Enhancing Deep Batch Active Learning for Regression with Imperfect Data Guided Selection

Yinjie Min*

School of Statistics and Data Science Nankai University nk.yjmin@gmail.com

Furong Xu*

School of Statistics and Data Science Nankai University frxu@mail.nankai.edu.cn

Xinyao Li

School of Computer Science and Engineering University of Electronic Science and Technology of China xinyao326@std.uestc.edu.cn

Changliang Zou[†]

School of Statistics and Data Science, LPMC and KLMDASR and LEBPS
Nankai University
nk.chlzou@gmail.com

Yongdao Zhou[†]

School of Statistics and Data Science Nankai University ydzhou@nankai.edu.cn

Abstract

Active learning (AL) reduces annotation costs by selecting the most informative samples based on both model sensitivity and predictive uncertainty. While sensitivity can be measured through parameter gradients in an unsupervised manner, predictive uncertainty can hardly be estimated without true labels especially for regression tasks, reducing the informativeness of actively selected samples. This paper proposes the concept of *auxiliary data* to aid the uncertainty estimation for regression tasks. With detailed theoretical analysis, we reveal that auxiliary data, despite potential distribution shifts, can provide a promising uncertainty surrogate when properly weighted. Such finding inspires our design of AGBAL, a novel AL framework that recalibrates auxiliary data losses through density ratio weighting to obtain reliable uncertainty estimates for sample selection. Extensive experiments show that AGBAL consistently outperforms existing approaches without auxiliary data across diverse synthetic and real-world datasets.

1 Introduction

Supervised machine learning often requires large amounts of labeled data to achieve good performance, but obtaining high-quality labels can be prohibitively expensive or time-consuming in many real-world applications[Sun et al., 2020a, Panayides et al., 2020, Thompson et al., 2024]. As a more

^{*}Equal contribution

[†]Corresponding author

efficient alternative, active learning (AL) strategically queries the most informative samples from the *target* unlabeled data pool to maximize model performance with minimal annotation effort[Gal and Ghahramani, 2016, Sener and Savarese, 2018, Beluch et al., 2018, Holzmüller et al., 2023].

Active learning aims to select the most informative samples for annotation. With the objective of minimizing the model's generalization loss through gradient-based parameter optimization, we establish that informativeness consists of two fundamental components: model sensitivity and predictive uncertainty. Highly sensitive samples produce stronger gradients during training, leading to more significant parameter updates[Koh and Liang, 2017, Chen et al., 2022], while those with high predictive uncertainty indicate regions where the predictions of the trained model are less accurate[Gal and Ghahramani, 2016, Lakshminarayanan et al., 2017]. By jointly considering both factors, we achieve more efficient model optimization through targeted sample selection.

The model sensitivity can be directly quantified using model gradients [Cai et al., 2013, Pinsler et al., 2019, Holzmüller et al., 2023]. For classification tasks, predictive uncertainty can be intuitively represented by certain metrics of class probabilities, such as entropy [Kirsch et al., 2019, Ash et al., 2020, Bang et al., 2024]. However, for regression tasks, the absence of labeled target data makes uncertainty estimation impossible, particularly since the model and training samples are not independent, and the loss on training data may approach zero during optimization. Various approaches have been proposed to find an alternative of predictive uncertainty in regression, including committee-based methods[Jose et al., 2024] and deep network dropout techniques[Gal and Ghahramani, 2016]. However, these solutions remain computationally intensive while offering only heuristic proxies rather than theoretically grounded measures. To address this, we propose using *auxiliary data* for robust uncertainty estimation and selecting samples with high informativeness.

We formalize auxiliary data as distributionally shifted yet relevant supplements to the target data in active learning, where the auxiliary distribution is more continuous than the target distribution. While target datasets are often limited by annotation costs, e.g. expert-labeled medical data, safetycritical driving scenarios or precise industrial design data records, auxiliary data naturally abound: hospitals accumulate medical images from patients with varying symptom manifestations[Litjens et al., 2017, Zhou et al., 2021, Tsai et al., 2024], autonomous vehicles continuously log driving data in varied environments[Sun et al., 2020b, Yu et al., 2020, Bai et al., 2024], and industrial systems retain sensor logs with recording inaccuracies or hardware degradation[Qiao et al., 2018, Rezazadeh et al., 2024]. Crucially, these auxiliary data share underlying physical or statistical relationships with the target distribution[Ganin et al., 2016, Kang et al., 2019, Zhang et al., 2020]. However, these imperfect datasets exhibit inherent limitations that constrain their utility for model training. Specifically, distributional shifts undermine the theoretical foundations of conventional generalization frameworks (e.g., Empirical Risk Minimization), leading to significant performance degradation[Buolamwini and Gebru, 2018, Alcorn et al., 2019, Koh et al., 2021]. Moreover, data contamination poses security threats, potentially enabling backdoor attacks and compromising data privacy in machine learning [Jagielski et al., 2018, Li et al., 2021, Carlini et al., 2021]. Thus, these data are frequently neglected by current AL methods.

Our key insight is that while auxiliary data cannot be directly combined with target data to improve model training performance, it can nevertheless provide reliable predictive uncertainty estimation through density ratio-weighted loss approximation, as shown in Figure 1. The proposed method can be briefly summarized in three steps: (1) estimating the density ratio between auxiliary and target distributions, (2) computing the model's loss on auxiliary data, and (3) applying density ratio weighting to obtain an approximation of the true loss. While the density ratio estimation is still dependent of the trained model, it successfully addresses the zero-loss problem and our analysis reveal that it yields a reliable surrogate for the true loss.

Inspired by such findings, we propose Auxiliary data Guided Batch Active Learning (AGBAL) to complement current AL selection frameworks. The contributions of this paper are as follows:

- We formally decompose informativeness in active learning into model sensitivity and predictive
 uncertainty for gradient-based parameter optimization. While the latter cannot be directly estimated due to model-training data dependence, we find that typically discarded imperfect auxiliary
 data can provide an uncertainty estimate surrogate when properly weighted.
- We propose Auxiliary data Guided Batch Active Learning (AGBAL), a novel framework that uses imperfect auxiliary data to estimate predictive uncertainty and selects more informative data. We validate the predictive uncertainty estimation through Neural Tangent Kernel (NTK) theory.

• Through extensive experiments on synthetic and real-world datasets, we demonstrate consistent performance advantages of AGBAL. Our comparative analysis reveals that auxiliary data-guided gradient kernels consistently outperform gradient kernels across various selection strategies.

2 Proposed Method

2.1 Problem Formulation

We consider multivariate regression and the goal is to learn a function $f:\mathbb{R}^d\to\mathbb{R}$ from training dataset \mathcal{D} , which consists of samples drawn i.i.d. from $P=P_X\times P_{Y|X}$. Typically, we consider a parameterized function family $\mathcal{F}(\Theta)=\{f(\cdot;\theta):\theta\in\Theta\},\Theta\subset\mathbb{R}^m$ and the goal is to find $\theta^*=\arg\min_{\theta\in\Theta}R(\theta;P)$, where $R(\theta;P)=\mathbb{E}_{X,Y\sim P}\ l(Y,f(X;\theta))$, and $l(\cdot,\cdot)$ is a loss function. In practice, we optimize θ by minimizing $\widehat{R}(\theta;\mathcal{D})=|\mathcal{D}|^{-1}\sum_{(x,y)\in\mathcal{D}}l(y,f(x;\theta))$.

The goal of active learning (AL) is to select which data should be annotated in order to learn the model as quickly as possible. Given a training task objective $R(\theta; P)$, a batch mode active learning (BMAL) algorithm starts with a data pool \mathcal{D}_X , which consists of samples drawn i.i.d. from P_X . The initial set to be labeled is $\mathcal{B}_{0,X} \subset \mathcal{D}_X$, initial labeled set is $\mathcal{L}_0 = \mathcal{B}_0 = \{(x_i,y_i) \mid x_i \in \mathcal{B}_{0,X}, y_i \sim P_{Y|X=x_i}\}$ and the unlabeled set is $\mathcal{U}_0 = \mathcal{D}_X \setminus \mathcal{B}_{0,X}$.

Assume $\widehat{\theta}_{-1}$ is initialized randomly. At each BMAL step $t \geq 0$ we update the predictor parameter $\widehat{\theta}_t$ using $\mathcal{A}(\widehat{\theta}_{t-1}, \mathcal{L}_t)$, where $\mathcal{A}: \Theta \times (\mathcal{X} \times \mathcal{Y})^{\mathbb{N}} \to \Theta$ is the learning algorithm mapping previous parameter $\widehat{\theta}_{t-1}$ and labeled data \mathcal{L}_t to an updated parameter $\widehat{\theta}_t$. Also assumes a next batch selection algorithm $\mathcal{S}: \Theta \times (\mathcal{X} \times \mathcal{Y})^{\mathbb{N}} \times \mathcal{X}^{\mathbb{N}} \times \mathbb{N} \times \mathcal{K} \to \mathcal{X}^{\mathbb{N}}$ that selects a batch of unlabeled data by $\mathcal{B}_{t+1,X} = \mathcal{S}(\widehat{\theta}_t, \mathcal{L}_t, \mathcal{U}_t, N, K)$, where $K(\cdot, \cdot) \in \mathcal{K}$ is a kernel that measures similarities between inputs. Label $\mathcal{B}_{t+1,X}$ and we get labeled dataset $\mathcal{B}_{t+1} = \{(x_i, y_i) \mid x_i \in \mathcal{B}_{t+1,X}, y_i \sim P_{Y|X=x_i}\}$. We update data pool by $\mathcal{L}_{t+1} = \mathcal{L}_t \cup \mathcal{B}_{t+1}, \mathcal{U}_{t+1} = \mathcal{U}_t \setminus \mathcal{B}_{t+1,X}$.

2.2 Motivation and Methods

Holzmüller et al. [2023] has demonstrated that sample selection strategies can be decomposed into two components: (1) a feature mapping, which projects input data into an informative representation space; and (2) a selection method operating in this space to identify samples of maximal value. Typically, the selection methods are implemented based on a distance metric in the representation space. In practice, this distance can be directly characterized by a kernel function defined over pairs of inputs. For example, the gradient kernel is defined as $K_{\rm grad}(x,x';\theta)=\{\phi_1(\theta;x')\}^\top\phi_1(\theta;x)$, where $\phi_1(\theta;x)=\partial f(x;\theta)/\partial\theta\in\mathbb{R}^m$ is the model parameter gradient. Also a kernel function consists of a base kernel and a kernel transformation, where base kernel (like gradient kernel) serves for feature extraction and optional kernel transformations in section A.2 enable additional adaptation. For notation simplicity, kernel transformations are omitted in the main-text notation. Notably, the gradient kernel is essential for active learning frameworks by encoding the informativeness through parameter model gradients. While existing work Holzmüller et al. [2023] has demonstrated its superiority over alternatives like last-layer activations or NNGP kernels, we identify key limitations in its current formulation under regression tasks. The gradient of $R(\theta;P)$ at θ can be formulated as

$$\begin{split} \frac{\partial R(\theta;P)}{\partial \theta} &= \mathbb{E}_{X,Y\sim P} \frac{\partial l(Y,f(X;\theta))}{\partial \theta} = \mathbb{E}_{X,Y\sim P} \frac{\partial l(Y,f(X;\theta))}{\partial f(X;\theta)} \frac{\partial f(X;\theta)}{\partial \theta} \\ &= \mathbb{E}_{X\sim P_X} \phi_1(\theta;X) \Big\{ \mathbb{E}_{Y\sim P_{Y|X}} \frac{\partial l(Y,f(X;\theta))}{\partial f(X;\theta)} \Big\} = \mathbb{E}_{X\sim P_X} \phi_1(\theta;X) \phi_2(\theta;X), \end{split} \tag{1}$$

where $\phi_2(\theta;x) = \mathbb{E}_{Y \sim P_{Y|X=x}} \partial l(Y,f(x;\theta))/\partial f(x;\theta)$ is the expected loss gradient. Given θ and input x, $\phi_1(\theta;x)$ can be directly computed, but evaluating $\phi_2(\theta;x)$ requires access to the conditional distribution $P_{Y|X=x}$. In an active learning setting, we face two fundamental challenges: (1) collecting additional samples from P to estimate $\phi_2(\theta;x)$ is impractical, and (2) reusing existing training data introduces the double-dipping problem. Current methods[Holzmüller et al., 2023] directly set $\phi_2 \equiv 1$.

The gradient kernel relies solely on $\phi_1(\theta; x)$ to characterize the informativeness at point x. However, $\phi_2(\theta; x)$ captures the predictive uncertainty. When $f(x; \theta) = \arg\min_y \mathbb{E}_{Y \sim P_{Y|X}=x} l(Y, y)$, acquir-

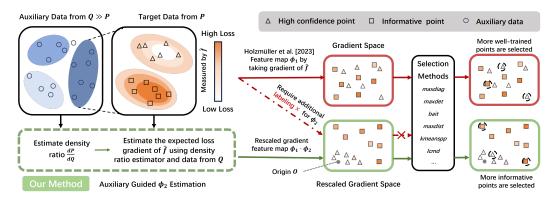


Figure 1: The AGBAL framework processes target data from P and auxiliary data from Q. The rescaled gradient feature map projects high-confidence points near the origin O (as their magnitudes of expected loss gradient are small), while maintaining high-uncertainty points at greater distances. Crucially, conventional methods without auxiliary data cannot estimate the expected loss gradient, causing high and low uncertainty points to distribute chaotically in the gradient space, hindering the selection of the most uncertain points.

ing additional samples at x is meaningless. As shown in Figure 1 in the red box, many well-trained points can be selected. In practical scenarios, active learning task rarely operates in isolation: there often exists related tasks that possess *auxiliary dataset* that has underlying similarities but exhibit different data distribution. This motivates our Auxiliary data Guided Batch Active Learning (AGBAL) framework in Figure 1: suppose we have access to a labeled dataset $\mathcal{D}' = \{(X_i', Y_i')\}_{i=1}^{n'}$ drawn from a different distribution $Q = Q_X \times Q_{Y|X} \neq P$, but $Q \gg P$ is absolutely continuous.

