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ABSTRACT

Heterogeneous model fusion enhances the performance of LLMs by integrating
the knowledge and capabilities of multiple structurally diverse models. How-
ever, existing approaches often rely solely on selecting the best output for each
prompt from source models, which underutilizes their full potential due to limited
source knowledge and results in sparse optimization signals. To address this lim-
itation, we propose FuseRL, a novel two-stage framework comprising FuseSFT
and FusePO to maximize the utilization of source LLMs. FuseSFT establishes
a robust initialization by integrating the strengths of heterogeneous source mod-
els through weighted supervised fine-tuning (SFT) on diverse outputs for each
prompt. FusePO optimizes weighted preferences based on the outputs of multiple
source models to enable superior alignment performance. Extensive experiments
demonstrate the effectiveness of our framework across various preference align-
ment methods, including RLOO, DPO, and SimPO. Using Llama-3.1-8B-Instruct
as the target model, our approach achieves competitive performance among 8B
LLMs on the AlpacaEval-2 and Arena-Hard benchmarks. Further analysis sug-
gests that FuseSFT regularizes the training to reduce overfitting, while FusePO
introduces dense and diverse preference signals that enhance alignment quality.

1 INTRODUCTION

Leveraging the collective knowledge and unique strengths of multiple large language models
(LLMs) presents a highly promising avenue for enhancing generalization, robustness, and effi-
ciency across a wide range of complex and diverse tasks. The underlying rationale is that no single
LLM—particularly when constrained by scale or data—can comprehensively capture the full spec-
trum of task complexity and domain variability. Representative strategies to achieve this objective
include ensemble methods (Aniol et al., 2019; Jiang et al., 2023b; Xu et al., 2024), Mixture of Ex-
perts (MoE) (Fedus et al., 2022; Sukhbaatar et al., 2024), model merging (Wortsman et al., 2022;
Akiba et al., 2024), and heterogeneous model fusion (Wan et al., 2024a;b; Shi et al., 2024; Yang
et al., 2024c). While these techniques share the common goal of integrating multiple LLMs to
capitalize on their collective strengths, each comes with its own advantages and challenges.

Ensemble methods combine the outputs of multiple models to generate more robust predictions.
However, they typically require running all constituent models simultaneously, resulting in substan-
tial memory and computational overhead. MoE partially alleviates these efficiency challenges by
activating only a subset of parameters during inference. Nonetheless, the entire model generally
remains loaded in memory, and training MoE systems can be resource-intensive. Model merging
integrates models with identical architectures into a unified parameter set, enhancing robustness and
generalization but limiting applicability to homogeneous model families. In contrast, heterogeneous
model fusion employs techniques like multi-teacher knowledge distillation to transfer complemen-
tary expertise across diverse model configurations. However, these methods often require complex
vocabulary alignment to fuse the output distributions of component models. Implicit model fusion
(IMF) addresses this challenge by directly utilizing the outputs (responses) of source models for het-
erogeneous model fusion. For example, WRPO (Yang et al., 2024c) employs progressive adaptation
to gradually shift optimization from target model outputs to high-quality source model responses.
Moreover, existing heterogeneous model fusion methods often face another critical challenge: they
limit their potential by focusing exclusively on selecting the best output for each prompt from source
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Figure 1: Effect of using a single (SFT+PO) vs. multiple (FuseRL) source LLMs for each prompt
for heterogeneous model fusion on UltraFeedback (Cui et al., 2024). Accuracy (Meng et al., 2024)
measures the ability to accurately distinguish between preferred and dispreferred responses by com-
paring the average log-probabilities assigned by different fused models. Left: Accuracy for multiple
responses generated from a single source model. Right: Accuracy across responses generated by
different source models. Compared to directly applying SFT followed by preference optimization
(SFT+PO), FuseRL demonstrates superior performance in distinguishing responses, which reflects
improved alignment with human preferences. More details are provided in Appendix D.1.

models. This narrow and static reliance on source knowledge introduces notable drawbacks, primar-
ily stemming from bias and limited response diversity. The preferences generated by a single model
reflect its unique strengths, weaknesses, and inherent response distribution, which can introduce
systematic errors and restrict the variety of training data. This may result in a biased policy that
overfits to the specific characteristics of that model and struggles to generalize to broader scenarios.
Furthermore, the lack of diversity in source model responses limits the policy’s ability to learn from
a wide range of high-quality examples, leading to sparse training signals.

This paper focuses on improving the utilization of source LLMs and providing denser, more diverse
training signals for implicit model fusion. To this end, we introduce FuseRL, a novel reinforcement
learning framework specifically designed to unlock the potential of fusing diverse source models
through a two-stage process. FuseSFT: This stage improves the target model by fine-tuning it with
high-quality responses from multiple source models. By employing a reward-based mechanism,
FuseSFT prioritizes responses with high informativeness and relevance and establishes a strong
foundation for subsequent fusion training. Moreover, FuseSFT effectively mitigates the squeezing
effect (Ren & Sutherland, 2025), which can emerge during SFT and impede subsequent preference
optimization. FusePO: Building upon the initialization from FuseSFT, FusePO aligns the target
model with human preferences by dynamically leveraging weighted preference signals derived from
multiple source models. This stage emphasizes high-reward preferences while maintaining adapt-
ability across various preference optimization methods. By improving the integration of heteroge-
neous capabilities and maximizing the utilization of source model outputs, our framework aims to
provide a more robust approach to heterogeneous model fusion. In Figure 1, we present a prelimi-
nary experiment exploring how FuseRL impacts the model’s ability to distinguish response quality.
The results demonstrate that more effective utilization of diverse source models leads to richer and
denser preference signals and improved alignment with human preferences.

Extensive experiments validate the effectiveness of our framework across various preference align-
ment methods, including RLOO, DPO, and SimPO. Our approach achieves state-of-the-art perfor-
mance among 8B-sized LLMs on the AlpacaEval-2 and Arena-Hard benchmarks. Further analysis
shows that fully leveraging the responses from multiple LLMs mitigates the bias introduced when re-
lying on a single model, resulting in more diverse preference signals that better approximate the true
reward distribution. Moreover, weighting preferences by their associated rewards reduces variance
in the training signals by prioritizing high-quality, informative samples and down-weighting subop-
timal ones. By reducing both bias and variance, the policy is able to learn from diverse data and
dense signals, which in turn improves generalization and ensures stable and efficient convergence.
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2 PRELIMINARIES

Reinforcement learning from human feedback (RLHF) (Christiano et al., 2017) is a framework for
aligning LLMs with human preferences. The training objective in RLHF is to optimize a policy πθ

to maximize reward signals from human feedback while constraining excessive deviations from a
reference policy πref:

J(πθ) = Ex∼D,y∼πθ

[
r(x, y)

]
− β KL(πθ∥πref), (1)

where r(x, y) is a reward function that captures human preferences for a prompt x and response y,
KL(πθ∥πref) penalizes deviations of the policy πθ from the reference policy πref, and β controls the
trade-off between maximizing the overall reward and maintaining adherence to the reference policy.
This trade-off ensures stability during training and mitigates risks such as mode collapse.

REINFORCE The REINFORCE (Williams, 1992) algorithm is a classic policy gradient method
that can be adapted to implement the RLHF objective. REINFORCE updates the policy by maxi-
mizing the expected reward through gradient ascent. The policy gradient is given by:

∇θJ(πθ) = Ex∼D,y∼πθ
[∇θ log πθ(y|x) · r̂(x, y)] , (2)

where r̂(x, y) = r(x, y)− β∇θKL(πθ(·|x)∥πref(·|x)) is the adjusted reward with KL penalty.

