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Abstract

Active learning (AL) reduces annotation costs by selecting the most informative
samples based on both model sensitivity and predictive uncertainty. While sen-
sitivity can be measured through parameter gradients in an unsupervised manner,
predictive uncertainty can hardly be estimated without true labels especially for
regression tasks, reducing the informativeness of actively selected samples. This
paper proposes the concept of auxiliary data to aid the uncertainty estimation for
regression tasks. With detailed theoretical analysis, we reveal that auxiliary data,
despite potential distribution shifts, can provide a promising uncertainty surrogate
when properly weighted. Such finding inspires our design of AGBAL, a novel AL
framework that recalibrates auxiliary data losses through density ratio weighting
to obtain reliable uncertainty estimates for sample selection. Extensive experi-
ments show that AGBAL consistently outperforms existing approaches without
auxiliary data across diverse synthetic and real-world datasets.

1 Introduction

Supervised machine learning often requires large amounts of labeled data to achieve good perfor-
mance, but obtaining high-quality labels can be prohibitively expensive or time-consuming in many
real-world applications[Sun et al., 2020a, Panayides et al., 2020, Thompson et al., 2024]. As a more
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efficient alternative, active learning (AL) strategically queries the most informative samples from
the target unlabeled data pool to maximize model performance with minimal annotation effort[Gal
and Ghahramani, 2016, Sener and Savarese, 2018, Beluch et al., 2018, Holzmüller et al., 2023].

Active learning aims to select the most informative samples for annotation. With the objective
of minimizing the model’s generalization loss through gradient-based parameter optimization, we
establish that informativeness consists of two fundamental components: model sensitivity and pre-
dictive uncertainty. Highly sensitive samples produce stronger gradients during training, leading
to more significant parameter updates[Koh and Liang, 2017, Chen et al., 2022], while those with
high predictive uncertainty indicate regions where the predictions of the trained model are less ac-
curate[Gal and Ghahramani, 2016, Lakshminarayanan et al., 2017]. By jointly considering both
factors, we achieve more efficient model optimization through targeted sample selection.

The model sensitivity can be directly quantified using model gradients [Cai et al., 2013, Pinsler et al.,
2019, Holzmüller et al., 2023]. For classification tasks, predictive uncertainty can be intuitively rep-
resented by certain metrics of class probabilities, such as entropy [Kirsch et al., 2019, Ash et al.,
2020, Bang et al., 2024]. However, for regression tasks, the absence of labeled target data makes
uncertainty estimation impossible, particularly since the model and training samples are not indepen-
dent, and the loss on training data may approach zero during optimization. Various approaches have
been proposed to find an alternative of predictive uncertainty in regression, including committee-
based methods[Jose et al., 2024] and deep network dropout techniques[Gal and Ghahramani, 2016].
However, these solutions remain computationally intensive while offering only heuristic proxies
rather than theoretically grounded measures. To address this, we propose using auxiliary data for
robust uncertainty estimation and selecting samples with high informativeness.

We formalize auxiliary data as distributionally shifted yet relevant supplements to the target data
in active learning, where the auxiliary distribution is more continuous than the target distribution.
While target datasets are often limited by annotation costs, e.g. expert-labeled medical data, safety-
critical driving scenarios or precise industrial design data records, auxiliary data naturally abound:
hospitals accumulate medical images from patients with varying symptom manifestations[Litjens
et al., 2017, Zhou et al., 2021, Tsai et al., 2024], autonomous vehicles continuously log driving
data in varied environments[Sun et al., 2020b, Yu et al., 2020, Bai et al., 2024], and industrial
systems retain sensor logs with recording inaccuracies or hardware degradation[Qiao et al., 2018,
Rezazadeh et al., 2024]. Crucially, these auxiliary data share underlying physical or statistical re-
lationships with the target distribution[Ganin et al., 2016, Kang et al., 2019, Zhang et al., 2020].
However, these imperfect datasets exhibit inherent limitations that constrain their utility for model
training. Specifically, distributional shifts undermine the theoretical foundations of conventional
generalization frameworks (e.g., Empirical Risk Minimization), leading to significant performance
degradation[Buolamwini and Gebru, 2018, Alcorn et al., 2019, Koh et al., 2021]. Moreover, data
contamination poses security threats, potentially enabling backdoor attacks and compromising data
privacy in machine learning [Jagielski et al., 2018, Li et al., 2021, Carlini et al., 2021]. Thus, these
data are frequently neglected by current AL methods.

Our key insight is that while auxiliary data cannot be directly combined with target data to improve
model training performance, it can nevertheless provide reliable predictive uncertainty estimation
through density ratio-weighted loss approximation, as shown in Figure 1. The proposed method
can be briefly summarized in three steps: (1) estimating the density ratio between auxiliary and
target distributions, (2) computing the model’s loss on auxiliary data, and (3) applying density ratio
weighting to obtain an approximation of the true loss. While the density ratio estimation is still
dependent of the trained model, it successfully addresses the zero-loss problem and our analysis
reveal that it yields a reliable surrogate for the true loss.

Inspired by such findings, we propose Auxiliary data Guided Batch Active Learning (AGBAL) to
complement current AL selection frameworks. The contributions of this paper are as follows:

• We formally decompose informativeness in active learning into model sensitivity and predictive
uncertainty for gradient-based parameter optimization. While the latter cannot be directly esti-
mated due to model-training data dependence, we find that typically discarded imperfect auxiliary
data can provide an uncertainty estimate surrogate when properly weighted.

• We propose Auxiliary data Guided Batch Active Learning (AGBAL), a novel framework that uses
imperfect auxiliary data to estimate predictive uncertainty and selects more informative data. We
validate the predictive uncertainty estimation through Neural Tangent Kernel (NTK) theory.
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• Through extensive experiments on synthetic and real-world datasets, we demonstrate consistent
performance advantages of AGBAL. Our comparative analysis reveals that auxiliary data-guided
gradient kernels consistently outperform gradient kernels across various selection strategies.

2 Proposed Method

2.1 Problem Formulation

We consider multivariate regression and the goal is to learn a function f : Rd → R from training
dataset D, which consists of samples drawn i.i.d. from P = PX × PY |X . Typically, we consider
a parameterized function family F(Θ) = {f(·; θ) : θ ∈ Θ},Θ ⊂ Rm and the goal is to find
θ∗ = argminθ∈Θ R(θ;P ), where R(θ;P ) = EX,Y∼P l(Y, f(X; θ)), and l(·, ·) is a loss function.
In practice, we optimize θ by minimizing R̂(θ;D) = |D|−1∑

(x,y)∈D l(y, f(x; θ)).

The goal of active learning (AL) is to select which data should be annotated in order to learn the
model as quickly as possible. Given a training task objective R(θ;P ), a batch mode active learning
(BMAL) algorithm starts with a data poolDX , which consists of samples drawn i.i.d. from PX . The
initial set to be labeled is B0,X ⊂ DX , initial labeled set is L0 = B0 = {(xi, yi) | xi ∈ B0,X , yi ∼
PY |X=xi

} and the unlabeled set is U0 = DX \ B0,X .

Assume θ̂−1 is initialized randomly. At each BMAL step t ≥ 0 we update the predictor parameter
θ̂t using A(θ̂t−1,Lt), where A : Θ × (X × Y)N → Θ is the learning algorithm mapping previous
parameter θ̂t−1 and labeled data Lt to an updated parameter θ̂t. Also assumes a next batch selection
algorithm S : Θ × (X × Y)N × XN × N × K → XN that selects a batch of unlabeled data by
Bt+1,X = S(θ̂t,Lt,Ut, N,K), where K(·, ·) ∈ K is a kernel that measures similarities between
inputs. Label Bt+1,X and we get labeled dataset Bt+1 = {(xi, yi) | xi ∈ Bt+1,X , yi ∼ PY |X=xi

}.
We update data pool by Lt+1 = Lt ∪ Bt+1, Ut+1 = Ut \ Bt+1,X .

2.2 Motivation and Methods

Holzmüller et al. [2023] has demonstrated that sample selection strategies can be decomposed into
two components: (1) a feature mapping, which projects input data into an informative representation
space; and (2) a selection method operating in this space to identify samples of maximal value.
Typically, the selection methods are implemented based on a distance metric in the representation
space. In practice, this distance can be directly characterized by a kernel function defined over pairs
of inputs. For example, the gradient kernel is defined as Kgrad(x, x

′; θ) = {ϕ1(θ;x
′)}⊤ϕ1(θ;x),

where ϕ1(θ;x) = ∂f(x; θ)/∂θ ∈ Rm is the model parameter gradient. Also a kernel function
consists of a base kernel and a kernel transformation, where base kernel (like gradient kernel) serves
for feature extraction and optional kernel transformations in section A.2 enable additional adaptation.
For notation simplicity, kernel transformations are omitted in the main-text notation. Notably, the
gradient kernel is essential for active learning frameworks by encoding the informativeness through
parameter model gradients. While existing work Holzmüller et al. [2023] has demonstrated its
superiority over alternatives like last-layer activations or NNGP kernels, we identify key limitations
in its current formulation under regression tasks. The gradient of R(θ;P ) at θ can be formulated as

∂R(θ;P )

∂θ
= EX,Y∼P

∂l(Y, f(X; θ))

∂θ
= EX,Y∼P

∂l(Y, f(X; θ))

∂f(X; θ)

∂f(X; θ)

∂θ

= EX∼PX
ϕ1(θ;X)

{
EY∼PY |X

∂l(Y, f(X; θ))

∂f(X; θ)

}
= EX∼PX

ϕ1(θ;X)ϕ2(θ;X), (1)

where ϕ2(θ;x) = EY∼PY |X=x
∂l(Y, f(x; θ))/∂f(x; θ) is the expected loss gradient. Given θ and

input x, ϕ1(θ;x) can be directly computed, but evaluating ϕ2(θ;x) requires access to the conditional
distribution PY |X=x. In an active learning setting, we face two fundamental challenges: (1) collect-
ing additional samples from P to estimate ϕ2(θ;x) is impractical, and (2) reusing existing training
data introduces the double-dipping problem. Current methods[Holzmüller et al., 2023] directly set
ϕ2 ≡ 1.

