (1.72× ↑) 0.302 (1.80× ↑) 0.283 (1.92× ↑)

fixed inputs, TPS improves as layer-wise expert replacement
overhead is amortized over longer sequences.

Figure 8 compares the generation throughput under in-
put/output length of 64/256 and VRAM usage ranging from
12GB to 24GB. With additional VRAM, we cache more
MoE layers to reduce expert misprediction reload overhead.
Meanwhile, our sparse GEMV kernel applied to expert ac-
tivations further boosts generation speed. Across different
VRAM capacities, our method remains close to Mixtral-
GPU’s performance and slightly surpasses it at 24GB. When
DRAM usage reaches 21GB, Mixtral-Offloading essentially
mirrors the Mixtral-GPU setup but is marginally slower, as
it still relies on INT3 quantization for certain experts.

Table 1 compares the sparse kernel’s speedup across sparsity
levels and GPUs for a single expert, including dense up pro-
jection GEMV, fused SiLU activation, sparse gate projection
GEMV, and sparse down-projection GEMV. Using 500 to-
kens from C4 dataset, we ran 80 warm-up iterations and 200
timed trials to measure execution latency. Our kernel consis-
tently outperforms the dense baseline (sparsity = 0). At 50%
and 70% sparsity, it achieves over 1.26x and 1.44x speedup,
respectively. At 90% sparsity, only A6000 and RTX 3090
obtain nearly 2× speedup, while H100 and A100 are lim-
ited by kernel launch overhead and other non-computational
factors due to their higher computational throughput. The
results evidence our sparse GEMV kernel is advantageous
on consumer-grade devices.

For transfer efficiency, we randomly selected 20% of expert
weights (20% of columns in the gate projection matrix and
corresponding columns in the transposed down projection)
and transferred them from DRAM to VRAM using varying
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Figure 7. Comparison transfer latency and bandwidth utilization:
bars show DRAM-to-VRAM transfer delays per expert, while
lines depict utilization relative to PCIe 4.0’s actual peak bandwidth.
Gray dashed lines are PyTorch’s native implementation.

chunk sizes (number of weight columns per thread). The
average over 20 trials is shown in Figure 7. Our compact
asynchronous transfer achieve up to 88% of peak bandwidth,
12.6× faster than PyTorch (Paszke et al., 2019) native im-
plementation. Compact weights layout improves efficiency
across all chunk sizes. Transfer latency first increases and
then decreases as chunk size grows—small chunks are dom-
inated by API calls and CUDA launch overhead, while large
chunks suffer from excessive DRAM packing time, limiting
transfer overlap. The optimal chunk size in our setup is 50.

4.2. Efficacy Evaluation

We analyze model efficacy via downstream tasks and vali-
date the compatibility of the quantization with FloE.
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Task accuracy across different sparsity strategies, and (b) Text
perplexity of FloE combined with various quantization bit-widths.

Setup For the downstream task performance, we use seven
downstream tasks using the EleutherAI LM Harness (Gao
et al., 2024), including zero-shot ARC easy and challenge,
zero-shot BoolQ, zero-shot SciQ, zero-shot OpenBookQA,
zero-shot Winogrande and 5-shot MMLU (Clark et al.,
2018; 2019; Johannes Welbl, 2017; Sakaguchi et al., 2019;
Hendrycks et al., 2021). These tasks are originally chosen to
measure the abilities of the models across various domains,
such as reading comprehension and reasoning.

Baseline We employ three sparsity or quantization base-
lines in the evaluation: CATS (Lee et al., 2024a): A SOTA
activation sparsification method, which applies magnitude
pruning to FFN activations. CHESS (He et al., 2024): A
general activation sparsification approach via channel-wise
thresholding and selective sparsification. HQQ quanti-
zation (Badri & Shaji, 2023): A fast and accurate model
quantizer that skips the need for calibration data. Among
its notable applications, HQQ INT2 refers to the perfor-
mance of Mixtral-GPU on downstream tasks. We utilized
HQQ to quantize the experts to INT2, enabling the entire
Mixtral-8×7B model to fit within GPU memory.

Analysis As shown in Figure 10, FloE-Wup achieves a
2.8% accuracy improvement at 80% sparsity and a signifi-
cant performance gain of 9.8% over the SOTA methods at
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Figure 10. Downstream task performance. FloE-Wup refers to our
contextural sparsificaition according up projection.

