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Abstract

We present a novel confidence refinement scheme that enhances pseudo labels in semi-
supervised semantic segmentation. Unlike existing methods, which filter pixels with low-
confidence predictions in isolation, our approach leverages the spatial correlation of labels
in segmentation maps by grouping neighboring pixels and considering their pseudo labels
collectively. With this contextual information, our method, named S4MC, increases the
amount of unlabeled data used during training while maintaining the quality of the pseudo
labels, all with negligible computational overhead. Through extensive experiments on
standard benchmarks, we demonstrate that S4MC outperforms existing state-of-the-art
semi-supervised learning approaches, offering a promising solution for reducing the cost of
acquiring dense annotations. For example, S4MC achieves a 1.39 mIoU improvement over
the prior art on PASCAL VOC 12 with 366 annotated images. The code to reproduce our
experiments is available at https://s4mcontext.github.io/.

1 Introduction

Supervised learning has been the driving force behind advancements in modern computer vision, including
classification (Krizhevsky et al., 2012; Dai et al., 2021), object detection (Girshick, 2015; Zong et al., 2022),
and segmentation (Zagoruyko et al., 2016; Chen et al., 2018a; Li et al., 2022; Kirillov et al., 2023). However,
it requires extensive amounts of labeled data, which can be costly and time-consuming to obtain. In many
practical scenarios, there is no shortage of available data, but only a fraction can be labeled due to resource
constraints. This challenge has led to the development of semi-supervised learning (SSL; Rasmus et al., 2015;
Berthelot et al., 2019; Sohn et al., 2020a; Yang et al., 2022a), a methodology that leverages both labeled and
unlabeled data for model training.

This paper focuses on applying SSL to semantic segmentation, which has applications in various areas such
as perception for autonomous vehicles (Bartolomei et al., 2020), mapping (Van Etten et al., 2018) and
agriculture (Milioto et al., 2018). SSL is particularly appealing for segmentation tasks, as manual labeling
can be prohibitively expensive.

A widely adopted approach for SSL is pseudo labeling (Lee, 2013). This technique dynamically assigns
supervision targets to unlabeled data during training based on the model’s predictions. To generate a
meaningful training signal, it is essential to adapt the predictions before integrating them into the learning
process. Several techniques have been proposed, such as using a teacher network to generate supervision to a
student network (Tarvainen & Valpola, 2017; Ke et al., 2019; Cai et al., 2022). Additionally, the teacher may
undergo weaker augmentations than the student (Berthelot et al., 2019), simplifying the teacher’s task.

However, pseudo labeling is intrinsically susceptible to confirmation bias, which tends to reinforce the model
predictions instead of improving the student model. Mitigating confirmation bias becomes particularly
important when dealing with erroneous predictions made by the teacher network.

Confidence-based filtering is a popular technique to address this issue (Sohn et al., 2020a). This approach
assigns pseudo labels only when the model’s confidence surpasses a specified threshold, reducing the number of
incorrect pseudo labels. Though simple, this strategy was proven effective and inspired multiple improvements
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Figure 1: Confidence refinement. observation over one class (Cat). Left: pseudo labels generated without
refinement. Middle: pseudo labels obtained from the same model after refinement with marginal contextual
information. Right Top: predicted probabilities of the top two classes of the pixel highlighted by the red
square before, and Bottom: after refinement. S4MC allows additional correct pseudo labels to propagate.

in semi-supervised classification (Zhang et al., 2021; Rizve et al., 2021), segmentation (Wang et al., 2022), and
object detection (Sohn et al., 2020b; Liu et al., 2021; Zhao et al., 2020; Wang et al., 2021). However, the strict
filtering of the supervision signal leads to extended training periods and, potentially, to overfitting when the
labeled instances are insufficient to represent the entire sample distribution. Lowering the threshold would
allow for higher training volumes at the cost of reduced quality, further hindering the performance (Sohn
et al., 2020a).

