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Abstract

Skin segmentation is an important and challenging task

which finds use in direct applications such as image edit-

ing and indirect downstream tasks such as face detection

or hand gesture recognition. However, the availability of

diverse and high-quality training data is a major chal-

lenge. Annotation of dense segmentation masks is an ex-

pensive and time consuming process. Existing skin seg-

mentation datasets are often limited in scope: they in-

clude downstream task-specific datasets captured under

controlled conditions, with limited variability in lighting,

scale, ethnicity, and age. This lack of diversity in the train-

ing data can lead to poor generalization and limited per-

formance when applied to real-world images. To address

this issue, we propose a tunable generation pipeline, Syn-

thetic Skin Mask Generator (S2MGen), which allows for the

creation of a diverse range of body positions, camera an-

gles, and lighting conditions. We explore the impact of these

tunable parameters on skin segmentation performance. We

also show that improvements can be made to the perfor-

mance and generalizability of models trained on real world

datasets, by the inclusion of synthetic data in the training

pipeline.

1. Introduction
Skin Segmentation is the process of separating skin pix-

els or regions in an image from non-skin pixels (clothes,
hair, background). Detection of skin is an important pre-
cursor step in other human-centric downstream tasks such
as medical image analysis [36], preserving skin pixels in
image editing applications, gesture recognition [20], face
recognition [32, 61], content moderation [33], etc.

However, segmentation of skin is a challenging problem
due to the diversity of input images. Some variability fac-
tors include ethnicity, gender, age, clothing, and cosmetics.
Skin is affected by factors such as illumination, background
colours, camera characteristics, image composition, shad-
ows, and highlights. To reasonably guarantee a consistently
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Figure 1. Using synthetic data for skin segmentation: We pro-
pose S2MGen, a tunable synthetic skin mask generation pipeline
and explore the use of the generated data on segmentation per-
formance. On top, we show the performance of the segmentation
model trained on a real dataset, HGR [28] and tested on a image
from another real dataset, SFA [7]. On bottom, we show the im-
proved performance on the same test image when synthetic data is
injected during training.

acceptable performance over these variations, it is impor-
tant that the training dataset is extensive and representative
of this diversity.

A tedious step in developing segmentation deep learning
models is the collection and annotation of training datasets.
This is a time-consuming process, mostly involving man-
ual labelling. State of the art segmentation algorithms have
been developed on large scale datasets such as COCO-
stuff (164k images) [6], ADE20k (20k images) [81], LIP
(50k images) [19] etc. In contrast, most skin segmentation
datasets have been constrained in terms of dataset size [65],
label quality [26] and data diversity [7, 28]. In our work,



we look into synthetic data as a source of easy-to-obtain
high-quality annotations and analyse its usage in improving
cross-dataset performance.

Synthetic data generation for segmentation has been ex-
plored as a potential alternative to tedious hand labelling
of dense pixel annotations. Datasets generated using 3D
modeling software [59,71] have shown significant progress
in improving performance of real training data or replac-
ing real data completely. Additionally, this can also re-
duce/eliminate privacy issues involved in collecting human-
centric data. More recently, foundational models have also
been used to generate synthetic data [79], [16] and corre-
sponding segmentation labels [44], however initial experi-
ments for segmenting skin from unlabelled data using foun-
dational segmentation models have not yielded satisfactory
results (Appendix, Figure 12). An often overlooked aspect
of synthetic training data generation is the effect of different
generation parameters on model performance. To the best
of our knowledge, we are the first work to explore synthetic
data generation along with tunable parameters specifically
for skin segmentation.

One of the more challenging aspects of realistic human
rendering is producing high quality skin. Sub-surface scat-
tering to represent skin translucency [74], modeling skin re-
flectance [62, 69], representing skin textures such as pores,
wrinkles, scars etc. are some of the common challenges
in realistic skin rendering. Recently, high-quality charac-
ter generation pipelines such as MetaHuman Creator [70]
by Unreal Engine, Daz3d [12] and Human Generator [4] in
Blender [5] have been proposed. This opens up the possibil-
ity of fast, large-scale, procedural rendering of high-quality
data for human-centric deep learning applications.

Main Contributions: The following are the novel con-
tributions of our work.

1. We propose the S2MGen pipeline, a high-quality syn-
thetic data generator for skin segmentation with vari-
ous tunable parameters (such as clothing, camera an-
gles, backgrounds).