90% sparsity. The reason lies in the fact that activations for
Wup demonstrate better performance compared to those for
Wgate, as evidenced by the trend in Figure 9(a). In addition,
FloE combines both quantization and sparsity, trading off a
small amount of accuracy for improved deployment speed.
Despite this trade-off, its performance remains higher than
that of HQQ INT3 and CHESS. On the MMLU task, we
observe a noticeable performance drop from FloE-Wup to
FloE. When GPU memory is sufficient, increasing the bit-
width of the Wup matrix can mitigate this issue.

We also demonstrate the compatibility with quantization
techniques by evaluating different HQQ quantizations and
plotting the perplexity variations of Mixtral-8×7B on
WikiText-2 in Figure 9(b). The perplexity increases ex-
hibit similar trends across different bit widths, indicating
that the errors introduced by activation sparsity and weight
quantization are largely independent and additive.

5. Conclusion
We introduce FloE, an on-the-fly inference system for MoE
models on memory-constrained GPUs, which optimizes
GPU memory utilization through an expert hybrid compres-
sion scheme and effective sparsity predictors, achieving a
remarkable 48.7× inference speedup on a single GeForce
RTX 3090 compared to DeepSpeed-MII. We hope our work
inspires further research on MoE inference with offloading
from a sparsity perspective and believe FloE will serve as a
valuable tool for the community, enabling on-the-fly infer-
ence of sparse MoE models on consumer-grade hardware.
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A. Theoretical Analysis
A.1. Preliminary

Given a vector x ∈ Rm, we use ∥x∥2 :=
√∑m

i=1 x
2
i to denote the two-norm of x. We use [m] to represent the set

{1, 2, ...,m}. We use ⊙ to denote the element-wise multiplication of two vectors or matrice.

We denote N (µ, σ2) to be the Gaussian distribution with mean µ and variance σ2. We let ϕ(x) = 1√
2π

e−x2/2 and
Φ(x) =

∫ x

−∞ ϕ(y)dy to be the probability density function (PDF) and cumulative distribution function (CDF) of the
standard normal distribution, respectively. Given function f , we use f−1 to define its reverse function.

A.2. Main Theorem

In the main paper, we state the informal theorem as below:

Theorem A.1 (informal). From the definition of St in Equation (5), we define:

Ldown = E
∥∥(adown − St(adown)

)
Wdown

∥∥2
2
, (12)

Lup = E
∥∥(adown − agate ⊙ St(aup)

)
Wdown

∥∥2
2
, (13)

Lgate = E
∥∥(adown − St(agate)⊙ aup

)
Wdown

∥∥2
2
. (14)

Then under assumptions consistent with experimental observations, we have

Ldown ≤ Lup < Lgate. (15)

Here we restate the theorem in a formal format.

Theorem A.2. Let agate ∈ Rm and aup ∈ Rm be the activations after the SiLU function and the up projection, respectively,
and define adown = agate ⊙ aup. Let Wdown ∈ Rm×n be the weight matrix for the down projection. From the definition of St
in Equation (5), we define:

Ldown = E
∥∥(adown − St(adown)

)
Wdown

∥∥2
2
, (16)

Lup = E
∥∥(adown − agate ⊙ St(aup)

)
Wdown

∥∥2
2
, (17)

Lgate = E
∥∥(adown − St(agate)⊙ aup

)
Wdown

∥∥2
2
. (18)

We assump that all the Wij in Wdown are i.i.d. and satisfies Wij ∼ N (0, σ2
W )(i ∈ [m], j ∈ [n]).Similarly, for all i ∈ [m], we

assume agate,i are i.i.d. and satisfies agate,i ∼ N (0, σ2
gate) . And for all i ∈ [m], we let aup,i are i.i.d. and agate,i = xgate,i− c

for some constant c > 0, where xgate,i satisfies exponential distribution with parameter λ. We also assume aup and agate are
independent. Then if we keep the threshold of sparsity such that (1− η)× 100% elements of the activations are set to zero
in St, we can explictly write out Lup and Lgate as follows:

Lup = nmσ2
W · σ2

up(
2

λ2
− 2c

λ
+ c2) ·

(
1− η − 2zηϕ(zη)

)
. (19)

Lup = nmσ2
W · σ2

up ·
[
eλ(qη−c)

( 2

λ2
− 2

qη
λ

+ q2η
)
− e−λ(c+qη)

( 2

λ2
+ 2

qη
λ

+ q2η
)]
, (20)

where zη = Φ−1
(
1− η

2

)
, ϕ(x) = 1√

2π
e−x2/2 and qη = 1

λc sinh
−1( 1−η

2 eλc). Furthermore, if λc ≥ 2, and η ∈ [e−4, 1/2],
we can obtain

Ldown ≤ Lup < Lgate. (21)

Remark A.3. Here we discuss the rationality of the theorem assumptions: First, the choice of L2 loss, independence between
random variables, and gaussian assumptions are widely used in machine learning theory community (Tripuraneni et al.,
2020; 2021; Du et al., 2020; Thekumparampil et al., 2021; Chen et al., 2022; Wang et al., 2023), and from Figure 2 in the
main paper, we can observe that the distribution of elements in activations after up projection satisfy gaussian distrbution.