Let g(x,y) and $g_{\rm aux}(x,y)$ denote the joint density functions of P and Q, and g(x), $g_{\rm aux}(x)$ be their marginal density covariate functions. The conditional density is defined as $g(y\mid x)=g(x,y)/g(x)$ and $g_{\rm aux}(y\mid x)=g_{\rm aux}(x,y)/g_{\rm aux}(x)$. Define $r(x,y)=g(x,y)/g_{\rm aux}(x,y)$, $r(x)=g(x)/g_{\rm aux}(x)$ and $r(y\mid x)=r(x,y)/r(x)$. We can reformulate $\phi_2(\theta;x)$ as follows:

$$\phi_{2}(\theta; x) = \mathbb{E}_{Y \sim P_{Y|X=x}} \left\{ \frac{\partial l(Y, f(x; \theta))}{\partial f(x; \theta)} \right\} = \int g(y \mid x) \frac{\partial l(y, f(x; \theta))}{\partial f(x; \theta)} dy$$

$$= \int g_{\text{aux}}(y \mid x) r(y \mid x) \frac{\partial l(y, f(x; \theta))}{\partial f(x; \theta)} dy = \mathbb{E}_{Y \sim Q_{Y|X=x}} \left\{ r(Y \mid x) \frac{\partial l(Y, f(x; \theta))}{\partial f(x; \theta)} \right\}$$

$$= \underset{s \in \mathbb{R}}{\text{arg min}} \, \mathbb{E}_{Y \sim Q_{Y|X=x}} \left[\left\{ s - \frac{\partial l(Y, f(x; \theta))}{\partial f(x; \theta)} \right\}^{2} r(Y \mid x) \right] r(x)$$

$$= \underset{s \in \mathbb{R}}{\text{arg min}} \, \mathbb{E}_{Y \sim Q_{Y|X=x}} \left[\left\{ s - \frac{\partial l(Y, f(x; \theta))}{\partial f(x; \theta)} \right\}^{2} r(x, Y) \right].$$

Assume $\widehat{r}(x,y)$ is the density ratio estimator of r(x,y) obtained through algorithm $\mathcal{A}_{\mathrm{dr}}$, which is detailed in section A.1, we can estimate ϕ_2 in function space Φ by:

$$\widehat{\phi}_2 = \underset{\phi \in \Phi}{\operatorname{arg\,min}} \sum_{i=1}^{n'} \widehat{r}(X_i', Y_i') \left\{ \phi(\theta; X_i') - \frac{\partial l(Y_i', f(X_i'; \theta))}{\partial f(X_i'; \theta)} \right\}^2. \tag{2}$$

As shown in green dashed box in Figure 1, we define auxiliary data guided gradient feature map as $\phi_{\text{aux}}(x;\theta;\phi_1,\widehat{\phi}_2) = \widehat{\phi}_2(\theta;x)\phi_1(\theta;x)$, and auxiliary data guided gradient kernel as

$$K_{\text{grad-aux}}(x, x'; \theta, \widehat{\phi}_2) = \{\phi_{\text{aux}}(x'; \theta; \phi_1, \widehat{\phi}_2)\}^{\top} \phi_{\text{aux}}(x; \theta; \phi_1, \widehat{\phi}_2).$$
 (3)

We present the complete algorithm for AGBAL in Algorithm 1.

2.3 Theoretical Analysis

In our proposed approach, the methodology originated from an error re-assessment framework designed to achieve a more precise feature characterization at each data point. We now proceed to

Algorithm 1 Auxiliary Data Guided Batch Active Learning (AGBAL)

Input: Initial labeled and unlabeled set \mathcal{L}_0 and \mathcal{U}_0 , auxiliary data set \mathcal{D}' , training algorithm \mathcal{A} , density ratio estimating algorithm \mathcal{A}_{dr} , next batch selecting algorithm \mathcal{S} , loss function l, gradient mapping ϕ_1 , initial parameter θ_{-1} , label budget N at each step and training epochs T.

```
1: Set t \leftarrow 0
```

2: While t < T do

Update predictor parameter with $\widehat{\theta}_t \leftarrow \mathcal{A}(\widehat{\theta}_{t-1}, \mathcal{L}_t)$ Estimate density ratio $\widehat{r}_t = \mathcal{A}_{dr}(\mathcal{L}_t, \mathcal{D}')$ 3:

4:

5: Train estimator of expected loss gradient as $\widehat{\phi}_{2,t}$ in (2) using \widehat{r}_t and \mathcal{D}'

Construct auxiliary data guided gradient kernel $K_{t,\text{grad}-\text{aux}}$ in (3) with $\widehat{\theta}_t$, ϕ_1 and $\widehat{\phi}_{2,t}$ 6:

7:

Select unlabeled batch as $\mathcal{B}_{t,X} = \mathcal{S}(\widehat{\theta}_t, \mathcal{L}_t, \mathcal{U}_t, N, K_{t, \text{grad-aux}})$ Obtain \mathcal{B}_t by labeling $\mathcal{B}_{t,X}$ and update $t \leftarrow t+1$, $\mathcal{L}_t \leftarrow \mathcal{L}_{t-1} \cup \mathcal{B}_t$, $\mathcal{U}_t \leftarrow \mathcal{U}_{t-1} \setminus \mathcal{B}_{t,X}$

10: **return** $(\mathcal{L}_0, \dots, \mathcal{L}_t)$ and $(\widehat{\theta}_0, \dots, \widehat{\theta}_t)$

theoretically analyze the performance of auxiliary data based loss estimation under squared error loss $l_2(y_1, y_2) = (y_1 - y_2)^2/2$ in neural network architectures.

Setting: Consider data $(x_1, y_1), \ldots, (x_n, y_n)$ generated from model $y_i = f(x_i; \theta^*) + \epsilon_i$, where $\theta^* \in$ $\Theta\subset\mathbb{R}^m$ represents the true parameters, and ϵ_i are independent noise terms with zero mean and finite variance σ_{ϵ}^2 . Define the empirical risk with a L_2 penalty as $\widehat{R}_2(\theta) = n^{-1} \sum_{i=1}^n l_2(y_i, f(x_i; \theta)) +$ $\lambda \|\theta\|_2^2/2$, where $\lambda > 0$.

Pointwise convergence of $f(\cdot; \hat{\theta})$: Let $H_{\text{grad}}(\theta) \in \mathbb{R}^{n \times n}$ be the semidefinite matrix with (i,j)-entry $\{\phi_1(\theta;x_i)\}^{\top}\phi_1(\theta;x_j)$. The NTK kernel is defined as $K_{\rm ntk}(x_1,x_2)$ $\mathbb{E}_{\theta \sim P_{\theta}}\big[\{\phi_1(\theta;x_1)\}^{\top}\phi_1(\theta;x_2)\big]. \text{ For } \mathbf{x} = (x_1,\ldots,x_n) \text{ and } \mathbf{y} = (y_1,\ldots,y_n), \text{ define } K_{\mathrm{ntk}}(x,\mathbf{x}) = (K_{\mathrm{ntk}}(x,x_1),\ldots,K_{\mathrm{ntk}}(x,x_n)). \text{ As width goes to infinity and } \theta \sim P_{\theta}, H_{\mathrm{grad}}(\theta_0) \text{ converges in probability to a deterministic matrix } K_{\mathrm{ntk}}(\mathbf{x},\mathbf{x}) \in \mathbb{R}^{n \times n} \text{ with entries } K_{\mathrm{ntk}}(x_i,x_j) \text{ [Jacot et al., 2018]}.$ Denote $\widehat{f}_{\text{ridge}}(x) = K_{\text{ntk}}(x, \mathbf{x}) \{ K_{\text{ntk}}(\mathbf{x}, \mathbf{x}) + \lambda I_n \}^{-1} \mathbf{y}^{\top}$, under certain conditions we have $f(x_0; \widehat{\theta})$ asymptotically equivalent to $f_{\text{ridge}}(x_0)$ when the network width goes to infinity, and $f_{\text{ridge}}(x_0)$ is asymptotically normal with $n \to \infty$. Details are presented in A.4 in supplementary materials.

Re-formulation of $\widehat{\phi}_2$: For l_2 loss $\partial l_2(y_1,y_2)/\partial y_2=y_2-y_1$. Therefore with $Y=f(X;\theta^*)+\epsilon$, we $\begin{array}{l} \text{can calculate } \phi_2(\theta;x) = \mathbb{E}[f(X;\theta) - f(X;\theta^*) - \epsilon \mid X = x] = f(x;\theta) - f(x;\theta^*). \text{ Let } \phi_2(\widehat{\theta};x_0) = \phi_2^{(1)}(\widehat{\theta};x_0) + \phi_2^{(2)}(\widehat{\theta};x_0), \text{ where } \phi_2^{(1)}(\widehat{\theta};x_0) = \left\{f(x_0;\widehat{\theta}) - \widehat{f}_{\text{ridge}}(x_0)\right\} + \left[\mathbb{E}\{\widehat{f}_{\text{ridge}}(x_0)\} - f(x;\theta^*)\right] \end{array}$ and $\phi_2^{(2)}(\widehat{\theta};x_0) = [\widehat{f}_{\mathrm{ridge}}(x_0) - \mathbb{E}\{\widehat{f}_{\mathrm{ridge}}(x_0)\}]$. Assume \widehat{r} is independent of $X_i',Y_i' \sim Q$, let distribution $Q_{\widehat{r}}$ satisfies $dQ_{\widehat{r}}(x,y)/dQ(x,y) = \widehat{r}(x,y)$. When $n' \to \infty$, the (2) can be re-formulated

$$\widehat{\phi}_2 = \underset{\phi \in \Phi}{\operatorname{arg\,min}} \mathbb{E}_{x',y' \sim Q} \widehat{r}(x',y') \{ \phi(\theta;x') - f(x';\theta) + f(x';\theta^*) \}^2$$
$$= \underset{\phi \in \Phi}{\operatorname{arg\,min}} \mathbb{E}_{x,y \sim Q_{\widehat{r}}} [f(x;\theta^*) - \{ f(x;\theta) - \phi(\theta;x) \}]^2.$$

Thus $\widetilde{f}(x_0; \widehat{\theta}) = f(x_0; \widehat{\theta}) - \widehat{\phi}_2(\widehat{\theta}; x_0)$ is an estimate of $f(x_0; \theta^*)$ and denote the corresponding asymptotic equivalent ridge kernel estimator as $\widetilde{f}_{\mathrm{ridge}}(x_0)$. Similarly define $\widetilde{\phi}_2(\widehat{\theta};x_0) = \widetilde{f}(x_0;\widehat{\theta})$ $f(x;\theta^*), \widetilde{\phi}_2^{(1)}(\widehat{\theta};x_0) = \left\{\widetilde{f}(x_0;\widehat{\theta}) - \widetilde{f}_{\mathrm{ridge}}(x_0)\right\} + \left[\mathbb{E}\left\{\widetilde{f}_{\mathrm{ridge}}(x_0)\right\} - f(x;\theta^*)\right] \text{ and } \widetilde{\phi}_2^{(2)}(\widehat{\theta};x_0) = \left\{\widetilde{f}(x_0;\widehat{\theta}) - \widetilde{f}_{\mathrm{ridge}}(x_0)\right\} - f(x_0;\widehat{\theta})$ $\widetilde{f}_{\text{ridge}}(x_0) - \mathbb{E}\{\widetilde{f}_{\text{ridge}}(x_0)\}.$

Theorem 2.1. Assume equivalence $f(x_0; \widehat{\theta}) = \widehat{f}_{ridge}(x_0) + o_P(\zeta(m))$, $\widetilde{f}(x_0; \widehat{\theta}) = \widetilde{f}_{ridge}(x_0) + o_P(\zeta(m))$, where m represents the neural network width and $\zeta(m) \to 0$ when $m \to \infty$, as well as asymptotic normality conditions $\phi_2^{(2)}(\widehat{\theta};x_0) \stackrel{d}{\to} N(0,\sigma^2(x_0)), \ \widetilde{\phi}_2^{(2)}(\widehat{\theta};x_0) \stackrel{d}{\to} N(0,\widetilde{\sigma}^2(x_0))$ and $Corr(\phi_2^{(2)}(\widehat{\theta}; x_0), \widetilde{\phi}_2^{(2)}(\widehat{\theta}; x_0)) \rightarrow \rho$. We have

$$\operatorname{Var}(\widehat{\phi}_2(\widehat{\theta}; x_0)) \to \sigma^2(x_0) + \widetilde{\sigma}^2(x_0) - 2\rho \widetilde{\sigma}(x_0) \sigma(x_0) + o_P(\zeta(m)).$$

Remark 2.2. As $\widehat{\phi}_2(\widehat{\theta}; x_0)$ is estimated on the holdout auxiliary dataset independent of $f(x_0; \widehat{\theta})$ and the only dependence is the density ratio estimator, we expect ρ to be small. Also $\widetilde{f}(x_0; \widehat{\theta})$ is estimated similar to the process of the estimation of $f(x_0; \widehat{\theta})$, thus we expect $\sigma(x_0) \approx \widetilde{\sigma}(x_0)$. Therefore, $\widehat{\phi}_2(\widehat{\theta}; x_0)$ has variance approximate $2\sigma^2(x_0)$, which is proportion to the variance of $\widehat{f}_{\mathrm{ridge}}(x_0)$. Therefore $\widehat{\phi}_2(\widehat{\theta}; x_0)$ serves as a meaningful surrogate for the expected loss gradient.

Remark 2.3. In $\phi_2^{(1)}(\widehat{\theta};x_0)$, the first term is negligible according to Lemma A.1 and the second term represents the bias of ridge estimation, which is not influenced by sampling randomness of Y given $X=x_0$ and cannot be eliminated with limited samples under a given NTK kernel. The $\phi_2^{(2)}(\widehat{\theta};x_0)$ is the variance component that characterizes the deviation from the expected estimation due to the training of finite samples. At locations where this term is large, additional sampling can improve the accuracy of the estimate. Although $\phi_2^{(2)}(\widehat{\theta};x_0)$ cannot be directly calculated from $\widehat{f}_{\mathrm{ridge}}(\cdot)$, $\widehat{\phi}_2(\widehat{\theta};x_0)$ can be calculated.

3 Experiments

Comparison Methods: To evaluate our auxiliary data guided gradient kernel against the original gradient kernel framework, we conduct comprehensive comparisons across seven representative selection methods: (1) maxdiag (maximum diagonal selection) as the uncertainty-based baseline, (2) maxdet (determinant maximization) [Seo et al., 2000], (3) bait-FB (Forward-Backward-Greedy total uncertainty minimization) [Ash et al., 2020], (4) Frank-Wolfe (fw) optimization for kernel embedding approximation [Pinsler et al., 2019], (5) maxdist (maximum distance) representing geometric diversity approaches [Yu and Kim, 2010], (6) kmeanspp (next point probability proportional to squared distance) [Arthur and Vassilvitskii, 2006, Ostrovsky et al., 2013] and (7) lcmd (largest cluster maximum distance method) [Holzmüller et al., 2023], and (8) random selection. This systematic evaluation covers the spectrum from simple uncertainty sampling (maxdiag) to hybrid diversity/uncertainty methods (lcmd), allowing us to assess how our kernel optimization affects different selection paradigms. The codes are available in the repository https://github.com/OswinMin/AGBAL.

