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Abstract
Dense passage retrieval (DPR) is the first step001
in the retrieval augmented generation (RAG)002
paradigm for improving the performance of003
large language models (LLM). DPR fine-tunes004
pre-trained networks to enhance the alignment005
of the embeddings between queries and rele-006
vant textual data. A deeper understanding of007
DPR fine-tuning will be required to fundamen-008
tally unlock the full potential of this approach.009
In this work, we explore DPR-trained mod-010
els mechanistically by using a combination of011
probing, layer activation analysis, and model012
editing. Our experiments show that DPR train-013
ing decentralizes how knowledge is stored in014
the network, creating multiple access pathways015
to the same information. We also uncover a lim-016
itation in this training style: the internal knowl-017
edge of the pre-trained model bounds what the018
retrieval model can retrieve. These findings019
suggest a few possible directions for dense re-020
trieval: (1) expose the DPR training process to021
more knowledge so more can be decentralized,022
(2) inject facts as decentralized representations,023
(3) model and incorporate knowledge uncer-024
tainty in the retrieval process, and (4) directly025
map internal model knowledge to a knowledge026
base.027

1 Introduction028

In just a few years, Large Language Models029

(LLMs) have emerged from the research labs to030

become a tool utilized daily by hundreds of mil-031

lions of people and integrated into a wide variety of032

businesses. Despite their popularity, these models033

have been critiqued for frequently hallucinating,034

confidently outputting incorrect information (Bang035

et al., 2023). Such inaccuracies not only mislead036

people but also erode trust in LLMs. Trust in these037

systems is crucial to their success and rate of adop-038

tion.039

The retrieval augmented generation (RAG)040

paradigm is an approach to address hallucina-041

tions (Lewis et al., 2020). Unlike traditional LLM042

interactions where a query directly prompts an out- 043

put from the model, RAG introduces an interme- 044

diary step. Initially, a "retrieval" model processes 045

the query to gather additional information from a 046

knowledge base, such as Wikipedia or the broader 047

internet. This additional information alongside the 048

original query is fed to the LLM, increasing the 049

accuracy of the answers that the LLM generates. 050

For RAG to be effective, the underlying retrieval 051

model has to excel at finding accurate and rele- 052

vant information. Typically, model performance is 053

evaluated based on metrics that consider the top- 054

5, top-20, top-50, and top-100 retrieved passages. 055

However, recent studies indicate that LLMs pre- 056

dominantly use information from the top-1 to top-5 057

passages, underscoring the importance in RAG of 058

not only high recall in retrieval but also precision 059

in ranking (Liu et al., 2023a; Xu et al., 2024). One 060

approach to achieve both high recall and precision 061

involves integrating a "reranking" model, which 062

adjusts the order of retrieved passages to improve 063

the relevance of the top-ranked passages (Nogueira 064

et al., 2019, 2020). However, this approach adds 065

the computational and maintenance cost of an addi- 066

tional model to the pipeline and can also introduce 067

errors. The alternative option is to improve retrieval 068

models to directly retrieve and rank passages well. 069

Retrieval methods can be broadly categorized 070

into two types: sparse and dense (Zhao et al., 071

2024). Sparse methods encode queries and pas- 072

sages into sparse vectors, usually based on terms 073

that appear in the queries and passages (Robertson 074

and Zaragoza, 2009; Sparck Jones, 1972). Dense 075

methods employ language models to encode the 076

semantic information in queries and passages into 077

dense vectors (Karpukhin et al., 2020; Huang et al., 078

2013). Dense methods often share two common 079

properties: (a) the joint training of two or more 080

encoding models – one for embedding a query and 081

the other for embedding a knowledge base, and 082

(b) contrastive training. These commonalities were 083
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Figure 1: Per layer accuracy of the baseline DPR model
and percentage of incorrectly matched output that was
correctly matched at layer N.