2. We present analysis on the effects of the tunable pa-
rameters on performance.

3. We demonstrate the effectiveness of pre-training with
synthetic data to enhance performance in situations
with limited real-world data and across different do-
mains.

2. Related work
In this section, we present some background in related

domains. In Section 2.1 and Section 2.2, we introduce prior
approaches in skin segmentation. We then motivate the im-
portance and use of augmenting synthetic data with real data
in training deep learning models (Section 2.3) and also prior
work in closing the gap between real and synthetic data us-
ing various domain adaptation techniques (Section 2.4).

2.1. Skin Segmentation Approaches
Traditionally, segmentation of skin areas in an image has

been tackled using color dependent approaches such as ex-
plicit thresholding in various color spaces [8, 11, 63], rep-
resenting skin color distributions using gaussian mixture
models [26, 55, 77] etc. Phung et al. [47] introduced neural
networks to skin segmentation by classifying skin vs. non
skin pixels using a Multi-Layer Perceptron architecture on
the chrominance channels.

Recent advancements in skin segmentation have been
achieved using Fully Convolutional Networks (FCNs) [38]
which allow for better modelling of the complexity of real
world scenes. Tarasiewicz et al. [66] propose a lightweight
U-Net [58] modified to learn a larger receptive field for skin
segmentation. Yi et al. [23] utilize body segmentation labels
in a dual-task semi-supervised learning setting to generate
robust skin masks. As mentioned in the previous section,
current available skin datasets are mostly small and heav-
ily biased. Dourado et al. [14] study the effect of domain
adaptation between these different datasets. More informa-
tion related to skin segmentation algorithms can be found in
[27, 39, 43].

2.2. Skin Segmentation Datasets
Multiple datasets have been been proposed for the task

of skin segmentation in prior literature. However, as cov-
ered in Section 1, many of these datasets have been de-
veloped for very particular downstream tasks such as face
detection, hand gesture recognition etc., resulting in very
constrained datasets. For example, the SFA dataset [7] con-
sists of 1118 images of close-up shots of faces. Similarly,
the HGR dataset [28] consists of 899 images of hand ges-
ture images. The Abdomen dataset [67] is a collection of
1200 exposed torso images curated with skin segmentation
labels to aid in robotic abdominal surgeries. Another issue
prevalent in larger, more general skin datasets is imprecise
labelling quality. For example, the COMPAQ [26] (4,670
images) and the VisUUAL (46,775 images) Dataset [22]
provide labels generated by automatic tools or other algo-
rithms resulting in noisy ground truth. Another pain point
is dataset size, with datasets such as Pratheepan [65] con-
taining only 78 images, mostly used in algorithm evalua-
tion. We maintain the ECU dataset [46] (4000 images) as
our primary baseline because of the relatively larger size
and better quality annotations. For our work, we focus on
publicly available datasets with precise annotations (ECU,
HGR, Abdomen, SFA and Pratheepan).

2.3. Synthetic data for deep learning
A previously explored solution to augment limited an-

notated real-world data, is to generate and use synthetic
data (datasets like the SYNTHIA dataset [59]); Synthetic
data has shown major successes in applications like seman-
tic segmentation [10], crowd counting [73] and depth esti-



(a) Face Render (b) Portrait Render
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Figure 2. Qualitative Samples of Diverse Aspects of the
S2MGen Pipeline: In 2a, we show the shortest focal length lens,
focused on faces. 2b has a portrait focal length lens, showcasing
colored hair, random facial expression, and complex background.
Figure 2c is a full body focal length framing with a plain back-
ground and demonstrating the random poses and clothing patterns.

mation [35] to mention a few. More specifically, there has
been a lot of focus on the generation of human synthetic
data to help in applications like 2D and 3D human pose
estimation [51, 57, 71, 82], action recognition [53, 54, 56],
pedestrian detection [40,48,49], and, face detection [30,31].
Some large-scale human synthetic datasets include SUR-
REAL [71], face analysis dataset [75] and SynFace [50].