In response to these challenges, we introduce a novel confidence refinement scheme for the teacher network
predictions in segmentation tasks designed to increase the availability of pseudo labels without sacrificing their
accuracy. Drawing on the observation that labels in segmentation maps exhibit strong spatial correlation, we
propose to group neighboring pixels and collectively consider their pseudo labels. When considering pixels in
spatial groups, we asses the event-union probability, which is the probability that at least one pixel belongs to
a given class. We assign a pseudo label if this probability is sufficiently larger than the event-union probability
of any other class. By taking context into account, our approach Semi-Supervised Semantic Segmentation via
Marginal Contextual Information (S4MC), enables a relaxed filtering criterion which increases the number of
unlabeled pixels utilized for learning while maintaining high-quality labeling, as demonstrated in Fig. 1.

We evaluated S4MC on multiple benchmarks. S4MC achieves significant improvements in performance over
previous state-of-the-art methods. In particular, we observed an increase of +1.39 mIoU on PASCAL VOC
12 (Everingham et al., 2010) using 366 annotated images, +1.01 mIoU on Cityscapes (Cordts et al., 2016)
using only 186 annotated images, and increase +1.5 mIoU on COCO (Lin et al., 2014) using 463 annotated
images. These findings highlight the effectiveness of S4MC in producing high-quality segmentation results
with minimal labeled data.

2 Related Work

2.1 Semi-Supervised Learning

pseudo labeling (Lee, 2013) is an effective technique in SSL, where labels are assigned to unlabeled data based
on model predictions. To make the most of these labels during training, it is essential to refine them (Laine &
Aila, 2016; Berthelot et al., 2019; 2020; Xie et al., 2020). This can be done through consistency regularization
(Laine & Aila, 2016; Tarvainen & Valpola, 2017; Miyato et al., 2018), which ensures consistent predictions
between different views or different models’ prediction of the unlabeled data. To ensure that the pseudo labels
are helpful, the temperature of the prediction (soft pseudo labels; Berthelot et al., 2019) can be increased, or
the label can be assigned to samples with high confidence (hard pseudo labels; Xie et al., 2020; Sohn et al.,
2020a; Zhang et al., 2021).
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2.2 Semi-Supervised Semantic Segmentation

In semantic segmentation, most SSL methods rely on consistency regularization and developing augmentation
strategies compatible with segmentation tasks (French et al., 2020; Ke et al., 2020; Chen et al., 2021; Zhong
et al., 2021; Xu et al., 2022). Given the uneven distribution of labels typically encountered in segmentation
maps, techniques such as adaptive sampling, augmentation, and loss re-weighting are commonly employed
(Hu et al., 2021). Feature perturbations (FP) on unlabeled data (Ouali et al., 2020; Zou et al., 2021; Liu et al.,
2022b; Yang et al., 2023) are also used to enhance consistency and the virtual adversarial training (Liu et al.,
2022b). Curriculum learning strategies that incrementally increase the proportion of data used over time
are beneficial in exploiting more unlabeled data (Yang et al., 2022b; Wang et al., 2022). A recent approach
introduced by Wang et al. (2022) included unreliable pseudo labels into training by employing contrastive loss
with the least confident classes predicted by the model. Unimatch (Yang et al., 2023) combined SSL (Sohn
et al., 2020a) with several self-supervision signals, i.e., two strong augmentations and one more with FP,
obtained good results without complex losses or class-level heuristics. However, most existing works primarily
focus on individual pixel label predictions. In contrast, we delve into the contextual information offered by
spatial predictions on unlabeled data.

2.3 Contextual Information

Contextual information encompasses environmental cues that assist in interpreting and extracting meaningful
insights from visual perception (Toussaint, 1978; Elliman & Lancaster, 1990). Incorporating spatial context
explicitly has been proven beneficial in segmentation tasks, for example, by encouraging smoothness like
in the Conditional Random Fields method (Chen et al., 2018a) and attention mechanisms (Vaswani et al.,
2017; Dosovitskiy et al., 2021; Wang et al., 2020). Combating dependence on context has shown to be helpful
by Nekrasov et al. (2021). This work uses the context from neighboring pixel predictions to enhance pseudo
label propagation.

3 Method

This section describes the proposed method using the teacher–student paradigm with teacher averaging
(Tarvainen & Valpola, 2017). Adjustments for image-level consistency are described in Appendix F.