To ensure fair comparison, we standardize: (1) the neural network architecture across all methods, (2) initialization using parameters from identical \mathcal{L}_0 pretraining, (3) uniform hyperparameters (learning rates, epoch counts) during model updates, and (4) both kernel configurations ($K_{\rm grad-aux}$ and $K_{\rm grad}$) adopt the identical optimal transformation settings as established in Holzmüller et al. [2023].

All methods start with $|\mathcal{L}_0|=200$ initially labeled samples and select N=200 additional samples per step, running for T=15 steps with an unlabeled pool size of $|\mathcal{U}_0|=9,000$. The auxiliary dataset has size $N_{\rm aux}=1000$.

Evaluation Metrics: In each experiment, the objective of optimization is the loss $l_2(y_1,y_2) = (y_1 - y_2)^2$, and the test set $\mathcal{T} = \{(\widetilde{x}_i,\widetilde{y}_i)\}_{i=1}^{|\mathcal{T}|}$ for evaluating the learner is distributed independently and identically (i.i.d.) with respect to the training data, with size $|\mathcal{T}| = 2000$. The mean squared error (MSE) of learner $f(\cdot;\theta)$ is defined as: $\text{MSE} = \sum_{i=1}^{|\mathcal{T}|} l_2(\widetilde{y}_i, f(\widetilde{x}_i;\theta))$. For each data setting, every method is repeated 20 times.

- Let ξ_0, \dots, ξ_T denote the sequence of average MSE values for a given method; the area under the curve (AUC) of this sequence is calculated as: AUC = $\sum_{i=1}^{T} (\xi_{i-1} + \xi_i)/2$.
- We report the average MSE for each method at specific training steps (i.e. the step 10), illustrating the training efficiency of different approaches under a fixed budget of training samples.
- Since AGBAL utilizes auxiliary data, we must verify that these data cannot be directly used for target task training. We compare the MSE of two models: one trained solely on T-step annotated samples, and another trained on both annotated samples and auxiliary data.

Summary of Results: We evaluate AGBAL (our method based on auxiliary data guided gradient kernel) against BMDAL (gradient kernel method without auxiliary data) and the random baseline across seven datasets: synthetic data S1, S2 and real-world datasets BIO, BIKE, DIAMOND, CT, STOCK. Details are in Section 3.1 and 3.2.

Table 1: Comparison of 8 selection methods across synthetic and real-world datasets in terms of
AUC, where Avg Impro represents improvement over BMDAL averaged across 7 experiments.

	S1	S2	BIO	BIKE	DIAMOND	СТ	STOCK	Avg Impro
random	0.928	1.421	0.451	0.459	21.009	0.380	0.392	
lcmd	1.011	1.517	0.417	0.394	19.714	0.255	0.370	
lcmd (ours)	0.846	1.279	0.420	0.435	20.687	0.291	0.363	0.6%
maxdist	0.863	1.310	0.428	0.439	20.643	0.270	0.389	
maxdist (ours)	0.834	1.266	0.417	0.401	21.179	0.298	0.361	1.8%
kmeanspp	0.894	1.378	0.414	0.404	19.691	0.271	0.372	
kmeanspp (ours)	0.842	1.294	0.406^{*}	0.364	19.613*	0.264	0.355*	4.5%
fw	0.953	1.448	0.434	0.455	21.115	0.347	0.388	
fw (ours)	0.899	1.341	0.418	0.404	21.840	0.310	0.377	5.5%
bait	0.853	1.340	0.441	0.481	22.057	0.435	0.392	
bait (ours)	0.835	1.293	0.431	0.398	22.134	0.374	0.371	6.3%
maxdet	0.876	1.318	0.418	0.486	19.702	0.320	0.378	
maxdet (ours)	0.833^{*}	1.254*	0.409	0.362^{*}	19.846	0.254*	0.359	8.9%
maxdiag	0.903	1.401	0.451	0.597	24.594	0.526	0.415	
maxdiag (ours)	0.836	1.270	0.420	0.410	20.745	0.304	0.361	18.0%

Table 1 reports the AUC of the learning curves, where lower values indicate faster convergence. AG-BAL consistently outperforms BMDAL in most settings, particularly with maxdet (achieving the best results on S1, S2, BIKE, and CT) and kmeanspp (leading on BIO, DIAMOND and STOCK). Table 2 compares the RMSE of AGBAL and BMDAL after 10 training steps across all selection strategies and datasets. AGBAL achieves significantly lower errors in almost all settings, demonstrating faster early-stage convergence.

Table 3 presents the test MSE comparison across all scenarios and methods after T-step active learning. To highlight the distributional discrepancy of auxiliary data, we deliberately select a large auxiliary dataset size ($N_{\rm aux}=10000$) to amplify the performance degradation caused by naively incorporating auxiliary data. The universally increased MSE values observed when incorporating auxiliary data into the training set demonstrates: (1) degraded model generalization performance, and (2) significant distributional shifts between auxiliary and target data. These results show that auxiliary data cannot be directly utilized for model training, thereby justifying our design of employing them exclusively for sample selection guidance.

Together, the empirical evidence establishes that while auxiliary data provide effective selection signals, their inherent distribution shifts prevent their direct inclusion in training sets.

We also investigate two other factors affecting AGBAL's performance: (1) auxiliary data quality (distributional discrepancy relative to the target distribution) in Section 3.1, and (2) auxiliary data quantity (sample size) under fixed quality conditions in Section A.7.2.

The random strategy, serving as a naive baseline, performs poorly, underscoring the importance of active selection. Notably, AGBALs gains are most pronounced for uncertainty-driven strategies (e.g., maxdet, kmeanspp), while methods perform less significant for hybrid and diversity-based selections like lcmd and maxdist. This demonstrates our methods compatibility with different selection criteria while maintaining superior convergence. For BMDAL without auxiliary data, kmeanspp and lcmd give the best performance.

3.1 Synthetic Data

In our synthetic experiments, the regression model for data from P is $Y_i = \mu(X_i) + \epsilon(X_i)$, where $\mu(x) = \mathbb{E}(Y_i \mid X_i = x)$ and the residual $\epsilon(X_i)$ may depend on X_i . The model for data from Q is $Y_i' = \mu'(X_i') + \epsilon'(X_i')$. The covariates X_i and X_i' are sampled from the d-dimensional standard normal distribution $N_d(\mathbf{0}_d, \mathbf{I}_d)$. We consider two data generating settings: for $x = (x_1, \dots, x_d)$, let $\epsilon(x)$ and $\epsilon'(x) \sim \mathcal{N}(0, |\mu(x)|/4)$, $\mu'(x)$ is defined by shifting $\mu(x)$ with $\delta(x; \zeta) = \zeta \cdot \cos(\sum_{i=1}^d |x_i|)/4$:

S1:
$$\mu(x) = \sum_{i=1}^{d} |\log(|x_i| + 1)|/4$$
, and $\mu'(x) = \mu(x) + \delta(x;\zeta)$;

S2:
$$\mu(x) = \sum_{i=1}^{d} |x_i|^{1/2}/4$$
, and $\mu'(x) = \mu(x) + \delta(x; \zeta)$;

Performance Result: Figure 8 and 9 in appendix present the MSE learning curves versus the training steps for different sample selection methods with $\zeta=8$. The results demonstrate that auxiliary data guided gradient kernel in AGBAL consistently outperforms the gradient kernel approach across nearly all experimental settings. Notably, while the gradient kernel may underperform random selection in certain cases (e.g., maxdiag on S1; maxdiag and fw on S2), AGBAL maintains superior performance over random selection in most of these scenarios. Refer to Table 4-5 for detailed MSE results.

Experiments on auxiliary data quality: We configure $\zeta \in \{2,4,8,16,32,64\}$ to induce exponentially increasing distributional shifts in auxiliary data. As shown in Figure 2, AUC grows linearly with the exponential progression of ζ . But our method still outperforms direct gradient kernel approaches within tested limits, as shown in Table 12. This demonstrates that: (1) higher-quality auxiliary data better guides active sample selection, and (2) even when auxiliary data quality deteriorates substantially, our loss estimation - serving as an error magnitude indicator rather than precise measurement - remains useful. More details are provided in Section A.7.1.

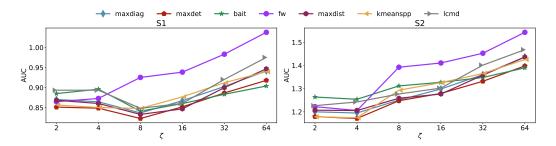


Figure 2: AUC plots of AGBAL under varying ζ.

Visual Analysis: Further, we validate AGBAL's ability to identify sample points with higher predictive uncertainty through a controlled toy example. Using identical initially trained models and unlabeled data pools, we compare the predictive uncertainty of points selected via our auxiliary-guided gradient kernel versus conventional gradient kernels across different selection methods.

Let $\mu(x) = \sum_{i=1}^d x_i$, $\mu'(x) = 2\sum_{i=1}^d x_i$, and noise $\epsilon(x)$, $\epsilon'(x) \sim \mathcal{N}(0,d)$. The initial labeled set \mathcal{L}_0 and the unlabeled pool \mathcal{U}_0 each contain 200 data points. In the subsequent batch selection step, we select 10 points from \mathcal{U}_0 . For visualization, we project the unlabeled pool \mathcal{U}_0 onto a 2D space via PCA, with color mapping representing the expected loss gradient $f(x; \hat{\theta}) - \mathbb{E}(Y \mid X = x)$. Darker shades indicate higher predictive uncertainty, which should be prioritized for selection. As illustrated in Figure 3, while both AGBAL and BMDAL aim to select representative points in the representation space, AGBAL consistently identifies more high-uncertainty samples. The result plots for other selection methods are provided in Figure 5-7.

3.2 Real Data

We evaluate our method on five public regression datasets also considered by [Holzmüller et al., 2023]: physicochemical properties of protein tertiary structure (BIO) [Rana, 2013], bike sharing (BIKE) [Fanaee-T and Gama, 2014], prices of diamonds (DIAMOND), relative location of CT slices (CT) [Graf and Cavallaro, 2011], and BNG stock price data (STOCK). Detailed dataset descriptions are provided in Section A.6.

Result: Figure 4 presents the MSE learning curves comparing different methods on dataset BIKE (with additional results on four other real-world datasets shown in Figures 10-13 and Table 6-9 in appendix due to space constraints). The results demonstrate that our auxiliary data guided gradient kernel based methods achieves the fastest MSE reduction compared with gradient kernel based methods, which indicates $K_{\rm grad-aux}$ better measures the informativeness of data points. Moreover, while lcmd and kmeanspp typically perform best without auxiliary data, the maxdet and kmeanspp

On https://www.kaggle.com/datasets/resulcaliskan/diamonds

On https://www.openml.org/search?type=data&sort=runs&id=1200&status=active

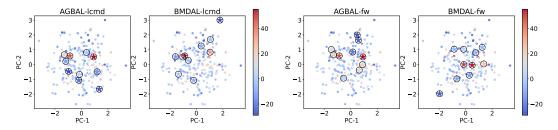


Figure 3: Visualization of the loss of selected points across four AL configurations. Left, right panels display lcmd, fw results of AGBAL and BMDAL, respectively.

selection methods show superior performance when guided by auxiliary data. This consistent pattern across all real-data scenarios confirms the effectiveness of incorporating auxiliary information into the sample selection process.

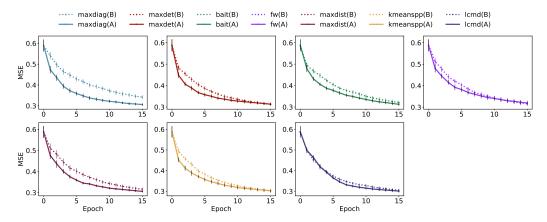


Figure 4: MSEs decreasing plots during AL steps for different selection method and different kernels for STOCK dataset (B for gradient kernel, A for auxiliary data guided gradient kernel)

3.3 Computational Burden Analysis

Our method introduces additional components (density ratio estimation and auxiliary loss estimation) compared to gradient-only approaches BMDAL. However the selection kernel itself remains unchanged; we only modify the features used for selection. The primary computational overhead stems from processing auxiliary data. For efficiency, lightweight machine learning methods (e.g., random forests) can be adopted for density ratio and loss estimation without compromising performance. To illustrate scalability, we conducted experiments across 5 real-world datasets with varying auxiliary dataset sizes (100, 500, 1000, 10,000 samples) on a server with dual Intel Xeon Gold 6330 CPUs (112 threads total) and 125GB RAM.

The results are shown in the Table 11. Even with only 100 auxiliary data, the maxdet selection strategy, which performs best among the compared approaches, still achieves meaningful performance improvements. The gain grows with larger auxiliary datasets. Crucially, for auxiliary datasets below 1,000 samples, the additional time and memory overhead remains negligible. In practical applications, we can choose the auxiliary data size based on their specific needs for either better performance (larger auxiliary sets) or faster computation (smaller auxiliary sets).

4 Related Work

In Section 1 and 2.2, we propose that in regression tasks under gradient-based optimization, informativeness can be decomposed into model sensitivity and predictive uncertainty two dimensions that

have been extensively studied separately. In this section, we systematically review existing work along these two research lines.

Expected model change maximization plays a vital role in model sensitivity-based methods. Early work by Cai et al. [2013] introduced bootstrap ensemble modeling to identify samples with maximal gradient variations across ensemble members, explicitly capturing model sensitivity. Subsequent approaches integrated representation learning: Ash et al. [2020] developed a clustering strategy using last-layer gradient embeddings to select samples that induce divergent model updates, while Holzmüller et al. [2023] proposed a gradient-based kernel transformation method that strategically selects the most distant points within the largest cluster, optimizing both representativeness and diversity.

As predictive uncertainty cannot be directly estimated, various alternative methods have been proposed. Early work includes RayChaudhuri and Hamey [1995] and Burbidge et al. [2007], who introduced the Query-by-Committee (QBC) framework to select samples with maximal model disagreement as a measure of uncertainty. With the advent of deep learning, more sophisticated uncertainty estimation techniques emerged. Gal and Ghahramani [2016] developed Monte Carlo dropout to approximate predictive uncertainty, while Beluch et al. [2018] employed ensembles with varied parameter initializations to characterize sample uncertainty.

Alternative approaches focus on diversity and representativeness. Sener and Savarese [2018] introduced the core-set approach with theoretical guarantees via minimum covering radius, and Wu et al. [2019] developed a greedy maxmin distance algorithm for data selection. Subsequent developments include Liu et al. [2021]'s iterative optimization method balancing average and minimum distances, and Kim and Shin [2022]'s hybrid approach combining density-based clustering and core-set selection to enhance diversity-representativeness trade-offs.