On the other hand, the shifted exponential distribution on gate-projection activations mainly comes from the property of
SiLU function. The distribution of gate-projection elements before and after SiLU functions are shown in Figure 11. We find

14



FloE: On-the-Fly MoE Inference on Memory-constrained GPU

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pr
ob

ab
ilit

y 
De

ns
ity

PDF of x (b=0.5, =0.5)
Gaussian PDF

0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
a

0

2

4

6

8

10

Pr
ob

ab
ilit

y 
De

ns
ity

PDF of a = SiLU(x) (b=0.5, =0.5)
Empirical PDF of a
Exp( =11)

5 4 3 2 1 0 1 2 3
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
ob

ab
ilit

y 
De

ns
ity

PDF of x (b=1.0, =1.0)
Gaussian PDF

0.0 0.5 1.0 1.5 2.0 2.5 3.0
a

0

2

4

6

8

10

12

Pr
ob

ab
ilit

y 
De

ns
ity

PDF of a = SiLU(x) (b=1.0, =1.0)
Empirical PDF of a
Exp( =11)

Figure 11. (Left) Distribution of gate-projection elements before (1st column) and after (2rd column) SiLU functions. The first row is for
15-th layer and second row is for 31-th layer. We can see that before SiLU function, the activations are roughly shifted gaussian, while
after SiLU, they has very high probability density at value x ≈ −0.28, which is the minimum value of SiLU function. (Right) Simulation
of SiLU outputs on shifted gaussian variables. We find that for input x ∼ N (−b, σ2) with reasonable b, σ (as in the left figure), the
outputs after SiLU function has similar truncated unimodal distribution, and can be well fitted by shifted exponential distribution, i.e.,
a = x− c for x satisfies exponential distribution with parameters λ = 11 and shifted constant c = 0.28.

that the distribution of agate,i can be well fitted by shifted exponential distribution, i.e., a = x− c for x satisfies exponential
distribution with parameters λ ≥ 10 and shifted constant c = 0.28. Here c is the negative value of the minimum of SiLU
function, and thus is a fixed value. Therefore, our assumptions are consistent with experimental observations, and we can
see that condition λc ≥ 2 is also satisfied. We add this data distribution assumption mainly because the theoretical difficulty
for handling the reverse function of SiLU function, and we will see that even with this simplification, the proof is still
non-trivial.

Then we comes to the proof of our main theorem:

Proof of Theorem A.2: From assumptions and Lemma A.11, Lemma A.12, we have

Ldown = nσ2
W · σ2

up · E
∥∥adown − St(adown)

∥∥2
2
, (22)

Lup = nσ2
W · σ2

up · E
∥∥adown − agate ⊙ St(aup)

∥∥2
2
, (23)

Lgate = nσ2
W · σ2

up · E
∥∥adown − St(agate)⊙ aup∥22. (24)

Note that obviously, for any vector a and any fixed ratio of non-sparsity rate 1 − η, St(a) is the sparsified vectors with
maximum norm, and all three kind of sparsification strategies have the same non-sparsity ratios, so we must have

∥adown − St(adown)
∥∥2
2
≤ ∥adown − agate ⊙ St(aup)

∥∥2
2

(25)

∥adown − St(adown)
∥∥2
2
≤ ∥adown − St(agate)⊙ aup∥22 (26)

On the other hand, note that

E
∥∥adown − agate ⊙ St(aup)

∥∥2
2
= E

∥∥agate ⊙ (aup − St(aup))
∥∥2
2

(27)

= mE
[
agate,i · (aup,i − St(aup,i))

]2
, (i.i.d.) (28)

= mE
[
a2gate,i

]
·E
[
(aup,i − St(aup,i))

]2
, (independence, Lemma A.12, Lemma A.11)

(29)
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Similar formulas hold for Lgate. Then combining Lemma A.4, Lemma A.5, and Lemma A.9, we can get the results.