3.1 Overview

In semi-supervised semantic segmentation, we are given a labeled training set Dℓ =
{

(xℓi ,yi)
}Nℓ

i=1, and an
unlabeled set Du = {xui }Nu

i=1 sampled from the same distribution, i.e.,
{

xℓi ,xui
}

∼ Dx. Here, y are 2D tensors
of shape H ×W , assigning a semantic label to each pixel of x. We aim to train a neural network fθ to predict
the semantic segmentation of unseen images sampled from Dx.

We follow a teacher-averaging approach and train two networks fθs and fθt that share the same architecture
but update their parameters separately. The student network fθs is trained using supervision from the labeled
samples and pseudo labels created by the teacher’s predictions for unlabeled ones. The teacher model fθt

is
updated as an exponential moving average (EMA) of the student weights. fθs

(xi) and fθt
(xi) denote the

predictions of the student and teacher models for the xi sample, respectively. At each training step, a batch
of Bℓ and Bu images is sampled from Dℓ and Du, respectively. The optimization objective can be written as
the following loss:

L = Ls + λLu (1)

Ls = 1
Ml

∑
xℓ

i
,yi∈Bl

ℓCE(fθs(xℓi),yi) (2)

Lu = 1
Mu

∑
xu

i
∈Bu

ℓCE(fθs
(xui ), ŷi), (3)
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Figure 2: Left: S4MC employs a teacher–student paradigm for semi-supervised segmentation. Labeled
images are used to supervise the student network directly; both networks process unlabeled images. Teacher
predictions are refined and used to evaluate the margin value, which is then thresholded to produce pseudo
labels that guide the student network. The threshold, denoted as γt, is dynamically adjusted based on the
teacher network’s predictions. Right: Our confidence refinement module exploits neighboring pixels to
adjust per-class predictions, as detailed in Section 3.2.1. The class distribution of the pixel marked by the
yellow circle on the left is changed. Before refinement, the margin surpasses the threshold and erroneously
assigns the blue class (dog) as a pseudo label. After refinement, the margin reduces, thereby preventing error
propagation.

Figure 3: Qualitative results. The segmentation map predicted by S4MC (ours) is compared to using no
refinement module CutMix-Seg (baseline) and to the ground truth. Heat map represents the uncertainty
of the model (κ−1), showing more confident predictions in certain areas and smoother segmentation maps
(marked by the red boxes). Additional examples are shown in Appendix A.

where Ls and Lu are the losses over the labeled and unlabeled data correspondingly, λ is a hyperparameter
controlling their relative weight, and ŷi is the pseudo label for the i-th unlabeled image. Not every pixel of
xi has a corresponding label or pseudo label, and Ml and Mu denote the number of pixels with label and
assigned pseudo label in the image batch, respectively.
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3.1.1 Pseudo Label Propagation

For a given image xi, we denote by xij,k the pixel in the j-th row and k-th column. We adopt a thresholding-
based criterion inspired by FixMatch (Sohn et al., 2020a). By establishing a score, denoted as κ, which is
based on the class distribution predicted by the teacher network, we assign a pseudo label to a pixel if its
score exceeds a threshold γt:

ŷij,k =
{

arg maxc{pc(xij,k)} if κ(xij,k; θt) > γt,

ignore otherwise,
, (4)

where pc(xij,k) is the pixel probability of class c. A commonly used score is given by κ(xij,k; θt) =
maxc{pc(xij,k)}. However, using a pixel-wise margin (Scheffer et al., 2001; Shin et al., 2021), produces
more stable results. Denoting by max2 the second-highest value, the margin is given by the difference between
the highest and the second-highest values of the probability vector:

κmargin(xij,k) = max
c

{pc(xij,k)} − max2
c

{pc(xij,k)}, (5)

3.1.2 Dynamic Partition Adjustment (DPA)

Following Wang et al. (2022), we use a decaying threshold γt. DPA replaces the fixed threshold with a
quantile-based threshold that decreases with time. At each iteration, we set γt as the αt-th quantile of κmargin
over all pixels of all images in the batch. αt linearly decreases from α0 to zero during the training:

αt = α0(1 − t/iterations)

As the model predictions improve with each iteration, gradually lowering the threshold increases the number
of propagated pseudo labels without compromising quality.