2.4. Closing the Domain Gap b/w Datasets
While applications in various domains have long enjoyed

the benefits of synthesizing training data with graphics, the
domain gap between real and synthetic data has remained
a problem, especially for human faces. To address this is-
sue, prior work has tried to bridge this gap with domain
adaptation [3, 83], and knowledge transfer [13, 25] tech-
niques. Among supervised techniques, the simplest is trans-
fer learning, where models are pretrained on larger syn-
thetic sets and fine-tuned on the limited real datasets avail-
able. The pre-training reduces the amount of real data re-
quired. Another approach, Balanced Gradient Contribu-
tion (BGC) [60], explored by the authors of the SYNTHA
Dataset [59] as a method of domain adaptation, uses gradi-
ent updates with controlled perturbations from a noisy do-
main. A major chunk of the unsupervised domain adapta-
tion methods are based on feature alignment, for example,
by adversarial training [24, 68, 72, 80], minimizing MMD

(Maximum Mean Discrepancy) [3] etc. Some approaches
use self-training; one such work by Zou et al. [83] uses
pseudo-labeling to label the target set before re-training the
model on these labels.

3. S2MGen Pipeline
In this section, we describe the dataset generation pro-

cess to create synthetic humans and corresponding masks
for body and skin. For the dataset generation pipeline, we
heavily utilize the 3D modeling software Blender, specifi-
cally the Human Generator add-on, to generate the synthetic
humans.

3.1. Human Generator
The Human Generator Blender add-on (version 3) is

used to create the basic human structure. It includes 52
poses, random facial expressions, random gender, and 18
variations on starting humans. On top of the baseline struc-
ture, we override the random generator with new ranges for
features such as wrinkles, body types, facial hair, freckles
etc. Hair and eyebrow color is randomly set with a distribu-
tion biased towards natural hair colors. Some examples of
renders are shown in Figure 2.

For dataset generation speed, the same human model is
maintained for multiple camera angles - changing poses,
colors, and clothing in between. This reduces the process-
ing time to around 2 frames per second. The presence of
clothing is represented by a boolean random variable (RV)
Pclothed. The probability of adding clothing is a tuneable
parameter and is given by pclothed : Pclothed = X <

pclothed, where X ⇠ U(0, 1)
For renders that include clothing, outfits in the Human

Generator baseline set are used. Patterns and colors on the
clothing are randomly adjusted to increase variability and
diversity.

3.2. Virtual Environment
The virtual environment consists of a bounding room,

background images, and adjustable lighting. Four walls, a
ceiling, and floor surround the human model. The size of
the room is parameterized. Since the ambient lighting in
the room depends heavily on reflected light off the walls,
changing the distance between the subject and the walls re-
sults in more diverse subject lighting.

To further improve realism, photographs are added to
the walls in the synthetic environment as shown in Figure
2b. Around 1.5k images were scraped from Pexels [45] to
use as backgrounds for the rendered images. These back-
grounds were manually cross-checked to make sure they
did not contain any people or skin patches. The content
of the background images is extremely varied in colors and
textures and specifically contains skin-like content such as
wood and sand, which serves as an important source of
hard negative samples for model training. The presence of



(a) Environment and lighting setup (b) Camera position top-down view (c) Camera position front view

Figure 3. Camera, Subject, and, Lighting Locations for the Synthetic Data Generation Pipeline: In 3a, we depict the virtual
environment and the lighting setup, in 3b and 3c we show the camera position from top-down and front view.

background images in the walls is represented by a boolean
RV Pbackground. The probability of choosing a background
from this dataset versus leaving the wall blank is determined
by pbackground : Pbackground = x < ppackground, where
x ⇠ U(0, 1)

Although parameterizable, this particular pipeline con-
sists of three lighting locations. All three area lights are
placed inside the room: one large light for fill, and two small
lights for depth and dimension (Figure 3a). The locations of
the lights are randomly set along a uniform distribution in
x, y, and z. Rotation of the smaller lights is randomized
uniformly. However, the largest light is tracked to maintain
angle towards the subject. This ensures a baseline ambient
lighting for a properly exposed capture. The energy of each
light is uniformly sampled between 50 and 1000.

3.3. Camera Position and Direction
The position and the orientation of the camera in the

Blender 3D space can be represented as the Euclidean co-
ordinates c = (xcam, ycam, zcam) and the Euler rotation
angles respectively. The orientation is fixed by allowing the
camera to always track a point t on the synthetic human.

For a fixed zcam, we allow xcam and ycam to lie on a
circle, represented in polar coordinates, parameterized by
the radius r and angle ✓, as xcam = r · cos(✓) and ycam =
r · sin(✓).

The generated synthetic human is centered at the ori-
gin. For this dataset, the radius r remains constant. How-
ever, the focal length of the camera, f , is allowed to
change. The height zcam, is uniformly sampled as: zcam ⇠
U(zmin, zmax). Hence, the camera position c, is limited to
a cylindrical surface around the generated synthetic human
as shown in Figure 3b and Figure 3c.