To further stabilize training, a baseline b can be introduced into the objective function of REIN-
FORCE to reduce the variance of reward estimates while maintaining their unbiased nature. REIN-
FORCE Leave-One-Out (RLOO) (Kool et al., 2019) estimates the baseline b using multiple online
samples: b(x, yi) = 1

k−1

∑
j ̸=i r̂(x, yj), where yi represents the ith response independently sam-

pled from the policy πθ conditioned on the prompt x. With the baseline term, the adjusted reward in
Eq. (2) becomes:

r̂(x, y) = r(x, y)− β∇θKL(πθ(·|x)∥πref(·|x))− b(x, y).

Direct Preference Optimization (DPO) DPO is an offline preference optimization method that
directly aligns LLMs with human preferences, offering an alternative to traditional RLHF. Unlike
RLHF, which relies on reinforcement learning to optimize a reward model and iteratively improve
the policy, DPO builds on the Bradley-Terry (BT) objective (Bradley & Terry, 1952). This objec-
tive models the probability of the preferred response yw being ranked higher than the dispreferred
response yl:

p(yw ≻ yl|x) = σ(r(x, yw)− r(x, yl)), (3)
where r(x, y) is the reward function, and σ is the sigmoid function. DPO reparameterizes r(x, y) in
Eq. (1) as:

r(x, y) = β log
πθ(y|x)
πref(y|x)

+ β logZ(x), (4)

where Z(x) =
∑

y πref(y|x)exp
(
1
β r(x, y)

)
is the partition term. From this formulation, DPO de-

fines its objective as:
LDPO(πθ;πref) = −E(x,yw,yl)∼D[log p(yw ≻ yl|x)]. (5)

SimPO (Meng et al., 2024) extends DPO by introducing a reference-free reward formulation:

rSimPO(x, y) =
β

|y|
log πθ(y|x). (6)

To enhance the differentiation between preferred and non-preferred responses, SimPO further intro-
duces a reward margin γ and modifies the BT probability as:

p(yw ≻ yl|x) = σ(rSimPO(x, yw)− rSimPO(x, yl)− γ). (7)

3 METHODOLOGY

To enhance the utilization of outputs from multiple source models for implicit model fusion, we
propose a novel two-stage framework, FuseRL, which consists of two key components: FuseSFT
and FusePO. FuseSFT fine-tunes the target model using high-quality responses from multiple source
models, prioritizing those with greater informativeness and relevance. FusePO further aligns the
target model with human preferences by leveraging weighted preference signals, emphasizing high-
reward responses while ensuring robustness and applicability across various preference optimization
methods. An overview of this framework is illustrated in Figure 2.
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Figure 2: Overview of the proposed FuseRL framework. It comprises two stages: FuseSFT, which
fine-tunes the target model using high-quality responses from diverse source models via a reward-
based mechanism to prioritize informative and relevant outputs; and FusePO, which dynamically
adjusts weighted preference pair contributions to align the target model with human preferences.

3.1 NOTATIONS

Algorithm 1 Data Construction and Weighting
INPUT: Instruction set X , source models M =
{M1,M2, . . . ,MK}, reward model r(x, y).
Data Split: Split the instruction set into:

X = Xsft ∪ Xpo, Xsft ∩ Xpo = ∅.

Sampling and Weighting:
for each x in Xsft or Xpo do

for each Mi ∈M do
Generate responses: Yi = {y1i , . . . , yNi }.
Compute rewards: Ri = {r(x, yji )}Nj=1.
Select yi = argmaxy∈Yi r(x, y).

end for
Compute weight: wx,i =

exp(r(x,yi)/α)∑K
i=1 exp(r(x,yi)/α)

Store {x, yi,Yi,Ri, wx,i} for each Mi.
end for

Our approach begins by constructing data
samples capturing strengths of multiple source
models. This ensures the target model is
trained on diverse and informative responses.

Given K source models M =
{M1,M2, . . . ,MK}, each Mi generates
a response set Yi for a given input x ∈ X :
Yi = {y1i , y2i , . . . , yNi }, for i = 1, 2, . . . ,K.
An external reward model is then used to
assign a reward score r(x, y) to each re-
sponse y ∈ Yi, resulting in the reward set
Ri = {r(x, y1i ), r(x, y2i ), . . . , r(x, yNi )}.
To regulate the contributions of the source
models, we assign a weight to each model for
a given input x. Let yi = argmaxy∈Yi

r(x, y)
represent the response from source model Mi

that achieves the highest reward given x. The
weight for model Mi is defined as:

wx,i =
exp( r(x,yi)

α )∑K
i=1 exp( r(x,yi)

α )
, (8)

where α is the temperature coefficient. Refer to Algorithm 1 for further details.

3.2 FUSESFT

Given a prompt x and response y, the supervised fine-tuning (SFT) objective for the target model
πθT is defined as:

LSFT(y, x;πθT ) = − log πθT (y|x). (9)

FuseSFT extends the standard SFT objective by utilizing responses {yi}Ki=1 generated from all K
source models to prioritize those with higher informativeness and relevance, which establishes a
robust foundation for subsequent optimization. Using a similar weighting scheme as defined in Eq.
(8), FuseSFT applies a weighted combination of the highest-reward responses during fine-tuning: 1

LFuseSFT =
∑
x∈X

K∑
i=1

wx,i · LSFT(y, x;πθT ). (10)

While FuseSFT is designed to leverage high-quality responses from multiple source models, its ben-
efits extend beyond simple data aggregation. Recent work on learning dynamics in LLM finetuning

1The rationale for FuseSFT’s modified weighting scheme is discussed in Section 4.1 and Appendix J.
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Algorithm 2 DPO-Implemented FuseRL
INPUT: Target model πθT , learning rates ηsft and
ηpo, constructed data from Algorithm 1.
STAGE 1: FuseSFT

for each prompt x in Xsft do
for each source model Mi ∈M do

Retrieve {x, yi,Yi,Ri, wx,i

}
.

end for
θT ← θT − ηsft · ∇θTLFuseSFT.

end for
STAGE 2: FusePO

for each prompt x in Xpo do
for each source model Mi ∈M do

Retrieve {x, yi,Yi,Ri, wx,i

}
.

Form preference data (x, ywi , y
l
i) from Yi

andRi.
end for
Minimize Eq. (11): θT ← θT − ηpo ·
∇θTLFusePO.

end for
OUTPUT: Final fused model θ∗T ← θT .

(Ren & Sutherland, 2025) reveals that the
early-stage supervision signal plays a criti-
cal role in shaping the model’s future behav-
ior—especially in downstream preference op-
timization. Overly confident or homogeneous
supervision can lead to a compression of gra-
dient signals (the squeezing effect), which may
adversely affect the model’s alignment perfor-
mance. By incorporating diverse responses and
weighting them softly rather than selecting only
the highest-scoring one, FuseSFT mitigates this
effect and better preserves the gradient diversity
necessary for effective preference learning.

3.3 FUSEPO

Building on FuseSFT, FusePO aims to dynami-
cally leverage weighted preference signals de-
rived from multiple source models. By pri-
oritizing high-reward preferences, it optimizes
the target model using diverse and high-quality
preference pairs. Moreover, FusePO employs a
general preference learning loss function, Lpref,
which can be instantiated with methods such as
RLOO, DPO, or others. Unlike FuseSFT, FusePO leverages the complete response set Yi from each
source model to construct training data. For instance, responses from the same source model are
used to create preference pairs when necessary to minimize distributional variance and enhance the
overall learning process. Specifically, the FusePO loss function is defined as:

LFusePO =
∑
x∈X

K∑
i=1

wx,i · Lpref(Yi,Ri, x;πθT ). (11)

In this work, we investigate the implementation of Lpref using various preference optimization meth-
ods, including RLOO, DPO, and SimPO (see experiments). Furthermore, to better illustrate FuseRL,
we use DPO as an example to outline the process in Algorithm 2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Models for fusion. In our experiments, we utilize four diverse open-source LLMs as source
models: Mistral-Large-Instruct-2407 (Jiang et al., 2023a), Gemma2-27B-IT (Riviere et al., 2024),
Qwen2.5-72B-Instruct (Yang et al., 2024b), and DeepSeek-V2-Chat-0628 (Shao et al., 2024). These
models were chosen for their diverse architectures, parameter scales, and complementary strengths,
aligning with our goal of heterogeneous model fusion. For the target model, we employ Llama-3.1-
8B-Instruct (Dubey et al., 2024) for its balance of efficiency and performance.