3.2 Marginal Contextual Information

Utilizing contextual information (Section 2.3), we look at surrounding predictions (predictions on neighboring
pixels) to refine the semantic map at each pixel. We introduce the concept of “Marginal Contextual
Information,” which involves integrating additional information to enhance predictions across all classes. At
the same time, reliability-based pseudo label methods focus on the dominant class only (Sohn et al., 2020a;
Wang et al., 2023). Section 3.2.1 describes our confidence refinement, followed by our thresholding strategy
and a description of S4MC methodology.

3.2.1 Confidence Margin Refinement

We refine each pixel’s predicted pseudo label by considering its neighboring pixels’ predictions. Given a pixel
xij,k with a corresponding per-class prediction pc(xij,k), we examine neighboring pixels xiℓ,m within an N ×N
pixel neighborhood surrounding it. As an example for using one neighbor, we then calculate the probability
that at least one of the two pixels belongs to class c:

pc(xij,k ∪ xiℓ,m) = pc(xij,k) + pc(xiℓ,m) − pc(xij,k, xiℓ,m), (6)

where pc(xij,k, xiℓ,m) denote the joint probability of both xij,k and xiℓ,m belonging to the same class c.

While the model does not predict joint probabilities, assuming a non-negative correlation between the
probabilities of neighboring pixels is reasonable. This is mainly due to the nature of segmentation maps,
which are typically piecewise constant.The joint probability can thus be bounded from below by assuming
independence: pc(xij,k, xiℓ,m) ⩾ pc(xij,k) · pc(xiℓ,m). By substituting this into Eq. (6), we obtain an upper
bound for the event union probability:

pc(xij,k ∪ xiℓ,m) ≤ pc(xij,k) + pc(xiℓ,m) − pc(xij,k) · pc(xiℓ,m). (7)
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For each class c, we select the neighbor with the maximal information utilization using Eq. (7):

p̃c(xij,k) = max
ℓ,m

pc(xij,k ∪ xiℓ,m). (8)

Computing the event union over all classes employs neighboring predictions to amplify differences in ambiguous
cases. Similarly, this prediction refinement prevents the creation of over-confident predictions not supported
by additional spatial evidence and helps reduce confirmation bias. The refinement is visualized in Fig. 1. In
our experiments, we used a neighborhood size of 3 × 3. To determine whether the incorporation of contextual
information could be enhanced with larger neighborhoods, we conducted an ablation study focusing on the
neighborhood size and the neighbor selection criterion, as detailed in Table 7. For larger neighborhoods, we
decrease the probability contribution of the neighboring pixels with a distance-dependent factor:

p̃c(xij,k) = pc(xij,k) + βℓ,m
[
pc(xiℓ,m) − pc(xij,k, xiℓ,m)

]
, (9)

where βℓ,m = exp
(
− 1

2 (|ℓ− j| + |m− k|)
)

is a spatial weighting function. Empirically, contextual information
refinement affects mainly the most probable one or two classes. This aligns well with our choice to use the
margin confidence (5).

We explored alternatives at the pixel level, such as the maximum class probability (κmax) and entropy (κent).
Table F.1 in the Appendix studies the impact of different confidence functions on pseudo label refinement.

Considering multiple neighbors, we can use the formulation for three or more events. In practice, we use the
associative law of set theory calculate it iteratively by grouping two events at each iteration, and exclude the
chosen one from the remaining neighborhood.

3.2.2 Threshold Setting

A high threshold can prevent transferring the teacher model’s wrong “beliefs” to the student model. However,
this comes at the expense of learning from fewer examples, resulting in a less comprehensive model. To
determine the DPA threshold, we use the teacher predictions pre-refinement pc(xij,k), but we filter values
based on p̃c(xij,k). Consequently, more pixels pass the (unchanged) threshold. We tuned α0 value in Table 6
and set α0 = 0.4, i.e., 60% of raw predictions pass the threshold at t = 0.