The gradient kernel relies solely on ϕ1(θ;x) to characterize the informativeness at point x. However,
ϕ2(θ;x) captures the predictive uncertainty. When f(x; θ) = argminy EY∼PY |X=x

l(Y, y), acquir-

3



Figure 1: The AGBAL framework processes target data from P and auxiliary data from Q. The
rescaled gradient feature map projects high-confidence points near the origin O (as their magnitudes
of expected loss gradient are small), while maintaining high-uncertainty points at greater distances.
Crucially, conventional methods without auxiliary data cannot estimate the expected loss gradient,
causing high and low uncertainty points to distribute chaotically in the gradient space, hindering the
selection of the most uncertain points.

ing additional samples at x is meaningless. As shown in Figure 1 in the red box, many well-trained
points can be selected. In practical scenarios, active learning task rarely operates in isolation: there
often exists related tasks that possess auxiliary dataset that has underlying similarities but exhibit
different data distribution. This motivates our Auxiliary data Guided Batch Active Learning (AG-
BAL) framework in Figure 1: suppose we have access to a labeled dataset D′ = {(X ′

i, Y
′
i )}n

′

i=1
drawn from a different distribution Q = QX ×QY |X ̸= P , but Q≫ P is absolutely continuous.

Let g(x, y) and gaux(x, y) denote the joint density functions of P and Q, and g(x), gaux(x) be their
marginal density covariate functions. The conditional density is defined as g(y | x) = g(x, y)/g(x)
and gaux(y | x) = gaux(x, y)/gaux(x). Define r(x, y) = g(x, y)/gaux(x, y), r(x) = g(x)/gaux(x)
and r(y | x) = r(x, y)/r(x). We can reformulate ϕ2(θ;x) as follows:

ϕ2(θ;x) = EY∼PY |X=x

{∂l(Y, f(x; θ))
∂f(x; θ)

}
=

∫
g(y | x)∂l(y, f(x; θ))

∂f(x; θ)
dy

=

∫
gaux(y | x)r(y | x)

∂l(y, f(x; θ))

∂f(x; θ)
dy = EY∼QY |X=x

{
r(Y | x)∂l(Y, f(x; θ))

∂f(x; θ)

}
= argmin

s∈R
EY∼QY |X=x

[{
s− ∂l(Y, f(x; θ))

∂f(x; θ)

}2

r(Y | x)
]
r(x)

= argmin
s∈R

EY∼QY |X=x

[{
s− ∂l(Y, f(x; θ))

∂f(x; θ)

}2

r(x, Y )
]
.

Assume r̂(x, y) is the density ratio estimator of r(x, y) obtained through algorithm Adr, which is
detailed in section A.1, we can estimate ϕ2 in function space Φ by:

ϕ̂2 = argmin
ϕ∈Φ

n′∑
i=1

r̂(X ′
i, Y

′
i )
{
ϕ(θ;X ′

i)−
∂l(Y ′

i , f(X
′
i; θ))

∂f(X ′
i; θ)

}2

. (2)

As shown in green dashed box in Figure 1, we define auxiliary data guided gradient feature map as
ϕaux(x; θ;ϕ1, ϕ̂2) = ϕ̂2(θ;x)ϕ1(θ;x), and auxiliary data guided gradient kernel as

Kgrad−aux(x, x
′; θ, ϕ̂2) = {ϕaux(x

′; θ;ϕ1, ϕ̂2)}⊤ϕaux(x; θ;ϕ1, ϕ̂2) . (3)

We present the complete algorithm for AGBAL in Algorithm 1.

2.3 Theoretical Analysis

In our proposed approach, the methodology originated from an error re-assessment framework de-
signed to achieve a more precise feature characterization at each data point. We now proceed to
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Algorithm 1 Auxiliary Data Guided Batch Active Learning (AGBAL)
Input: Initial labeled and unlabeled set L0 and U0, auxiliary data set D′, training algorithm A,
density ratio estimating algorithm Adr, next batch selecting algorithm S , loss function l, gradient
mapping ϕ1, initial parameter θ̂−1, label budget N at each step and training epochs T .

1: Set t← 0
2: While t < T do
3: Update predictor parameter with θ̂t ← A(θ̂t−1,Lt)
4: Estimate density ratio r̂t = Adr(Lt,D′)

5: Train estimator of expected loss gradient as ϕ̂2,t in (2) using r̂t and D′

6: Construct auxiliary data guided gradient kernel Kt,grad−aux in (3) with θ̂t, ϕ1 and ϕ̂2,t

7: Select unlabeled batch as Bt,X = S(θ̂t,Lt,Ut, N,Kt,grad−aux)
8: Obtain Bt by labeling Bt,X and update t← t+ 1, Lt ← Lt−1 ∪ Bt, Ut ← Ut−1 \ Bt,X
9: End while

10: return (L0, . . . ,Lt) and (θ̂0, . . . , θ̂t)

theoretically analyze the performance of auxiliary data based loss estimation under squared error
loss l2(y1, y2) = (y1 − y2)

2/2 in neural network architectures.

Setting: Consider data (x1, y1), . . . , (xn, yn) generated from model yi = f(xi; θ
∗)+ϵi, where θ∗ ∈

Θ ⊂ Rm represents the true parameters, and ϵi are independent noise terms with zero mean and finite
variance σ2

ϵ . Define the empirical risk with a L2 penalty as R̂2(θ) = n−1
∑n

i=1 l2(yi, f(xi; θ)) +
λ∥θ∥22/2, where λ > 0.

Pointwise convergence of f(·; θ̂): Let Hgrad(θ) ∈ Rn×n be the semidefinite matrix
with (i, j)-entry {ϕ1(θ;xi)}⊤ϕ1(θ;xj). The NTK kernel is defined as Kntk(x1, x2) =
Eθ∼Pθ

[
{ϕ1(θ;x1)}⊤ϕ1(θ;x2)

]
. For x = (x1, . . . , xn) and y = (y1, . . . , yn), define Kntk(x,x) =

(Kntk(x, x1), . . . ,Kntk(x, xn)). As width goes to infinity and θ ∼ Pθ, Hgrad(θ0) converges in prob-
ability to a deterministic matrix Kntk(x,x) ∈ Rn×n with entries Kntk(xi, xj) [Jacot et al., 2018].
Denote f̂ridge(x) = Kntk(x,x)

{
Kntk(x,x)+λIn

}−1
y⊤, under certain conditions we have f(x0; θ̂)

asymptotically equivalent to f̂ridge(x0) when the network width goes to infinity, and f̂ridge(x0) is
asymptotically normal with n→∞. Details are presented in A.4 in supplementary materials.

Re-formulation of ϕ̂2: For l2 loss ∂l2(y1, y2)/∂y2 = y2−y1. Therefore with Y = f(X; θ∗)+ϵ, we
can calculate ϕ2(θ;x) = E[f(X; θ)−f(X; θ∗)−ϵ | X = x] = f(x; θ)−f(x; θ∗). Let ϕ2(θ̂;x0) =

ϕ
(1)
2 (θ̂;x0)+ϕ

(2)
2 (θ̂;x0), where ϕ(1)

2 (θ̂;x0) =
{
f(x0; θ̂)−f̂ridge(x0)

}
+
[
E{f̂ridge(x0)}−f(x; θ∗)

]
and ϕ

(2)
2 (θ̂;x0) =

[
f̂ridge(x0) − E{f̂ridge(x0)}

]
. Assume r̂ is independent of X ′

i, Y
′
i ∼ Q, let dis-

tribution Qr̂ satisfies dQr̂(x, y)/dQ(x, y) = r̂(x, y). When n′ → ∞, the (2) can be re-formulated
as

ϕ̂2 = argmin
ϕ∈Φ

Ex′,y′∼Qr̂(x
′, y′){ϕ(θ;x′)− f(x′; θ) + f(x′; θ∗)}2

= argmin
ϕ∈Φ

Ex,y∼Qr̂
[f(x; θ∗)− {f(x; θ)− ϕ(θ;x)}]2 .

Thus f̃(x0; θ̂) = f(x0; θ̂) − ϕ̂2(θ̂;x0) is an estimate of f(x0; θ
∗) and denote the corresponding

asymptotic equivalent ridge kernel estimator as f̃ridge(x0). Similarly define ϕ̃2(θ̂;x0) = f̃(x0; θ̂)−
f(x; θ∗), ϕ̃(1)

2 (θ̂;x0) =
{
f̃(x0; θ̂) − f̃ridge(x0)

}
+
[
E{f̃ridge(x0)} − f(x; θ∗)

]
and ϕ̃

(2)
2 (θ̂;x0) =

f̃ridge(x0)− E{f̃ridge(x0)}.

Theorem 2.1. Assume equivalence f(x0; θ̂) = f̂ridge(x0) + oP (ζ(m)), f̃(x0; θ̂) = f̃ridge(x0) +
oP (ζ(m)), where m represents the neural network width and ζ(m) → 0 when m → ∞, as well

as asymptotic normality conditions ϕ(2)
2 (θ̂;x0)

d.→ N(0, σ2(x0)), ϕ̃
(2)
2 (θ̂;x0)

d.→ N(0, σ̃2(x0)) and
Corr(ϕ(2)

2 (θ̂;x0), ϕ̃
(2)
2 (θ̂;x0))→ ρ. We have

Var(ϕ̂2(θ̂;x0))→ σ2(x0) + σ̃2(x0)− 2ρσ̃(x0)σ(x0) + oP (ζ(m)) .
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Remark 2.2. As ϕ̂2(θ̂;x0) is estimated on the holdout auxiliary dataset independent of f(x0; θ̂)

and the only dependence is the density ratio estimator, we expect ρ to be small. Also f̃(x0; θ̂)

is estimated similar to the process of the estimation of f(x0; θ̂), thus we expect σ(x0) ≈ σ̃(x0).
Therefore, ϕ̂2(θ̂;x0) has variance approximate 2σ2(x0), which is proportion to the variance of
f̂ridge(x0). Therefore ϕ̂2(θ̂;x0) serves as a meaningful surrogate for the expected loss gradient.

Remark 2.3. In ϕ
(1)
2 (θ̂;x0), the first term is negligible according to Lemma A.1 and the second term

represents the bias of ridge estimation, which is not influenced by sampling randomness of Y given
X = x0 and cannot be eliminated with limited samples under a given NTK kernel. The ϕ

(2)
2 (θ̂;x0)

is the variance component that characterizes the deviation from the expected estimation due to the
training of finite samples. At locations where this term is large, additional sampling can improve the
accuracy of the estimate. Although ϕ

(2)
2 (θ̂;x0) cannot be directly calculated from f̂ridge(·), ϕ̂2(θ̂;x0)

can be calculated.