Preference optimization methods. To assess the generalizability of our FuseRL framework, we
implement RLOO (Ahmadian et al., 2024), DPO (Rafailov et al., 2023), and SimPO (Meng et al.,
2024) in the main experiments. RLOO serves as a traditional reinforcement learning algorithm,
whereas DPO and SimPO represent reference-based and reference-free preference optimization
methods, respectively. The notable distinctions among these algorithms offer a solid foundation
for evaluating the adaptability of our framework.

Baselines. We evaluate our method with various baseline models, including proprietary LLMs,
source and target LLMs, ensemble LLMs, and prior approaches for heterogeneous model fusion.
Due to space limitations, detailed descriptions of all baseline settings are provided in Appendix D.2.

Training dataset. We utilize UltraFeedback (Cui et al., 2024) as our training dataset. Ultra-
Feedback is a large-scale preference dataset containing approximately 64,000 samples, primarily
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Table 1: Results of FuseRL and baselines on AlpacaEval-2 and Arena-Hard. All methods are evalu-
ated using GPT-4-1106-Preview as the judge model. Bolded numbers indicate the best performance
and underlined numbers suggest the second-best performance. Scores in parentheses indicate the
points of increase or decrease relative to the counterpart in the previous row.

Model Size AlpacaEval-2 Arena-Hard
LC (%) WR (%) Avg. Len. SC (%) WR (%) Avg. Len.

Proprietary LLMs
GPT-4o - 57.5 51.3 1873 69.9 79.2 2988
GPT-4-Turbo - 50.0 50.0 2049 50.0 50.0 2748

Source&Target LLMs
Llama-3.1-8B-Instruct 8B 28.3 28.7 1962 23.8 28.1 2695
Mistral-Large-Instruct 123B 54.3 46.8 1771 63.1 70.4 1762
Gemma2-27B-IT 27B 55.5 41.0 1558 47.4 57.5 2545
Qwen2.5-72B-Instruct 72B 50.9 55.2 2249 63.4 78.0 3446
DeepSeek-V2-Chat 236B 45.9 40.7 1843 58.9 68.6 2732

Ensemble LLMs
GPT4-Top1 458B 72.1 72.0 2171 92.2 94.9 3157
LLM-Blender-Top1 458B 55.6 49.7 1857 55.9 66.2 2675
MoA 458B 58.7 76.8 2982 72.7 87.1 4243

Heterogeneous Model Fusion
FuseLLM 8B 36.0 33.8 1930 24.6 32.1 2585
FuseChat 8B 38.1 35.2 1866 24.8 32.7 2653
WRPO 8B 67.7 74.1 2493 40.5 58.1 3801
SFT 8B 41.5 38.6 1901 28.8 40.2 2831
FuseSFT 8B 38.8 (-2.7) 33.7 (-4.9) 1805 26.4 (-2.4) 35.8 (-4.4) 2672
SFT + RLOO 8B 59.0 63.3 2315 36.5 53.4 3324
FuseRLRLOO (Ours) 8B 67.7 (+8.7) 70.6 (+7.3) 2324 40.8 (+4.3) 58.6 (+5.2) 3523
SFT + SimPO 8B 64.7 67.6 2269 39.8 55.6 3343
FuseRLSimPO (Ours) 8B 70.6 (+5.9) 71.3 (+3.7) 2172 41.2 (+1.4) 56.4 (+0.8) 2866
SFT + DPO 8B 67.1 69.8 2249 42.2 57.6 3360
FuseRLDPO (Ours) 8B 70.1 (+3.0) 70.9 (+1.1) 2152 43.7 (+1.5) 57.5 (-0.1) 3060

focused on areas such as instruction-following, truthfulness, honesty, and helpfulness. To imple-
ment FuseRL, we sample responses from various source models for each prompt in the dataset.
Specifically, each source model generates five responses per prompt using top-p sampling (see Ap-
pendix D.3 for sampling details). These responses are then evaluated by an external reward model,
ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024a).

We partition the dataset into two splits with a 4:6 ratio for our two-stage training process. In the
FuseSFT stage, we aggregate responses generated by the source models and select the top four
responses based on reward scores. This strategy balances diversity with the quality of training
samples. As shown in our comparative analysis in Appendix J, this selection method outperforms
selecting the best responses solely from individual source models. In the FusePO stage, due to
computational constraints, we select two responses per source model: one with the highest reward
score and one with the lowest RM score among the five sampled responses, forming Yi. Detailed
training hyperparameters and implementation specifics are provided in Appendix D.3.

Evaluation. We assess the performance of our model on two widely recognized evaluation bench-
marks in the research community: AlpacaEval-2 (Li et al., 2023; Dubois et al., 2024) and Arena-
Hard (Li et al., 2024). AlpacaEval-2 comprises 805 questions sourced from five diverse datasets. We
evaluate performance using two metrics: length-controlled (LC) win rate and raw win rate (WR),
benchmarking against GPT-4-Preview-1106. The judge model for this evaluation is also GPT-4-
Preview-1106. Arena-Hard consists of 500 challenging user queries derived from Chatbot Arena
(Chiang et al., 2024), with performance metrics including style-controlled (SC) win rate and raw win
rate (WR), compared against GPT-4-0314. The judge model employed for Arena-Hard evaluation is
GPT-4-Preview-1106. These benchmarks were selected for their capacity to comprehensively eval-
uate the model’s conversational capabilities. Furthermore, we present the performance of FuseRL
across a broader range of downstream tasks, including question answering, reasoning, mathematics,
and coding. Due to space limitations, detailed results are provided in Appendix F.

4.2 OVERALL RESULTS

Table 1 presents the results of our method compared to a range of strong baseline methods on both
AlpacaEval-2 and Arena-Hard. Based on the experimental results, we identify several key insights.
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Firstly, through our two-stage training process, FuseRL achieves substantial performance gains com-
pared to the initial Llama-3.1-8B-Instruct (target model) on both AlpacaEval-2 and Arena-Hard
benchmarks. Specifically, FuseRLDPO demonstrates an impressive 41.8-point improvement in LC
win rate on AlpacaEval-2 and a 19.9-point improvement in SC win rate on Arena-Hard. Moreover,
FuseRL outperforms all source LLMs and proprietary LLMs on AlpacaEval-2, including Qwen-2.5-
72B-Instruct, Mistral-Large-Instruct, GPT-4-Turbo, and GPT-4o, and others.
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Figure 3: t-SNE visualization of prompts from
UltraFeedback, AlpacaEval-2, and Arena-Hard.
The prompt embeddings are projected via t-
SNE. While AlpacaEval-2 prompts are dis-
tributed relatively evenly across the UltraFeed-
back distribution, the Arena-Hard prompts show
a more pronounced distributional deviation.