3.3 Putting it All Together

We perform semi-supervised learning for semantic segmentation by pseudo labeling pixels using their
neighbors’ contextual information. Labeled images and student model prediction used for the supervised
loss (2). Unlabeled images are processed by both student and teacher models. We use κmargin (5) of teacher
predictions, sort them, and set the threshold γt ( Section 3.2.2). The per-class teacher predictions are refined
using the weighted union event relaxation, as defined in Eq. (9). Pixels with top class matching original label
and margin values higher than γt are assigned pseudo labels as described in Eq. (4), for the unsupervised loss
(3). The entire pipeline is visualized in Fig. 2.

The impact of S4MC is shown in Fig. 4, comparing the fraction of pixels that pass the threshold with and
without refinement. S4MC uses more unlabeled data during most of the training (a), while the refinement
ensures high-quality pseudo labels (b). We further study true positive (TP) and false positive (FP) rates, as
shown in Fig. E.2a in the Appendix. We show qualitative results in Fig. 3, including both the confidence
heatmap and the pseudo labels with and without the impact of S4MC.

4 Experiments

This section presents our experimental results. The setup for the different datasets and partition protocols
is detailed in Section 4.1. Section 4.2 compares our method against existing approaches and Section 4.3
provides the ablation study. Implementation details are given in Appendix C.
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(a) Data fraction that passes the threshold. Our
method increases the number of pseudo labeled pixels,
mostly in the early stage of the training.

(b) Accuracy of the pseudo labels. S4MC produces
more quality pseudo labels during the training process,
most notably at the early stages.

Figure 4: pseudo label quantity and quality on PASCAL VOC 12 (Everingham et al., 2010) with 366 labeled
images using our margin (5) confidence function. The training was performed using S4MC; metrics with and
without S4MC were calculated.

Table 1: Comparison between our method and prior art on the PASCAL VOC 12 val (1,464 original
annotated images out of 10,582 in total) under different partition protocols using ResNet-101 backbone. The
caption describes the share of the training set used as labeled data and the actual number of labeled images.
* denotes reproduced results using official implementation. ± denotes the standard deviation over three runs.

Method 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)
CutMix-Seg (French et al., 2020) 52.16 63.47 69.46 73.73 76.54
ReCo (Liu et al., 2022a) 64.80 72.0 73.10 74.70 -
ST++ (Yang et al., 2022b) 65.2 71.0 74.6 77.3 79.1
U2PL (Wang et al., 2022) 67.98 69.15 73.66 76.16 79.49
PS-MT (Liu et al., 2022b) 65.8 69.6 76.6 78.4 80.0
PCR (Xu et al., 2022) 70.06 74.71 77.16 78.49 80.65
FixMatch* (Yang et al., 2023) 68.07 73.72 76.38 77.97 79.97
UniMatch* (Yang et al., 2023) 73.75 75.05 77.7 79.9 80.43
CutMix-Seg + S4MC 70.96 71.69 75.41 77.73 80.58
FixMatch + S4MC 73.13 74.72 77.27 79.07 79.6
UniMatchψ + S4MC 74.72 ± 0.283 75.21 ± 0.244 79.09 ± 0.183 80.12 ± 0.120 81.56 ± 0.103

Table 2: Comparison between our method and prior art on the PASCAL VOC 12 val (1,464 original annotated
images out of 10,582 in total) under different partition protocols using ResNet-50 backbone. The caption
describes the share of the training set used as labeled data.

Method 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)
Supervised Baseline 44.0 52.3 61.7 66.7 72.9
PseudoSeg (Zou et al., 2021) 54.89 61.88 64.85 70.42 71.00
PC2Seg (Zhong et al., 2021) 56.9 64.6 67.6 70.9 72.3
UniMatch (Yang et al., 2023) 71.9 72.5 76.0 77.4 78.7

UniMatchψ + S4MC 72.62 72.83 76.44 77.83 79.41

4.1 Setup

Datasets In our experiments, we use PASCAL VOC 12 (Everingham et al., 2010), Cityscapes (Cordts
et al., 2016), and MS COCO (Lin et al., 2014) datasets.