For camera angle, ✓ could be sampled from a uniform
distribution ⇥ over a range of values (⇥ ⇠ U(0, 2⇡)). How-
ever, to more accurately model typical photography compo-
sition, the camera angles are constrained based on the distri-
bution of real world content. Most photography of humans
includes a semi-front facing subject. Therefore, instead of

evenly sampling the camera location along this cylindrical
surface, the camera location is biased to face the front of
the generated synthetic human by sampling ✓ from a trans-
formed RV ⇥, as described below. At ✓ = 3⇡

2 radians, the
camera is directly in front of the generated human.

⇥ =
3⇡

2
+ ⇡DX

pfront (1)

where, X ⇠ U(0, 1) and D ⇠ U({�1, 1}).
pfront is a tuneable parameter that controls the angle

variance away from front-facing images. The RV D con-
trols the direction from this center, sampling either clock-
wise or anti-clockwise from 3⇡

2 . As pfront increases, the
likelihood of front-facing images increases.

The camera orientation is constrained to focus on the
synthetic human at a particular focal point t. This point
could be parameterized to move vertically in a randomized
fashion, to focus on different parts of the generated human.
However, for the purposes of this dataset, where mimicking
typical photography composition is desired, a fixed focal
point on the upper body is maintained.

The focal length f is sampled within a minimum (fmin)
and maximum (fmax) focal length. To bias the sampled
focal length for a higher probability of close ups vs. farther
away shots, we use:

F = (fmax � fmin)X
1/pfocal + fmin (2)

At pfocal = 1, we regress to the uniform distribution
U(fmin, fmax). As pfocal increases, the likelihood of
zoomed in images increases. Plots showing the effect of
pfocal and pfront are included in the appendix.

3.4. Image and Mask Rendering
The dataset images are rendered using Blender’s still im-

age rendering pipeline with the Cycles render engine [1].
For the core rendering algorithms, the python Blender mod-
ule, bpy [2], is used. Material properties are set as tags to
render the segmentation masks. Each of the human textures



(a) Blender node structure for skin mask (b) Image render (c) Skin mask (d) Person mask

Figure 4. Mask Rendering Pipeline of S2MGen: In 4a we show the Blender node structure for creating the skin mask, and in 4b, 4c,
and 4d we show an example of a synthetic rendered image along with the corresponding skin and person segmentation masks.

is labeled with a pass-index ID. Then, using the Blender
node structure and a multi-rendering pathway, each index is
converted into an alpha mask and added together. An ex-
ample of the skin mask node structure is shown in Figure
4a and the image render in Figure 4b. The binary renders
generated from this pipeline are the masks used for skin seg-
mentation training, as seen in Figure 4c and 4d. The same
Blender node workflow shown for skin mask generation is
used for person segmentation masks, with the exception of
increasing layers of addition nodes to compensate for the
limited two-input architecture of Blender’s nodes.

4. Experiments

In this section, we experiment with the parameterizable
features of the S2MGen pipeline. We explore its perfor-
mance on the skin segmentation task and use the ECU [7],
HGR [28], Abdomen [67], SFA [7] and Pratheepan [65]
datasets for the following experiments. For the ECU and
the Abdomen dataset, we use the existing train-test splits.
For the HGR, Abdomen, SFA and Pratheepan dataset we
split them into 80% training and 20% evaluation.

Model Architecture Details: The baseline skin seg-
mentation model is a U-Net [58] architecture with skip-
connections, slightly modified to have two segmentation
heads, one for person segmentation and one for skin seg-
mentation. As previously explored in prior works [21, 23],
utilizing additional semantic guidance, such as person seg-
mentation masks, can help in boosting performance of skin
detection algorithms. Hence, for training on the synthetic
dataset, we use a multi-task learning setup with person seg-
mentation as the auxiliary task. While training on real
datasets, we do not backpropogate losses through the per-
son segmentation pathway.

The model is trained for 20 epochs using an image patch
size of 256x256. We use the Adam optimizer with a con-
stant learning rate of 10�5 on an Nvidia A100 GPU with
40GB RAM. For evaluation of the test performance we use
the mean Intersection over Union (mIoU). We use the Cross
Entropy loss with inverse frequency weighting for class bal-
ancing as described in Minhas et al. [42].