A.3. Technical Proof

Lemma A.4. Assume that random variable a ∼ N (0, σ2). For a given η ∈ (0, 1), define the threshold tη such that
P (|a| > tη) = η. Then if we define the inverse sparsity function S̄tη (a) as

S̄tη (a) =

{
0, if |a| ≥ tη,

a, otherwise.
(30)

Then, the threshold tη and the expectation E[S̄tη (a)
2] are given by

tη = σΦ−1
(
1− η

2

)
, (31)

and
E[S̄tη (a)

2] = σ2 [1− η − 2zηϕ(zη)] =
(
1− η − 2zηϕ(zη)

)
· E[a2], (32)

where zη = Φ−1
(
1− η

2

)
= tη/σ. And as defined in Appendix A.1, ϕ(x) = 1√

2π
e−x2/2 is the PDF of the standard normal

distribution, Φ−1(·) denotes its inverse cumulative distribution function (CDF).

Proof. Threshold tη:

Given a ∼ N (0, σ2), standardize a by defining Z = a
σ , so that Z ∼ N (0, 1). Therefore:

P

(
|Z| > tη

σ

)
≤ η.

Due to the symmetry, we have

2P

(
Z >

tη
σ

)
≤ η ⇒ P

(
Z >

tη
σ

)
≤ η

2
.

Therefore we have
tη
σ

= Φ−1
(
1− η

2

)
⇒ tη = σΦ−1

(
1− η

2

)
.

Expectation E[S̄tη (a)
2]:

First note that

E[S̄tη (a)
2] = E

[
a2 · 1{|a|<tη}

]
(33)

= E[a2]− E
[
a2 · 1{|a|≥tη}

]
(34)

= σ2 − E
[
a2 · 1{|a|≥tη}

]
(35)

And let z = a/σ ∼ N(0, σ2), zη = tη/σ, we can obtain

E
[
a2 · 1{|a|≥tη}

]
= 2σ2

∫ ∞

zη

z2ϕ(z)dz (36)

= 2σ2{[−zϕ(z)]∞zη +

∫ ∞

zη

ϕ(z)dz} (37)

= 2σ2(zηϕ(zη) +Q(zη)) (38)

where Q(z) = 1− Φ(z). Substituting zη = Φ−1
(
1− η

2

)
, we get Q(zη) =

η
2 . Therefore, finally we have

E[S̄tη (a)
2] = σ2 − 2σ2

[
zη√
2π

e−z2
η/2 +

η

2

]
= σ2 [1− η − 2zηϕ(zη)] (39)

This concludes the proof.
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Lemma A.5. We define tη and S̄tη similarly as Lemma A.4. If x satisfies exponential distribution with parameter λ, and
a = x− c for some constant c (c ≥ tη). Then we have

E[a2] =
2

λ2
− 2c

λ
+ c2 (40)

And,

E[S̄tη (a)
2] = eλ(tη−c)

( 2

λ2
− 2

tη
λ

+ t2η
)
− e−λ(c+tη)

( 2

λ2
+ 2

tη
λ

+ t2η
)

(41)

Furthermore, tη satisfies

tη =

{
1
λ sinh−1

(
1−η
2 eλc

)
, η ≥ exp(−2λc)

− 1
λ ln(η)− c, otherwise.

(42)

where sinh−1(x) = ln(x+
√
x2 + 1).

Proof. Expectation E[a2]:

Since x ∼ Exp(λ), we have E[x] = 1
λ and Var(x) = 1

λ2 . For a = x− c:

E[a] = E[x]− c =
1

λ
− c, Var(a) = Var(x) =

1

λ2
. (43)

Thus:

E[a2] = Var(a) + (E[a])2 =
1

λ2
+

(
1

λ
− c

)2

=
2

λ2
− 2c

λ
+ c2. (44)

Expectation E[S̄tη (a)
2]:

By definition:

E[S̄tη (a)
2] = E[a2 · 1{|a|<tη}] =

∫ c+tη

c−tη

(x− c)2λe−λxdx. (45)

where a = x− c. Recover it to the integral on a:

E[S̄tη (a)
2] = λe−λc

∫ tη

−tη

a2e−λada. (46)

Exploiting symmetry (valid if c ≥ tη):∫ tη

−tη

a2e−λada =

∫ 0

−tη

a2e−λada+

∫ tη

0

a2e−λada (47)

= 2

∫ tη

0

a2(
eλa + e−λa

2
)da (48)

= 2

∫ tη

0

a2 cosh(λa)da, (49)

where cosh(λa) = eλa+e−λa

2 . Using the integral formula (Gradshteyn & Ryzhik, 2014):∫
a2 cosh(λa)da =

eλa

2λ3

(
(λa)2 − 2λa+ 2

)
− e−λa

2λ3

(
(λa)2 + 2λa+ 2

)
+ C, (50)