7



Under review as submission to TMLR

Table 3: Comparison between our method and prior art on the augmented PASCAL VOC 12 val dataset
under different partitions, utilizing additional unlabeled data from Hariharan et al. (2011) (total of 10,582
training images, 9,118 weakly annotated) and using ResNet-101 backbone. We included the number of labeled
images in parentheses for each partition ratio. * denotes reproduced results using official implementation.

Method 1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)
CutMix-Seg (French et al., 2020) 71.66 75.51 77.33 78.21
AEL (Hu et al., 2021) 77.20 77.57 78.06 80.29
PS-MT (Liu et al., 2022b) 75.5 78.2 78.7 -
U2PL (Wang et al., 2022) 77.21 79.01 79.3 80.50
PCR (Xu et al., 2022) 78.6 80.71 80.78 80.91
FixMatch* (Yang et al., 2023) 74.35 76.33 76.87 77.46
UniMatch* (Yang et al., 2023) 76.6 77.0 77.32 77.9
CutMix-Seg + S4MC 78.84 79.67 79.85 81.11
FixMatch + S4MC 75.19 76.56 77.11 78.07
UniMatchψ + S4MC 76.95 77.54 77.62 78.08

Table 4: Comparison between our method and prior art on the Cityscapes val dataset (total of 2,976 training
images) under different partition protocols using ResNet-101 backbone. Labeled and unlabeled images are
selected from the Cityscapes training dataset. For each partition protocol, the caption gives the share of
the training set used as labeled data and the number of labeled images. * denotes reproduced results using
official implementation.

Method 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
CutMix-Seg (French et al., 2020) 69.03 72.06 74.20 78.15
AEL (Hu et al., 2021) 74.45 75.55 77.48 79.01
U2PL (Wang et al., 2022) 70.30 74.37 76.47 79.05
PS-MT (Liu et al., 2022b) - 76.89 77.6 79.09
PCR (Xu et al., 2022) 73.41 76.31 78.4 79.11
FixMatch* (Yang et al., 2023) 74.17 76.2 77.14 78.43
UniMatch* (Yang et al., 2023) 75.99 77.55 78.54 79.22
CutMix-Seg + S4MC 75.03 77.02 78.78 78.86
FixMatch + S4MC 75.2 77.61 79.04 79.74
UniMatchψ + S4MC 77.0 77.78 79.52 79.76

PASCAL comprises 20 object classes (+ background). 2,913 annotated images are divided into training
and validation sets of 1,464 and 1,449 images, respectively. Zoph et al. (2020) shown that joint training
of PASCAL with training images with augmented annotations (Hariharan et al., 2011) outperforms joint
training with COCO (Lin et al., 2014) or ImageNet (Russakovsky et al., 2015). Based on this finding, we
use extended PASCAL VOC 12 (Hariharan et al., 2011), which includes 9,118 augmented training images,
wherein only a subset of pixels are labeled. Following prior art, we conducted two sets of experiments: in the
first, we used only subset of the original training data as annotated, while in the second, “augmented” setup,
we also used the weakly annotated data and randomly sample images from both.

Cityscapes dataset includes urban scenes from 50 cities with 30 classes, of which only 19 are typically used
for evaluation (Chen et al., 2018a;b).

MS COCO dataset is a challenging segmentation benchmark with 80 object classes (+ background). 123k
images are split into 118k and 5k for training and validation.

Implementation details We implement S4MC with teacher–student paradigm of consistency regularization,
both with teacher averaging (Tarvainen & Valpola, 2017; French et al., 2020) and augmentation variation (Sohn
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et al., 2020a; Yang et al., 2023) frameworks. All variations use DeepLabv3+ (Chen et al., 2018b), while for
feature extraction, we use ResNet-101 (He et al., 2016) for PASCAL VOC and Cityscapes, and Xception-65
(Chollet, 2016) for MS COCO. For the teacher averaging setup, the teacher parameters θt are updated via an
exponential moving average (EMA) of the student parameters: θηt = τθη−1

t + (1 − τ)θηs , where 0 ≤ τ ≤ 1
defines how close the teacher is to the student and η denotes the training iteration. We used τ = 0.99. In the
augmentation variation approach, pseudo labels are generated through weak augmentations, and optimization
is performed using strong augmentations. Additional details are provided in Appendix C.