introduced in the dense passage retrieval method,084

inspiring many subsequent methods in the litera-085

ture.086

In this paper, we analyze the original DPR087

method using the BERT-base backbone. We be-088

gin by analyzing the effects of training and using089

different layers for retrieval (Section 2). Then we090

continue by probing the model to determine if the091

features of pre-trained BERT are as discriminative092

as DPR-BERT in matching a query to the correct093

hard-negative passage (Section 3). Next, using094

techniques from the pruning literature, we compare095

the relative strength and number of activations of096

the feedforward layers throughout the original pre-097

trained and DPR-trained models (Section 4). Fi-098

nally, we add and remove knowledge from the net-099

work to investigate how knowledge interacts with100

DPR training (Section 5). Through these experi-101

ments, we analyze DPR from multiple perspectives102

to understand what is changing in the backbone103

model during the training process.104

2 Early Passage Match Capability105

Multilayer transformers are typically used for DPR.106

These models perform layer-to-layer updates to re-107

fine and promote concepts within the embedding108

space (Geva et al., 2022). Such iterative refinement109

can reach a point of saturation, beyond which addi-110

tional updates in later layers contribute marginally111

to model performance. This saturation suggests112

that there may be enough information early in the113

model to accurately match a query to a passage.114

In this section, we analyze model update satura-115

tion to identify: (a) which layers contribute most116

significantly to performance improvements, and117

(b) aside from the final layer, which layers are cru-118

Figure 2: Accuracy of DPR model when only layer N
and layer 12 are trained with the full NQ dataset and
only 30% of the NQ dataset

Figure 3: Percent of incorrect matches that intermediary
network layers got correct.

cial for training. Our analysis employs the train- 119

ing methodology outlined in the earlier DPR paper 120

(Karpukhin et al., 2020). The BERT model was 121

fine-tuned in this style on the Natural Questions 122

(NQ) dataset (Kwiatkowski et al., 2019). To assess 123

the DPR model’s accuracy at layer N, we conducted 124

a maximum inner product search using the hidden 125

state of layer N. 126

Due to the number of different training config- 127

urations and layers that were tested, it was not 128

possible to re-index the 21M passage Wikipedia 129

knowledge base that is commonly used with NQ. 130

Therefore, we focused on assessing in-batch match 131

accuracy. Each batch comprised 64 queries and 832 132

passages. The performance metrics reported in this 133

section reflect the accuracy rate, namely the pro- 134

portion of queries that were successfully matched 135

to a corresponding passage within the batch. 136

Figure 1 illustrates that peak performance is 137

achieved at the network’s final layer. Notably, the 138

most substantial performance increases occur be- 139

tween layers 3 and 4, 9 and 10, and 10 and 11. 140

Moreover, Figure 1 suggests that in some cases, lay- 141
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Task Model Layer
0

Layer
1

Layer
2

Layer
3

Layer
4

Layer
5

Layer
6

Layer
7

Layer
8

Layer
9

Layer
10

Layer
11

Layer
12

2-Passage
Probing

Pre-trained BERT
– Untrained Probe 0.50 0.50 0.51 0.48 0.50 0.52 0.51 0.51 0.50 0.49 0.50 0.54 0.50

Pre-trained BERT 0.51 0.69 0.74 0.74 0.77 0.79 0.81 0.81 0.81 0.82 0.83 0.84 0.84
DPR-BERT
Query Model 0.51 0.68 0.74 0.77 0.79 0.80 0.81 0.83 0.82 0.83 0.83 0.82 0.82

DPR-BERT Con-
text Model 0.51 0.68 0.74 0.77 0.79 0.80 0.81 0.83 0.82 0.83 0.83 0.82 0.82

3-Passage
Probing

Pre-trained BERT 0.34 0.53 0.59 0.59 0.65 0.64 0.67 0.67 0.68 0.69 0.69 0.73 0.73
DPR-BERT 0.34 0.54 0.60 0.63 0.66 0.66 0.66 0.70 0.71 0.69 0.73 0.72 0.71

4-Passage
Probing

Pre-trained BERT 0.26 0.43 0.47 0.49 0.53 0.57 0.61 0.60 0.56 0.62 0.64 0.66 0.66
DPR-BERT 0.26 0.46 0.51 0.54 0.57 0.58 0.60 0.63 0.64 0.63 0.65 0.63 0.63

5-Passage
Probing

Pre-trained BERT 0.21 0.35 0.42 0.43 0.43 0.50 0.53 0.53 0.54 0.56 0.57 0.60 0.61
DPR-BERT 0.21 0.36 0.42 0.48 0.49 0.51 0.54 0.56 0.58 0.58 0.60 0.56 0.56

Table 1: This table presents the outcomes of linear probing, where probes classify 2 to 5 passages to determine
the best match for a given query. Due to identical performance metrics, DPR-BERT Query and Context model
results are consolidated and displayed only for the 2-Passage Probe. Given that probes without training achieved
performance at random chance levels across all passage counts, their results are reported solely for the 2-Passage
Probe for comparison.