Then we have

E[S̄tη (a)
2] = 2λe−λc

∫ tη

0

a2 cosh(λa)da (51)

=
e−λc

λ2

[
eλtη

(
(λtη)

2 − 2λtη + 2
)
− e−λtη

(
(λtη)

2 + 2λtη + 2
)]
. (52)

= eλ(tη−c)
( 2

λ2
− 2

tη
λ

+ t2η
)
− e−λ(c+tη)

( 2

λ2
+ 2

tη
λ

+ t2η
)

(53)
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Determination of tη:

The threshold satisfies P (|a| ≥ tη) = η. For a = x− c with x ∼ Exp(λ):

P (x ≥ c+ tη) + P (x ≤ c− tη) = e−λ(c+tη) +
(
1− e−λ(c−tη)

)
= η. (54)

Case 1: η ≤ e−2λc

When tη > c, the lower tail vanishes:

P (x ≥ c+ tη) = e−λ(c+tη) = η =⇒ tη = − 1

λ
ln(η)− c. (55)

It’s clear the condition in this case is: tη ≥ c⇒ η ≤ exp(−2λc).

Case 2: η ≥ e−2λc

When tη ≤ c, both terms contribute:

e−λc(e−λtη − eλtη ) + 1 = η, (56)

eλtη − e−λtη = (1− η)eλc. (57)

Note that sinh(y) = ey−e−y

2 :

sinh(λtη) =
(1− η)eλc

2
=⇒ tη =

1

λ
sinh−1

(
1− η

2
eλc
)
. (58)

It’s easy to check now we have η ≥ exp(−2λc). This concludes the proof.

Remark A.6. From calculation, we can have some approximation of the key terms in Lemma A.5: If λc ≫ 1 and
η ∈ [exp(−2λc), 1], then we have

tη ≈ c+
1

λ
ln(1− η) (59)

E[S̄tη (a)
2] ≈ (1− η)

( 2

λ2
− 2

tη
λ

+ t2η

)
(60)

Then if η ∈ [exp(−2λc), 1/2], we can see tη is very close to c, which matches our experiment observations in Figure 11.

Then we compare the second moments calculated above.

Lemma A.7. Let qη = 1
p sinh

−1( 1−η
2 ep), gη = p(qη − 1), and hη = p(qη + 1). Then if p ≥ 2 and η ∈ [e−2p, 1/2], we

have

0 < 1 +
ln(1− η)

p
< qη < 1 (61)

ln(1− η) < gη < 0, 2p+ ln(1− η) < hη < 2p (62)

Proof. Note that
sinh−1(x) = ln(x+

√
x2 + 1) ≥ ln(2x) (63)

So we have

qη =
1

p
sinh−1

(
1− η

2
ep
)

>
1

p
ln

(
2 · 1− η

2
ep
)

=
ln(1− η)

p
+ 1 > 0. (64)

And the last inequality holds when η ≤ 0.5 < 1− e−2 ≤ 1− e−p. For the upper bound, from η ≥ e−2p, we have:

1− η

2
ep ≤ 1− e−2p

2
ep =

ep − e−p

2
= sinh(p). (65)
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Since sinh−1 is strictly increasing and sinh−1(sinh(p)) = p, we have:

qη =
1

p
sinh−1(

1− η

2
ep) < 1. (66)

And thus inequalities for gη also hold.

Lemma A.8. For p > 0, the function

f(p) = e−2p · 2 + 2p+ p2

2− 2p+ p2
(67)

is strictly decreasing. And therefore when p ≥ 2, f(p) ≤ f(2) = 5e−4.

Proof. Let N(p) = p2 + 2p+ 2 and D(p) = p2 − 2p+ 2. The derivative of f(p) is:

f ′(p) = e−2p

(
N ′(p)D(p)−N(p)D′(p)− 2N(p)D(p)

D(p)2

)
(68)

= e−2p

(
(2p+ 2)(p2 − 2p+ 2)− (p2 + 2p+ 2)(2p− 2)− 2(p2 − 2p+ 2)(p2 + 2p+ 2)

D(p)2

)
(69)

= e−2p · −4p
2 + 8− 2(p4 + 4)

D(p)2
(70)

= e−2p · −2p
4 − 4p2

D(p)2
(71)

< 0. (72)

Therefore, f(p) is strictly decreasing.