3 Experiments

Comparison Methods: To evaluate our auxiliary data guided gradient kernel against the origi-
nal gradient kernel framework, we conduct comprehensive comparisons across seven representa-
tive selection methods: (1) maxdiag (maximum diagonal selection) as the uncertainty-based base-
line, (2) maxdet (determinant maximization) [Seo et al., 2000], (3) bait-FB (Forward-Backward-
Greedy total uncertainty minimization) [Ash et al., 2020], (4) Frank-Wolfe (fw) optimization for
kernel embedding approximation [Pinsler et al., 2019], (5) maxdist (maximum distance) repre-
senting geometric diversity approaches [Yu and Kim, 2010], (6) kmeanspp (next point proba-
bility proportional to squared distance) [Arthur and Vassilvitskii, 2006, Ostrovsky et al., 2013]
and (7) lcmd (largest cluster maximum distance method) [Holzmüller et al., 2023], and (8) ran-
dom selection. This systematic evaluation covers the spectrum from simple uncertainty sampling
(maxdiag) to hybrid diversity/uncertainty methods (lcmd), allowing us to assess how our ker-
nel optimization affects different selection paradigms. The codes are available in the repository
https://github.com/OswinMin/AGBAL.

To ensure fair comparison, we standardize: (1) the neural network architecture across all methods,
(2) initialization using parameters from identical L0 pretraining, (3) uniform hyperparameters (learn-
ing rates, epoch counts) during model updates, and (4) both kernel configurations (Kgrad−aux and
Kgrad) adopt the identical optimal transformation settings as established in Holzmüller et al. [2023].

All methods start with |L0| = 200 initially labeled samples and select N = 200 additional samples
per step, running for T = 15 steps with an unlabeled pool size of |U0| = 9, 000. The auxiliary
dataset has size Naux = 1000.

Evaluation Metrics: In each experiment, the objective of optimization is the loss l2(y1, y2) =

(y1 − y2)
2, and the test set T = {(x̃i, ỹi)}|T |

i=1 for evaluating the learner is distributed independently
and identically (i.i.d.) with respect to the training data, with size |T | = 2000. The mean squared
error (MSE) of learner f(·; θ) is defined as: MSE =

∑|T |
i=1 l2(ỹi, f(x̃i; θ)). For each data setting,

every method is repeated 20 times.

• Let ξ0, . . . , ξT denote the sequence of average MSE values for a given method; the area under the
curve (AUC) of this sequence is calculated as: AUC =

∑T
i=1(ξi−1 + ξi)/2.

• We report the average MSE for each method at specific training steps (i.e. the step 10), illustrating
the training efficiency of different approaches under a fixed budget of training samples.

• Since AGBAL utilizes auxiliary data, we must verify that these data cannot be directly used for
target task training. We compare the MSE of two models: one trained solely on T -step annotated
samples, and another trained on both annotated samples and auxiliary data.

Summary of Results: We evaluate AGBAL (our method based on auxiliary data guided gradient
kernel) against BMDAL (gradient kernel method without auxiliary data) and the random baseline
across seven datasets: synthetic data S1, S2 and real-world datasets BIO, BIKE, DIAMOND, CT,
STOCK. Details are in Section 3.1 and 3.2.
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Table 1: Comparison of 8 selection methods across synthetic and real-world datasets in terms of
AUC, where Avg Impro represents improvement over BMDAL averaged across 7 experiments.

S1 S2 BIO BIKE DIAMOND CT STOCK Avg Impro

random 0.928 1.421 0.451 0.459 21.009 0.380 0.392
lcmd 1.011 1.517 0.417 0.394 19.714 0.255 0.370

lcmd (ours) 0.846 1.279 0.420 0.435 20.687 0.291 0.363 0.6%
maxdist 0.863 1.310 0.428 0.439 20.643 0.270 0.389

maxdist (ours) 0.834 1.266 0.417 0.401 21.179 0.298 0.361 1.8%
kmeanspp 0.894 1.378 0.414 0.404 19.691 0.271 0.372

kmeanspp (ours) 0.842 1.294 0.406∗ 0.364 19.613∗ 0.264 0.355∗ 4.5%
fw 0.953 1.448 0.434 0.455 21.115 0.347 0.388

fw (ours) 0.899 1.341 0.418 0.404 21.840 0.310 0.377 5.5%
bait 0.853 1.340 0.441 0.481 22.057 0.435 0.392

bait (ours) 0.835 1.293 0.431 0.398 22.134 0.374 0.371 6.3%
maxdet 0.876 1.318 0.418 0.486 19.702 0.320 0.378

maxdet (ours) 0.833∗ 1.254∗ 0.409 0.362∗ 19.846 0.254∗ 0.359 8.9%
maxdiag 0.903 1.401 0.451 0.597 24.594 0.526 0.415

maxdiag (ours) 0.836 1.270 0.420 0.410 20.745 0.304 0.361 18.0%

Table 1 reports the AUC of the learning curves, where lower values indicate faster convergence. AG-
BAL consistently outperforms BMDAL in most settings, particularly with maxdet (achieving the
best results on S1, S2, BIKE, and CT) and kmeanspp (leading on BIO, DIAMOND and STOCK).
Table 2 compares the RMSE of AGBAL and BMDAL after 10 training steps across all selection
strategies and datasets. AGBAL achieves significantly lower errors in almost all settings, demon-
strating faster early-stage convergence.

Table 3 presents the test MSE comparison across all scenarios and methods after T -step active learn-
ing. To highlight the distributional discrepancy of auxiliary data, we deliberately select a large
auxiliary dataset size (Naux = 10000) to amplify the performance degradation caused by naively
incorporating auxiliary data. The universally increased MSE values observed when incorporating
auxiliary data into the training set demonstrates: (1) degraded model generalization performance,
and (2) significant distributional shifts between auxiliary and target data. These results show that
auxiliary data cannot be directly utilized for model training, thereby justifying our design of employ-
ing them exclusively for sample selection guidance.

Together, the empirical evidence establishes that while auxiliary data provide effective selection
signals, their inherent distribution shifts prevent their direct inclusion in training sets.

We also investigate two other factors affecting AGBAL’s performance: (1) auxiliary data quality
(distributional discrepancy relative to the target distribution) in Section 3.1, and (2) auxiliary data
quantity (sample size) under fixed quality conditions in Section A.7.2.

The random strategy, serving as a naive baseline, performs poorly, underscoring the importance of
active selection. Notably, AGBALs gains are most pronounced for uncertainty-driven strategies (e.g.,
maxdet, kmeanspp), while methods perform less significant for hybrid and diversity-based selections
like lcmd and maxdist. This demonstrates our methods compatibility with different selection criteria
while maintaining superior convergence. For BMDAL without auxiliary data, kmeanspp and lcmd
give the best performance.

3.1 Synthetic Data

In our synthetic experiments, the regression model for data from P is Yi = µ(Xi) + ϵ(Xi), where
µ(x) = E(Yi | Xi = x) and the residual ϵ(Xi) may depend on Xi. The model for data from Q is
Y ′
i = µ′(X ′

i)+ ϵ′(X ′
i). The covariates Xi and X ′

i are sampled from the d-dimensional standard nor-
mal distribution Nd(0d, Id). We consider two data generating settings: for x = (x1, . . . , xd), let ϵ(x)
and ϵ′(x) ∼ N (0, |µ(x)|/4), µ′(x) is defined by shifting µ(x) with δ(x; ζ) = ζ · cos(

∑d
i=1 |xi|)/4:

S1: µ(x) =
∑d

i=1 | log(|xi|+ 1)|/4, and µ′(x) = µ(x) + δ(x; ζ);

S2: µ(x) =
∑d

i=1 |xi|1/2/4, and µ′(x) = µ(x) + δ(x; ζ);
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Performance Result: Figure 8 and 9 in appendix present the MSE learning curves versus the train-
ing steps for different sample selection methods with ζ = 8. The results demonstrate that auxiliary
data guided gradient kernel in AGBAL consistently outperforms the gradient kernel approach across
nearly all experimental settings. Notably, while the gradient kernel may underperform random se-
lection in certain cases (e.g., maxdiag on S1; maxdiag and fw on S2), AGBAL maintains superior
performance over random selection in most of these scenarios. Refer to Table 4-5 for detailed MSE
results.

Experiments on auxiliary data quality: We configure ζ ∈ {2, 4, 8, 16, 32, 64} to induce exponen-
tially increasing distributional shifts in auxiliary data. As shown in Figure 2, AUC grows linearly
with the exponential progression of ζ. But our method still outperforms direct gradient kernel ap-
proaches within tested limits, as shown in Table 12. This demonstrates that: (1) higher-quality
auxiliary data better guides active sample selection, and (2) even when auxiliary data quality deteri-
orates substantially, our loss estimation - serving as an error magnitude indicator rather than precise
measurement - remains useful. More details are provided in Section A.7.1.
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maxdiag maxdet bait fw maxdist kmeanspp lcmd

Figure 2: AUC plots of AGBAL under varying ζ.

Visual Analysis: Further, we validate AGBAL’s ability to identify sample points with higher pre-
dictive uncertainty through a controlled toy example. Using identical initially trained models and
unlabeled data pools, we compare the predictive uncertainty of points selected via our auxiliary-
guided gradient kernel versus conventional gradient kernels across different selection methods.

Let µ(x) =
∑d

i=1 xi, µ′(x) = 2
∑d

i=1 xi, and noise ϵ(x), ϵ′(x) ∼ N (0, d). The initial labeled set
L0 and the unlabeled pool U0 each contain 200 data points. In the subsequent batch selection step,
we select 10 points from U0. For visualization, we project the unlabeled pool U0 onto a 2D space
via PCA, with color mapping representing the expected loss gradient f(x; θ̂) − E(Y | X = x).
Darker shades indicate higher predictive uncertainty, which should be prioritized for selection. As
illustrated in Figure 3, while both AGBAL and BMDAL aim to select representative points in the
representation space, AGBAL consistently identifies more high-uncertainty samples. The result
plots for other selection methods are provided in Figure 5-7.

3.2 Real Data

We evaluate our method on five public regression datasets also considered by [Holzmüller et al.,
2023]: physicochemical properties of protein tertiary structure (BIO) [Rana, 2013], bike sharing
(BIKE) [Fanaee-T and Gama, 2014], prices of diamonds (DIAMOND) , relative location of CT
slices (CT) [Graf and Cavallaro, 2011], and BNG stock price data (STOCK) . Detailed dataset
descriptions are provided in Section A.6.