Figure 5. Effect of Synthetic Dataset Size on Skin Segmenta-
tion: We analyze the impact of adding more synthetic images for
training the skin segmentation model and testing the performance
on the real-world skin segmentation datasets.

4.1. Effect of the Synthetic Dataset Size

We vary the number of training samples generated from
S2MGen to study the effects of dataset size on performance
on real world dataset. We vary the synthetic training sam-
ples from 25 images to 7500 images. We present our find-
ings in Figure 5.

We observe a general trend of performance increase,
quickly converging to a gradual saturation as the number of
synthetic training samples increases. This shows a promis-
ing correlation between the information learned from syn-
thetic data and the performance on real datasets. Satu-
ration on all datasets occurs around 5000 samples. The
Abdomen and the HGR datasets, however, plateau almost
immediately (2000 samples). This is likely because these
two datasets are constrained in terms of body parts (torso
and hands respectively), allowing the model to converge
quickly. In contrast, although the SFA dataset is also con-
strained to a single body part (faces), it benefits from more
training samples. This could be attributed to a larger diver-
sity of features on the face (eyes, nose, facial hair, lips etc.).



(a) (b) (c)

Figure 6. Evaluating Differently Tuned Parameters of S2MGen: We generate multiple versions of synthetic datasets from S2MGen and
to train and evaluate model performance.

4.2. Evaluating S2MGen’s Tunable Parameters

To understand the impact of various tunable parameters
in the proposed synthetic data generation pipeline, we gen-
erate multiple versions of our synthetic dataset and evaluate
the corresponding model performance. We explore cloth-
ing, backgrounds, and focal length/framing. Our findings
are shown in Figure 6. We believe that such analysis can
be used to tailor a synthetic dataset based on the require-
ments of the downstream task. To account for SGD insta-
bility due to random seed initialization [64], we train each
condition with 10 different random seeds and plot the mean
and variance. The exact parameters used in the data gener-
ation pipeline and experiment details are in the Appendix.

In this first tuning experiment, we vary the percentage
of unclothed and clothed synthetic humans in our training
samples (pclothed). We observe that ECU and Pratheepan
datasets have optimal performance around 50% clothing ra-
tio. Although these datasets do not possess any unclothed
humans, the lack of clothing diversity in our synthetic
datasets forces the model to learn stronger representations
from the unclothed synthetic humans. We see optimal per-
formance at around 25% for the HGR and SFA datasets.
This could be attributed to a lower amount of clothing to
skin ratio in these datasets. We see a huge drop in perfor-
mance and model stability for the Abdomen dataset when
the synthetic dataset contains fully clothed humans. This
could be explained by the fact all the images in the Ab-
domen dataset contain visible unclothes torso, that is ba-
sically unrepresented at this clothing ratio in the synthetic
humans.

In the second experiment, we vary the percentage of im-
ages with a plain (Figure 2c) vs. a complex (Figure 2b)
background. As can be seen in Figure 6b, an increase
in background probability generally increases performance,
especially in the ECU, Pratheepan and SFA datasets. How-
ever, we don’t observe such trends for HGR and Abdomen

dataset. This could be attributed to pre-dominantly plain
background in these datasets.

In the final tuning experiment, we study the effects of
varying focal length and framing between facial, portraits,
and full body framed shots on the performance of skin seg-
mentation (Figure 2). The images in the full body dataset
are generated with a long focal length lens and have a high
probability of seeing a full body than the rest. The portraits
dataset is generated with a medium focal length lens. These
images are roughly focused on the upper torso of the gen-
erated human. The faces dataset is generated close up, with
short focal length settings and the camera tracking the face
area. The exact details of fmin, fmax and pfocal used for
generation of these datasets are included in the appendix.
The results are shown in Figure 6c where the ratio of im-
ages sourced from the three datasets are varied. As ex-
pected, we see performance increase on the SFA dataset
with more samples of portraits/faces than full body. As
observed in 5, performance on the Abdomen dataset con-
verges very quickly with a low number of training samples,
which might explain why performance only drops at close
to 100% face probability. Interestingly, the performance of
the HGR dataset is not affected even at a very high prob-
ability of sampling from just the faces dataset. This phe-
nomenon is also noticed in real world datasets as shown in
Table 1, where a network trained just on the SFA dataset
performs well on the HGR dataset. The trends of the ECU
and Pratheepan dataset are alike because the test images of
these datasets are quite similar in nature.