Lemma A.9. We define
F (η) = 1− η − 2zηϕ(zη) (73)

where zη = Φ−1
(
1− η

2

)
and ϕ(x) = 1√

2π
e−x2/2. And we define

G(η, p) = ep(qη−1)
(2/p2 − 2qη/p+ q2η

2/p2 − 2/p+ 1

)
− e−p(1+qη)

(2/p2 + 2qη/p+ q2η
2/p2 − 2/p+ 1

)
(74)

where qη = 1
p sinh

−1( 1−η
2 ep). Then if p ≥ 2 and η ∈ [e−4, 0.5], we have F (η) < G(η, p).

Proof. Let gη = p(qη − 1) and hη = p(qη + 1). Then for the first term we have

G1(η, p) = ep(qη−1)
(2/p2 − 2qη/p+ q2η

2/p2 − 2/p+ 1

)
(75)

= egη (
2− 2pqη + q2ηp

2

2− 2p+ p2
) (76)

= egη (1 +
−p2 + 2p− 2pqη + q2ηp

2

(p− 1)2 + 1
) (77)

= egη (1 +
p[−p+ 2− 2qη + q2ηp]

(p− 1)2 + 1
) (78)

= egη (1 +
p[p(q2η − 1) + 2(1− qη)]

(p− 1)2 + 1
) (79)

= egη (1 +
p · (qη − 1) · (p(qη + 1)− 2)

(p− 1)2 + 1
) (80)

= egη (1 +
gη(hη − 2)

(p− 1)2 + 1
) (81)
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Figure 12. Comparison between F (η) and G(η, p). When p ≥ 2 and η ∈ [e−4, 0.5], we can see that G(η, p) ≥ F (η). And actually this
gap increase as p increases.

From Lemma A.7, it’s easy to see that

G1(η, p) > (1− η) · (1 + ln(1− η) · (2p− 2)

(p− 1)2 + 1
) (82)

> 1− η + (1− η) ln(1− η) (83)

Here we use ln(1− η) < 0 and the property that f(p) := 2p−2
(p−1)2+1 ≤ f(2) = 1.

Similarly, for the second term of G, we have

G2(η, p) = e−p(1+qη)
(2/p2 + 2qη/p+ q2η

2/p2 − 2/p+ 1

)
(84)

= e−hη (
2 + 2pqη + q2ηp

2

2− 2p+ p2
) (85)

< (1− η) · e−2p(
2 + 2p+ p2

2− 2p+ p2
) (Lemma A.7) (86)

< 5e−4(1− η) (Lemma A.8) (87)

Therefore we have

G(η, p)− F (η) = G1(η, p)−G2(η, p)− F (η) (88)

> 1− η + (1− η) ln(1− η)− 5e−4(1− η)− [1− η − 2zηϕ(zη)] (89)

= 2zηϕ(zη)− (1− η)[5e−4 − ln(1− η)] (90)
= Q(η) (91)

where zη = Φ−1
(
1− η

2

)
and ϕ(x) = 1√

2π
e−x2/2.
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Note that for m(x) = xϕ(x), m′(x) = (1− x2)ϕ(x), and thus m(x) is strictly decreasing on x ∈ (−∞,−1) ∪ (1,∞) and
strictly increasing on (−1, 1). And further note that Φ−1(·) is strictly decreasing and continous, then since η ∈ [e−2p, 0.5],
zη ∈ [Φ−1(0.75),Φ−1(1 − e−2p/2)], where Φ−1(0.75) ≈ 0.674 and Φ−1(1 − e−2p/2) > Φ−1(0.975) ≈ 1.960 > 1.
Therefore, m2(η) = 2m(zη) first increase, and then decrease on η ∈ [e−2p, 0.5] ⊃ [e−4, 0.5].

Similarly, for n(η) = (1− η)[5e−4 − ln(1− η)], n′(η) = 1− 5e−4 + ln(1− η). We can see n′(η) consistently increase
for η ∈ [0, η∗] ⊃ [e−2p, 0.5] ⊃ [e−4, 0.5], where η∗ = 1− exp(5e−4 − 1) ≈ 0.632.

Combining these, to prove that Q(η) (Equation (91)) is positive on η ∈ [e−4, 0.5], we just need to make sure m2(e
−4) >

n(e−4) and m2(0.5) > n(0.5). And from calculation we get

m2(e
−4) ≈ 0.116 > n(e−4) ≈ 0.108, m2(0.5) ≈ 0.429 > n(0.5) ≈ 0.392 (92)

Therefore, we have G(η, p)− F (η) > Q(η) > 0 for all p ≥ 2 and η ∈ [e−4, 0.5]. This completes the proof.