Result: Figure 4 presents the MSE learning curves comparing different methods on dataset BIKE
(with additional results on four other real-world datasets shown in Figures 10-13 and Table 6-9 in
appendix due to space constraints). The results demonstrate that our auxiliary data guided gradi-
ent kernel based methods achieves the fastest MSE reduction compared with gradient kernel based
methods, which indicates Kgrad−aux better measures the informativeness of data points. Moreover,
while lcmd and kmeanspp typically perform best without auxiliary data, the maxdet and kmeanspp

On https://www.kaggle.com/datasets/resulcaliskan/diamonds
On https://www.openml.org/search?type=data&sort=runs&id=1200&status=active
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Figure 3: Visualization of the loss of selected points across four AL configurations. Left, right
panels display lcmd, fw results of AGBAL and BMDAL, respectively.

selection methods show superior performance when guided by auxiliary data. This consistent pat-
tern across all real-data scenarios confirms the effectiveness of incorporating auxiliary information
into the sample selection process.
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Figure 4: MSEs decreasing plots during AL steps for different selection method and different kernels
for STOCK dataset (B for gradient kernel, A for auxiliary data guided gradient kernel)

3.3 Computational Burden Analysis

Our method introduces additional components (density ratio estimation and auxiliary loss estima-
tion) compared to gradient-only approaches BMDAL. However the selection kernel itself remains
unchanged; we only modify the features used for selection. The primary computational overhead
stems from processing auxiliary data. For efficiency, lightweight machine learning methods (e.g.,
random forests) can be adopted for density ratio and loss estimation without compromising perfor-
mance. To illustrate scalability, we conducted experiments across 5 real-world datasets with varying
auxiliary dataset sizes (100, 500, 1000, 10,000 samples) on a server with dual Intel Xeon Gold 6330
CPUs (112 threads total) and 125GB RAM.

The results are shown in the Table 11. Even with only 100 auxiliary data, the maxdet selection strat-
egy, which performs best among the compared approaches, still achieves meaningful performance
improvements. The gain grows with larger auxiliary datasets. Crucially, for auxiliary datasets below
1,000 samples, the additional time and memory overhead remains negligible. In practical applica-
tions, we can choose the auxiliary data size based on their specific needs for either better perfor-
mance (larger auxiliary sets) or faster computation (smaller auxiliary sets).

4 Related Work

In Section 1 and 2.2, we propose that in regression tasks under gradient-based optimization, infor-
mativeness can be decomposed into model sensitivity and predictive uncertaintytwo dimensions that
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have been extensively studied separately. In this section, we systematically review existing work
along these two research lines.

Expected model change maximization plays a vital role in model sensitivity-based methods. Early
work by Cai et al. [2013] introduced bootstrap ensemble modeling to identify samples with maximal
gradient variations across ensemble members, explicitly capturing model sensitivity. Subsequent
approaches integrated representation learning: Ash et al. [2020] developed a clustering strategy
using last-layer gradient embeddings to select samples that induce divergent model updates, while
Holzmüller et al. [2023] proposed a gradient-based kernel transformation method that strategically
selects the most distant points within the largest cluster, optimizing both representativeness and
diversity.

As predictive uncertainty cannot be directly estimated, various alternative methods have been pro-
posed. Early work includes RayChaudhuri and Hamey [1995] and Burbidge et al. [2007], who
introduced the Query-by-Committee (QBC) framework to select samples with maximal model dis-
agreement as a measure of uncertainty. With the advent of deep learning, more sophisticated uncer-
tainty estimation techniques emerged. Gal and Ghahramani [2016] developed Monte Carlo dropout
to approximate predictive uncertainty, while Beluch et al. [2018] employed ensembles with varied
parameter initializations to characterize sample uncertainty.

Alternative approaches focus on diversity and representativeness. Sener and Savarese [2018] intro-
duced the core-set approach with theoretical guarantees via minimum covering radius, and Wu et al.
[2019] developed a greedy maxmin distance algorithm for data selection. Subsequent developments
include Liu et al. [2021]’s iterative optimization method balancing average and minimum distances,
and Kim and Shin [2022]’s hybrid approach combining density-based clustering and core-set selec-
tion to enhance diversity-representativeness trade-offs.

A distinct line of research explores loss-driven approaches. Konyushkova et al. [2017] proposed
a data-driven method that learns query strategies by predicting expected error reduction. Yoo and
Kweon [2019] learned a loss predictor module to estimate target losses of unlabeled data. Sinha
et al. [2019] introduced VAAL, which uses adversarial training between a variational autoencoder
and a discriminator to learn latent representations while implicitly quantifying sample loss.

Several works also leverage auxiliary data for active learning. Our approach differs from transfer
active learning methods such as Wang et al. [2014] in how auxiliary data is defined: transfer learning
and domain adaptation typically assume covariate shift with different P (X) but similar P (Y | X)
across domains, whereas our setting allows both P (X) and P (Y | X) to differ in imperfect auxiliary
data. This distinction is critical, as standard transfer methods may experience more negative transfer
under such joint distribution shifts.

5 Conclusion

In this work, we address a fundamental challenge in active learning for regression tasks - the inability
to reliably estimate predictive uncertainty. We propose AGBAL, a novel active learning framework
that overcomes this limitation by leveraging auxiliary data through density ratio-weighted loss ap-
proximation. Theoretically grounded in NTK analysis, our method transforms typically discarded
auxiliary data into valuable uncertainty estimates, while properly accounting for distributional shifts
between auxiliary and target domains. Through extensive evaluations, we demonstrate that AGBAL
consistently outperforms conventional active learning approaches across diverse application scenar-
ios.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The formulation of AGBAL can be found in section 2.1 and 2.2. Theoretical
analysis can be found in section 2.3 and experiments can be found in section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our proposed method are discussed in section A.8.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: For the theoretical result in section 2.3, details of assumptions and proofs can
be found in section A.4 and A.5.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed descriptions and formulations required to reproduce the
main experimental results, including information on the model, datasets, baselines, and
evaluation metrics. Additionally, we present the algorithms and implementation details in
section A.1, A.2, and A.3 to offer clearer implementation guidance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The datasets utilized in this study are publicly accessible via the cited refer-
ences, and the implementation code is available upon request.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental settings are detailed in Section 3, and additional experi-
ments are presented in Section A.6 to provide further insights into the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For both synthetic and real-world datasets, we report MSE results with 2σ
error bars to quantify variability. Due to computational constraints, we omit AUC error
bars which would require extensive repeated experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The experiments implicitly reflect computational resource requirements
through experimental scale parameters (e.g., dataset size) in section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the NeurIPS Code of Ethics and have ensured
that all aspects of our research fully comply with its guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The societal impacts of our proposed method are discussed in section A.9.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We believe that our work poses no foreseeable risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All datasets used in our experiments are properly cited, and source links are
provided for reference.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: Our code is well documented with the documentation provided.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We do not use LLM to impact the core methodology, scientific rigorousness,
or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Density Ratio Estimation

Consider two datasetsDP = {xi}ni=1 ∼ P with density p(x), andDQ = {zj}mj=1 ∼ Q with density
q(z). Assume P ≪ Q, the target is to estimate the density ratio r(x) = dP/dQ(x) = p(x)/q(x),
which quantifying the discrepancy between the distribution P and Q.

There are two kind of density ratio estimation algorithms Adr(·): direct estimation and classifier-
based indirect estimation.

In direct density ratio estimation, we typically use a parametric function gθ(x) to estimate r(x). The
estimation problem is then formulated as minimizing a minimizing the Bregman divergence between
p(x) and gθ(x)q(x): given a certain function u(x),

min
θ
{Ex∼Q[∂u(gθ(x))gθ(x)− u(gθ(x))]− Ex∼P [∂u(gθ(x))]}.

There are many choices for the function u(x), such as: (1) u(x) = (x − 1)2/2 used by LSIF
[Kanamori et al., 2009], (2) u(x) = x log(x) − x used by UKL [Nguyen et al., 2010], (3) u(x) =
x log(x)− (1 + x) log(1 + x) used by BKL (LR) [Hastie et al., 2005].

For undirected density ratio estimation, we adopt a probabilistic classification framework. We con-
struct a labeled dataset by assigning label 1 to samples from DP and label 0 to samples from DQ.
Specifically, we first train a classifier to distinguish samples from the target versus mixture distribu-
tions, then apply calibration methods [Zadrozny and Elkan, 2002], i.e., Platt-calibration [Platt et al.,
1999] to convert classifier outputs into well-calibrated probability estimates.

The combined dataset {(Wi, Yi)}n+m
i=1 contains n + m samples, where the first n observations are

from DP , (Wi, Yi) = (xi, 1), i ≤ n and (Wi, Yi) = (zi, 0), i > n. The conditional class probability
can be expressed as:

P(Y = 1 |W = w) =
p(w)

p(w) + q(w)
=

r(w)

r(w) + 1
,

where r(w) = p(w)/q(w) is the density ratio function. This relationship allows us to recover the
density ratio through:

r(w) =
P(Y = 1 |W = w)

1− P(Y = 1 |W = w)
.

Let g̃(x) be a probabilistic classifier trained to estimate P(Y = 1 | W = w). Assume calibrated
classifier as ĝ(x) = σ(ag̃(x) + b), where σ is the sigmoid function and a, b are trained on another
dataset. In practice we can split {(Wi, Yi)}n+m

i=1 into two parts: one to train g̃(x) and another to fit a
and b. The corresponding density ratio estimator is then given by:

r̂(x) =
ĝ(x)

1− ĝ(x)
.

A.2 Kernel Transformations

The framework by [Holzmüller et al., 2023] introduces a modular set of kernel transformations
to adapt base kernels for active learning objectives. These transformations modify base kernels
to improve uncertainty estimation (e.g., Gaussian process posterior transformation), diversity (e.g.,
acs random feature transformation and acs gradient transformation), and computational efficiency
(e.g., scaling, sketching). All transformations are composable and can be sequentially chained to
combine their effects. We denote this transformation chain as K→T1→T2

, where T1 is first applied
to the base kernel K, followed by T2. In the following, we formalize each transformation and its
implementation.

To simplify our notation, we consider a dataset DX , which is partitioned into two disjoint subsets:
a labeled subset LX = {xi}ni=1 ⊂ DX that has been annotated by domain experts, resulting in the
labeled dataset L = {(xi, yi)}ni=1. An unlabeled subset U = DX \ LX containing the remaining
unannotated data points. We assume the existence of a positive semidefinite kernel function K :
X × X → R defined in the input space.
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(1) Scaling transformation→ scale(LX) normalizes kernel outputs to have a unit variance:

K→scale(LX)(x, x
′) = κ2(K,LX)K(x, x′), κ(K,LX) =

(
1

|LX |
∑

x∈LX

K(x, x)

)−1/2

,

(2) Sketching transformation→ sktch(d2) summarizes feature mapping with a projection to lower
dimension space:

K→sktch(d2)(x, x
′) =

1

p
{ϕ(x)}⊤N⊤Nϕ(x′),

where ϕ(x) is the map corresponding to the base kernel K that K(x, x′) = {ϕ(x)}⊤ϕ(x′), where
ϕ(x) ∈ Rd1 and N ∈ Rd2×d1 , d2 < d1 is a random matrix with i.i.d. standard normal entries,
approximates high-dimensional features via random projection to d2 dimensions. Using variants of
the celebrated Johnson-Lindenstrauss lemma[Johnson et al., 1984], we can prove that for a Gaussian
random projection to dimension d2 ≥ log(d21/δ)/ϵ

2, with probability ≥ 1− δ we have:

∀x, x′ ∈ X : (1− ϵ)dK(x, x′) ≤ dK→sketch(p)
(x, x′) ≤ (1 + ϵ)dK(x, x′),

where dK(x, x′) =
√
K(x, x) +K(x′, x′)− 2K(x, x′) denotes the kernel distance between x and

x′.