Evaluation We compare S4MC with state-of-the-art methods and baselines under the standard partition
protocols – using 1/2, 1/4, 1/8, and 1/16 of the training set as labeled data. For the “classic” setting of the
PASCAL experiment, we additionally use all the finely annotated images. We follow standard protocols and
use mean Intersection over Union (mIoU) as our evaluation metric. We use the data split published by Wang
et al. (2022) when available to ensure a fair comparison. For the ablation studies, we use PASCAL VOC 12
val with 1/4 partition.

4.2 Results

Results denoted by * reproduced from Yang et al. (2023) original implementation, resulting in a minor
difference in performance. ψ denotes using UniMatch without feature perturbation branch, i.e., only two
instances of each image.

PASCAL VOC 12. Tables 1 and 2 compares our method with state-of-the-art baselines on the PASCAL
VOC 12 dataset using ResNet-50 and ResNet-101, respectively. Table 3 shows the comparison results on
PASCAL with additional unlabeled data from SBD (Hariharan et al., 2011) using ResNet-101. S4MC
outperforms all compared methods in standard partition protocols using the PASCAL VOC 12 dataset only,
while utilizing SBD, we observe comparable results to the state-of-the-art PCR (Xu et al., 2022). More
significant improvement can be observed for partitions of extremely low annotated data, where other methods
suffer from starvation due to poor teacher generalization. Qualitative results are shown in Fig. 3. Our
refinement procedure aids in adding falsely filtered pseudo labels and removing erroneous ones.

Cityscapes. Table 4 presents the comparison with state-of-the-art methods on the Cityscapes val (Cordts
et al., 2016) dataset under various partition protocols. S4MC outperforms the compared methods in most
partitions, and combined with the UniMatch scheme, S4MC outperforms compared approaches across all
partitions.

MS COCO. Table 5 presents the comparison with state-of-the-art methods on the MS COCO val (Lin
et al., 2014) dataset. S4MC outperforms the compared state-of-the-art methods in most regimes, using the
data splits published in (Yang et al., 2023). In this experimental setting, the model sees a small fraction of
the data, which could be hard to generalize over all classes. Yet, the mutual information using neighboring
predictions seems to compensate somewhat as more supervision signals propagate from the unlabeled data.

Contextual information at inference. Given that our margin refinement scheme operates through
prediction adjustments, we explored whether it could be employed at inference time to enhance performance.
The results reveal no improvement, underlines that the performance advantage of S4MC primarily derives
from the adjusted margin, as the most confident class is rarely swapped.

4.3 Ablation Study

Neighborhood size and neighbor selection criterion. Our prediction refinement scheme employs
event-union probability with neighboring pixels. We examine varying neighborhood sizes (N = 3, 5, 7),
number of neighbors (k = 1, 2), and selection criteria for neighbors. We compare the following methods for
choosing the neighboring predictions: (a) Random selection, (b) Cosine similarity, (c) Max probability, and
(d) Minimal probability from a complete neighborhood. Note that for the cosine similarity, we choose a
single most similar prediction vector for all classes, thus mostly enhancing confidence and not overturning
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Table 5: Comparison between our method and prior art on COCO (Lin et al., 2014) val (total of 118,336
training images) on different partition protocols using Xception-65 backbone. For each partition protocol, the
caption gives the share of the training set used as labeled data and the number of labeled images. * denotes
reproduced results using official implementation.

Method 1/512 (232) 1/256 (463) 1/128 (925) 1/64 (1849) 1/32 (3697)
Supervised Baseline 22.9 28.0 33.6 37.8 42.2
PseudoSeg (Zou et al., 2021) 29.8 37.1 39.1 41.8 43.6
PC2Seg (Zhong et al., 2021) 29.9 37.5 40.1 43.7 46.1
UniMatch* (Yang et al., 2023) 31.9 38.9 43.86 47.8 49.8

UniMatchψ + S4MC 32.9 40.4 43.78 47.98 50.58

Table 6: The effect of α0, the initial proportion of confidence pixels for the Pascal VOC 12 with 1/4 labeled
data and ResNet-101 backbone.