Secondly, in comparison to ensemble LLM
methods, FuseRL achieves higher LC win rates
than both LLM-Blender-Top1 and MoA on the
AlpacaEval-2 benchmark. Notably, consider-
ing that GPT4-Top1 represents a strong and sur-
posable upper bound for fusion performance
(Wan et al., 2024b; Yang et al., 2024c), it is
remarkable that FuseRL closely approximates
this upper bound on AlpacaEval-2, despite be-
ing much smaller in size. However, the per-
formance gap with GPT4-Top1 on Arena-Hard
is significantly larger. We argue that this per-
formance discrepancy stems from inherent dif-
ferences in the distribution and complexity of
prompts between UltraFeedback and Arena-
Hard, as visually illustrated in Figure 3.2

Thirdly, our proposed FuseRL consistently out-
performs previous heterogeneous model fusion
techniques, including FuseLLM, FuseChat, and
WRPO. Specifically, compared to the most rel-
evant baseline, WRPO, our FuseRLDPO achieves improvements of 2.4 points on AlpacaEval-2 and
3.2 points on Arena-Hard. Furthermore, when compared to using only the best individual source
model for each prompt (i.e., SFT+RLOO, SFT+DPO, or SFT+SimPO), FuseRL delivers substantial
gains across all configurations—RLOO, DPO, and SimPO. Notably, the performance of RLOO is
comparatively lower than that of DPO and SimPO, likely due to the limited number (two) of re-
sponses used for each prompt, which constrains its overall performance. These results collectively
underscore the effectiveness of FuseRL in leveraging the dense and diverse preference signals from
heterogeneous source models to drive more robust and superior alignment performance.

4.3 FUSESFT AND FUSEPO: ABLATION STUDIES

Table 1 reveals another intriguing phenomenon: while the target model trained solely with SFT ini-
tially outperforms the FuseSFT model, the FuseSFT model achieves superior performance after the

+7.65
+8.70

+5.27
+5.91

+1.83

+3.02

Figure 4: Ablation studies for FuseRL across
various preference learning methods, including
RLOO, SimPO, and DPO. SFT refers to apply-
ing standard supervised fine-tuning on the target
model, while FuseSFT extends this by incorpo-
rating multiple responses from source models.
FuseRL combines FuseSFT and FusePO.

second stage. Furthermore, as illustrated in
Figure 4, the target model consistently shows
improved performance after applying FuseSFT
across all (off-policy) preference optimization
methods, including DPO, SimPO, and RLOO.
This observation indicates that the alignment
performance achieved during the first stage
does not necessarily determine the eventual
performance gains realized through subsequent
preference learning. Although FuseSFT may
not yield better alignment results in the first
stage, it enhances the effectiveness of prefer-
ence learning from source models in the sec-
ond stage. We speculate that this is due to two
primary factors. First, learning from multiple
responses, rather than focusing solely on the
highest-scoring response, introduces additional

2We use all-mpnet-base-v2 from https://huggingface.co/sentence-transformers/
all-mpnet-base-v2 to generate prompt embeddings.
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Table 2: AlpacaEval-2 results of FuseRL with
varying numbers of source models (1, 2, and
4), where the number of models is the only
varying factor and all are used consistently in
both the FuseSFT and FusePO stages. The re-
sults show that increasing the number of source
models during fusion leads to consistent im-
provements in both the LC win rate and WR.

Method # Source Models AlpacaEval-2
LC (%) WR (%)

FuseRLDPO

4 70.1 70.9
2 69.1 66.8
1 65.5 62.4

0.356 0.362

Figure 5: Results of FuseRLDPO compared to
SFT+DPO on AlpacaEval-2, with preference
scores provided by GPT-4-Preview-1106 using
GPT4-Top1 as reference. Left: Absolute bias
and variance. Right: Absolute error distribution.

challenges. FuseSFT helps regularize the training process, mitigating overfitting to preferences de-
rived from individual source models. Second, FuseSFT enables the target model to generate more
diverse responses, which benefits preference optimization in the second stage. In summary, while
FuseSFT may initially fall short in delivering superior alignment results, it establishes a more robust
foundation that improves preference learning in the second stage. This aligns with our earlier discus-
sion (Section 3.2) and the findings in (Ren & Sutherland, 2025), which show that early supervision
signals play a pivotal role in determining the quality of downstream preference optimization.

Furthermore, we observe that following FuseSFT, our proposed FusePO delivers consistently better
results compared to existing alignment methods such as DPO. This suggests that FusePO, by effec-
tively balancing the learning signal from diverse multi-source preference pairs, is better equipped to
guide the model toward desirable behavior, leading to more robust alignment results.

4.4 SCALING WITH THE NUMBER OF SOURCE MODELS

To assess the scalability of FuseRL with respect to the number of source models, we conducted a
series of experiments under different configurations. In the single-source setting, we used Gemma2-
27B-IT as the only source model. For the two-source configuration, we combined Gemma2-27B-
IT with Mistral-Large-Instruct-2407. The four-source setup corresponds to the original FuseRL
configuration, incorporating four diverse source models. The results, as summarized in Table 2,
reveal a clear and consistent trend: FuseRL achieves progressively stronger alignment performance
on AlpacaEval-2 as the number of source models increases from one to four. This underscores the
framework’s capability to effectively integrate heterogeneous alignment signals and leverage the
diversity among source models to improve overall alignment quality.

4.5 EFFECT OF FUSERL ON REDUCING BIAS AND VARIANCE

To assess whether FuseRL effectively reduces bias and variance during model fusion, we conducted
an experiment using DPO to compare FuseRL with the baseline fusion method (SFT+DPO), which
utilizes only one source model per prompt. We analyzed the preference scores (1–2 scale) assigned
by GPT-4-Preview-1106 to responses generated by the two fusion methods from AlpacaEval-2.
These scores were compared against the preference scores of ideal responses to calculate bias and
variance. The goal is to evaluate how the two fusion methods deviate from ideal responses. Since
GPT4-Top1 is generated by selecting the top response from source model outputs for each prompt
based on GPT-4-Preview-1106, it was used as the reference model to simulate ideal responses.

As shown in Figure 5, FuseRLDPO achieves lower absolute bias and variance compared to
SFT+DPO. Specifically, the absolute bias and variance for FuseRLDPO are 0.010 and 0.130, while
SFT+DPO shows higher values of 0.021 and 0.135. The absolute error distribution, depicted as
box plots, further highlights the advantages of FuseRLDPO. The upper whisker of the box plot for
FuseRLDPO is lower than SFT+DPO, indicating a tighter and more consistent error distribution.
These findings demonstrate that FuseRL reduces bias and variance during the model fusion process.
A theoretical analysis of the behavior is provided in Appendix E. We also conducted comparisons
using SimPO and RLOO; the corresponding results are included in Appendix K.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: Comparison of FuseRL and on-policy
preference optimization methods (RLOO,
SimPO, DPO) on AlpacaEval-2. “SFT” indi-
cates that the target model first perform SFT,
followed by on-policy preference optimization.

Method AlpacaEval-2
LC (%) WR (%)

RLOOon 44.6 44.7
SFT+RLOOon 61.6 63.0
FuseRLRLOO 67.7 (+6.1) 70.6 (+7.6)
SimPOon 55.3 47.2
SFT+SimPOon 63.0 60.5
FuseRLSimPO 70.6 (+7.6) 71.3 (+10.8)
DPOon 51.7 49.6
SFT+DPOon 66.3 69.8
FuseRLDPO 70.1 (+3.8) 70.9 (+1.1)

Table 4: Comparison of FuseRL and the base-
line fusion method (SFT+DPO) on AlpacaEval-
2 across different model sizes (1B, 3B, 8B). The
results highlight FuseRL’s consistent gains in
both LC and WR across model scales.