A distinct line of research explores loss-driven approaches. Konyushkova et al. [2017] proposed a data-driven method that learns query strategies by predicting expected error reduction. Yoo and Kweon [2019] learned a loss predictor module to estimate target losses of unlabeled data. Sinha et al. [2019] introduced VAAL, which uses adversarial training between a variational autoencoder and a discriminator to learn latent representations while implicitly quantifying sample loss.

Several works also leverage auxiliary data for active learning. Our approach differs from transfer active learning methods such as Wang et al. [2014] in how auxiliary data is defined: transfer learning and domain adaptation typically assume covariate shift with different P(X) but similar $P(Y \mid X)$ across domains, whereas our setting allows both P(X) and $P(Y \mid X)$ to differ in imperfect auxiliary data. This distinction is critical, as standard transfer methods may experience more negative transfer under such joint distribution shifts.

5 Conclusion

In this work, we address a fundamental challenge in active learning for regression tasks - the inability to reliably estimate predictive uncertainty. We propose AGBAL, a novel active learning framework that overcomes this limitation by leveraging auxiliary data through density ratio-weighted loss approximation. Theoretically grounded in NTK analysis, our method transforms typically discarded auxiliary data into valuable uncertainty estimates, while properly accounting for distributional shifts between auxiliary and target domains. Through extensive evaluations, we demonstrate that AGBAL consistently outperforms conventional active learning approaches across diverse application scenarios.

Acknowledgments and Disclosure of Funding

Zou was supported by the National Key R&D Program of China (Grant No. 2022YFA1003800) and the National Natural Science Foundation of China (Grant Nos. 12231011 and 12531011).

References

Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku, and Anh Nguyen. Strike (with) a pose: Neural networks are easily fooled by strange poses of familiar objects. In

- Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4845–4854, 2019.
- Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On exact computation with an infinitely wide neural net. *Advances in Neural Information Processing Systems*, 32, 2019.
- David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical report, Stanford, 2006.
- Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep batch active learning by diverse, uncertain gradient lower bounds. In *International Conference on Learning Representations*, 2020.
- Xiangyu Bai, Yedi Luo, Le Jiang, Aniket Gupta, Pushyami Kaveti, Hanumant Singh, and Sarah Ostadabbas. Bridging the domain gap between synthetic and real-world data for autonomous driving. *Journal on Autonomous Transportation Systems*, 1(2):1–15, 2024.
- Jihwan Bang, Sumyeong Ahn, and Jae-Gil Lee. Active prompt learning in vision language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 27004–27014, 2024.
- William H Beluch, Tim Genewein, Andreas Nürnberger, and Jan M Köhler. The power of ensembles for active learning in image classification. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 9368–9377, 2018.
- Christopher M Bishop and Nasser M Nasrabadi. *Pattern recognition and machine learning*, volume 4. Springer, 2006.
- Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial gender classification. In *Conference on Fairness*, *Accountability and Transparency*, pages 77–91. PMLR, 2018.
- Robert Burbidge, Jem J Rowland, and Ross D King. Active learning for regression based on query by committee. In *Intelligent Data Engineering and Automated Learning-IDEAL 2007: 8th International Conference, Birmingham, UK, December 16-19, 2007. Proceedings 8*, pages 209–218. Springer, 2007.
- Wenbin Cai, Ya Zhang, and Jun Zhou. Maximizing expected model change for active learning in regression. In 2013 IEEE 13th International Conference on Data Mining, pages 51–60. IEEE, 2013.
- Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data from large language models. In *30th USENIX Security Symposium (USENIX Security 21)*, pages 2633–2650, 2021.
- Weixin Chen, Baoyuan Wu, and Haoqian Wang. Effective backdoor defense by exploiting sensitivity of poisoned samples. *Advances in Neural Information Processing Systems*, 35:9727–9737, 2022.
- Hadi Fanaee-T and Joao Gama. Event labeling combining ensemble detectors and background knowledge. *Progress in Artificial Intelligence*, 2:113–127, 2014.
- Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In *International Conference on Machine Learning*, pages 1050– 1059. PMLR, 2016.
- Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks. *Journal of Machine Learning Research*, 17(59):1–35, 2016.
- Kriegel H.-P. Schubert M. Poelsterl S. Graf, F. and A. Cavallaro. Relative location of CT slices on axial axis. UCI Machine Learning Repository, 2011. DOI: https://doi.org/10.24432/C5CP6G.

- Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The elements of statistical learning: data mining, inference and prediction. *The Mathematical Intelligencer*, 27(2):83–85, 2005.
- David Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A framework and benchmark for deep batch active learning for regression. *Journal of Machine Learning Research*, 24 (164):1–81, 2023.
- Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in neural networks. *Advances in Neural Information Processing Systems*, 31:8571–8580, 2018
- Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina Nita-Rotaru, and Bo Li. Manipulating machine learning: Poisoning attacks and countermeasures for regression learning. In *2018 IEEE Symposium on Security and Privacy (SP)*, pages 19–35. IEEE, 2018.
- William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert space. *Contemporary Mathematics*, 26(189-206):1, 1984.
- Ashna Jose, João Paulo Almeida de Mendonça, Emilie Devijver, Noël Jakse, Valérie Monbet, and Roberta Poloni. Regression tree-based active learning. *Data Mining and Knowledge Discovery*, 38(2):420–460, 2024.
- Takafumi Kanamori, Shohei Hido, and Masashi Sugiyama. A least-squares approach to direct importance estimation. *Journal of Machine Learning Research*, 10:1391–1445, 2009.
- Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Hauptmann. Contrastive adaptation network for unsupervised domain adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4893–4902, 2019.
- Yeachan Kim and Bonggun Shin. In defense of core-set: A density-aware core-set selection for active learning. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pages 804–812, 2022.
- Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch acquisition for deep bayesian active learning. *Advances in Neural Information Processing Systems*, 32, 2019.
- Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In *International Conference on Machine Learning*, pages 1885–1894. PMLR, 2017.
- Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, et al. Wilds: A benchmark of in-the-wild distribution shifts. In *International Conference on Machine Learning*, pages 5637–5664. PMLR, 2021.
- Ksenia Konyushkova, Raphael Sznitman, and Pascal Fua. Learning active learning from data. *Advances in Neural Information Processing Systems*, 30, 2017.
- Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive uncertainty estimation using deep ensembles. Advances in Neural Information Processing Systems, 30, 2017.
- Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun Ma. Anti-backdoor learning: Training clean models on poisoned data. *Advances in Neural Information Processing Systems*, 34:14900–14912, 2021.
- Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I Sánchez. A survey on deep learning in medical image analysis. *Medical Image Analysis*, 42: 60–88, 2017.
- Ziang Liu, Xue Jiang, Hanbin Luo, Weili Fang, Jiajing Liu, and Dongrui Wu. Pool-based unsupervised active learning for regression using iterative representativeness-diversity maximization (irdm). *Pattern Recognition Letters*, 142:11–19, 2021.

- XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence functionals and the likelihood ratio by convex risk minimization. *IEEE Transactions on Information Theory*, 56(11):5847–5861, 2010.
- Rafail Ostrovsky, Yuval Rabani, Leonard J Schulman, and Chaitanya Swamy. The effectiveness of lloyd-type methods for the k-means problem. *Journal of the ACM (JACM)*, 59(6):1–22, 2013.
- Andreas S Panayides, Amir Amini, Nenad D Filipovic, Ashish Sharma, Sotirios A Tsaftaris, Alistair Young, David Foran, Nhan Do, Spyretta Golemati, Tahsin Kurc, et al. Ai in medical imaging informatics: Current challenges and future directions. *IEEE Journal of Biomedical and Health Informatics*, 24(7):1837–1857, 2020.
- Robert Pinsler, Jonathan Gordon, Eric Nalisnick, and José Miguel Hernández-Lobato. Bayesian batch active learning as sparse subset approximation. Advances in Neural Information Processing Systems, 32, 2019.
- John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. *Advances in large margin classifiers*, 10(3):61–74, 1999.
- Huihui Qiao, Taiyong Wang, Peng Wang, Shibin Qiao, and Lan Zhang. A time-distributed spatiotemporal feature learning method for machine health monitoring with multi-sensor time series. *Sensors*, 18(9):2932, 2018.
- Prashant S Rana. Physicochemical properties of protein tertiary structure data set. *UCI Machine Learning Repository*, 2013.
- Tirthankar RayChaudhuri and Leonard GC Hamey. Minimisation of data collection by active learning. In *Proceedings of ICNN'95-International Conference on Neural Networks*, volume 3, pages 1338–1341. IEEE, 1995.
- Nima Rezazadeh, Donato Perfetto, Mario de Oliveira, Alessandro De Luca, and Giuseppe Lamanna. A fine-tuning deep learning framework to palliate data distribution shift effects in rotary machine fault detection. *Structural Health Monitoring*, page 14759217241295951, 2024.
- Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach. In *International Conference on Learning Representations*, 2018.
- Sambu Seo, Marko Wallat, Thore Graepel, and Klaus Obermayer. Gaussian process regression: Active data selection and test point rejection. In *Mustererkennung 2000: 22. DAGM-Symposium. Kiel, 13.–15. September 2000*, pages 27–34. Springer, 2000.
- Samarth Sinha, Sayna Ebrahimi, and Trevor Darrell. Variational adversarial active learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 5972–5981, 2019.
- Chen Sun, Jean M Uwabeza Vianney, Ying Li, Long Chen, Li Li, Fei-Yue Wang, Amir Khajepour, and Dongpu Cao. Proximity based automatic data annotation for autonomous driving. *IEEE/CAA Journal of Automatica Sinica*, 7(2):395–404, 2020a.
- Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for autonomous driving: Waymo open dataset. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2446–2454, 2020b.
- Neil Thompson, Martin Fleming, Benny J Tang, Anna M Pastwa, Nicholas Borge, Brian C Goehring, and Subhro Das. A model for estimating the economic costs of computer vision systems that use deep learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 23012–23018, 2024.
- Cheng-Chang Tsai, Yuan-Chih Chen, and Chun-Shien Lu. Test-time stain adaptation with diffusion models for histopathology image classification. In *European Conference on Computer Vision*, pages 257–275. Springer, 2024.

- Rui Tuo and Lu Zou. Asymptotic theory for linear functionals of kernel ridge regression. arXiv preprint arXiv:2403.04248, 2024.
- Xuezhi Wang, Tzu-Kuo Huang, and Jeff Schneider. Active transfer learning under model shift. In *International Conference on Machine Learning*, pages 1305–1313. PMLR, 2014.
- Dongrui Wu, Chin-Teng Lin, and Jian Huang. Active learning for regression using greedy sampling. *Information Sciences*, 474:90–105, 2019.
- Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. *arXiv preprint arXiv:1902.04760*, 2019.
- Donggeun Yoo and In So Kweon. Learning loss for active learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 93–102, 2019.
- Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous multitask learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 2636–2645, 2020.
- Hwanjo Yu and Sungchul Kim. Passive sampling for regression. In 2010 IEEE International Conference on Data Mining, pages 1151–1156. IEEE, 2010.
- Bianca Zadrozny and Charles Elkan. Transforming classifier scores into accurate multiclass probability estimates. In *Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 694–699, 2002.
- Kun Zhang, Mingming Gong, Petar Stojanov, Biwei Huang, Qingsong Liu, and Clark Glymour. Domain adaptation as a problem of inference on graphical models. *Advances in Neural Information Processing Systems*, 33:4965–4976, 2020.
- S Kevin Zhou, Hayit Greenspan, Christos Davatzikos, James S Duncan, Bram Van Ginneken, Anant Madabhushi, Jerry L Prince, Daniel Rueckert, and Ronald M Summers. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. *Proceedings of the IEEE*, 109(5):820–838, 2021.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The formulation of AGBAL can be found in section 2.1 and 2.2. Theoretical analysis can be found in section 2.3 and experiments can be found in section 3.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of our proposed method are discussed in section A.8.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: For the theoretical result in section 2.3, details of assumptions and proofs can be found in section A.4 and A.5.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide detailed descriptions and formulations required to reproduce the main experimental results, including information on the model, datasets, baselines, and evaluation metrics. Additionally, we present the algorithms and implementation details in section A.1, A.2, and A.3 to offer clearer implementation guidance.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The datasets utilized in this study are publicly accessible via the cited references, and the implementation code is available upon request.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so No is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The experimental settings are detailed in Section 3, and additional experiments are presented in Section A.6 to provide further insights into the results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For both synthetic and real-world datasets, we report MSE results with 2σ error bars to quantify variability. Due to computational constraints, we omit AUC error bars which would require extensive repeated experiments.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.

- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [NA]

Justification: The experiments implicitly reflect computational resource requirements through experimental scale parameters (e.g., dataset size) in section 3.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and have ensured that all aspects of our research fully comply with its guidelines.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The societal impacts of our proposed method are discussed in section A.9. Guidelines:

• The answer NA means that there is no societal impact of the work performed.

- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: We believe that our work poses no foreseeable risk of misuse.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All datasets used in our experiments are properly cited, and source links are provided for reference.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: Our code is well documented with the documentation provided.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing or research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Our work does not involve crowdsourcing or research with human subjects.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We do not use LLM to impact the core methodology, scientific rigorousness, or originality of the research.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Technical Appendices and Supplementary Material

A.1 Density Ratio Estimation

Consider two datasets $\mathcal{D}_P = \{x_i\}_{i=1}^n \sim P$ with density p(x), and $\mathcal{D}_Q = \{z_j\}_{j=1}^m \sim Q$ with density q(z). Assume $P \ll Q$, the target is to estimate the density ratio r(x) = dP/dQ(x) = p(x)/q(x), which quantifying the discrepancy between the distribution P and Q.

There are two kind of density ratio estimation algorithms $\mathcal{A}_{dr}(\cdot)$: direct estimation and classifier-based indirect estimation.

In direct density ratio estimation, we typically use a parametric function $g_{\theta}(x)$ to estimate r(x). The estimation problem is then formulated as minimizing a minimizing the Bregman divergence between p(x) and $g_{\theta}(x)q(x)$: given a certain function u(x),

$$\min_{\theta} \{ \mathbb{E}_{x \sim Q}[\partial u(g_{\theta}(x))g_{\theta}(x) - u(g_{\theta}(x))] - \mathbb{E}_{x \sim P}[\partial u(g_{\theta}(x))] \}.$$

There are many choices for the function u(x), such as: (1) $u(x) = (x-1)^2/2$ used by LSIF [Kanamori et al., 2009], (2) $u(x) = x \log(x) - x$ used by UKL [Nguyen et al., 2010], (3) $u(x) = x \log(x) - (1+x) \log(1+x)$ used by BKL (LR) [Hastie et al., 2005].