(3) Gaussian process posterior transformation: For the feature map ϕ(x) corresponding to the kernel
K, consider a Gaussian process with kernel K. Assume a Gaussian process linear regression model
using ϕ(x) as features: yi = ω⊤ϕ(xi) + ϵi with a weight prior ω ∼ N (0, I) and i.i.d. observation
noise ϵi ∼ N (0, σ2). Bishop and Nasrabadi [2006] proves the posterior distribution for a Gaussian
process after observing the training data L is also a Gaussian process with kernel

K→post(L,σ2)(x, x
′) = Cov

(
ω⊤ϕ(x), ω⊤ϕ(x′) | L

)
= K(x, x′)−K(x,LX)

(
K(LX ,LX) + σ2I

)−1
K(LX , x′),

where K(x,LX) =
(
K(x, x1),K(x, x2), · · · ,K(x, xn)

)
, K(LX , x) = {K(x,LX)}⊤ and

K(LX ,LX) = (K(xi, xj))i,j . Calculate the posterior covariance of the Gaussian process
after observing data L with noise variance σ2. For convenience, we use K→L to denote
K→scale(L)→post(L,σ2).

(4) ACS random feature transformation: Pinsler et al. [2019] applied the ACS-FW method to
Gaussian process linear regression. We use the Gaussian process model parameterized by ω
with noise variance σ2, employing the kernel K→scale(L) as described above. Let facs(x, ω) =

1/2 log{1+K→L(x, x)/σ
2}− [{ω⊤ϕ→scale(LX)(x)}2 +K→L(x, x)]/2σ

2, where ϕ→scale(LX) de-
notes the feature mapping associated with the kernel function K→scale(LX). Then,

K→acs(x, x
′) = Eω∼P (ω|L){facs(x, ω)facs(x′, ω)},

where P (ω | L) denotes the posterior distribution of parameter ω observing data L.

(5) ACS gradient transformation: Pinsler et al. [2019] propose the weighted Fisher inner product
given by:

K→acs−grad(x, x
′) = Eω∼P (ω|L)[{∇ωfacs(x, ω)}⊤∇ωfacs(x

′, ω)].

Under the Gaussian process model, they show an explicit formula for K→acs−grad(x, x
′) is given

by:

K→acs−grad(x, x
′) =

1

σ4
K→scale(L)(x, x

′)K→L(x, x
′).

A.3 Selection Methods

After applying the transformed base kernels to the unlabeled data, multiple selection strategies can
be employed to identify the most informative unlabeled candidates for annotation.

Let Lt = {(xi, yi)}ni=1 represent the labeled dataset where Lt,X = {xi}ni=1 contains only the
input features, Ut = {xj}mj=1 denotes the unlabeled data pool, θ̂t represents the current model
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parameters, and K denotes the kernel of the base kernel after kernel transformations. The active
learning objective is to select N points from Ut for annotation in the next batch.

We employ an iterative approach to select samples (except bait-FB). Let Bt,X,i denote the selected
sample batch after the i-th iteration, where |Bt,X,i| = i. By repeating the selection process N times
for different methods and combining the selected samples, we obtain the next batch of points for
labeling. The next batch selection algorithm is denoted as S : Θ× (X ×Y)N×XN×N×K → XN.
The next batch of unlabeled data is Bt+1,X = S(θ̂t,Lt,Ut, N,K), where N is the selected batch
size. We denote the selection at the i-th iteration with Bt,X,i as S(θ̂t,Lt,Ut,Bt,X,i,K)

Maxdiag selection maximizes the diagonal entries of the kernel matrix to prioritize high-uncertainty
samples:

S(θ̂t,Lt,Ut,Bt,X,i,K) = argmax
x∈Ut

K(x, x),

Maxdet [Seo et al., 2000] selection optimizes the determinant of the kernel matrix, balancing infor-
mativeness and diversity:

S(θ̂t,Lt,Ut,Bt,X,i,K) = argmax
x∈Ut

K→post(Bt,X,i,σ2)(x, x),

where σ2 is a tuning parameter.

Bait-FB [Ash et al., 2020] selection leverages Fisher information for batch selection to enhance
representativeness. Bait-FB greedily selects 2N samples and then removes N samples, and the
greedy selection of 2N samples is:

S(θ̂t,Lt,Ut,Bt,X,i,K) = argmax
x∈Ut

∑
x̃∈Lt,X∪Ut

K→post(Bt,X,i∪{x},σ2)(x̃, x̃).

Frank-Wolfe selection employs a convex optimization approach to iteratively select batches with
near-optimal submodular guarantees. Details can be referred to Pinsler et al. [2019].

Maxdist selects samples that maximize pairwise distances, and explicitly promotes diversity [Yu and
Kim, 2010]:

S(θ̂t,Lt,Ut,Bt,X,i,K) = argmax
x∈Ut

min
x′∈Bt,X,i

dK(x, x′).

For Bt,X,0, an arbitrary maximizer from Ut is chosen.

Kmeanspp ensures representative coverage via k-means++ initialization[Arthur and Vassilvitskii,
2006, Ostrovsky et al., 2013]:

∀x ∈ Ut : P (S(θ̂t,Lt,Ut,Bt,X,i,K) = x) =
minx̃∈Bt,X,i

dK(x, x̃)2∑
x′∈Ut

minx̃∈Bt,X,i
dK(x′, x̃)2

.

Lcmd Holzmüller et al. [2023] selects the point with the maximum distance to point in
Bt,X,i that has largest cluster size. For each point x ∈ Ut define its associated center as
c(x) = argminx̃∈Bt,X,i

dK(x, x̃). For any x̃ ∈ Bt,X,i, define its cluster size as s(x̃) =∑
x∈Ut:c(x)=x̃ dK(x, x̃)2. The selection is defined as:

S(θ̂t,Lt,Ut, 1,K) = argmax
x∈Ut:s(c(x))=maxx̃∈Bt,X,i

s(x̃)

dK(x, c(x)).

For Bt,X,0, we select argmaxx∈Ut
K(x, x).

A.4 Theoretical Details

With the NTK kernel defined as Kntk(x1, x2) = Eθ∼Pθ

[
{ϕ1(θ;x1)}⊤ϕ1(θ;x2)

]
, the key equiva-

lence holds:
Lemma A.1. [Yang, 2019, Arora et al., 2019] For data (x1, y1), . . . , (xn, yn), as layer widths go
to infinity and the parameters of neural network are initialized by θ ∼ Pθ, the optimized predictor
f(x; θ̂) under R̂2 converges in probability to:

f̂ridge(x) = Kntk(x,x)
{
Kntk(x,x) + λIn

}−1
y⊤.
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Therefore, under the infinite-width regime, the equivalence between neural network training and
kernel ridge regression allows us to leverage pointwise behavior of f̂ridge(x) to characterize the
neural network predictor at a fixed point x0 ∈ Rd. Denote ridge estimate of NTK kernel as:

K̂ntk(x, x0) = Kntk(x,x)
{
Kntk(x,x) + λnIn

}−1{Kntk(x0,x)}⊤ .

Let L∞ norm be ∥K̂ntk(·, x0)−Kntk(·, x0)∥∞ = supx |K̂ntk(x, x0)−Kntk(x, x0)|, and empirical
norm be ∥K̂ntk(·, x0)−Kntk(·, x0)∥n =

[
n−1

∑n
i=1{K̂ntk(xi, x0)−Kntk(xi, x0)}2

]1/2
.

Assumption 1. The noise terms ϵi are independent and identically distributed with E(ϵi) = 0 and
Var(ϵi) = σ2

ϵ <∞
Assumption 2. n−1/2∥K̂ntk(·, x0) − Kntk(·, x0)∥∞/∥K̂ntk(·, x0) − Kntk(·, x0)∥n → 0 in
probability.

Lemma A.2. [Tuo and Zou, 2024] Under assumption 1-2, f̂ridge(x0) is asymptotically normal:

{Var(f̂ridge(x0))}−1/2
[
f̂ridge(x0)− E{f̂ridge(x0)}

]
d.→ N(0, 1),

where Var(f̂ridge(x0)) = σ2
ϵKntk(x0,x)

{
Kntk(x,x) + λnIn

}−1{Kntk(x0,x)}⊤.

Remark A.3. Assumption 2 can be verified using the upper and lower bounds of ∥K̂ntk(·, x0) −
Kntk(·, x0)∥∞ and ∥K̂ntk(·, x0)−Kntk(·, x0)∥n in Tuo and Zou [2024].

A.5 Proof of Theorem 2.1

We can decompose the ϕ̂2(θ̂;x0) as

ϕ̂2(θ̂;x0) = f(x0; θ̂)− f̃(x0; θ̂)

=
{
f(x0; θ̂)− f(x0; θ

∗)
}
−
{
f̃(x0; θ̂)− f(x0; θ

∗)
}

= ϕ2(θ̂;x0)− ϕ̃2(θ̂;x0)

=
{
ϕ
(1)
2 (θ̂;x0)− ϕ̃

(1)
2 (θ̂;x0)

}
+
{
ϕ
(2)
2 (θ̂;x0)− ϕ̃

(2)
2 (θ̂;x0)

}
=
[
E{f̂ridge(x0)} − E{f̃ridge(x0)}+ oP (ζ(m))

]
+
{
ϕ
(2)
2 (θ̂;x0)− ϕ̃

(2)
2 (θ̂;x0)

}
.