Remark A.10. Lemma A.9 is the key lemma of the whole proof, which compares the variance caused by the inverse sparsity
function of up and gate function. We can further visualize F (η) and G(η, p) in Figure 12. We see that the visualization
results match our proof, and showing that larger p will has larger G(η, p)− F (η) values.

Lemma A.11. Assume that x ∈ Rm and W ∈ Rm×n are random vector and matrix whose elements are independent to
each other. And all the Wij in W satisfies Wij ∼ N (0, σ2)(i ∈ [m], j ∈ [n]). Then we have

E[∥xW∥22] = nσ2E[∥x∥22]. (93)

Furthermore, if all xi are i.i.d. (independent and identically distributed), with mean 0 and variance σ2
x, then

E[∥xW∥22] = nmσ2 · σ2
x. (94)

Proof. Let Wj denote the j-th column of matrix W . Due to independence:

E[∥xW∥22] = E

 n∑
j=1

(xWj)
2

 =

n∑
j=1

E
[
(xWj)

2
]
= nE

[
(xWj)

2
]

(95)

Similarly by independence between x and W .

E
[
(xWj)

2
]
= E

( m∑
i=1

xiWij

)2
 (96)

=

m∑
i=1

E[x2
i ]E[W 2

ij ] + 2
∑
i<k

E[xixk]E[WijWkj ] (97)

=

m∑
i=1

E[x2
i ]σ

2 + 0 (98)

= σ2E

[
m∑
i=1

x2
i

]
(99)

= σ2E[∥x∥22] (100)

Combine them and we get the first equation. And the second equation is totally similar.

Lemma A.12. If a ∼ N (0, σ2
a), b is a random variable independent to a, sparsity function St is defined as Equation (5).

Then for any t > 0, E[(a− St(a)) · b] = E[a · (b− St(b))] = 0.

Proof. Just need to note that a and b are independent and from symmetry, E[St(a)] = 0, and then the proof is trivial.
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B. Sparsity Insensitivity of the Up Projection in Dense LLMs
We evaluate the sparsity sensitivity of the up projection on LLaMA-3-8B (Dubey et al., 2024), with results consistent with
our findings on MoE models.Some results are presented in Table 2.

Table 2. Sparsity Insensitivity of the Up Projection in Dense LLMs
METHOD BOOL Q SCI Q OPENBOOKQA WINOGRANDE ARC CHALLENGE ARC EASY AVERAGE

BASE 0.8187 0.961 0.370 0.7348 0.5026 0.8085 0.6993
UP-90% 0.7116 0.925 0.300 0.6717 0.4002 0.7066 0.6192
DOWN-90% 0.7780 0.959 0.336 0.6922 0.4241 0.7504 0.6566

C. Downstream Tasks Performance Details
We present the detailed evaluation results of FloE and baseline methods across downstream tasks in Section 4.2 in Table 3.

We evaluate performance on three complex downstream tasks: MMLU, GSM8K, and HumanEval in Table 4, which pose
significant challenges for small distilled models. Our method outperforms smaller models of similar scale across tasks.
Despite retaining only 93% of the base model’s accuracy on these tasks, it significantly surpasses other baselines (Mistral-7B
and Llama3.2-3B).

We also evaluate the impact of different projection matrix sparsification sensitivity on downstream tasks in Table 5.

Table 3. Performance of Downstream Tasks under Different Compression Methods
MMLU@5 BOOLQ SCIQ QA WG ARC-C ARC-E AVERAGE

MIXTRAL-8*7B 0.695 0.853 0.968 0.354 0.762 0.567 0.843 0.720

HQQ INT3 0.608 0.809 0.955 0.292 0.712 0.481 0.800 0.665
CATS-80% 0.617 0.792 0.903 0.322 0.670 0.515 0.782 0.657
CHESS-80% 0.612 0.802 0.912 0.302 0.694 0.498 0.781 0.657
FLOE-Wup-80% 0.654 0.829 0.944 0.344 0.732 0.532 0.816 0.693

HQQ INT2 0.234 0.485 0.331 0.144 0.493 0.212 0.279 0.311
CATS-90% 0.377 0.704 0.826 0.272 0.586 0.442 0.709 0.559
CHESS-90% 0.424 0.727 0.839 0.278 0.604 0.410 0.694 0.568
FLOE-Wup-90% 0.601 0.787 0.933 0.312 0.670 0.497 0.788 0.656