ers 4, 10, and 11 had the highest occurrence where142

the intermediary hidden layers correctly identified143

the relevant passage but a later layer subsequently144

revised the prediction to an incorrect match.145

To further investigate the relationship between146

individual model layers and DPR performance, a147

series of experiments were conducted where the148

DPR model was trained two layers at a time. In149

these experiments, all layers were frozen except for150

two: layer N, which progressed from the first to the151

last layer across subsequent experiments, and the fi-152

nal layer, included due to its superior performance.153

Training followed the protocol established in the154

DPR paper, with layers N and 12 being trained155

independently—resulting in two separate loss cal-156

culations per batch, one for the interaction between157

the hidden states at layer N in the query and passage158

models and one loss for the embeddings outputted159

at layer 12 in the query and passage models.160

Trained over the Natural Questions (NQ) dataset161

(Kwiatkowski et al., 2019), the experiment demon-162

strated optimal performance when layers 5, 7, or 8163

were concurrently trained with layer 12, as shown164

in Figure 2. However, since the performance gain165

was only slight, the experiment was repeated under166

a data-restricted regime, utilizing only 30% of the167

NQ dataset. In this constrained data scenario, the168

disparity in accuracy when training various layers169

became more pronounced. Notably, training layer170

7 provided the greatest accuracy boost. Moreover,171

training any layer within the middle segment of the172

network (layers 5-8) surpassed the performance of173

layers closer to the beginning or end of the network.174

Figures 2 and 3 demonstrate that training just 175

one middle layer in conjunction with layer 12 not 176

only yields the highest performance but also leads 177

to a middling frequency of instances where a pre- 178

viously correct match is incorrectly altered later in 179

the model. According to prior research, it is in these 180

middle layers that the processing of syntactic and 181

semantic features co-occur (Geva et al., 2021). The 182

syntactic features are more akin to sparse retrieval 183

methods whereas the semantic features represent 184

the theme of DPR-style retrieval methods. This 185

suggests that learning the interplay between syntac- 186

tic and semantic features is likely an important part 187

of what DPR-style training teaches the model. 188

3 Knowledge Consistency between 189

untrained and trained model 190

Language models are known to store a vast amount 191

of knowledge with the feedforward layers of the 192

transformer architecture acting as a key-value mem- 193

ory store of knowledge (Geva et al., 2021). This 194

section details experiments conducted to under- 195

stand the impact of DPR-style training from a 196

model-knowledge perspective. 197

Linear probing, a method to characterize model 198

features, involves training a linear classifier on the 199

internal activations of a frozen network to execute 200

a simple task (Alain and Bengio, 2017). This re- 201

veals the mutual information shared between the 202

model’s primary training task and the probing task 203

(Belinkov, 2022). A high degree of probe accuracy 204

indicates that the model’s features possess suffi- 205

cient information to accomplish the probing task. 206
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To evaluate whether DPR training improved207

BERT’s discriminative features, linear probing was208

employed on both pre-trained and DPR-trained209

BERT. A classification probe210

glN (flq, fltp, flhn1, flhn2, . . . )211

was trained for each index of the passage deemed212

most relevant where l signifies the probed layer, flq213

the features at layer l for the query, fltp the features214

for the true positive paragraph at layer l, and flhnN215

the features for the Nth hard negative passage at the216

same layer. A distinct probe glN was trained for217

each layer of BERT to examine how performance218

fluctuates across layers and with different numbers219

of hard-negative passages, thereby assessing how220

performance is impacted as the task’s difficulty221

increases.222

Table 1 shows the result of this experiment.223

The performance disparity between probes for pre-224

trained BERT and DPR-trained BERT is relatively225

minor in the two-passage scenario (1.8%) and in-226

terestingly, it is the pre-trained BERT that exhibits227

a slight advantage. As the number of passages228

increases, the performance gap widens to approx-229

imately 6%, and overall probe efficacy declines.230

These findings suggest that the inherent capabil-231

ities to discern relevant from irrelevant passages232

are already present in pre-trained BERT, and DPR-233

style training does not substantially enhance these234

discriminative features. Moreover, echoing the pre-235

vious section’s findings, the hidden features in the236

network’s middle layers perform nearly as well as237

those from the final layers.238

4 Knowledge Decentralization in239

DPR-Trained Models240

The next perspective examined neuron activation241

patterns for the pre-trained and DPR-trained mod-242

els. The knowledge attribution method from (Dai243

et al., 2022) was employed which was inspired244

by the pruning literature (Hao et al., 2021; Sun-245

dararajan et al., 2017). Our analysis targeted linear246

layers, as this is where the model stores knowledge247

according to prior research (Geva et al., 2021).248

To calculate an individual neuron’s contribution249

to the output, we varied its weight w(l)
i from 0 to250

its original value. This can be calculated by:251

Attr(l)(wi) = w
(l)
i

∫ 1

α=0

∂Px(αw
(l)
i )