Therefore the first part only contains bias and an asymptotically negligible item and the variance
comes from the second part:

Var(ϕ̂2(θ̂;x0))

=Var
([
E{f̂ridge(x0)} − E{f̃ridge(x0)}+ oP (ζ(m))

]
+
{
ϕ
(2)
2 (θ̂;x0)− ϕ̃

(2)
2 (θ̂;x0)

})
=Var

(
oP (ζ(m)) +

{
ϕ
(2)
2 (θ̂;x0)− ϕ̃

(2)
2 (θ̂;x0)

})
=Var

(
ϕ
(2)
2 (θ̂;x0)− ϕ̃

(2)
2 (θ̂;x0)

)
+ oP (ζ(m))

=Var
(
ϕ
(2)
2 (θ̂;x0)

)
+Var

(
ϕ̃
(2)
2 (θ̂;x0)

)
− 2Cov

(
ϕ
(2)
2 (θ̂;x0), ϕ̃

(2)
2 (θ̂;x0)

)
+ oP (ζ(m))

→σ2(x0) + σ̃2(x0)− 2ρσ̃(x0)σ(x0) + oP (ζ(m)) .

A.6 Addtional Information for Experiments

A.6.1 Real Data Descriptions

Dataset Information: The datasets BIO, BIKE, DIAMOND, and STOCK have feature dimension
d=9, and CT has original dimension d=379 (reduced to 50 features through correlation-based selec-
tion).

Auxiliary Data Description: The auxiliary datasets are generated through three distinct approaches:
(1) Data partitioning by feature: for the DIAMOND dataset, we select samples with the highest
clarity as the training and test set (representing rare, high-cost-to-label instances) while using lower-
clarity samples as auxiliary data, creating significant distributional heterogeneity; (2) Shared-origin
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data with label corruption: for CT and STOCK datasets, the target and auxliary initially share the
same distribution, but we systematically corrupt parts of the auxiliary data (10% relabeling from
N(µCT, σ

2
CT) for CT, 40% from N(µSTOCK, σ

2
STOCK) for STOCK) to simulate annotation/trans-

mission errors or data missing, where µCT, µSTOCK and σ2
CT, σ

2
STOCK represent the expectation

and variance of response variable in CT, STOCK dataset; (3) Feature-dependent label perturbation:
for BIO and BIKE datasets, we modify auxiliary data (x, y) to be (x, ynew), ynew = y+δ(x), where
δ(x) models instrumentation or recording errors. For BIO dataset, δ(x) = cos(

∑d
i=1 xi) and for

BIKE dataset δ(x) = 2 cos(
∑d

i=1 xi). Table 3 conclusively demonstrates significant distributional
shifts between auxiliary and target data.

A.6.2 Additional Results

In this section we provide additional and detailed results for our experiments.

Table 2: Comparison of 8 selection methods across synthetic and real-world datasets in terms of
RMSE at step 10, where Avg Impro represents improvement over BMDAL averaged across 7 exper-
iments.

S1 S2 BIO BIKE DIAMOND CT STOCK Avg Impro

random 0.890 1.352 0.412 0.295 17.854 0.308 0.346
lcmd 0.971 1.443 0.390 0.256 16.644 0.168 0.328

lcmd (ours) 0.803 1.206 0.392 0.291 17.045 0.197 0.315∗ 0.6%
maxdist 0.833 1.255 0.404 0.285 16.691 0.177 0.343

maxdist (ours) 0.797 1.202 0.386 0.272 16.657 0.186 0.321 2.7%
kmeanspp 0.856 1.307 0.389 0.259 16.139 0.181 0.327

kmeanspp (ours) 0.808 1.230 0.381∗ 0.246∗ 15.974∗ 0.176 0.318 3.5%
fw 0.915 1.382 0.407 0.295 17.582 0.272 0.341

fw (ours) 0.856 1.268 0.391 0.273 18.389 0.231 0.341 5.2%
bait 0.812 1.267 0.404 0.307 18.218 0.375 0.350

bait (ours) 0.797∗ 1.227 0.398 0.271 19.114 0.299 0.335 5.4%
maxdet 0.843 1.260 0.393 0.333 16.257 0.240 0.336

maxdet (ours) 0.802 1.200∗ 0.383 0.258 16.587 0.161∗ 0.328 9.8%
maxdiag 0.880 1.363 0.426 0.431 20.508 0.451 0.372

maxdiag (ours) 0.800 1.207 0.388 0.280 16.223 0.196 0.323 22.2%

Table 3: RMSE comparison at step 15: target-only trained versus target and auxiliary combined data
(Aux) trained models.

S1 S2 BIO BIKE DIAMOND CT STOCK

maxdiag 0.819 1.205 0.384 0.233 14.029 0.150 0.306
maxdiag (Aux) 1.514 1.958 0.639 1.008 19.256 0.199 0.325

maxdet 0.819 1.223 0.374 0.223 13.817 0.131 0.309
maxdet (Aux) 1.512 1.956 0.631 1.048 19.215 0.193 0.337

bait 0.818 1.254 0.396 0.230 17.131 0.200 0.309
bait (Aux) 1.527 1.977 0.628 1.056 19.610 0.248 0.329

fw 0.889 1.332 0.381 0.219 16.957 0.178 0.317
fw (Aux) 1.547 1.985 0.620 1.096 19.165 0.213 0.329
maxdist 0.829 1.223 0.384 0.230 13.675 0.141 0.304

maxdist (Aux) 1.528 1.967 0.636 1.003 19.161 0.200 0.337
kmeanspp 0.831 1.244 0.378 0.214 13.708 0.140 0.301

kmeanspp (Aux) 1.521 1.973 0.625 1.012 19.155 0.199 0.330
lcmd 0.837 1.235 0.383 0.240 14.421 0.148 0.301

lcmd (Aux) 1.529 1.964 0.635 1.004 19.191 0.198 0.338
random 1.011 1.490 0.397 0.235 16.307 0.233 0.319

random (Aux) 1.541 1.994 0.622 1.077 19.455 0.257 0.333

A.6.3 Additional Computational Burden Analysis Results

For different methods, in Table 11 we present the computational resource consumption, where Av-
gUsg denotes the memory usage and AvgTime represents the average runtime per step of the method.
The first row reports the consumption of BMDAL, followed by the consumption of our method under
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Figure 5: Visualization of the loss of selected points for maxdiag and maxdet methods.
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Figure 6: Visualization of the loss of selected points for bait and maxdist methods.
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Figure 7: Visualization of the loss of selected points for kmeanspp and random methods.

Table 4: MSE results of S1.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

random 1.077 1.058 0.993 0.971 0.955 0.942 0.930 0.921 0.911 0.900 0.890 0.882 0.875 0.868 0.862 0.857
maxdiag 1.077 0.972 0.928 0.921 0.917 0.912 0.908 0.900 0.894 0.886 0.880 0.873 0.867 0.862 0.857 0.853

maxdiag (ours) 1.077 0.977 0.879 0.859 0.843 0.834 0.826 0.818 0.810 0.805 0.800 0.795 0.791 0.788 0.786 0.783
maxdet 1.077 0.982 0.924 0.906 0.893 0.881 0.874 0.866 0.858 0.850 0.843 0.837 0.831 0.826 0.821 0.818

maxdet (ours) 1.077 0.949 0.867 0.846 0.838 0.828 0.822 0.817 0.811 0.806 0.802 0.798 0.795 0.792 0.790 0.788
bait 1.077 1.014 0.917 0.885 0.864 0.850 0.839 0.831 0.824 0.818 0.812 0.807 0.802 0.799 0.796 0.794

bait (ours) 1.077 1.000 0.874 0.853 0.842 0.830 0.822 0.814 0.808 0.802 0.797 0.793 0.788 0.785 0.783 0.781
fw 1.077 1.062 1.016 0.995 0.987 0.978 0.967 0.953 0.939 0.926 0.915 0.906 0.898 0.891 0.884 0.879

fw (ours) 1.077 1.046 0.963 0.942 0.930 0.915 0.899 0.887 0.876 0.865 0.856 0.847 0.840 0.834 0.829 0.825
maxdist 1.077 0.963 0.900 0.884 0.875 0.867 0.859 0.851 0.845 0.839 0.833 0.826 0.822 0.817 0.814 0.810

maxdist (ours) 1.077 0.966 0.881 0.861 0.846 0.833 0.824 0.816 0.808 0.802 0.797 0.793 0.789 0.786 0.783 0.781
kmeanspp 1.077 1.020 0.954 0.926 0.915 0.906 0.896 0.888 0.876 0.865 0.856 0.848 0.841 0.835 0.831 0.827

kmeanspp (ours) 1.077 0.967 0.892 0.864 0.849 0.838 0.831 0.825 0.819 0.813 0.808 0.803 0.799 0.795 0.792 0.790
lcmd 1.077 1.082 1.076 1.084 1.075 1.066 1.046 1.027 1.010 0.988 0.971 0.956 0.942 0.931 0.921 0.913

lcmd (ours) 1.077 0.988 0.948 0.876 0.853 0.840 0.831 0.822 0.815 0.808 0.803 0.798 0.794 0.791 0.788 0.786
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Table 5: MSE results of S2.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

random 1.703 1.652 1.541 1.492 1.460 1.441 1.424 1.403 1.384 1.367 1.352 1.339 1.328 1.318 1.310 1.303
maxdiag 1.703 1.516 1.451 1.427 1.423 1.415 1.409 1.395 1.383 1.373 1.363 1.352 1.342 1.334 1.326 1.319

maxdiag (ours) 1.703 1.504 1.346 1.309 1.279 1.261 1.246 1.235 1.225 1.216 1.207 1.200 1.195 1.191 1.187 1.184
maxdet 1.703 1.492 1.402 1.364 1.341 1.324 1.308 1.295 1.283 1.270 1.260 1.251 1.244 1.238 1.233 1.228

maxdet (ours) 1.703 1.453 1.310 1.277 1.259 1.245 1.231 1.221 1.212 1.206 1.200 1.195 1.190 1.186 1.182 1.180
bait 1.703 1.632 1.459 1.396 1.360 1.336 1.319 1.303 1.290 1.278 1.267 1.258 1.250 1.244 1.238 1.234

bait (ours) 1.703 1.568 1.382 1.326 1.303 1.287 1.270 1.256 1.245 1.235 1.227 1.220 1.214 1.209 1.205 1.201
fw 1.703 1.663 1.571 1.528 1.496 1.473 1.451 1.434 1.415 1.398 1.382 1.367 1.355 1.344 1.335 1.328

fw (ours) 1.703 1.586 1.459 1.408 1.376 1.350 1.329 1.311 1.296 1.282 1.268 1.257 1.248 1.241 1.234 1.229
maxdist 1.703 1.491 1.390 1.348 1.322 1.306 1.292 1.281 1.271 1.263 1.255 1.248 1.243 1.238 1.233 1.230

maxdist (ours) 1.703 1.495 1.358 1.304 1.273 1.255 1.241 1.226 1.216 1.208 1.202 1.196 1.192 1.188 1.185 1.182
kmeanspp 1.703 1.601 1.502 1.454 1.417 1.393 1.374 1.354 1.336 1.321 1.307 1.295 1.285 1.276 1.270 1.264

kmeanspp (ours) 1.703 1.532 1.383 1.336 1.308 1.291 1.276 1.263 1.249 1.239 1.230 1.222 1.216 1.210 1.205 1.202
lcmd 1.703 1.748 1.686 1.607 1.582 1.563 1.538 1.511 1.486 1.466 1.443 1.423 1.405 1.390 1.376 1.365

lcmd (ours) 1.703 1.534 1.422 1.326 1.291 1.270 1.254 1.239 1.224 1.215 1.206 1.198 1.193 1.188 1.183 1.180