For undirected density ratio estimation, we adopt a probabilistic classification framework. We construct a labeled dataset by assigning label 1 to samples from \mathcal{D}_P and label 0 to samples from \mathcal{D}_Q . Specifically, we first train a classifier to distinguish samples from the target versus mixture distributions, then apply calibration methods [Zadrozny and Elkan, 2002], i.e., Platt-calibration [Platt et al., 1999] to convert classifier outputs into well-calibrated probability estimates.

The combined dataset $\{(W_i,Y_i)\}_{i=1}^{n+m}$ contains n+m samples, where the first n observations are from \mathcal{D}_P , $(W_i,Y_i)=(x_i,1), i\leq n$ and $(W_i,Y_i)=(z_i,0), i>n$. The conditional class probability can be expressed as:

$$\mathbb{P}(Y = 1 \mid W = w) = \frac{p(w)}{p(w) + q(w)} = \frac{r(w)}{r(w) + 1},$$

where r(w)=p(w)/q(w) is the density ratio function. This relationship allows us to recover the density ratio through:

$$r(w) = \frac{\mathbb{P}(Y = 1 \mid W = w)}{1 - \mathbb{P}(Y = 1 \mid W = w)}.$$

Let $\widetilde{g}(x)$ be a probabilistic classifier trained to estimate $\mathbb{P}(Y=1\mid W=w)$. Assume calibrated classifier as $\widehat{g}(x)=\sigma(a\widetilde{g}(x)+b)$, where σ is the sigmoid function and a,b are trained on another dataset. In practice we can split $\{(W_i,Y_i)\}_{i=1}^{n+m}$ into two parts: one to train $\widetilde{g}(x)$ and another to fit a and b. The corresponding density ratio estimator is then given by:

$$\widehat{r}(x) = \frac{\widehat{g}(x)}{1 - \widehat{g}(x)}.$$

A.2 Kernel Transformations

The framework by [Holzmüller et al., 2023] introduces a modular set of kernel transformations to adapt base kernels for active learning objectives. These transformations modify base kernels to improve uncertainty estimation (e.g., Gaussian process posterior transformation), diversity (e.g., acs random feature transformation and acs gradient transformation), and computational efficiency (e.g., scaling, sketching). All transformations are composable and can be sequentially chained to combine their effects. We denote this transformation chain as $K_{\to T_1 \to T_2}$, where T_1 is first applied to the base kernel K, followed by T_2 . In the following, we formalize each transformation and its implementation.

To simplify our notation, we consider a dataset \mathcal{D}_X , which is partitioned into two disjoint subsets: a labeled subset $\mathcal{L}_X = \{x_i\}_{i=1}^n \subset \mathcal{D}_X$ that has been annotated by domain experts, resulting in the labeled dataset $\mathcal{L} = \{(x_i, y_i)\}_{i=1}^n$. An unlabeled subset $\mathcal{U} = \mathcal{D}_X \setminus \mathcal{L}_X$ containing the remaining unannotated data points. We assume the existence of a positive semidefinite kernel function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ defined in the input space.

(1) Scaling transformation \rightarrow scale(\mathcal{L}_X) normalizes kernel outputs to have a unit variance:

$$K_{\to \text{scale}(\mathcal{L}_X)}(x, x') = \kappa^2(K, \mathcal{L}_X)K(x, x'), \quad \kappa(K, \mathcal{L}_X) = \left(\frac{1}{|\mathcal{L}_X|} \sum_{x \in \mathcal{L}_X} K(x, x)\right)^{-1/2},$$

(2) Sketching transformation \rightarrow sktch (d_2) summarizes feature mapping with a projection to lower dimension space:

$$K_{\rightarrow \operatorname{sktch}(d_2)}(x, x') = \frac{1}{p} \{\phi(x)\}^\top N^\top N \phi(x'),$$

where $\phi(x)$ is the map corresponding to the base kernel K that $K(x,x') = \{\phi(x)\}^{\top}\phi(x')$, where $\phi(x) \in \mathbb{R}^{d_1}$ and $N \in \mathbb{R}^{d_2 \times d_1}, d_2 < d_1$ is a random matrix with i.i.d. standard normal entries, approximates high-dimensional features via random projection to d_2 dimensions. Using variants of the celebrated Johnson-Lindenstrauss lemma[Johnson et al., 1984], we can prove that for a Gaussian random projection to dimension $d_2 \ge \log(d_1^2/\delta)/\epsilon^2$, with probability $\ge 1 - \delta$ we have:

$$\forall x, x' \in \mathcal{X} : (1 - \epsilon)d_K(x, x') \le d_{K \to \text{sketch}(p)}(x, x') \le (1 + \epsilon)d_K(x, x'),$$

where $d_K(x,x') = \sqrt{K(x,x) + K(x',x') - 2K(x,x')}$ denotes the kernel distance between x and x'.

(3) Gaussian process posterior transformation: For the feature map $\phi(x)$ corresponding to the kernel K, consider a Gaussian process with kernel K. Assume a Gaussian process linear regression model using $\phi(x)$ as features: $y_i = \omega^\top \phi(x_i) + \epsilon_i$ with a weight prior $\omega \sim \mathcal{N}(0, \mathbf{I})$ and i.i.d. observation noise $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$. Bishop and Nasrabadi [2006] proves the posterior distribution for a Gaussian process after observing the training data \mathcal{L} is also a Gaussian process with kernel

$$K_{\to \text{post}(\mathcal{L}, \sigma^2)}(x, x') = \text{Cov}(\omega^{\top} \phi(x), \omega^{\top} \phi(x') \mid \mathcal{L})$$
$$= K(x, x') - K(x, \mathcal{L}_X) (K(\mathcal{L}_X, \mathcal{L}_X) + \sigma^2 I)^{-1} K(\mathcal{L}_X, x'),$$

where $K(x,\mathcal{L}_X) = (K(x,x_1),K(x,x_2),\cdots,K(x,x_n))$, $K(\mathcal{L}_X,x) = \{K(x,\mathcal{L}_X)\}^{\top}$ and $K(\mathcal{L}_X,\mathcal{L}_X) = (K(x_i,x_j))_{i,j}$. Calculate the posterior covariance of the Gaussian process after observing data \mathcal{L} with noise variance σ^2 . For convenience, we use $K_{\to \mathcal{L}}$ to denote $K_{\to \operatorname{scale}(\mathcal{L})\to\operatorname{post}(\mathcal{L},\sigma^2)}$.

(4) ACS random feature transformation: Pinsler et al. [2019] applied the ACS-FW method to Gaussian process linear regression. We use the Gaussian process model parameterized by ω with noise variance σ^2 , employing the kernel $K_{\rightarrow \mathrm{scale}(\mathcal{L})}$ as described above. Let $f_{\mathrm{acs}}(x,\omega) = 1/2\log\{1+K_{\rightarrow\mathcal{L}}(x,x)/\sigma^2\} - [\{\omega^\top\phi_{\rightarrow \mathrm{scale}(\mathcal{L}_X)}(x)\}^2+K_{\rightarrow\mathcal{L}}(x,x)]/2\sigma^2$, where $\phi_{\rightarrow \mathrm{scale}(\mathcal{L}_X)}$ denotes the feature mapping associated with the kernel function $K_{\rightarrow \mathrm{scale}(\mathcal{L}_X)}$. Then,

$$K_{\rightarrow acs}(x, x') = \mathbb{E}_{\omega \sim P(\omega \mid f)} \{ f_{acs}(x, \omega) f_{acs}(x', \omega) \},$$

where $P(\omega \mid \mathcal{L})$ denotes the posterior distribution of parameter ω observing data \mathcal{L} .

(5) ACS gradient transformation: Pinsler et al. [2019] propose the weighted Fisher inner product given by:

$$K_{\rightarrow \text{acs-grad}}(x, x') = \mathbb{E}_{\omega \sim P(\omega | \mathcal{L})} [\{\nabla_{\omega} f_{\text{acs}}(x, \omega)\}^{\top} \nabla_{\omega} f_{\text{acs}}(x', \omega)].$$

Under the Gaussian process model, they show an explicit formula for $K_{\rightarrow acs-grad}(x,x')$ is given by:

$$K_{\rightarrow \text{acs-grad}}(x, x') = \frac{1}{\sigma^4} K_{\rightarrow \text{scale}(\mathcal{L})}(x, x') K_{\rightarrow \mathcal{L}}(x, x').$$

A.3 Selection Methods

After applying the transformed base kernels to the unlabeled data, multiple selection strategies can be employed to identify the most informative unlabeled candidates for annotation.

Let $\mathcal{L}_t = \{(x_i, y_i)\}_{i=1}^n$ represent the labeled dataset where $\mathcal{L}_{t,X} = \{x_i\}_{i=1}^n$ contains only the input features, $\mathcal{U}_t = \{x_i\}_{i=1}^m$ denotes the unlabeled data pool, $\widehat{\theta}_t$ represents the current model

parameters, and K denotes the kernel of the base kernel after kernel transformations. The active learning objective is to select N points from \mathcal{U}_t for annotation in the next batch.

We employ an iterative approach to select samples (except bait-FB). Let $\mathcal{B}_{t,X,i}$ denote the selected sample batch after the i-th iteration, where $|\mathcal{B}_{t,X,i}|=i$. By repeating the selection process N times for different methods and combining the selected samples, we obtain the next batch of points for labeling. The next batch selection algorithm is denoted as $\mathcal{S}:\Theta\times(\mathcal{X}\times\mathcal{Y})^{\mathbb{N}}\times\mathcal{X}^{\mathbb{N}}\times\mathbb{N}\times\mathcal{K}\to\mathcal{X}^{\mathbb{N}}$. The next batch of unlabeled data is $\mathcal{B}_{t+1,X}=\mathcal{S}(\widehat{\theta}_t,\mathcal{L}_t,\mathcal{U}_t,N,K)$, where N is the selected batch size. We denote the selection at the i-th iteration with $\mathcal{B}_{t,X,i}$ as $\mathcal{S}(\widehat{\theta}_t,\mathcal{L}_t,\mathcal{U}_t,\mathcal{B}_{t,X,i},K)$

Maxdiag selection maximizes the diagonal entries of the kernel matrix to prioritize high-uncertainty samples:

$$\mathcal{S}(\widehat{\theta}_t, \mathcal{L}_t, \mathcal{U}_t, \mathcal{B}_{t, X, i}, K) = \operatorname*{argmax}_{x \in \mathcal{U}_t} K(x, x),$$

Maxdet [Seo et al., 2000] selection optimizes the determinant of the kernel matrix, balancing informativeness and diversity:

$$\mathcal{S}(\widehat{\theta}_t, \mathcal{L}_t, \mathcal{U}_t, \mathcal{B}_{t, X, i}, K) = \operatorname*{argmax}_{x \in \mathcal{U}_t} K_{\rightarrow \operatorname{post}(\mathcal{B}_{t, X, i}, \sigma^2)}(x, x),$$

where σ^2 is a tuning parameter.

Bait-FB [Ash et al., 2020] selection leverages Fisher information for batch selection to enhance representativeness. Bait-FB greedily selects 2N samples and then removes N samples, and the greedy selection of 2N samples is:

$$\mathcal{S}(\widehat{\theta}_t, \mathcal{L}_t, \mathcal{U}_t, \mathcal{B}_{t,X,i}, K) = \operatorname*{argmax}_{x \in \mathcal{U}_t} \sum_{\tilde{x} \in \mathcal{L}_{t,X} \cup \mathcal{U}_t} K_{\rightarrow \mathrm{post}(\mathcal{B}_{t,X,i} \cup \{x\}, \sigma^2)}(\tilde{x}, \tilde{x}).$$

Frank-Wolfe selection employs a convex optimization approach to iteratively select batches with near-optimal submodular guarantees. Details can be referred to Pinsler et al. [2019].

Maxdist selects samples that maximize pairwise distances, and explicitly promotes diversity [Yu and Kim, 2010]:

$$\mathcal{S}(\widehat{\theta}_t, \mathcal{L}_t, \mathcal{U}_t, \mathcal{B}_{t, X, i}, K) = \underset{x \in \mathcal{U}_t}{\operatorname{argmax}} \min_{x' \in \mathcal{B}_{t, X, i}} d_K(x, x').$$

For $\mathcal{B}_{t,X,0}$, an arbitrary maximizer from \mathcal{U}_t is chosen.

Kmeanspp ensures representative coverage via k-means++ initialization[Arthur and Vassilvitskii, 2006, Ostrovsky et al., 2013]:

$$\forall x \in \mathcal{U}_t : P(\mathcal{S}(\widehat{\theta}_t, \mathcal{L}_t, \mathcal{U}_t, \mathcal{B}_{t,X,i}, K) = x) = \frac{\min_{\widetilde{x} \in \mathcal{B}_{t,X,i}} d_K(x, \widetilde{x})^2}{\sum_{x' \in \mathcal{U}_t} \min_{\widetilde{x} \in \mathcal{B}_{t,X,i}} d_K(x', \widetilde{x})^2}.$$

Lcmd Holzmüller et al. [2023] selects the point with the maximum distance to point in $\mathcal{B}_{t,X,i}$ that has largest cluster size. For each point $x \in \mathcal{U}_t$ define its associated center as $c(x) = \arg\min_{\tilde{x} \in \mathcal{B}_{t,X,i}} d_K(x,\tilde{x})$. For any $\tilde{x} \in \mathcal{B}_{t,X,i}$, define its cluster size as $s(\tilde{x}) = \sum_{x \in \mathcal{U}_t: c(x) = \tilde{x}} d_K(x,\tilde{x})^2$. The selection is defined as:

$$\mathcal{S}(\widehat{\theta}_t, \mathcal{L}_t, \mathcal{U}_t, 1, K) = \underset{x \in \mathcal{U}_t: s(c(x)) = \max_{\bar{x} \in \mathcal{B}_{t, X, i}} d_K(x, c(x)).}{\operatorname{argmax}} d_K(x, c(x)).$$

For $\mathcal{B}_{t,X,0}$, we select $\operatorname{argmax}_{x \in \mathcal{U}_t} K(x,x)$.