∂w
(l)
i

dα252

The Riemann approximation was used due to 253

the intractability of calculating a continuous inte- 254

gral. Following (Dai et al., 2022), a threshold of 255

0.1 ∗ max(Attr) was applied to identify a coarse 256

set of knowledge neurons. Appendix A.2 demon- 257

strates that our observations are consistent across 258

a spectrum of thresholds. In contrast to (Dai et al., 259

2022), the coarse set of knowledge neurons was not 260

refined to a fine set of knowledge neurons, as our 261

interest is on the broader activation patterns. When 262

the model operates, it activates both "true-positive" 263

and "false-positive" knowledge neurons indiscrim- 264

inately according to their attribution scores. The 265

primary interest lies in how DPR training influ- 266

ences these activation patterns, rather than the role 267

of specific neurons. 268

Figure 4 illustrates the impact of DPR training on 269

BERT’s neuron activations, charting the attribution 270

score of every neuron across both the intermediate 271

and output linear layers within each transformer 272

block for the query model. Appendix A.1 shows 273

that the observations made in this section also hold 274

for the context model. DPR-trained BERT has 275

more activated neurons in the intermediate layer of 276

each block. The output layer, on the other hand, 277

maintains a consistent number of activations at each 278

transformer block compared to pre-trained BERT, 279

and in the earlier layers DPR-trained BERT acti- 280

vates fewer neurons in the output layers. Previous 281

studies have conceptualized intermediate layers as 282

"keys" and the output layer as the "value" (Geva 283

et al., 2021). This suggests that DPR training ex- 284

pands the set of "keys" available to access a given 285

volume of semantic knowledge while decreasing 286

the accessible volume of syntactic knowledge, em- 287

bodying a decentralization strategy for semantic 288

knowledge. Rather than relying on a single, highly 289

precise key to unlock some knowledge, DPR al- 290

lows for the use of multiple, somewhat less precise 291

keys. This underscores DPR training’s primary 292

goal: to modify the model’s method of knowledge 293

access without altering the stored knowledge itself. 294

These multiple pathways enable morphologically 295

distinct but semantically related text to trigger the 296

same knowledge or collections of facts, thus mak- 297

ing retrieval possible. 298

5 Adding and Removing Knowledge to 299

Model 300

If DPR is rearranging knowledge found in pre- 301

trained BERT, would we be able to see facts that 302
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Figure 4: Layerwise activations for pre-trained and DPR-trained BERT. The parenthetical numbers indicate the
number of neurons in the layer that are above the attribution threshold for any number of examples.