Size Method AlpacaEval-2
LC (%) WR (%)

1B
Original 9.7 10.3
SFT + DPO 25.6 29.7
FuseRLDPO 26.8 (+1.2) 31.0 (+1.3)

3B
Original 21.4 22.6
SFT + DPO 47.6 50.4
FuseRLDPO 50.7 (+3.1) 57.9 (+7.5)

8B
Original 28.3 28.7
SFT + DPO 67.1 69.8
FuseRLDPO 70.1 (+3.0) 70.9 (+1.1)

4.6 COMPARISON TO ON-POLICY PREFERENCE OPTIMIZATION

Given that FuseRL leverages preference optimization for model fusion and relies on responses sam-
pled from multiple source models, we conducted experiments to compare it with traditional on-
policy preference optimization methods (Rosset et al., 2024; Meng et al., 2024), which use responses
sampled exclusively from the target model. To ensure a fairer comparison, we also experimented
with the target model to first perform SFT on the best source model for each prompt, followed
by self-sampling for preference optimization, using the same training set division as employed in
our FuseRL approach. As shown in Table 3, while on-policy methods (RLOO, SimPO, and DPO)
outperform direct SFT, their performance still falls short of that achieved by our proposed FuseRL
framework. We hypothesize that this gap arises from the lower quality of on-policy responses gen-
erated by the target model, which limits the exploration of optimal response spaces, especially when
compared to those produced by significantly larger and more capable source models. This limitation
explains why performing SFT before preference optimization mitigates the issue and highlights the
importance of FuseRL in utilizing high-quality responses from diverse source models.

4.7 FUSERL ACROSS MODELS OF DIFFERENT SIZES

To assess the generalizability of FuseRL across different model scales, we conducted additional
experiments using Llama-3.2-1B-Instruct and Llama-3.2-3B-Instruct as the target models. These
models represent smaller scales compared to the primary 8B model, allowing us to evaluate how
well our method performs when applied to models with fewer parameters. The experimental results
in Table 4 show that FuseRL consistently achieves higher LC win rates than the baseline method
across all scales, including both the 1B and 3B models. This finding demonstrates that FuseRL’s
ability to fuse heterogeneous source models is not limited to larger target models but also transfers
to smaller-scale models. This highlights its potential to enhance alignment across diverse scales.

5 CONCLUSIONS

In this paper, we introduced FuseRL to enhance heterogeneous model fusion by maximizing the
utilization of multiple source models throughout the alignment process. FuseRL consists of two
components: FuseSFT, which integrates the strengths of diverse source models through weighted
supervised fine-tuning (SFT) to establish a robust initialization, and FusePO, which optimizes
weighted preferences from multiple source outputs to achieve superior alignment. Extensive experi-
ments demonstrate the effectiveness of FuseRL across alignment methods such as RLOO, DPO, and
SimPO, and show that it achieves promising performance among 8B-sized LLMs on AlpacaEval-
2 and Arena-Hard benchmarks. Our analysis reveals that FuseSFT regularizes the SFT process to
prevent overfitting to individual source models and reduce the detrimental squeezing effect, while
FusePO introduces diverse preference signals that enhance optimization and alignment with human
preferences. These findings highlight FuseRL as a powerful and effective approach for harnessing
heterogeneous model knowledge to enhance the optimization and alignment of LLMs.
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ETHICS STATEMENT

The primary objective of this work is to enhance model performance by efficiently integrating het-
erogeneous source models. We believe this approach holds significant potential for improving the
alignment of AI systems with human preferences. Throughout the research process, we have ad-
hered to responsible research practices and ethical standards. The datasets used in this study are
publicly available and widely recognized within the research community, and we have verified that
their use complies with all associated terms and conditions. We confirm that no conflicts of interest
or sponsorships have influenced the outcomes of this work.

REPRODUCIBILITY STATEMENT

To support the reproducibility of our work, we have provided comprehensive experimental details
in Section 4.1 and Appendix D.3, including data processing procedures, model configurations, and
hyperparameter settings. The source code implementing the FuseRL framework is included in the
supplementary materials and will be made publicly available.
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A LIMITATIONS

While FuseRL demonstrates strong empirical performance, it also has several limitations. First, the
framework relies on an external reward model to assess and weight responses from source models.
As a result, the quality of the training signal is sensitive to the alignment and calibration of the reward
model. Second, due to resource constraints, the evaluation was conducted on a limited set of source
models. The applicability of FuseRL to a broader range of models, including both open-source and
commercial LLMs with greater diversity, remains an open direction for future investigation.

B STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In this work, large language models were utilized solely for the purpose of polishing the manuscript.
Specifically, they were employed to improve clarity and precision of phrasing, ensure grammati-
cal correctness and spelling accuracy, and provide suggestions to enhance overall coherence and
readability. The core research problem, conceptual framework, methodologies, experimental de-
sign, analysis, and result interpretation are entirely developed by the authors. The use of LLMs is
strictly confined to improving the efficiency and quality of academic writing without influencing the
intellectual contributions of this work.

C RELATED WORK

This work is closely related to alignment techniques for LLMs, as well as collective approaches like
model ensembling and heterogeneous model fusion.
LLMs alignment Aligning large language models (LLMs) with human expectations using tech-
niques such as reinforcement learning from human feedback (RLHF) (Christiano et al., 2017) is a
critical step in developing effective and safe LLMs. InstructGPT (Ouyang et al., 2022) employs
a three-stage pipeline that includes supervised fine-tuning, reward model training, and policy op-
timization via proximal policy optimization (PPO) (Schulman et al., 2017). However, this multi-
stage process is costly, complex, and potentially unstable. To address these challenges, researchers
have explored various improvements. For instance, Ahmadian et al. (2024) showed that simpli-
fied reinforcement learning methods such as REINFORCE (Williams, 1992) can achieve alignment
effectively without relying on advanced optimization components like value-function critics and ad-
vantage estimation. Similarly, reinforcement learning from AI feedback (RLAIF) (Lee et al., 2024)
offers a cost-effective alternative to relying on expensive human-labeled data by utilizing preference
labels generated by LLMs, while achieving comparable performance to traditional RLHF methods.

Direct Preference Optimization (DPO) (Rafailov et al., 2023) simplifies the RLHF process by di-
rectly optimizing the policy using human preference data, eliminating the need for an explicit reward
model and offering improved training stability. However, DPO faces challenges, such as its reliance
on a reference model, susceptibility to overfitting on noisy preference data, and managing the trade-
off between exploration and exploitation. ORPO (Hong et al., 2024) addresses the dependency of
DPO on a reference model by incorporating odds ratios into the supervised fine-tuning process, al-
lowing models to directly distinguish between preferred and dispreferred outputs. KTO (Ethayarajh
et al., 2024) introduces a human-aware loss (HALO) to maximize the utility of model generations
using a binary signal indicating desirability, rather than focusing on preference likelihoods. Sim-
ilarly, RSO (Liu et al., 2024) enhances preference optimization by sourcing data pairs from the
estimated optimal policy through rejection sampling. Recently, SimPO (Meng et al., 2024) further
streamlines DPO by leveraging the average log-probability of sequences as an implicit reward and
introducing a reward margin to better differentiate between positive and negative responses.

Collective LLMs Collective LLMs aim to enhance the performance of LLMs by integrating
knowledge and capabilities from multiple models. As a representative ensemble method, LLM-
Blender (Jiang et al., 2023b) performs pairwise ranking of candidate outputs, selecting and ag-
gregating the most promising responses into a superior output using a sequence-to-sequence model.
Similarly, Mixture-of-Agents (MoA) (Wang et al., 2024b) employs a multi-layer architecture, where
LLM agents in each layer iteratively refine responses based on the outputs of the previous layer,
gradually improving generation quality. UltraFuser (Ding et al., 2024) leverages three expert models
trained on language, code, and mathematics tasks, and combines their outputs through a token-level
gating mechanism to dynamically select the most relevant expertise for each task. Branch-Train-
MiX (BTX) (Sukhbaatar et al., 2024) employs a parallel training strategy to train multiple expert
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models starting from a shared seed model, which are combined into a Mixture of Experts (MoE)
framework. The resulting MoE model is then fine-tuned to optimize token-level routing decisions
and maximize the utilization of each expert’s capabilities.