A.4 Theoretical Details

With the NTK kernel defined as $K_{\rm ntk}(x_1,x_2) = \mathbb{E}_{\theta \sim P_{\theta}} \big[\{ \phi_1(\theta;x_1) \}^{\top} \phi_1(\theta;x_2) \big]$, the key equivalence holds:

Lemma A.1. [Yang, 2019, Arora et al., 2019] For data $(x_1, y_1), \ldots, (x_n, y_n)$, as layer widths go to infinity and the parameters of neural network are initialized by $\theta \sim P_{\theta}$, the optimized predictor $f(x; \hat{\theta})$ under \hat{R}_2 converges in probability to:

$$\widehat{f}_{\text{ridge}}(x) = K_{\text{ntk}}(x, \mathbf{x}) \{ K_{\text{ntk}}(\mathbf{x}, \mathbf{x}) + \lambda I_n \}^{-1} \mathbf{y}^{\top}.$$

Therefore, under the infinite-width regime, the equivalence between neural network training and kernel ridge regression allows us to leverage pointwise behavior of $\widehat{f}_{\mathrm{ridge}}(x)$ to characterize the neural network predictor at a fixed point $x_0 \in \mathbb{R}^d$. Denote ridge estimate of NTK kernel as:

$$\widehat{K}_{\mathrm{ntk}}(x, x_0) = K_{\mathrm{ntk}}(x, \mathbf{x}) \left\{ K_{\mathrm{ntk}}(\mathbf{x}, \mathbf{x}) + \lambda n I_n \right\}^{-1} \left\{ K_{\mathrm{ntk}}(x_0, \mathbf{x}) \right\}^{\top}.$$

Let L_{∞} norm be $\|\widehat{K}_{\rm ntk}(\cdot,x_0) - K_{\rm ntk}(\cdot,x_0)\|_{\infty} = \sup_x |\widehat{K}_{\rm ntk}(x,x_0) - K_{\rm ntk}(x,x_0)|$, and empirical norm be $\|\widehat{K}_{\rm ntk}(\cdot,x_0) - K_{\rm ntk}(\cdot,x_0)\|_n = \left[n^{-1}\sum_{i=1}^n \{\widehat{K}_{\rm ntk}(x_i,x_0) - K_{\rm ntk}(x_i,x_0)\}^2\right]^{1/2}$.

Assumption 1. The noise terms ϵ_i are independent and identically distributed with $\mathbb{E}(\epsilon_i) = 0$ and $\text{Var}(\epsilon_i) = \sigma_{\epsilon}^2 < \infty$

Assumption 2. $n^{-1/2}\|\widehat{K}_{\mathrm{ntk}}(\cdot,x_0) - K_{\mathrm{ntk}}(\cdot,x_0)\|_{\infty}/\|\widehat{K}_{\mathrm{ntk}}(\cdot,x_0) - K_{\mathrm{ntk}}(\cdot,x_0)\|_n \to 0$ in probability.

Lemma A.2. [Tuo and Zou, 2024] Under assumption 1-2, $\hat{f}_{ridge}(x_0)$ is asymptotically normal:

$$\left\{ \operatorname{Var}(\widehat{f}_{\operatorname{ridge}}(x_0)) \right\}^{-1/2} \left[\widehat{f}_{\operatorname{ridge}}(x_0) - \mathbb{E}\left\{ \widehat{f}_{\operatorname{ridge}}(x_0) \right\} \right] \stackrel{d}{\to} N(0,1),$$

where
$$\operatorname{Var}(\widehat{f}_{\operatorname{ridge}}(x_0)) = \sigma_{\epsilon}^2 K_{\operatorname{ntk}}(x_0, \mathbf{x}) \{ K_{\operatorname{ntk}}(\mathbf{x}, \mathbf{x}) + \lambda n I_n \}^{-1} \{ K_{\operatorname{ntk}}(x_0, \mathbf{x}) \}^{\top}.$$

Remark A.3. Assumption 2 can be verified using the upper and lower bounds of $\|\widehat{K}_{ntk}(\cdot, x_0) - K_{ntk}(\cdot, x_0)\|_{\infty}$ and $\|\widehat{K}_{ntk}(\cdot, x_0) - K_{ntk}(\cdot, x_0)\|_{n}$ in Tuo and Zou [2024].

A.5 Proof of Theorem 2.1

We can decompose the $\widehat{\phi}_2(\widehat{\theta}; x_0)$ as

$$\begin{split} \widehat{\phi}_{2}(\widehat{\theta};x_{0}) &= f(x_{0};\widehat{\theta}) - \widetilde{f}(x_{0};\widehat{\theta}) \\ &= \left\{ f(x_{0};\widehat{\theta}) - f(x_{0};\theta^{*}) \right\} - \left\{ \widetilde{f}(x_{0};\widehat{\theta}) - f(x_{0};\theta^{*}) \right\} \\ &= \phi_{2}(\widehat{\theta};x_{0}) - \widetilde{\phi}_{2}(\widehat{\theta};x_{0}) \\ &= \left\{ \phi_{2}^{(1)}(\widehat{\theta};x_{0}) - \widetilde{\phi}_{2}^{(1)}(\widehat{\theta};x_{0}) \right\} + \left\{ \phi_{2}^{(2)}(\widehat{\theta};x_{0}) - \widetilde{\phi}_{2}^{(2)}(\widehat{\theta};x_{0}) \right\} \\ &= \left[\mathbb{E} \left\{ \widehat{f}_{\text{ridge}}(x_{0}) \right\} - \mathbb{E} \left\{ \widetilde{f}_{\text{ridge}}(x_{0}) \right\} + o_{P}(\zeta(m)) \right] + \left\{ \phi_{2}^{(2)}(\widehat{\theta};x_{0}) - \widetilde{\phi}_{2}^{(2)}(\widehat{\theta};x_{0}) \right\}. \end{split}$$

Therefore the first part only contains bias and an asymptotically negligible item and the variance comes from the second part:

$$\begin{aligned} & \operatorname{Var}(\widehat{\phi}_{2}(\widehat{\theta}; x_{0})) \\ = & \operatorname{Var}(\left[\mathbb{E}\{\widehat{f}_{\operatorname{ridge}}(x_{0})\} - \mathbb{E}\{\widetilde{f}_{\operatorname{ridge}}(x_{0})\} + o_{P}(\zeta(m))\right] + \left\{\phi_{2}^{(2)}(\widehat{\theta}; x_{0}) - \widetilde{\phi}_{2}^{(2)}(\widehat{\theta}; x_{0})\right\}) \\ = & \operatorname{Var}(o_{P}(\zeta(m)) + \left\{\phi_{2}^{(2)}(\widehat{\theta}; x_{0}) - \widetilde{\phi}_{2}^{(2)}(\widehat{\theta}; x_{0})\right\}) \\ = & \operatorname{Var}(\phi_{2}^{(2)}(\widehat{\theta}; x_{0}) - \widetilde{\phi}_{2}^{(2)}(\widehat{\theta}; x_{0})) + o_{P}(\zeta(m)) \\ = & \operatorname{Var}(\phi_{2}^{(2)}(\widehat{\theta}; x_{0})) + \operatorname{Var}(\widetilde{\phi}_{2}^{(2)}(\widehat{\theta}; x_{0})) - 2\operatorname{Cov}(\phi_{2}^{(2)}(\widehat{\theta}; x_{0}), \widetilde{\phi}_{2}^{(2)}(\widehat{\theta}; x_{0})) + o_{P}(\zeta(m)) \\ \to & \sigma^{2}(x_{0}) + \widetilde{\sigma}^{2}(x_{0}) - 2\rho\widetilde{\sigma}(x_{0})\sigma(x_{0}) + o_{P}(\zeta(m)). \end{aligned}$$

A.6 Addtional Information for Experiments

A.6.1 Real Data Descriptions

Dataset Information: The datasets BIO, BIKE, DIAMOND, and STOCK have feature dimension d=9, and CT has original dimension d=379 (reduced to 50 features through correlation-based selection).

Auxiliary Data Description: The auxiliary datasets are generated through three distinct approaches: (1) Data partitioning by feature: for the DIAMOND dataset, we select samples with the highest clarity as the training and test set (representing rare, high-cost-to-label instances) while using lower-clarity samples as auxiliary data, creating significant distributional heterogeneity; (2) Shared-origin

data with label corruption: for CT and STOCK datasets, the target and auxliary initially share the same distribution, but we systematically corrupt parts of the auxiliary data (10% relabeling from $N(\mu_{\rm CT},\sigma_{\rm CT}^2)$ for CT, 40% from $N(\mu_{\rm STOCK},\sigma_{\rm STOCK}^2)$ for STOCK) to simulate annotation/transmission errors or data missing, where $\mu_{\rm CT},\mu_{\rm STOCK}$ and $\sigma_{\rm CT}^2,\sigma_{\rm STOCK}^2$ represent the expectation and variance of response variable in CT, STOCK dataset; (3) Feature-dependent label perturbation: for BIO and BIKE datasets, we modify auxiliary data (x,y) to be $(x,y_{\rm new}),y_{\rm new}=y+\delta(x),$ where $\delta(x)$ models instrumentation or recording errors. For BIO dataset, $\delta(x)=\cos(\sum_{i=1}^d x_i)$ and for BIKE dataset $\delta(x)=2\cos(\sum_{i=1}^d x_i)$. Table 3 conclusively demonstrates significant distributional shifts between auxiliary and target data.

A.6.2 Additional Results

In this section we provide additional and detailed results for our experiments.

Table 2: Comparison of 8 selection methods across synthetic and real-world datasets in terms of RMSE at step 10, where Avg Impro represents improvement over BMDAL averaged across 7 experiments.

	S1	S2	BIO	BIKE	DIAMOND	CT	STOCK	Avg Impro
random	0.890	1.352	0.412	0.295	17.854	0.308	0.346	_
lcmd	0.971	1.443	0.390	0.256	16.644	0.168	0.328	
lcmd (ours)	0.803	1.206	0.392	0.291	17.045	0.197	0.315^*	0.6%
maxdist	0.833	1.255	0.404	0.285	16.691	0.177	0.343	
maxdist (ours)	0.797	1.202	0.386	0.272	16.657	0.186	0.321	2.7%
kmeanspp	0.856	1.307	0.389	0.259	16.139	0.181	0.327	
kmeanspp (ours)	0.808	1.230	0.381^{*}	0.246^{*}	15.974*	0.176	0.318	3.5%
fw	0.915	1.382	0.407	0.295	17.582	0.272	0.341	
fw (ours)	0.856	1.268	0.391	0.273	18.389	0.231	0.341	5.2%
bait	0.812	1.267	0.404	0.307	18.218	0.375	0.350	
bait (ours)	0.797^{*}	1.227	0.398	0.271	19.114	0.299	0.335	5.4%
maxdet	0.843	1.260	0.393	0.333	16.257	0.240	0.336	
maxdet (ours)	0.802	1.200^{*}	0.383	0.258	16.587	0.161^{*}	0.328	9.8%
maxdiag	0.880	1.363	0.426	0.431	20.508	0.451	0.372	
maxdiag (ours)	0.800	1.207	0.388	0.280	16.223	0.196	0.323	22.2%

Table 3: RMSE comparison at step 15: target-only trained versus target and auxiliary combined data (Aux) trained models.

	S 1	S2	BIO	BIKE	DIAMOND	CT	STOCK
maxdiag	0.819	1.205	0.384	0.233	14.029	0.150	0.306
maxdiag (Aux)	1.514	1.958	0.639	1.008	19.256	0.199	0.325
maxdet	0.819	1.223	0.374	0.223	13.817	0.131	0.309
maxdet (Aux)	1.512	1.956	0.631	1.048	19.215	0.193	0.337
bait	0.818	1.254	0.396	0.230	17.131	0.200	0.309
bait (Aux)	1.527	1.977	0.628	1.056	19.610	0.248	0.329
fw	0.889	1.332	0.381	0.219	16.957	0.178	0.317
fw (Aux)	1.547	1.985	0.620	1.096	19.165	0.213	0.329
maxdist	0.829	1.223	0.384	0.230	13.675	0.141	0.304
maxdist (Aux)	1.528	1.967	0.636	1.003	19.161	0.200	0.337
kmeanspp	0.831	1.244	0.378	0.214	13.708	0.140	0.301
kmeanspp (Aux)	1.521	1.973	0.625	1.012	19.155	0.199	0.330
lcmd	0.837	1.235	0.383	0.240	14.421	0.148	0.301
lcmd (Aux)	1.529	1.964	0.635	1.004	19.191	0.198	0.338
random	1.011	1.490	0.397	0.235	16.307	0.233	0.319
random (Aux)	1.541	1.994	0.622	1.077	19.455	0.257	0.333

A.6.3 Additional Computational Burden Analysis Results

For different methods, in Table 11 we present the computational resource consumption, where AvgUsg denotes the memory usage and AvgTime represents the average runtime per step of the method. The first row reports the consumption of BMDAL, followed by the consumption of our method under

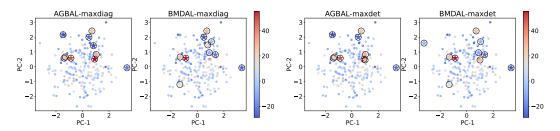


Figure 5: Visualization of the loss of selected points for maxdiag and maxdet methods.

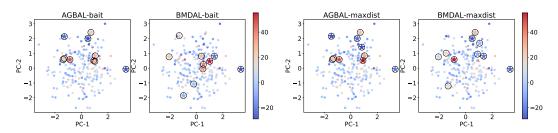


Figure 6: Visualization of the loss of selected points for bait and maxdist methods.

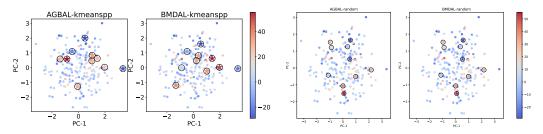


Figure 7: Visualization of the loss of selected points for kmeanspp and random methods.