Table 6: MSE results of BIO.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

random 0.677 0.536 0.512 0.485 0.468 0.468 0.449 0.435 0.428 0.416 0.412 0.409 0.405 0.401 0.399 0.397
maxdiag 0.677 0.525 0.490 0.472 0.457 0.449 0.447 0.442 0.435 0.430 0.426 0.420 0.415 0.412 0.409 0.406

maxdiag (ours) 0.677 0.502 0.468 0.470 0.451 0.463 0.487 0.503 0.503 0.515 0.519 0.523 0.524 0.526 0.533 0.537
maxdet 0.677 0.472 0.448 0.434 0.418 0.412 0.407 0.402 0.399 0.397 0.393 0.391 0.389 0.388 0.387 0.386

maxdet (ours) 0.677 0.483 0.443 0.418 0.408 0.400 0.395 0.391 0.387 0.385 0.383 0.382 0.381 0.380 0.379 0.380
bait 0.677 0.558 0.503 0.467 0.448 0.439 0.429 0.424 0.412 0.409 0.404 0.401 0.398 0.397 0.394 0.392

bait (ours) 0.677 0.513 0.478 0.460 0.439 0.429 0.422 0.413 0.407 0.402 0.398 0.396 0.395 0.393 0.390 0.388
fw 0.677 0.519 0.470 0.457 0.437 0.430 0.422 0.415 0.412 0.411 0.407 0.403 0.400 0.398 0.396 0.394

fw (ours) 0.677 0.484 0.451 0.434 0.419 0.411 0.406 0.400 0.398 0.394 0.391 0.391 0.389 0.388 0.387 0.386
maxdist 0.677 0.486 0.460 0.448 0.433 0.423 0.419 0.414 0.409 0.406 0.404 0.401 0.398 0.396 0.395 0.394

maxdist (ours) 0.677 0.501 0.466 0.440 0.421 0.408 0.400 0.394 0.391 0.388 0.386 0.384 0.382 0.381 0.379 0.378
kmeanspp 0.677 0.474 0.443 0.429 0.415 0.406 0.401 0.396 0.393 0.390 0.389 0.387 0.385 0.384 0.382 0.382

kmeanspp (ours) 0.677 0.467 0.431 0.417 0.407 0.399 0.394 0.390 0.385 0.384 0.381 0.379 0.378 0.377 0.376 0.375
lcmd 0.677 0.472 0.452 0.432 0.422 0.415 0.405 0.400 0.397 0.393 0.390 0.388 0.386 0.385 0.384 0.383

lcmd (ours) 0.677 0.472 0.461 0.450 0.432 0.421 0.412 0.402 0.396 0.394 0.392 0.390 0.387 0.385 0.384 0.383

Table 7: MSE results of BIKE.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

random 1.413 0.923 0.764 0.613 0.537 0.462 0.408 0.368 0.340 0.315 0.295 0.278 0.263 0.252 0.243 0.235
maxdiag 1.413 1.051 0.929 0.798 0.705 0.622 0.574 0.524 0.483 0.454 0.431 0.409 0.389 0.367 0.349 0.332

maxdiag (ours) 1.413 0.830 0.620 0.505 0.426 0.378 0.349 0.324 0.307 0.292 0.280 0.269 0.259 0.249 0.242 0.236
maxdet 1.413 0.890 0.751 0.631 0.561 0.504 0.452 0.413 0.381 0.356 0.333 0.315 0.300 0.286 0.276 0.268

maxdet (ours) 1.413 0.698 0.476 0.397 0.351 0.327 0.312 0.291 0.280 0.268 0.258 0.249 0.242 0.237 0.231 0.226
bait 1.413 0.971 0.789 0.661 0.574 0.491 0.431 0.390 0.355 0.328 0.307 0.292 0.278 0.267 0.255 0.246

bait (ours) 1.413 0.775 0.589 0.480 0.416 0.374 0.346 0.321 0.301 0.285 0.271 0.261 0.251 0.242 0.235 0.230
fw 1.413 0.947 0.745 0.614 0.514 0.443 0.399 0.365 0.335 0.312 0.295 0.278 0.263 0.253 0.245 0.237

fw (ours) 1.413 0.809 0.577 0.491 0.429 0.390 0.357 0.330 0.308 0.289 0.273 0.261 0.251 0.243 0.236 0.229
maxdist 1.413 0.915 0.716 0.579 0.486 0.423 0.377 0.346 0.321 0.300 0.285 0.271 0.259 0.249 0.240 0.232

maxdist (ours) 1.413 0.829 0.597 0.484 0.412 0.368 0.340 0.316 0.300 0.285 0.272 0.260 0.251 0.242 0.234 0.227
kmeanspp 1.413 0.852 0.654 0.511 0.431 0.380 0.342 0.313 0.288 0.273 0.259 0.249 0.239 0.231 0.224 0.219

kmeanspp (ours) 1.413 0.762 0.522 0.416 0.362 0.327 0.300 0.283 0.268 0.257 0.246 0.238 0.230 0.224 0.218 0.213
lcmd 1.413 0.819 0.620 0.502 0.420 0.369 0.331 0.302 0.281 0.266 0.256 0.245 0.237 0.229 0.223 0.218

lcmd (ours) 1.413 0.819 0.620 0.559 0.489 0.450 0.411 0.369 0.341 0.317 0.291 0.276 0.261 0.252 0.242 0.234
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Table 8: MSE results of DIAMOND.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

random 33.666 29.685 26.771 25.483 23.523 21.760 20.474 19.429 18.923 18.359 17.854 17.398 17.095 16.809 16.582 16.307

maxdiag 33.666 34.604 33.749 30.630 27.929 26.469 24.681 23.864 22.387 21.282 20.508 19.791 19.487 19.085 18.491 18.232

maxdiag (ours) 33.666 35.427 27.964 25.435 23.301 22.054 20.700 19.560 18.331 16.854 16.223 15.840 15.467 15.038 14.841 14.628
maxdet 33.666 30.538 25.993 23.145 21.704 20.044 19.326 18.241 17.625 16.713 16.257 15.887 15.462 15.276 15.040 14.882

maxdet (ours) 33.666 31.333 26.014 24.047 21.857 20.019 18.761 18.211 17.210 17.039 16.587 16.273 15.725 15.288 15.081 14.826
bait 33.666 31.433 28.557 26.973 25.002 23.365 22.640 20.566 19.652 18.897 18.218 18.127 17.578 17.345 17.183 16.977

bait (ours) 33.666 31.764 28.619 26.016 24.163 22.536 21.492 20.835 20.311 19.377 19.114 18.677 18.249 17.802 17.557 17.320
fw 33.666 31.308 29.604 26.492 23.034 21.262 20.625 19.736 18.715 17.968 17.582 16.979 16.695 16.216 15.871 15.608

fw (ours) 33.666 31.662 28.651 26.862 24.885 23.475 21.564 20.582 19.677 19.077 18.389 17.633 17.213 16.733 16.413 15.914
maxdist 33.666 33.311 27.960 24.517 22.498 21.050 19.973 19.212 18.238 17.297 16.691 16.460 16.095 15.988 15.775 15.498

maxdist (ours) 33.666 36.023 29.659 26.134 23.642 22.181 20.896 19.661 18.201 17.259 16.657 16.290 15.980 15.466 15.346 14.930
kmeanspp 33.666 30.066 26.346 23.903 21.836 20.200 19.375 17.934 17.055 16.410 16.139 15.869 15.617 15.309 15.029 14.880

kmeanspp (ours) 33.666 31.448 26.154 22.890 21.410 20.365 19.123 18.308 17.335 16.468 15.974 15.656 15.188 15.075 14.715 14.523
lcmd 33.666 30.379 26.531 23.069 21.023 19.593 18.864 18.003 17.329 17.037 16.644 16.159 15.914 15.502 15.322 15.008

lcmd (ours) 33.666 30.379 26.501 26.659 22.573 21.850 21.215 19.384 18.087 17.673 17.045 16.671 16.032 16.048 15.667 15.366

Table 9: MSE results of CT.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

random 0.848 0.595 0.503 0.445 0.419 0.399 0.372 0.358 0.351 0.337 0.308 0.292 0.276 0.258 0.245 0.233
maxdiag 0.848 0.641 0.608 0.597 0.593 0.594 0.598 0.564 0.538 0.503 0.451 0.431 0.407 0.387 0.371 0.351

maxdiag (ours) 0.848 0.595 0.457 0.411 0.379 0.331 0.295 0.266 0.236 0.215 0.196 0.183 0.173 0.166 0.158 0.153
maxdet 0.848 0.527 0.440 0.391 0.364 0.342 0.318 0.299 0.278 0.259 0.240 0.224 0.211 0.202 0.193 0.184

maxdet (ours) 0.848 0.517 0.394 0.333 0.286 0.260 0.230 0.203 0.186 0.171 0.161 0.153 0.146 0.140 0.135 0.131
bait 0.848 0.620 0.554 0.514 0.470 0.462 0.438 0.431 0.411 0.393 0.375 0.356 0.327 0.313 0.298 0.289

bait (ours) 0.848 0.620 0.488 0.454 0.425 0.395 0.378 0.359 0.354 0.322 0.299 0.277 0.255 0.234 0.225 0.211
fw 0.848 0.554 0.463 0.417 0.388 0.367 0.355 0.330 0.299 0.286 0.272 0.259 0.241 0.227 0.216 0.207

fw (ours) 0.848 0.498 0.430 0.391 0.346 0.323 0.303 0.286 0.266 0.249 0.231 0.216 0.206 0.196 0.187 0.179
maxdist 0.848 0.538 0.415 0.356 0.309 0.277 0.250 0.225 0.205 0.190 0.177 0.168 0.157 0.150 0.143 0.138

maxdist (ours) 0.848 0.610 0.467 0.407 0.363 0.328 0.291 0.264 0.232 0.204 0.186 0.171 0.160 0.151 0.146 0.142
kmeanspp 0.848 0.507 0.415 0.356 0.311 0.280 0.252 0.232 0.214 0.194 0.181 0.168 0.159 0.152 0.146 0.139

kmeanspp (ours) 0.848 0.510 0.399 0.335 0.292 0.269 0.247 0.222 0.206 0.189 0.176 0.166 0.157 0.149 0.143 0.138
lcmd 0.848 0.485 0.371 0.331 0.293 0.266 0.244 0.217 0.198 0.179 0.168 0.158 0.148 0.140 0.135 0.132

lcmd (ours) 0.848 0.485 0.433 0.392 0.354 0.321 0.283 0.257 0.242 0.216 0.197 0.185 0.174 0.165 0.157 0.151