Heterogeneous model fusion aims to transfer the capabilities of multiple source models into a single
target model. These approaches can be broadly classified as explicit or implicit. Explicit model
fusion (EMF) methods, such as FuseLLM (Wan et al., 2024a) and FuseChat (Wan et al., 2024b),
utilize knowledge distillation to explicitly transfer knowledge, typically in the form of probabilis-
tic distribution matrices, from multiple source models to a single target model. FuseLLM employs
a multi-teacher distillation strategy for this transfer, whereas FuseChat adopts a fuse-and-merge
framework. In FuseChat, pairwise knowledge fusion is first conducted between each source model
and a pivot model to produce multiple target models with identical structure and size. These tar-
get models are then merged within the parameter space to complete the process. WRPO (Yang
et al., 2024c) introduces implicit model fusion (IMF), where the target model leverages high-quality
responses generated by source models as auxiliary signals during preference optimization. How-
ever, WRPO focuses solely on selecting the highest-reward output for each prompt, which limits the
utilization of the broader knowledge from all source models. This neglect of the diverse and rich
signals from source LLMs may limit the effectiveness of model fusion.

D IMPLEMENTATION DETAILS

D.1 DETAILS OF PRELIMINARY EXPERIMENTS

In this section, we provide a detailed description of the experimental setup used in our prelimi-
nary experiments, with the results illustrated in Figure 1. The data construction process for these
preliminary experiments mirrors that of the main experiment described in Section 4.1, utilizing
the same four source models and reward model. For each prompt in the UltraFeedback test set
(Cui et al., 2024), each source model generates five responses, which are then scored by the re-
ward model, ArmoRM-Llama3-8B-v0.1 (Wang et al., 2024a). We compare our proposed method,
FuseRL, against SFT+PO, which serves as a baseline implementation of our approach. Specifically,
SFT+PO incorporates only a single response during supervised fine-tuning (SFT) or a single pref-
erence pair during preference optimization (PO) for each prompt. In this context, we explore pref-
erence optimization using a range of techniques, including RLOO (Ahmadian et al., 2024), SimPO
(Meng et al., 2024), and DPO (Rafailov et al., 2023).

To evaluate the impact of FuseRL on the model’s ability to distinguish response quality, we con-
duct two types of evaluations: Intra-Rank and Cross-Rank. The Intra-Rank evaluation examines the
model’s ability to distinguish response quality within a single source model, while the Cross-Rank
evaluation assesses its ability to distinguish response quality across different source models. In the
Intra-Rank evaluation, for each source model, the reward model identifies the response with the
highest reward yw and the one with the lowest reward yl. Following previous study (Meng et al.,
2024), the model under evaluation computes the average log probability for each response as its
predicted reward score rm(y). It is important to note that for DPO and RLOO, the computation of
rewards during evaluation differs from their training phase but remains consistent with their infer-
ence phase. To ensure fairness, we adopt the same approach described above for all three methods:
RLOO, SimPO, and DPO. We then check whether rm(yw) > rm(yl) and calculate the accuracy as
the ratio of correct matches to the total number of samples in the test set for each source model. The
final result is obtained by averaging the accuracy across all source models. As for the Cross-Rank
evaluation, we select one response from each source model for each test prompt. The reward model
then identifies the response with the highest reward yw and the response with the lowest reward yl.
We verify whether rm(yw) > rm(yl) following the same process as the Intra-Rank evaluation and
calculate the accuracy as the ratio of correct matches to the total number of samples in the test set.

D.2 DETAILS OF BASELINES

We evaluate our method against various baseline models: proprietary LLMs, source and target
LLMs, ensemble LLMs, and heterogeneous model fusion approaches.

Proprietary LLMs: We evaluate closed-source models, including GPT-4o (OpenAI, 2024), GPT-
4-Turbo (Achiam et al., 2023). We prioritize results from official sources.
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Source and Target LLMs: The evaluation strategy mirrors that used for Proprietary LLMs, relying
on official results when available and locally evaluated results otherwise.

Ensemble LLMs: Ensemble LLMs leverage multiple models to enhance performance through vari-
ous collaborative approaches. In this study, we examine several methods for utilizing responses from
our source LLMs. The GPT4-Top1 (Achiam et al., 2023) provides an upper performance bound by
ranking the responses from source models based on GPT-4’s evaluations and selecting the best one.
Similarly, LLM-Blender-Top1 (Jiang et al., 2023b) employs a ranking mechanism to choose the
optimal response from multiple LLM outputs. Alternatively, the MoA (Wang et al., 2024b) uses
Qwen2.5-72B-Instruct as an aggregator to integrate responses and produce a unified output.

Heterogeneous Model Fusion. FuseLLM (Wan et al., 2024a) and FuseChat (Wan et al., 2024b)
adopt knowledge distillation techniques to transfer knowledge from multiple source models to a
target model. Due to computational constraints, we did not reproduce these results using our specific
source and target models. Instead, we rely on the results reported by Yang et al. (2024c), while noting
minor differences in the number and versions of the source models used. Furthermore, we compare
our approach with WRPO (Yang et al., 2024c), the work most closely related to ours.

D.3 DETAILS OF HYPERPARAMETERS

All our experiments were conducted using the TRL (von Werra et al., 2020) library. The Ultra-
Feedback (Cui et al., 2024) dataset was randomly divided into two subsets in a 4:6 ratio for the
two-stage training process. For on-policy implementation, all samples were directly used for train-
ing. A batch size of 128 and a maximum sequence length of 2048 were applied across all stages.

Table 5: Hyperparameter configurations for various
approaches in the main experiment, where α rep-
resents the weight used in the progressive learning
strategy of WRPO, and “KL Coef.” denotes the KL
coefficient applied in RLOO.

Method β γ α KL Coeff. Learning Rate

RLOO - - - 1e-2 5e-7
SimPO 10.0 3 - - 6e-7
DPO 1e-2 - - - 3e-7

SFT + RLOO - - - 1e-2 1e-6
SFT + SimPO 10.0 3 - - 1e-6
SFT + DPO 1e-2 - - - 1e-6
SFT + WRPO 1e-2 - 1e-1 - 1e-6

FuseRLRLOO - - - 1e-2 1e-6
FuseRLSimPO 10.0 3 - - 1e-6
FuseRLDPO 1e-2 - - - 1e-6

During the SFT/FuseSFT stage, training was
performed over 3 epochs. The learning rate
was selected through a search over the range
[1e-6, 7e-6, 1e-5, 2e-5], with 7e-6 chosen
for SFT and 1e-5 for FuseSFT. For the Fus-
eSFT/FusePO stage, the temperature parame-
ter was explored within the range [1e-1, 1e-2,
5e-3, 1e-3, 1e-4], with 1e-2 chosen for Fus-
eSFT, 5e-3 for FuseRLDPO and FuseRLRLOO,
and 1e-3 for FuseRLSimPO. For the imple-
mentation of RLOO in the TRL library, a KL
penalty is essential to prevent training col-
lapse. The KL coefficient was selected from
the range [1e-4, 1e-3, 1e-2, 1e-1]. In the pref-
erence optimization stage, the search strat-
egy from SimPO (Meng et al., 2024) was fol-
lowed. The learning rate search range for all
preference learning algorithms was [3e-7, 5e-
7, 6e-7, 8e-7, 1e-6].

Table 6: Sampling parameters for different models

Model p Temperature Repetition penalty

Llama-3.1-8B-Instruct 0.8 0.6 1.0
Mistral-Large-Instruct 0.95 0.8 1.0
Gemma2-27B-IT 0.95 0.8 1.0
Qwen2.5-72B-Instruct 0.8 0.7 1.05
DeepSeek-V2-Chat 0.95 0.8 1.0

The best hyperparameter settings for some
baselines and FuseRL are summarized in Ta-
ble 5. For response collection, we utilized the
vLLM library (Kwon et al., 2023). The sam-
pling parameters for each source model were configured based on their default generation settings.
Detailed sampling parameters for the various source models are provided in Table 6. All experiments
were conducted on a computing cluster equipped with 8x80G NVIDIA A800 GPUs.