	Table 4: MSE results of S1.															
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
random	1.077	1.058	0.993	0.971	0.955	0.942	0.930	0.921	0.911	0.900	0.890	0.882	0.875	0.868	0.862	0.857
maxdiag	1.077	0.972	0.928	0.921	0.917	0.912	0.908	0.900	0.894	0.886	0.880	0.873	0.867	0.862	0.857	0.853
maxdiag (ours)	1.077	0.977	0.879	0.859	0.843	0.834	0.826	0.818	0.810	0.805	0.800	0.795	0.791	0.788	0.786	0.783
maxdet	1.077	0.982	0.924	0.906	0.893	0.881	0.874	0.866	0.858	0.850	0.843	0.837	0.831	0.826	0.821	0.818
maxdet (ours)	1.077	0.949	0.867	0.846	0.838	0.828	0.822	0.817	0.811	0.806	0.802	0.798	0.795	0.792	0.790	0.788
bait	1.077	1.014	0.917	0.885	0.864	0.850	0.839	0.831	0.824	0.818	0.812	0.807	0.802	0.799	0.796	0.794
bait (ours)	1.077	1.000	0.874	0.853	0.842	0.830	0.822	0.814	0.808	0.802	0.797	0.793	0.788	0.785	0.783	0.781
fw	1.077	1.062	1.016	0.995	0.987	0.978	0.967	0.953	0.939	0.926	0.915	0.906	0.898	0.891	0.884	0.879
fw (ours)	1.077	1.046	0.963	0.942	0.930	0.915	0.899	0.887	0.876	0.865	0.856	0.847	0.840	0.834	0.829	0.825
maxdist	1.077	0.963	0.900	0.884	0.875	0.867	0.859	0.851	0.845	0.839	0.833	0.826	0.822	0.817	0.814	0.810
maxdist (ours)	1.077	0.966	0.881	0.861	0.846	0.833	0.824	0.816	0.808	0.802	0.797	0.793	0.789	0.786	0.783	0.781
kmeanspp	1.077	1.020	0.954	0.926	0.915	0.906	0.896	0.888	0.876	0.865	0.856	0.848	0.841	0.835	0.831	0.827
kmeanspp (ours)	1.077	0.967	0.892	0.864	0.849	0.838	0.831	0.825	0.819	0.813	0.808	0.803	0.799	0.795	0.792	0.790
lcmd	1.077	1.082	1.076	1.084	1.075	1.066	1.046	1.027	1.010	0.988	0.971	0.956	0.942	0.931	0.921	0.913
lcmd (ours)	1.077	0.988	0.948	0.876	0.853	0.840	0.831	0.822	0.815	0.808	0.803	0.798	0.794	0.791	0.788	0.786

Table 5: MSE results of S2.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
random	1.703	1.652	1.541	1.492	1.460	1.441	1.424	1.403	1.384	1.367	1.352	1.339	1.328	1.318	1.310	1.303
maxdiag	1.703	1.516	1.451	1.427	1.423	1.415	1.409	1.395	1.383	1.373	1.363	1.352	1.342	1.334	1.326	1.319
maxdiag (ours)	1.703	1.504	1.346	1.309	1.279	1.261	1.246	1.235	1.225	1.216	1.207	1.200	1.195	1.191	1.187	1.184
maxdet	1.703	1.492	1.402	1.364	1.341	1.324	1.308	1.295	1.283	1.270	1.260	1.251	1.244	1.238	1.233	1.228
maxdet (ours)	1.703	1.453	1.310	1.277	1.259	1.245	1.231	1.221	1.212	1.206	1.200	1.195	1.190	1.186	1.182	1.180
bait	1.703	1.632	1.459	1.396	1.360	1.336	1.319	1.303	1.290	1.278	1.267	1.258	1.250	1.244	1.238	1.234
bait (ours)	1.703	1.568	1.382	1.326	1.303	1.287	1.270	1.256	1.245	1.235	1.227	1.220	1.214	1.209	1.205	1.201
fw	1.703	1.663	1.571	1.528	1.496	1.473	1.451	1.434	1.415	1.398	1.382	1.367	1.355	1.344	1.335	1.328
fw (ours)	1.703	1.586	1.459	1.408	1.376	1.350	1.329	1.311	1.296	1.282	1.268	1.257	1.248	1.241	1.234	1.229
maxdist	1.703	1.491	1.390	1.348	1.322	1.306	1.292	1.281	1.271	1.263	1.255	1.248	1.243	1.238	1.233	1.230
maxdist (ours)	1.703	1.495	1.358	1.304	1.273	1.255	1.241	1.226	1.216	1.208	1.202	1.196	1.192	1.188	1.185	1.182
kmeanspp	1.703	1.601	1.502	1.454	1.417	1.393	1.374	1.354	1.336	1.321	1.307	1.295	1.285	1.276	1.270	1.264
kmeanspp (ours)	1.703	1.532	1.383	1.336	1.308	1.291	1.276	1.263	1.249	1.239	1.230	1.222	1.216	1.210	1.205	1.202
lcmd	1.703	1.748	1.686	1.607	1.582	1.563	1.538	1.511	1.486	1.466	1.443	1.423	1.405	1.390	1.376	1.365
lcmd (ours)	1.703	1.534	1.422	1.326	1.291	1.270	1.254	1.239	1.224	1.215	1.206	1.198	1.193	1.188	1.183	1.180

Table 6: MSE results of BIO.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
random	0.677	0.536	0.512	0.485	0.468	0.468	0.449	0.435	0.428	0.416	0.412	0.409	0.405	0.401	0.399	0.397
maxdiag	0.677	0.525	0.490	0.472	0.457	0.449	0.447	0.442	0.435	0.430	0.426	0.420	0.415	0.412	0.409	0.406
maxdiag (ours)	0.677	0.502	0.468	0.470	0.451	0.463	0.487	0.503	0.503	0.515	0.519	0.523	0.524	0.526	0.533	0.537
maxdet	0.677	0.472	0.448	0.434	0.418	0.412	0.407	0.402	0.399	0.397	0.393	0.391	0.389	0.388	0.387	0.386
maxdet (ours)	0.677	0.483	0.443	0.418	0.408	0.400	0.395	0.391	0.387	0.385	0.383	0.382	0.381	0.380	0.379	0.380
bait	0.677	0.558	0.503	0.467	0.448	0.439	0.429	0.424	0.412	0.409	0.404	0.401	0.398	0.397	0.394	0.392
bait (ours)	0.677	0.513	0.478	0.460	0.439	0.429	0.422	0.413	0.407	0.402	0.398	0.396	0.395	0.393	0.390	0.388
fw	0.677	0.519	0.470	0.457	0.437	0.430	0.422	0.415	0.412	0.411	0.407	0.403	0.400	0.398	0.396	0.394
fw (ours)	0.677	0.484	0.451	0.434	0.419	0.411	0.406	0.400	0.398	0.394	0.391	0.391	0.389	0.388	0.387	0.386
maxdist	0.677	0.486	0.460	0.448	0.433	0.423	0.419	0.414	0.409	0.406	0.404	0.401	0.398	0.396	0.395	0.394
maxdist (ours)	0.677	0.501	0.466	0.440	0.421	0.408	0.400	0.394	0.391	0.388	0.386	0.384	0.382	0.381	0.379	0.378
kmeanspp	0.677	0.474	0.443	0.429	0.415	0.406	0.401	0.396	0.393	0.390	0.389	0.387	0.385	0.384	0.382	0.382
kmeanspp (ours)	0.677	0.467	0.431	0.417	0.407	0.399	0.394	0.390	0.385	0.384	0.381	0.379	0.378	0.377	0.376	0.375
lcmd	0.677	0.472	0.452	0.432	0.422	0.415	0.405	0.400	0.397	0.393	0.390	0.388	0.386	0.385	0.384	0.383
lcmd (ours)	0.677	0.472	0.461	0.450	0.432	0.421	0.412	0.402	0.396	0.394	0.392	0.390	0.387	0.385	0.384	0.383

Table 7: MSE results of BIKE.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
random	1.413	0.923	0.764	0.613	0.537	0.462	0.408	0.368	0.340	0.315	0.295	0.278	0.263	0.252	0.243	0.235
maxdiag	1.413	1.051	0.929	0.798	0.705	0.622	0.574	0.524	0.483	0.454	0.431	0.409	0.389	0.367	0.349	0.332
maxdiag (ours)	1.413	0.830	0.620	0.505	0.426	0.378	0.349	0.324	0.307	0.292	0.280	0.269	0.259	0.249	0.242	0.236
maxdet	1.413	0.890	0.751	0.631	0.561	0.504	0.452	0.413	0.381	0.356	0.333	0.315	0.300	0.286	0.276	0.268
maxdet (ours)	1.413	0.698	0.476	0.397	0.351	0.327	0.312	0.291	0.280	0.268	0.258	0.249	0.242	0.237	0.231	0.226
bait	1.413	0.971	0.789	0.661	0.574	0.491	0.431	0.390	0.355	0.328	0.307	0.292	0.278	0.267	0.255	0.246
bait (ours)	1.413	0.775	0.589	0.480	0.416	0.374	0.346	0.321	0.301	0.285	0.271	0.261	0.251	0.242	0.235	0.230
fw	1.413	0.947	0.745	0.614	0.514	0.443	0.399	0.365	0.335	0.312	0.295	0.278	0.263	0.253	0.245	0.237
fw (ours)	1.413	0.809	0.577	0.491	0.429	0.390	0.357	0.330	0.308	0.289	0.273	0.261	0.251	0.243	0.236	0.229
maxdist	1.413	0.915	0.716	0.579	0.486	0.423	0.377	0.346	0.321	0.300	0.285	0.271	0.259	0.249	0.240	0.232
maxdist (ours)	1.413	0.829	0.597	0.484	0.412	0.368	0.340	0.316	0.300	0.285	0.272	0.260	0.251	0.242	0.234	0.227
kmeanspp	1.413	0.852	0.654	0.511	0.431	0.380	0.342	0.313	0.288	0.273	0.259	0.249	0.239	0.231	0.224	0.219
kmeanspp (ours)	1.413	0.762	0.522	0.416	0.362	0.327	0.300	0.283	0.268	0.257	0.246	0.238	0.230	0.224	0.218	0.213
lcmd	1.413	0.819	0.620	0.502	0.420	0.369	0.331	0.302	0.281	0.266	0.256	0.245	0.237	0.229	0.223	0.218
lcmd (ours)	1.413	0.819	0.620	0.559	0.489	0.450	0.411	0.369	0.341	0.317	0.291	0.276	0.261	0.252	0.242	0.234

Table 8: MSE results of DIAMOND.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
random	33.666	29.685	26.771	25.483	23.523	21.760	20.474	19.429	18.923	18.359	17.854	17.398	17.095	16.809	16.582	16.307
maxdiag	33.666	34.604	33.749	30.630	27.929	26.469	24.681	23.864	22.387	21.282	20.508	19.791	19.487	19.085	18.491	18.232
maxdiag (ours)	33.666	35.427	27.964	25.435	23.301	22.054	20.700	19.560	18.331	16.854	16.223	15.840	15.467	15.038	14.841	14.628
maxdet	33.666	30.538	25.993	23.145	21.704	20.044	19.326	18.241	17.625	16.713	16.257	15.887	15.462	15.276	15.040	14.882
maxdet (ours)	33.666	31.333	26.014	24.047	21.857	20.019	18.761	18.211	17.210	17.039	16.587	16.273	15.725	15.288	15.081	14.826
bait	33.666	31.433	28.557	26.973	25.002	23.365	22.640	20.566	19.652	18.897	18.218	18.127	17.578	17.345	17.183	16.977
bait (ours)	33.666	31.764	28.619	26.016	24.163	22.536	21.492	20.835	20.311	19.377	19.114	18.677	18.249	17.802	17.557	17.320
fw	33.666	31.308	29.604	26.492	23.034	21.262	20.625	19.736	18.715	17.968	17.582	16.979	16.695	16.216	15.871	15.608
fw (ours)	33.666	31.662	28.651	26.862	24.885	23.475	21.564	20.582	19.677	19.077	18.389	17.633	17.213	16.733	16.413	15.914
maxdist	33.666	33.311	27.960	24.517	22.498	21.050	19.973	19.212	18.238	17.297	16.691	16.460	16.095	15.988	15.775	15.498
maxdist (ours)	33.666	36.023	29.659	26.134	23.642	22.181	20.896	19.661	18.201	17.259	16.657	16.290	15.980	15.466	15.346	14.930
kmeanspp	33.666	30.066	26.346	23.903	21.836	20.200	19.375	17.934	17.055	16.410	16.139	15.869	15.617	15.309	15.029	14.880
kmeanspp (ours)	33.666	31.448	26.154	22.890	21.410	20.365	19.123	18.308	17.335	16.468	15.974	15.656	15.188	15.075	14.715	14.523
lcmd	33.666	30.379	26.531	23.069	21.023	19.593	18.864	18.003	17.329	17.037	16.644	16.159	15.914	15.502	15.322	15.008
lcmd (ours)	33.666	30.379	26.501	26.659	22.573	21.850	21.215	19.384	18.087	17.673	17.045	16.671	16.032	16.048	15.667	15.366

Table 9: MSE results of CT.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
random	0.848	0.595	0.503	0.445	0.419	0.399	0.372	0.358	0.351	0.337	0.308	0.292	0.276	0.258	0.245	0.233
maxdiag	0.848	0.641	0.608	0.597	0.593	0.594	0.598	0.564	0.538	0.503	0.451	0.431	0.407	0.387	0.371	0.351
maxdiag (ours)	0.848	0.595	0.457	0.411	0.379	0.331	0.295	0.266	0.236	0.215	0.196	0.183	0.173	0.166	0.158	0.153
maxdet	0.848	0.527	0.440	0.391	0.364	0.342	0.318	0.299	0.278	0.259	0.240	0.224	0.211	0.202	0.193	0.184
maxdet (ours)	0.848	0.517	0.394	0.333	0.286	0.260	0.230	0.203	0.186	0.171	0.161	0.153	0.146	0.140	0.135	0.131
bait	0.848	0.620	0.554	0.514	0.470	0.462	0.438	0.431	0.411	0.393	0.375	0.356	0.327	0.313	0.298	0.289
bait (ours)	0.848	0.620	0.488	0.454	0.425	0.395	0.378	0.359	0.354	0.322	0.299	0.277	0.255	0.234	0.225	0.211
fw	0.848	0.554	0.463	0.417	0.388	0.367	0.355	0.330	0.299	0.286	0.272	0.259	0.241	0.227	0.216	0.207
fw (ours)	0.848	0.498	0.430	0.391	0.346	0.323	0.303	0.286	0.266	0.249	0.231	0.216	0.206	0.196	0.187	0.179
maxdist	0.848	0.538	0.415	0.356	0.309	0.277	0.250	0.225	0.205	0.190	0.177	0.168	0.157	0.150	0.143	0.138
maxdist (ours)	0.848	0.610	0.467	0.407	0.363	0.328	0.291	0.264	0.232	0.204	0.186	0.171	0.160	0.151	0.146	0.142
kmeanspp	0.848	0.507	0.415	0.356	0.311	0.280	0.252	0.232	0.214	0.194	0.181	0.168	0.159	0.152	0.146	0.139
kmeanspp (ours)	0.848	0.510	0.399	0.335	0.292	0.269	0.247	0.222	0.206	0.189	0.176	0.166	0.157	0.149	0.143	0.138
lcmd	0.848	0.485	0.371	0.331	0.293	0.266	0.244	0.217	0.198	0.179	0.168	0.158	0.148	0.140	0.135	0.132
lemd (ours)	0.848	0.485	0.433	0.392	0.354	0.321	0.283	0.257	0.242	0.216	0.197	0.185	0.174	0.165	0.157	0.151