α0 20% 30% 40% 50% 60%
mIoU 78.13 77.53 79.1 78.24 77.99

Table 7: The effect of neighborhood size and neighbor selection criterion on the Pascal VOC 12 with 1/4
labeled data and ResNet-101 backbone. We denote the number of neighbors as k. We compared choosing
one neighbor at random, the one with the highest cosine similarity to the pixel embedding, max probable
neighbor and min probable neighbor. The idea of similar neighboring pixel is explained in the paper, while
comparing to minimum probable neighbor try to see if the spatial information can contradict the prediction,
reducing the likelihood to assign pseudo label to the predicted class.

Selection criterion Neighborhood size N
1 × 1 3 × 3 5 × 5 7 × 7

Random neighbor (k=1)

77.7

77.03 76.85 76.87
Cosine similarity (k=1) 78.02 78.05 77.99
Max-prob (k=1) 79.09 78.23 77.76
Max-prob (k=2) 77.77 77.82 78.03
Min-prob (k=1) 75.62 75.11 73.95

predictions.We also compare with N = 1 neighborhood, corresponding to not using S4MC. As seen from
Table 7, N = 3 neighborhood with one neighboring pixel of the highest class probability proved most efficient
in our experiments. Aggregating the probability of a randomly selected neighbor has negligible influence
on model performance. Using multiple neighbors demonstrates improved performance as the neighborhood
expands. Notably, the inclusion of minimal class probability pixels adversely affects model performance,
primarily attributed to the contribution of neighbors that exhibit high certainty in belonging to a distinct
class.

We also examine the contribution of the proposed pseudo label refinement (PLR) and DPA. Results in Table 8
show that the PLR improves the mask mIoU by 1.09%, while DPA alone harms the performance. This
indicates that PLR helps semi-supervised learning mainly because it enforces more spatial dependence on the
pseudo labels.

Threshold parameter tuning We utilize a dynamic threshold that depends on an initial value, α0. In
Table 6, we examine the effect of different initial values to establish this threshold. A smaller α0 propagates
too many errors, leading to significant confirmation bias. In contrast, a larger α0 would mask most of the
data, rendering the semi-supervised learning process lengthy and inefficient.
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Table 8: Ablation study on the different components of S4MC on top of UniMatch for the augmented Pascal
VOC 12 with 1/2 labeled data and ResNet-101 backbone. PLR is the pseudo label refinement module and
DPA is dynamic partition adjustment.

PLR DPA mIoU
79.51

✓ 79.94
✓ 78.25

✓ ✓ 80.13

Table 9: Evaluation of Boundary IoU (Cheng et al., 2021) comparing models trained with UniMatch+S4MC
and with FixMatch using 183 (1/1024) annotated images on COCO, both uses Xception-65 backbone as in
Table 5.

FixMatch FixMatch+S4MC
31.1 29.9

Mask boundaries Table 9 demonstrates the limitation of our method in terms of boundary IoU (Cheng
et al., 2021). Contrary to the improvement S4MC provides to IoU, the boundary IoU is reduced. That aligns
with the qualitative results, as our model predictions masks are smoother in regions far from the boundaries
and less confident around the boundaries.

5 Conclusion

In this paper, we introduce S4MC, a novel approach for incorporating spatial contextual information in
semi-supervised segmentation. This strategy refines confidence levels and enables us to leverage more
unlabeled data. S4MC outperforms existing approaches and achieves state-of-the-art results on multiple
popular benchmarks under various data partition protocols, such as MS COCO, Cityscapes, and Pascal VOC
12. Despite its effectiveness in lowering the annotation requirement, there are several limitations to using
S4MC. First, its reliance on event-union relaxation is applicable only in cases involving spatial coherency. As a
result, using our framework for other dense prediction tasks would require an examination of this relaxation’s
applicability. Furthermore, our method uses a fixed-shape neighborhood without considering the object’s
structure. It would be interesting to investigate the use of segmented regions to define new neighborhoods;
this is a future direction we plan to explore.
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