E THEORETICAL ANALYSIS

We conduct a theoretical analysis of FuseSFT and FusePO to illustrate how reward-based weighting
aggregation enhances the robustness and effectiveness of the FuseRL framework.

Proposition 1. In both FuseSFT and FusePO, reward-based weighting aggregation emphasizes
responses with higher weights during parameter updates, progressively guiding the target model to
prioritize high-quality responses throughout fine-tuning and preference optimization.
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Proof. Consider the loss functions defined in Eq. (10) and Eq. (11). In both cases, the loss is
represented as a weighted sum of model-specific losses, with the weights determined by wx,i. For
ease of analysis, we introduce a unified notation L, which represents both Lsft and Lpref. Moreover,
we use Li to denote the model-specific loss component within the two loss functions. Therefore, the
gradient of the loss L with respect to model parameters θT is given by:

∇θTL =
∑
x∈X

K∑
i=1

wx,i · ∇θTLi. (12)

Since wx,i is derived from a softmax function, source models with higher maximum rewards are
assigned exponentially larger weights. This amplifies the scaling of their corresponding gradients,
∇θTLi, by larger factors. As a result, these high-weighted terms dominate the overall gradient,
steering parameter updates to prioritize minimizing the loss associated with high-reward responses.
Furthermore, we note that the parameter updates also depend on the magnitude of ∇θTLi. If a
highly weighted term has a small gradient, its influence on the parameter updates may be limited.
Nevertheless, the weighted aggregation naturally amplifies the relative importance of high-reward
terms, ensuring they receive greater attention during optimization.

Proposition 2. Under the assumptions that the biases introduced by different source models are
independent and identically distributed (i.i.d.) for each input x ∈ X , aggregating and weighting
responses or preference pairs from multiple source models preserves the expected bias of individual
models and strictly reduces their variance.

Proof. Let ϵx,i represent the bias introduced by source model Mi for a given input x ∈ X . The
aggregated influence of these biases on the gradient update is:

ϵagg(x) =

K∑
i=1

wx,i · ϵx,i. (13)

Since these biases are independent and identically distributed, it follows that E[ϵx,i] = µ and
Var(ϵx,i) = σ2.

The expected value of the aggregated bias is the sum of the expected values of each weighted bias:

E[ϵagg(x)] = E

[
K∑
i=1

wx,i · ϵx,i

]

=

K∑
i=1

wx,i · E[ϵx,i] = µ

K∑
i=1

wx,i = µ.

(14)

The variance of the aggregated bias is given by:

Var (ϵagg(x)) = Var

(
K∑
i=1

wx,i · ϵx,i

)
=

K∑
i=1

w2
x,i · Var(ϵx,i). (15)

Since wx,i are weights derived from softmax normalization, we have 0 < wx,i < 1 and
∑K

i=1 wx,i =
1. Therefore, w2

x,i < wx,i, and summing over all i yields:

K∑
i=1

w2
x,i <

K∑
i=1

wx,i = 1. (16)

Thus, by combining Equations (15) and (16), we obtain:

Var

(
K∑
i=1

wx,i · ϵx,i

)
< Var(ϵx,i) = σ2. (17)

For every input x, the expected value of the aggregated bias ϵagg(x) remains equal to the expectation
of the individual biases, µ, ensuring that the aggregation process preserves the systematic bias.
Moreover, the variance of the aggregated bias is strictly less than σ2, demonstrating that aggregating
and weighting the biases effectively reduces variance.
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Table 7: Evaluation results of FuseRL on various downstream tasks.

Dataset (→) HellaSwag MuSR MMLU-
Pro

GPQA
Diamond SciQ MMLU-

Redux AMC 23 LiveCodeBench
(2408-2411) Avg.Setup (→) 10-shot 0-shot 5-shot 0-shot 0-shot 0-shot 0-shot, CoT 0-shot

Metric (→) Acc Norm Acc Norm Acc Acc Norm Acc Norm Acc Acc Pass @ 1

Llama-3.1-8B-Instruct 80.2 35.7 33.6 33.8 96.0 67.2 25.0 12.3 53.1

SFT 62.3 38.8 36.7 31.8 92.4 68.6 27.5 11.3 51.2
FuseSFT 80.8 39.4 35.2 31.3 96.3 65.0 17.5 10.0 52.2

SFT + DPO 83.6 34.7 37.1 29.3 87.1 68.4 25.0 11.3 52.2
SFT + WRPO 84.1 33.7 36.5 28.8 94.6 66.3 17.5 9.4 51.6
FuseRLDPO 82.0 34.9 34.7 33.3 95.7 66.5 27.5 12.5 53.5

F DOWNSTREAM TASK EVALUATION

To assess FuseRL’s impact on downstream tasks, we conducted experiments on eight downstream
tasks spanning general knowledge, mathematics, and coding. These tasks are described as follows:

HellaSwag (Zellers et al., 2019): A commonsense reasoning benchmark requiring models to choose
the most plausible continuation of a given context.

MuSR (Sprague et al., 2024): A dataset comprising algorithmically generated complex problems,
such as murder mysteries, object placement challenges, and team allocation optimizations. These
tasks require advanced reasoning skills and the ability to parse long-range context effectively.

MMLU-Pro (Wang et al., 2024c): An enhanced version of MMLU (Hendrycks et al., 2021), which
is a multiple-choice dataset to evaluate knowledge capability. This dataset is designed to address
issues such as noisy data and reduced difficulty due to advances in model capabilities and increased
data contamination. MMLU-Pro increases challenge levels by expanding multiple-choice options
from 4 to 10, requiring reasoning across more questions, and incorporating expert-reviewed annota-
tions for improved quality and reduced noise.

GPQA Diamond (Rein et al., 2023): A challenging knowledge benchmark crafted by PhD-level
domain experts in biology, physics, and chemistry. The dataset contains questions that are straight-
forward for experts but difficult for laypersons. We evaluate on the highest quality diamond set
comprising 198 questions.

SciQ (Welbl et al., 2017): A collection of 13.7k multiple-choice questions derived from science
exams, covering a broad range of scientific topics.

MMLU-Redux (Gema et al., 2024): A re-annotated subset of the MMLU (Hendrycks et al., 2021)
dataset created through manual assessment from 14 human experts.

AMC 23 (Yang et al., 2024a): The 2023 American Mathematics Competition, featuring 25 multiple-
choice questions that test advanced high school mathematics, including trigonometry, advanced al-
gebra, and elements of calculus.

LiveCodeBench (2408-2411) (Jain et al., 2024): A benchmark designed to evaluate coding ca-
pabilities using an evolving set of contamination-free problems sourced from platforms including
LeetCode, AtCoder, and CodeForces. We evaluate on the subset comprising 160 problems published
between August 2024 and November 2024.

The results presented in Table 7 offer several important insights. Both SFT and FuseSFT lead
to a decline in general performance. This decrease can be attributed to the fact that our train-
ing dataset primarily emphasizes preference alignment, suggesting an inherent trade-off between
preference alignment and overall model performance. Although FuseSFT does not surpass SFT
in alignment performance, it performs better at preserving the model’s general capabilities. This
highlights FuseSFT’s strength in balancing human preference alignment while maintaining broader
performance. After the preference alignment stage, a slight improvement in general performance is
observed across the models. However, with the exception of FuseRL, all models perform worse than
the target model. Interestingly, the average performance of FuseRL exceeds that of the target model,
albeit by a small margin. This indicates that FuseRL not only improves preference alignment but
also effectively maintains general performance.
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G TRAINING COST ANALYSIS FOR MODEL FUSION

FuseRL is designed with a scalable data strategy that enables efficient use of training resources
while maintaining strong performance. In particular, our framework supports data scaling along two
complementary dimensions: the number of prompts and the number of responses per prompt. This
dual-scaling mechanism allows the model to benefit from a richer distribution of supervision signals
without proportionally increasing the cost of data preparation.