Table 10: MSE results of STOCK.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
random	0.588	0.498	0.468	0.451	0.430	0.409	0.389	0.379	0.367	0.355	0.346	0.340	0.334	0.328	0.324	0.319
maxdiag	0.588	0.541	0.496	0.465	0.448	0.429	0.416	0.400	0.392	0.383	0.372	0.365	0.358	0.352	0.346	0.342
maxdiag (ours)	0.588	0.476	0.434	0.395	0.374	0.360	0.349	0.339	0.333	0.328	0.323	0.319	0.315	0.312	0.309	0.307
maxdet	0.588	0.483	0.456	0.429	0.405	0.387	0.372	0.361	0.350	0.343	0.336	0.330	0.324	0.321	0.316	0.313
maxdet (ours)	0.588	0.449	0.407	0.388	0.367	0.357	0.350	0.341	0.337	0.331	0.328	0.325	0.322	0.319	0.316	0.313
bait	0.588	0.495	0.468	0.447	0.424	0.404	0.388	0.377	0.369	0.360	0.350	0.343	0.336	0.331	0.326	0.321
bait (ours)	0.588	0.479	0.431	0.406	0.387	0.378	0.365	0.355	0.349	0.342	0.335	0.329	0.324	0.321	0.317	0.312
fw	0.588	0.513	0.477	0.442	0.421	0.404	0.385	0.368	0.360	0.351	0.341	0.336	0.330	0.324	0.319	0.316
fw (ours)	0.588	0.480	0.445	0.416	0.392	0.382	0.369	0.360	0.352	0.345	0.341	0.335	0.330	0.327	0.323	0.319
maxdist	0.588	0.511	0.481	0.445	0.416	0.402	0.386	0.372	0.362	0.350	0.343	0.337	0.330	0.325	0.321	0.317
maxdist (ours)	0.588	0.477	0.436	0.400	0.375	0.359	0.345	0.341	0.333	0.327	0.321	0.318	0.315	0.312	0.309	0.306
kmeanspp	0.588	0.493	0.457	0.430	0.398	0.382	0.365	0.353	0.342	0.334	0.327	0.320	0.315	0.310	0.306	0.303
kmeanspp (ours)	0.588	0.452	0.412	0.389	0.371	0.357	0.346	0.338	0.329	0.324	0.318	0.314	0.311	0.308	0.305	0.302
lcmd	0.588	0.498	0.452	0.421	0.396	0.374	0.358	0.347	0.339	0.332	0.328	0.321	0.316	0.312	0.308	0.305
lcmd (ours)	0.588	0.498	0.464	0.419	0.392	0.365	0.345	0.332	0.325	0.319	0.315	0.311	0.308	0.306	0.303	0.301

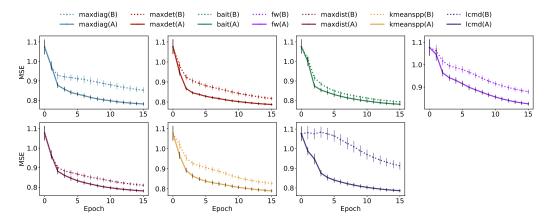


Figure 8: S1 MSEs plot.

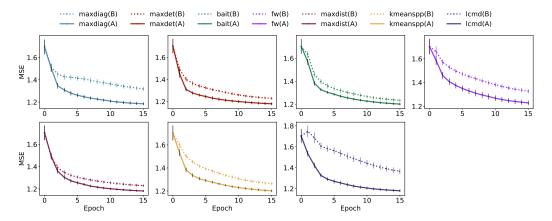


Figure 9: S2 MSEs plot.

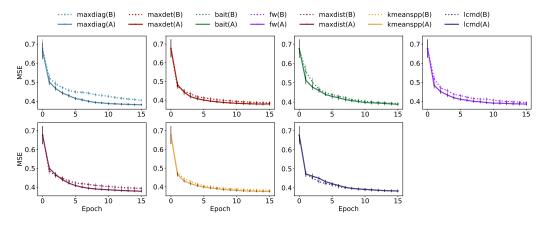


Figure 10: BIO MSEs plot.

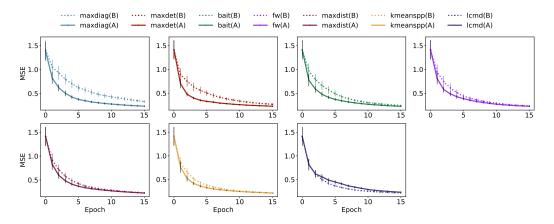


Figure 11: BIKE MSEs plot.

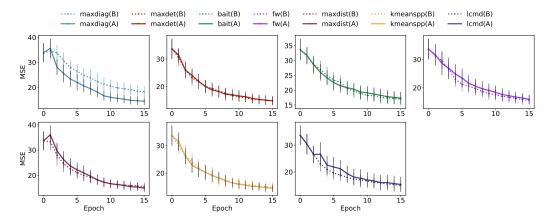


Figure 12: DIAMOND MSEs plot.

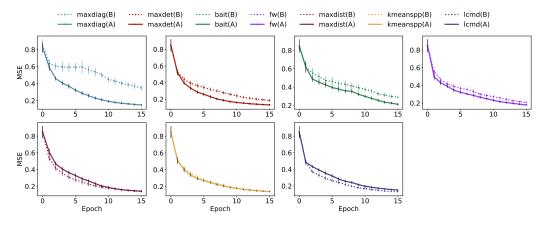


Figure 13: CT MSEs plot.

varying sizes of auxiliary data samples, along with the corresponding AUC improvement achieved at each sample size.

Table 11: Computational Burden Analysis Results.

		lcmd	maxdiag	maxdet	fw	maxdist	bait	kmeanspp
AvgUsg (M)	BMDAL	571.4	502.2	553.8	544.0	576.0	596.6	562.2
	ours (100)	575.2	501.4	561.4	570.6	570.0	599.0	511.0
	ours (500)	593.4	522.0	578.6	567.0	587.0	609.0	520.2
	ours (1000)	595.0	529.0	584.8	578.0	585.8	610.8	539.2
	ours (10000)	766.0	713.4	750.0	752.4	770.6	769.2	765.4
AvgTime (s)	BMDAL	1.39	0.06	0.32	0.23	1.19	1.10	1.28
	ours (100)	2.35	0.91	1.23	1.12	2.10	2.02	2.41
	ours (500)	3.08	1.62	1.97	1.83	2.80	2.72	2.81
	ours (1000)	3.57	2.27	2.62	2.46	3.39	3.32	3.17
	ours (10000)	15.04	14.49	15.23	14.74	15.95	15.44	15.89
AvgImpro (%)	ours (100)	-11.47	14.91	5.83	2.28	-9.17	5.86	-0.66
	ours (500)	-6.17	20.31	10.69	4.66	-0.40	8.95	2.60
	ours (1000)	-5.65	17.99	10.47	5.03	1.13	7.71	3.86
	ours (10000)	-6.08	22.56	12.02	5.20	1.91	8.76	4.47

A.7 Additional Experiments

A.7.1 Experiments on Auxiliary Data Quality

Since the core of our method lies in improving loss estimation through auxiliary data guidance, an intuitive expectation is that better alignment between auxiliary and target distributions should yield superior estimation performance. This naturally raises the question: how severely will our method degrade as auxiliary data quality deteriorates? To investigate this, we adopt the same experimental settings as defined in S1 and S2.

At $\zeta=64$, where the distribution shift is most severe, AGBAL achieves its highest AUC for the MSE curve while still outperforming BMDAL (which uses no auxiliary data). As shown in Table 12, AGBAL maintains superior performance across most selection methods, except for a slight degradation under maxdist. This demonstrates our method's robustness: when distribution discrepancy becomes extreme, the density ratio estimation effectively nullifies the auxiliary data's influence (weights approach zero), preventing negative learning while maintaining comparable performance to not using auxiliary data at all.

Table 12: Worst case AUC comparison between AGBAL and BMDAL.

		maxdiag	maxdet	bait	fw	maxdist	kmeanspp	lcmd
S 1	BMDAL	0.956	0.952	0.914	1.038	0.933	0.975	1.131
	AGBAL (ours)	0.942	0.918	0.904	1.038	0.947	0.940	0.975
	Improvement	1.5%	3.6%	1.1%	0.0%	-1.5%	3.6%	13.8%
S2	BMDAL	1.501	1.430	1.417	1.583	1.406	1.479	1.647
	AGBAL (ours)	1.437	1.398	1.390	1.543	1.436	1.426	1.468
	Improvement	4.3%	2.2%	1.9%	2.5%	-2.1%	3.6%	10.9%

A.7.2 Experiments on Auxiliary Data Quantity

On the other hand, the volume of auxiliary data warrants investigation. While real-world scenarios typically provide abundant auxiliary data (e.g., corrupted data or related-task data), limited-quantity cases do exist - such as small historical archives with long-term records. To examine the performance of our method with scarce auxiliary data, we conduct experiments with varying volumes (50,100,300,500,1000 samples) under the S1 and S2 configurations, fixing $\zeta=8$. For each selection method, we evaluate the performance by computing the AUC of MSE curves.

Figure 14-15 presents the AUC values of MSE curves for AGBAL (solid lines) versus BMDAL (dashed lines, without auxiliary data) across varying auxiliary data sizes ($N_{\rm aux}$). The results demon-

strate: (1) AGBAL's performance improves monotonically with increasing $N_{\rm aux}$; (2) At minimal data volume ($N_{\rm aux}=50$), AGBAL achieves comparable performance to BMDAL while maintaining superiority in most cases; (3) The only exception occurs under maxdist selection, where AGBAL marginally underperforms BMDAL. These findings confirm that even with modest amounts of auxiliary data, AGBAL can be still useful.

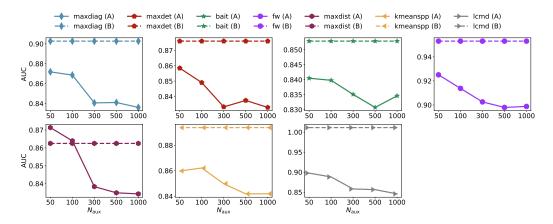


Figure 14: AUC plots of varying N_{aux} for S1.

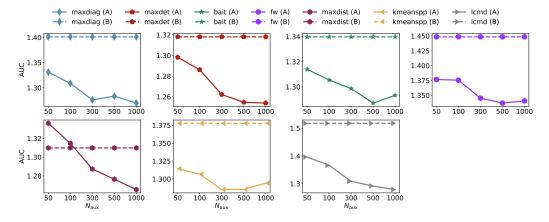


Figure 15: AUC plots of varying $N_{\rm aux}$ for S2.

We evaluate our method on five real-world datasets with varying auxiliary data sizes $N_{\rm aux}$. Figure 16-20 illustrates the AUC trends against auxiliary data volume. Due to the inherent distributional complexity of real-world data, the AUC-n curves exhibit non-smooth variations. However, aggregating results across all five datasets and selection methods reveals: (1) a consistent decreasing trend in AUC as $N_{\rm aux}$ increases; (2) at minimal auxiliary data ($N_{\rm aux}=100$), while AGBAL's advantage over BMDAL (measured by optimal selection method AUC) becomes marginal, it remains competitive - demonstrating the framework's robustness.

A.8 Limitations

The performance of AGBAL is fundamentally constrained by the quality and relevance of the auxiliary data. While the method demonstrates robustness to moderate distribution shifts between auxiliary and target distributions, its effectiveness diminishes when the auxiliary data becomes too noisy or exhibits systematic biases.

The theoretical analysis relies on NTK assumptions that may not hold in practical settings. While the infinite-width network approximation provides valuable insights, its applicability to modern deep architectures with finite width and complex layer interactions remains uncertain. This paper does

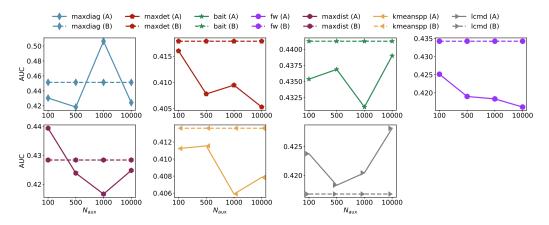


Figure 16: AUC plots of varying $N_{\rm aux}$ for BIO.

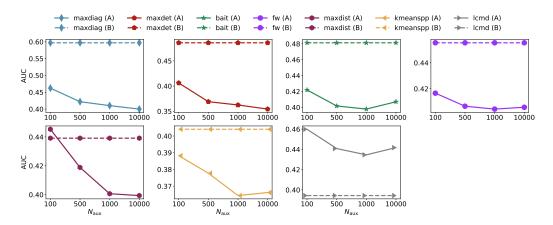


Figure 17: AUC plots of varying $N_{\rm aux}$ for BIKE.

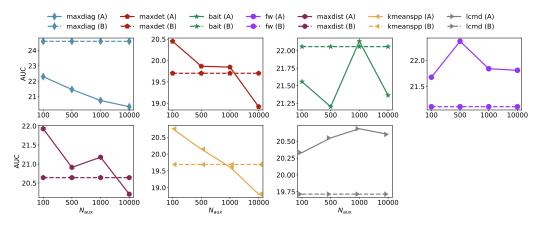


Figure 18: AUC plots of varying $N_{\rm aux}$ for DIAMOND.

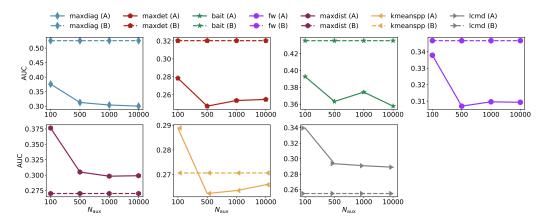


Figure 19: AUC plots of varying $N_{\rm aux}$ for CT.

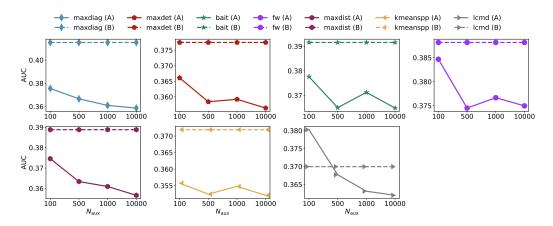


Figure 20: AUC plots of varying $N_{\rm aux}$ for STOCK.

not investigate how deviations from these ideal conditions might affect the method's performance in real-world applications.

The experimental validation, while comprehensive, focuses primarily on regression tasks with relatively low-dimensional input. The performance of AGBAL on high-dimensional structured data, such as images or time series, remains unexplored. Additionally, all experiments assume the availability of auxiliary data with similar feature spaces, leaving open the question of how the method would perform when auxiliary data come from substantially different modalities.

A.9 Broader Impacts

The proposed AGBAL framework has several potential positive social impacts. By reducing annotation costs through more efficient active learning, our method could make machine learning more accessible in resource-constrained domains such as healthcare in developing regions or small-scale industrial applications. The ability to leverage imperfect auxiliary data aligns well with real-world scenarios where perfect datasets are rare, potentially enabling more applications in safety-critical domains such as medical diagnosis or autonomous driving.

While effective, our method raises privacy concerns when auxiliary data contains sensitive information, and may require fairness considerations when adapted to classification tasks. Though efficiency gains could lower barriers for misuse, this risk is mitigated by the method's domain-agnostic nature. We encourage future work on privacy-preserving and fairness-aware extensions.