4.3. Cross-Dataset performance

An important aspect of model performance is general-
izability to a diverse set of images. To that effect, we
perform cross-dataset analysis, where we train on one real
world dataset, and perform inference on other real world
datasets. Furthermore, to analyze the impact of synthetic



Training
Dataset ECU SFA HGR Abdomen Pratheepan

ECU 0.7759 0.8393 0.8838 0.7924 0.6014
ECU + S2MGen 0.7928 0.8679 0.8826 0.8509 0.6890

SFA 0.6100 0.8762 0.7679 0.7626 0.4534
SFA + S2MGen 0.6673 0.8955 0.7505 0.8339 0.6054

HGR 0.5826 0.1682 0.8734 0.6767 0.4510
HGR+S2MGen 0.7347 0.8207 0.9103 0.7347 0.6692

Pratheepan 0.5755 0.7300 0.7461 0.7544 0.4352
Pratheepan+S2MGen 0.6789 0.8249 0.7700 0.7583 0.6301

Abdomen 0.5709 0.7505 0.6480 0.8906 0.4462
Abdomen+S2MGen 0.7012 0.8488 0.7015 0.9061 0.6246

S2MGen only 0.6720 0.8463 0.7672 0.8138 0.5493

Table 1. Cross Dataset Skin Segmentation Analysis: We per-
form cross-dataset analysis, where we train on one real world
dataset, and perform inference on other real world datasets. We
also experiment with pretraining on a larger synthetic dataset and
using the smaller real world dataset to finetune the model.

data on cross-dataset performance, we pre-train on a larger
number of synthetic samples generated from S2MGen and
use the smaller real world dataset to finetune the model.

We summarize our results in Table 1. To begin, even
without using the synthetic datasets, we notice that for the
task of skin segmentation, models trained on one dataset
can generalize across other datasets reasonably well. This
can be attributed to models heavily relying on color infor-
mation for predicting skin masks. While skin luminance
varies substantially, skin hue and saturation is limited to a
much smaller spectrum of the color space. However, there
is a still a drop in cross-domain performance likely due to a
domain gap among datasets. We observe that by finetuning
a model pretrained on synthetic dataset, we are able to close
this performance gap significantly.

4.4. Qualitative Analysis
In Figure 11, we show qualitative results for skin seg-

mentation with and without finetuning with the Pratheepan
dataset. We see reasonable performance training with only
synthetic data. When trained on the Pratheepan dataset
alone, the segmentation performs poorly. However, we see
considerable improvements when pre-training on synthetic
data and finetuning with real data. Qualitative results for the
other datasets are covered in the Appendix.

4.5. Real to Synthetic Domain Gap
We experiment with Supervised Domain Adapta-

tion (SDA) and Unsupervised Domain Adaptation (UDA)
to bridge the gap between real and synthetic data. We
summarize these results in Table 2. We report source
(S2MGen) only and target (ECU) only performance values.
The considerable difference is likely attributed to domain
gap. Hence, we experiment with multiple domain adapta-
tion techniques as explained below.

For Supervised Domain Adaptation, we explore two

Figure 7. Qualitative Examples: We show some examples of per-
formance gain we observe when doing cross-dataset and in-dataset
inference on the Pratheepan dataset with and w/o pretrained model
on synthetic data generated from S2MGen.

Approach IoU Acc F1-score
Source only

(S2MGen Dataset)
Only Skin Mask 0.6341 0.9123 0.7582

Skin + Person Mask 0.6720 0.9182 0.7886

UDA

DANN [17] 0.5279 0.8473 0.6700
PixMatch [41] 0.7048 0.9297 0.8139

FDA [78] 0.5984 0.8959 0.7299

SDA
Finetuning 0.7955 0.9534 0.8773
BGC [60] 0.7856 0.9485 0.8689

Target only

(ECU Dataset) 0.7759 0.9461 0.8616

Table 2. Closing the Domain Gap b/w Synthetic and Real
Dataset: We experiment with Supervised Domain Adapta-
tion (SDA) and Unsupervised Domain Adaptation (UDA) to
bridge the gap between real and synthetic dataset.

methods: finetuning on the target domain and Balanced
Gradient Contribution (BGC) [60]. We also explore Unsu-
pervised Domain Adaptation, specifically with three meth-
ods, FDA [78], DANN [17] and PixMatch [41].