Notably, scaling the number of responses is relatively efficient—it only requires sampling from dif-
ferent source models. In contrast, scaling the number of prompts involves a more complex pipeline
that includes classification, filtering, and rewriting, which is significantly more resource-intensive.

Despite this, FuseRL maintains strong alignment performance under constrained training budgets.
As shown in Table 8, using only 15K prompts with 4 responses per prompt, our method matches the
performance of baselines trained with 60K prompts and a single response. Moreover, while these
baselines exhibit signs of performance saturation, FuseRL continues to benefit from larger datasets.
When scaled to 60K prompts with 4 responses, FuseRL yields further improvements, highlighting
its superior scaling potential. All experiments were conducted on a cluster of 8 × 80GB A800 GPUs.
Table 8: FuseRL achieves competitive or superior performance with fewer prompts and more re-
sponses, demonstrating better scalability compared to baseline methods.

Method Prompts Responses Runtime (hrs) AlpacaEval-2
LC (%) WR (%)

FuseRLDPO

60K 4 11.5 70.1 70.9
30K 4 6.2 69.0 72.5
15K 4 3.8 64.2 69.2

SFT+DPO 60K 1 3.6 67.1 69.2
SFT+WRPO 60K 1 4.8 67.7 74.2

H IMPACT OF DIFFERENT k ON FUSERL

66.39

67.67

68.94

68.94
69.41

70.13

+1.84

+3.03

Figure 6: The impact of varying the number
of responses or preference pairs of FuseSFT
and FusePO on the LC win rate. Left: Re-
sults for FuseSFT + DPO, where k denotes
using the top-k responses from source mod-
els during the FuseSFT stage. Right: Re-
sults for FuseRLDPO, denoting using prefer-
ence pairs derived from the top-k highest-
rewarding source models for the FusePO.

In this section, we examine the impact of varying
the number of responses and preference pairs, de-
noted as k (where 1 ≤ k ≤ K), on the final align-
ment performance of the target model in both stages
of FuseSFT and FusePO. Specifically, k in the Fus-
eSFT stage refers to the top-k responses from all
source models used in Eq. (10), ranked by reward
scores, while in the FusePO phase, it represents pref-
erence pairs derived from the top-k highest-scoring
source models used in Eq. (11). These variations in
the selection of responses and preference pairs are
evaluated to understand their influence on the align-
ment performance of the target model. As shown
in Figure 6, increasing k in both the FuseSFT and
FusePO stages leads to consistent performance im-
provement in the target model’s LC win rate. This
indicates that our method effectively leverages re-
sponses (even suboptimal responses and preference
pairs) from multiple source models for optimization.

I TEMPERATURE COEFFICIENTS IN FUSERL

The temperature coefficient play a crucial role in weighting the contributions of responses or
preference pairs from different source models, calculated using a softmax-based reward mecha-
nism as defined in Eq. (8). In this section, we examine the influence of different temperature
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coefficients on the performance of the FuseRL framework, which consists of two stages: Fus-
eSFT and FusePO, with SFT+DPO serving as the baseline. The effect of temperature coefficients
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Figure 7: The influence of varying temper-
ature coefficients α on the performance of
FuseRL, including FuseSFT and FusePO stages,
on AlpacaEval-2.

in the FuseSFT stage is demonstrated through
the results of FuseSFT followed by off-policy
DPO training. For the FusePO stage, we use
the optimal settings identified for FuseSFT and
analyze the influence of adjusting the tempera-
ture parameter on FusePO performance.

In Figure 7, we observe consistent performance
improvements of FuseSFT and FusePO com-
pared to the SFT+DPO baseline across a wide
range of temperature settings. This clearly
demonstrates the effectiveness of the reward-
based weighting mechanism in integrating di-
verse information from heterogeneses source
models, enabling the target model to achieve
superior performance.

J RESPONSES SELECTION STRATEGIES FOR FUSESFT

In this section, we analyze the impact of various response selection strategies on the performance of
FuseSFT, focusing on how different methods influence the model’s alignment performance. To illus-
trate these effects, we present the results of FuseSFT trained with different strategies, along with the
outcomes of subsequent DPO training. The first strategy, which serves as the default configuration,

Table 9: Comparison of different response selec-
tion strategies for FuseSFT on AlpacaEval-2.

Method Settings AlpacaEval-2
LC (%) WR (%)

FuseSFT

Top-k from all
source models 38.8 33.7

Top-1 from each
source models 36.3 31.6

FuseSFT+DPO

Top-k from all
source models 68.9 73.0

Top-1 from each
source models 66.5 71.2

FuseRLDPO

Top-k from all
source models 70.1 70.9

Top-1 from each
source models 68.7 70.2

the top-k responses from all available responses
generated by the source models. In this case,
k = 4, meaning the top four responses across
all source models are chosen. The second strat-
egy selects the top response from each source
model, resulting in a total of four responses
(one per source model). The results in Ta-
ble 9 demonstrate a clear hierarchy: the top-k
selection strategy outperforms the top-1 selec-
tion per source model, regardless of the train-
ing stage. These findings highlight the criti-
cal importance of prioritizing high-quality re-
sponses during the alignment process. The top-
k selection strategy not only leverages the ad-
vantage of weighted responses from multiple
source models but also consistently delivers the
best results by utilizing the most informative
and relevant responses.

K SUPPLEMENTARY ANALYSIS OF FUSERL: REDUCING BIAS AND VARIANCE

In Section 4.5, we analyze the impact of FuseRL on reducing bias and variance by conducting
analytical experiments. These experiments compare the responses generated by different approaches
with the simulated ideal responses (by GPT4-Top1) on AlpacaEval-2. Below, we first detail the
evaluation metrics, including absolute error, absolute bias, and variance:

• Absolute Error: The absolute difference between the preference scores of the response
generated by the model under study and the response by GPT4-Top1.

• Absolute Bias: The mean of the absolute errors across all data points.

• Variance: The mean squared deviation of the absolute errors, indicating the consistency of
the model’s predictions.
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Figure 8: Comparison of absolute bias, variance, and absolute error distribution between FuseRL
and baseline methods. Left: FuseRLSimPO vs. SFT+SimPO. Right: FuseRLRLOO vs. SFT+RLOO.

Furthermore, we present supplementary experimental results to further support our findings. In
Figure 8 (Left), we compare FuseRLSimPO with the baseline, while in Figure 8 (Right), we compare
FuseRLRLOO with SFT+RLOO.

These supplementary results demonstrate that FuseRL achieves measurable reductions in absolute
bias compared to relying solely on the best individual source model for each prompt, highlighting
its effectiveness in minimizing deviations between the generated and (simulated) ideal responses.
Moreover, FuseRL (except for RLOO) demonstrates lower variance, indicating enhanced consis-
tency and robustness in generating responses aligned with human preferences. However, while
RLOO under the FuseRL framework achieves a substantial reduction in bias, its variance shows a
slight increase. This can be attributed to two factors. First, due to computational resource limita-
tions, RLOO uses only two responses per prompt, which restricts its overall performance and affects
the variance scores. Second, there is an inherent trade-off between bias and variance—RLOO’s op-
timization strategy prioritizes minimizing bias, which increases sensitivity to input variations and
leads to a slight rise in variance. Moreover, the absolute error distributions under FuseRL are con-
sistently lower than those of the baseline methods, further emphasizing its ability to deliver stable
and consistent performance across diverse inputs.
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