FLOE-80% 0.605 0.810 0.951 0.336 0.717 0.509 0.803 0.676
FLOE-90% 0.531 0.835 0.952 0.276 0.695 0.458 0.762 0.644

Table 4. Performance Comparison of Models under dense model
MODEL GSM8K@8(ACC) HUMANEVAL@0(PASS@1) MMLU@5(ACC) AVERAGE

BASE MODEL 58.0 33.5 69.5 53.67
FLOE-80 51.7 32.3 65.4 49.80
MISTRAL-7B 39.4 29.2 62.5 43.70
FLOE-90 40.9 30.5 60.1 43.83
LLAMA-3.2-3B 26.6 25.6 56.4 36.20

D. Sparsification Insensitivity of the Up Projection in More MoE models
The sparsity rates for Phi-3.5-MoE-Instruct are presented in Table 6. Due to the smaller hidden layer dimensions of
DeepSeek V2’s experts, the sparsity rates tested were correspondingly lower, with results in Table 7.
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Table 5. Performance of Downstream Tasks Under Different Sparse Strategies
0% 50% 60% 70% 80% 90%

GATE
0.7247

0.7228 0.7140 0.7035 0.6640 0.5897
UP 0.7199 0.7148 0.7038 0.6971 0.6646
DOWN 0.7233 0.7210 0.7201 0.7194 0.7054

Table 6. Sparsification Sensitivity of MoE Models
MODEL OPERATION 50% 60% 70% 80% 90%

MIXTRAL-8×7B
GATE 5.8151 6.3379 7.2570 9.1439 18.5280
DOWN 5.1583 5.2101 5.3252 5.6147 6.5511
UP 5.3164 5.5390 5.9795 6.9141 9.1250

PHI-3.5-MOE-INSTRUCT
GATE 5.4386 5.7809 6.4006 7.6114 11.2538
DOWN 5.1495 5.2051 5.3255 5.6377 6.6271
UP 5.4092 5.6855 6.2642 7.3284 10.2146

E. Quantization Insensitivity of the Up Projection in More MoE models
Besides Mixtral 8×7B, we also evaluated the quantization insensitivity of the up-projection in Phi-3.5-MoE-instruct (Abdin
et al., 2024a), DeepSeek-MoE-16B-Base (Dai et al., 2024), and Qwen1.5-MoE-A2.7B (Team, 2024), all of which show that
the up-projection is the least sensitive to ultra-low-bit quantization.The results are shown in Table 8.

F. Memory Footprint of Learning-based Contextual Sparsity Predictors
While some existing approaches rely on learning-based prediction methods (Liu et al., 2023; Shin et al., 2024), these methods
often incur significant memory costs. For instance, in the Mixtral-8×7B model, where the hidden state dimension d is 4096
and the gating weight matrix Wgate in an MLP block has a size of d× k = 4096× 14336, PowerInfer (Xue et al., 2024b)
requires (4096 × 1024 + 1024 × 14336) × 2 (bytes) × 256 = 9GB of memory when the rank of the DEJAVU predictor
(Liu et al., 2023) is set to 1024. Similarly, although SparseInfer (Shin et al., 2024) achieves a more memory-efficient design
by storing only the sign bit of each element, compactly packed into 32-bit variables, it still incurs a memory footprint of
14336× 160× 4 (bytes)× 256 = 2.19GB.
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Table 7. Sparsification Sensitivity of DeepSeek-V2
MODEL OPERATION 30% 50% 70%

DEEPSEEK-V2
GATE 8.6434 8.8331 9.8083
DOWN 8.6264 8.6400 8.7223
UP 8.6456 8.7818 9.2083

Table 8. Quantization Sensitivity of MoE Models
MODEL OPERATION INT8 INT4 INT3 INT2 INT1

PHI-3.5-MOE-INSTRUCT
GATE 5.768 5.785 5.952 6.623 608.7
DOWN 5.768 5.772 6.067 7.733 365.9
UP 5.769 5.788 5.899 6.599 209.3

DEEPSEEK-MOE-16
GATE 8.476 8.497 8.558 9.020 112.8
DOWN 8.476 8.659 9.364 27.70 350.1
UP 8.476 8.489 8.602 9.090 83.57

MIXTRAL-8×7B
GATE 5.119 5.158 5.310 6.245 1130
DOWN 5.121 5.270 5.968 14.36 1910
UP 5.119 5.151 5.281 6.177 520.1

QWEN-1.5-A2.7B
GATE 9.227 9.258 9.364 10.72 102.0
DOWN 9.224 9.419 9.655 12.53 138.4
UP 9.226 9.270 9.426 10.19 71.06
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