We notice comparable results between finetuning vs.
BGC, with finetuning performing slightly better. From
the UDA results, we see that self-training/pseudolabel
based domain adaptation (pixMatch) performs better on our
dataset than alignment in high-level (DANN) and low-level
feature spaces (FDA).



Figure 8. Effect of Constrained Real Dataset: We analyze the
impact of limiting the real dataset used for training with (blue) and
without (pink) the synthetic data pretraining.

Training Skintone
Dataset 1 2 3 4 5 6

Only Real 0.7712 0.7788 0.7735 0.7845 0.8050 0.6522

Real + S2MGen
(finetuning) 0.7861 0.7912 0.7936 0.8038 0.8419 0.7681

Real + S2MGen
(BGC) 0.7694 0.7845 0.7810 0.7927 0.8130 0.6933

Table 3. Effect of synthetic dataset on skintones: We demon-
strate the effects of mitigating bias in skin tones by integrating our
synthetic data, leading to a more balanced representation in a pre-
viously skewed dataset.

We observed that the domain adaptation methods that
perform well in reducing the domain gap in datasets like
SYNTHIA [59] don’t necessarily translate well to our
dataset. This could be attributed to the higher complexity
of real world scenes for the skin segmentation task.

4.6. Constrained Dataset Size
In this section, we analyse how effectively the synthetic

data pretraining can improve performance of very small
amounts of real data. We vary the number of real images
from the ECU dataset used for finetuning from 15 to 1600.
The pretrained model is the same from Section 4.5. These
results are shown in Figure 8. We notice the largest perfor-
mance gains at the smallest real dataset size with the gain
slowly decreasing as real dataset size increases. For exam-
ple, we obtain similar performance at training on 1000 real
world images from scratch vs. finetuning on only 300 real
images - reducing the required dataset size by atleast 3x.

4.7. Limited Skin Tone Diversity
Prior work [76] has established the presence of bias in

the ECU [46] dataset that manifests itself as subpar per-
formance of images containing people with skintone type
6 in the Fitzpatrick [15] scale. In this section, we observe
the effects of synthetic data injection on this observed bias.

We experiment with a finetuning setup similar to the above
sections and Balanced Gradient Contribution (BGC). The
results are shown in the Table 3. We observe that adding
synthetic data either by finetuning or by BGC, reduces the
performance gap between skintone 6 with the rest of the
skintones, as a result, mitigating bias on that skintone.

5. Conclusion, Limitations, and Future Scope
In this work, we presented a tunable pipeline, S2MGen,

for the procedural generation of synthetic humans and skin
segmentation masks. We investigated the impact of syn-
thetic data on skin segmentation performance.

We found the optimal number of synthetic images
that allowed for performance convergence across multiple
datasets. We then analyzed the effect that different tunable
parameters (background, clothing and camera angles) have
on the performance on real-world datasets. Each real-world
dataset has notably different trends due to their unique tasks
(focusing solely on torso, gesture recognition, etc). For
maximum generalizability, we recommend tunable param-
eter values that perform well across all datasets. We con-
ducted experiments with multiple supervised and unsuper-
vised domain adaptation methods, and found finetuning and
pseudolabeling to perform better than other methods.

Through experimentation we also conclude that incorpo-
rating these large amounts of synthetic datasets in the train-
ing pipeline for skin segmentation models can help with bet-
ter performance and also create generalizable models (in-
creased cross-dataset performance).

However, our synthetic data generation pipeline,
S2MGen, still has limitations that we continue to explore.
The generated humans are not yet diverse with regards to
age, clothing variety, tattoos and accessories (like jewelry),
and skin related blemishes (acne, freckles and pigmenta-
tion). A lot can be done for achieving more realism in the
synthetically generated images; multiple humans, more en-
riched facial expressions, and incorporating MoCap data for
improving pose variety.

While in this work, we focused on skin segmentation,
we can also use the S2MGen pipeline to create high-quality
labels for tasks like person + part segmentation, face detec-
tion, pose estimation, and action recognition with minimal
effort. This will enhance the variety of existing datasets for
these tasks, and we can also improve performance through
multi-task learning. For eg., training the model for both per-
son and skin masks, resulting in a 6% improvement in skin
segmentation. This flexibility would allow us to study task
correlations and their mutual benefits. We also see potential
in the use of S2MGen for balancing bias in real-world skin
datasets.

Ethical Considerations: In accordance with ethical
considerations and in compliance with data usage poli-
cies, this research exclusively employs experimentation
with publicly available datasets.
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