Table 10: MSE results of STOCK.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

random 0.588 0.498 0.468 0.451 0.430 0.409 0.389 0.379 0.367 0.355 0.346 0.340 0.334 0.328 0.324 0.319
maxdiag 0.588 0.541 0.496 0.465 0.448 0.429 0.416 0.400 0.392 0.383 0.372 0.365 0.358 0.352 0.346 0.342

maxdiag (ours) 0.588 0.476 0.434 0.395 0.374 0.360 0.349 0.339 0.333 0.328 0.323 0.319 0.315 0.312 0.309 0.307
maxdet 0.588 0.483 0.456 0.429 0.405 0.387 0.372 0.361 0.350 0.343 0.336 0.330 0.324 0.321 0.316 0.313

maxdet (ours) 0.588 0.449 0.407 0.388 0.367 0.357 0.350 0.341 0.337 0.331 0.328 0.325 0.322 0.319 0.316 0.313
bait 0.588 0.495 0.468 0.447 0.424 0.404 0.388 0.377 0.369 0.360 0.350 0.343 0.336 0.331 0.326 0.321

bait (ours) 0.588 0.479 0.431 0.406 0.387 0.378 0.365 0.355 0.349 0.342 0.335 0.329 0.324 0.321 0.317 0.312
fw 0.588 0.513 0.477 0.442 0.421 0.404 0.385 0.368 0.360 0.351 0.341 0.336 0.330 0.324 0.319 0.316

fw (ours) 0.588 0.480 0.445 0.416 0.392 0.382 0.369 0.360 0.352 0.345 0.341 0.335 0.330 0.327 0.323 0.319
maxdist 0.588 0.511 0.481 0.445 0.416 0.402 0.386 0.372 0.362 0.350 0.343 0.337 0.330 0.325 0.321 0.317

maxdist (ours) 0.588 0.477 0.436 0.400 0.375 0.359 0.345 0.341 0.333 0.327 0.321 0.318 0.315 0.312 0.309 0.306
kmeanspp 0.588 0.493 0.457 0.430 0.398 0.382 0.365 0.353 0.342 0.334 0.327 0.320 0.315 0.310 0.306 0.303

kmeanspp (ours) 0.588 0.452 0.412 0.389 0.371 0.357 0.346 0.338 0.329 0.324 0.318 0.314 0.311 0.308 0.305 0.302
lcmd 0.588 0.498 0.452 0.421 0.396 0.374 0.358 0.347 0.339 0.332 0.328 0.321 0.316 0.312 0.308 0.305

lcmd (ours) 0.588 0.498 0.464 0.419 0.392 0.365 0.345 0.332 0.325 0.319 0.315 0.311 0.308 0.306 0.303 0.301
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Figure 8: S1 MSEs plot.
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Figure 9: S2 MSEs plot.
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Figure 10: BIO MSEs plot.
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Figure 11: BIKE MSEs plot.
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Figure 12: DIAMOND MSEs plot.
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Figure 13: CT MSEs plot.
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varying sizes of auxiliary data samples, along with the corresponding AUC improvement achieved
at each sample size.

Table 11: Computational Burden Analysis Results.
lcmd maxdiag maxdet fw maxdist bait kmeanspp

AvgUsg (M) BMDAL 571.4 502.2 553.8 544.0 576.0 596.6 562.2
ours (100) 575.2 501.4 561.4 570.6 570.0 599.0 511.0
ours (500) 593.4 522.0 578.6 567.0 587.0 609.0 520.2

ours (1000) 595.0 529.0 584.8 578.0 585.8 610.8 539.2
ours (10000) 766.0 713.4 750.0 752.4 770.6 769.2 765.4

AvgTime (s) BMDAL 1.39 0.06 0.32 0.23 1.19 1.10 1.28
ours (100) 2.35 0.91 1.23 1.12 2.10 2.02 2.41
ours (500) 3.08 1.62 1.97 1.83 2.80 2.72 2.81

ours (1000) 3.57 2.27 2.62 2.46 3.39 3.32 3.17
ours (10000) 15.04 14.49 15.23 14.74 15.95 15.44 15.89

AvgImpro (%) ours (100) −11.47 14.91 5.83 2.28 −9.17 5.86 −0.66
ours (500) −6.17 20.31 10.69 4.66 −0.40 8.95 2.60

ours (1000) −5.65 17.99 10.47 5.03 1.13 7.71 3.86
ours (10000) −6.08 22.56 12.02 5.20 1.91 8.76 4.47

A.7 Additional Experiments

A.7.1 Experiments on Auxiliary Data Quality

Since the core of our method lies in improving loss estimation through auxiliary data guidance, an
intuitive expectation is that better alignment between auxiliary and target distributions should yield
superior estimation performance. This naturally raises the question: how severely will our method
degrade as auxiliary data quality deteriorates? To investigate this, we adopt the same experimental
settings as defined in S1 and S2.

At ζ = 64, where the distribution shift is most severe, AGBAL achieves its highest AUC for the
MSE curve while still outperforming BMDAL (which uses no auxiliary data). As shown in Ta-
ble 12, AGBAL maintains superior performance across most selection methods, except for a slight
degradation under maxdist. This demonstrates our method’s robustness: when distribution discrep-
ancy becomes extreme, the density ratio estimation effectively nullifies the auxiliary data’s influence
(weights approach zero), preventing negative learning while maintaining comparable performance
to not using auxiliary data at all.

Table 12: Worst case AUC comparison between AGBAL and BMDAL.
maxdiag maxdet bait fw maxdist kmeanspp lcmd

S1 BMDAL 0.956 0.952 0.914 1.038 0.933 0.975 1.131
AGBAL (ours) 0.942 0.918 0.904 1.038 0.947 0.940 0.975
Improvement 1.5% 3.6% 1.1% 0.0% −1.5% 3.6% 13.8%

S2 BMDAL 1.501 1.430 1.417 1.583 1.406 1.479 1.647
AGBAL (ours) 1.437 1.398 1.390 1.543 1.436 1.426 1.468
Improvement 4.3% 2.2% 1.9% 2.5% −2.1% 3.6% 10.9%

A.7.2 Experiments on Auxiliary Data Quantity

On the other hand, the volume of auxiliary data warrants investigation. While real-world scenarios
typically provide abundant auxiliary data (e.g., corrupted data or related-task data), limited-quantity
cases do exist - such as small historical archives with long-term records. To examine the perfor-
mance of our method with scarce auxiliary data, we conduct experiments with varying volumes
(50, 100, 300, 500, 1000 samples) under the S1 and S2 configurations, fixing ζ = 8. For each selec-
tion method, we evaluate the performance by computing the AUC of MSE curves.

Figure 14-15 presents the AUC values of MSE curves for AGBAL (solid lines) versus BMDAL
(dashed lines, without auxiliary data) across varying auxiliary data sizes (Naux). The results demon-
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strate: (1) AGBAL’s performance improves monotonically with increasing Naux; (2) At minimal
data volume (Naux = 50), AGBAL achieves comparable performance to BMDAL while maintain-
ing superiority in most cases; (3) The only exception occurs under maxdist selection, where AGBAL
marginally underperforms BMDAL. These findings confirm that even with modest amounts of aux-
iliary data, AGBAL can be still useful.
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Figure 14: AUC plots of varying Naux for S1.
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Figure 15: AUC plots of varying Naux for S2.

We evaluate our method on five real-world datasets with varying auxiliary data sizes Naux. Fig-
ure 16-20 illustrates the AUC trends against auxiliary data volume. Due to the inherent distribu-
tional complexity of real-world data, the AUC-n curves exhibit non-smooth variations. However,
aggregating results across all five datasets and selection methods reveals: (1) a consistent decreasing
trend in AUC as Naux increases; (2) at minimal auxiliary data (Naux = 100), while AGBAL’s ad-
vantage over BMDAL (measured by optimal selection method AUC) becomes marginal, it remains
competitive - demonstrating the framework’s robustness.

A.8 Limitations

The performance of AGBAL is fundamentally constrained by the quality and relevance of the auxil-
iary data. While the method demonstrates robustness to moderate distribution shifts between auxil-
iary and target distributions, its effectiveness diminishes when the auxiliary data becomes too noisy
or exhibits systematic biases.

The theoretical analysis relies on NTK assumptions that may not hold in practical settings. While
the infinite-width network approximation provides valuable insights, its applicability to modern deep
architectures with finite width and complex layer interactions remains uncertain. This paper does
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Figure 16: AUC plots of varying Naux for BIO.
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Figure 17: AUC plots of varying Naux for BIKE.
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Figure 18: AUC plots of varying Naux for DIAMOND.
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Figure 19: AUC plots of varying Naux for CT.
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Figure 20: AUC plots of varying Naux for STOCK.

not investigate how deviations from these ideal conditions might affect the method’s performance in
real-world applications.

The experimental validation, while comprehensive, focuses primarily on regression tasks with rel-
atively low-dimensional input. The performance of AGBAL on high-dimensional structured data,
such as images or time series, remains unexplored. Additionally, all experiments assume the avail-
ability of auxiliary data with similar feature spaces, leaving open the question of how the method
would perform when auxiliary data come from substantially different modalities.

A.9 Broader Impacts

The proposed AGBAL framework has several potential positive social impacts. By reducing anno-
tation costs through more efficient active learning, our method could make machine learning more
accessible in resource-constrained domains such as healthcare in developing regions or small-scale
industrial applications. The ability to leverage imperfect auxiliary data aligns well with real-world
scenarios where perfect datasets are rare, potentially enabling more applications in safety-critical
domains such as medical diagnosis or autonomous driving.

While effective, our method raises privacy concerns when auxiliary data contains sensitive informa-
tion, and may require fairness considerations when adapted to classification tasks. Though efficiency
gains could lower barriers for misuse, this risk is mitigated by the method’s domain-agnostic nature.
We encourage future work on privacy-preserving and fairness-aware extensions.
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