pre-trained BERT knows reappear in DPR-BERT?303

To investigate this, we employed model editing304

techniques to add and remove facts from pre-305

trained BERT. Owing to the emerging state of this306

subfield and the variability in results, we employed307

various model editing techniques. In selecting tech-308

niques, we prioritized those that directly manipu-309

lated the model’s weights or minimally altered the310

model architecturally. This approach was chosen to311

facilitate clearer attributions of our findings to DPR312

training rather than to potential architectural modi-313

fications. TransformerPatch, MalMen, and Mend314

were used to perform the model editing (Huang315

et al., 2023; Tan et al., 2024; Mitchell et al., 2022).316

TransformerPatch introduces a single parameter to317

the last layer for each fact added, whereas MalMen318

and Mend utilize hypernetworks to add facts by319

predicting how the model weights would need to320

be changed.321

5.1 Knowledge Addition322

The first branch of experiments focused on adding323

facts to BERT. To select the facts for addition, we324

identified the questions from the NQ dataset that325

both DPR-BERT and the probed pre-trained BERT326

incorrectly answered. For each of the 284 identified327

questions, we added one fact to BERT, synthesized328

by transforming each query-answer pair from the329

NQ dataset into a cohesive sentence with GPT-330

4. Furthermore, when necessitated by the editing331

methodology, GPT-4 was employed to generate332

10-12 rephrasings of each sentence.333

The next step was determining whether the facts334

had been successfully added to the network. Prob- 335

ing results served as an indicator for this verifica- 336

tion. If the probe accurately matched the query 337

associated with a fact, it suggested that the fact was 338

successfully added to the model. Table 2 shows 339

that approximately 54%-57% of the attempted facts 340

were successfully added to the model. The con- 341

sistency observed across various recently devel- 342

oped methods suggests that this level of perfor- 343

mance is representative of current model editing 344

capabilities. We also observed a number of off- 345

target edits; however, this issue was deemed mi- 346

nor, given the primary goal of adding specific facts 347

was achieved. Following the edits, this modified 348

"pre-trained BERT" underwent DPR-style training. 349

Table 2 reveals that DPR-trained BERT accurately 350

recognized 37%-44% of these newly added facts. 351

The lower-than-expected performance observed 352

does not detract from the results of these experi- 353

ments. In evaluating these experiments, it is im- 354

portant to note that the facts that were edited are 355

in the test set, while the model is trained with 356

a distinct training set. This discrepancy raises 357

the possibility that the overlap between the facts 358

necessary for training and testing queries might 359

not be sufficiently high. Consequently, the added 360

facts may not have developed a decentralized rep- 361

resentation within the model through DPR training. 362

This is consistent with other research that indicates 363

DPR’s potential limitations in terms of general- 364

ization (Thakur et al., 2021; Gangi Reddy et al., 365

2022). Additionally, certain queries might require 366

the addition of multiple facts to enable accurate 367
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284 Facts
Added

Probing
Added

Off-
Target
Flips -
Probing

DPR
Added

Off-
Target
Edits -
DPR

Transformer-
Patch 0.54 581 0.44 222

MalMen 0.57 592 0.37 236
Mend 0.57 592 0.38 229

Table 2: This table presents the outcomes of the knowl-
edge addition experiments. The "Probing Added" col-
umn is the percentage of the total facts that were suc-
cessfully added to BERT. The "DPR Added" column
is the percentage of those facts that were detected after
DPR training.

matching, but our experiments introduced only one368

fact per query. Given the interconnected and co-369

dependent nature of facts and knowledge—contrary370

to being discrete entities—this one fact per query371

approach might not suffice. Lastly, it is possible372

that these results simply reflect how new this sub-373

field is. Nevertheless, the reappearance of inserted374

facts in DPR-BERT underscores the way in which375

the DPR training process leverages the knowledge376

of pre-trained BERT to create a model capable of377

retrieving information.378

5.2 Knowledge Removal379

The next experiment was the inverse of the previ-380

ous one: facts were removed from BERT. A total of381

284 queries, which both DPR-BERT and the linear382

probes had accurately matched with their corre-383

sponding passages, were randomly selected. Given384

that the chosen model editing techniques did not385

provide a direct method to explicitly remove facts386

from BERT, we employed previously described387

techniques to "overwrite" BERT’s knowledge. To388

generate factually incorrect statements, the factu-389

ally correct query-answer pairs were provided to390

GPT-4, which was prompted to generate new factu-391

ally incorrect sentences. These new sentences were392

used by the model editing techniques to overwrite393

existing knowledge.394

Table 3 indicates that merely 11%−16% of facts395

were successfully overwritten. This limited success396

could stem from the complexity of fully erasing a397

fact, given that facts are interdependent, exist in398

multiple logical forms, and are supported by neigh-399

boring facts that might compensate for any inaccu-400

racies introduced. This complexity, along with the401

fact that existing facts are being overwritten rather402

than new ones being introduced, may contribute403

284 Facts
Removed

Probing
Re-
moved

Off-
Target
Flips -
Probing

DPR
Re-
moved

Off-
Target
Edits -
DPR

Transformer-
Patch 0.16 689 0.87 183

MalMen 0.11 721 0.81 261
Mend 0.11 722 1.00 252

Table 3: This table presents the outcomes of the knowl-
edge removal experiments. The "Probing Removed"
column is the percentage of the total facts that were suc-
cessfully added to BERT. The "DPR Removed" column
is the percentage of those facts that were detected after
DPR training.

to the higher incidence of off-target edits when 404

performing fact removal. Notably, the overwritten 405

facts appear to be more strongly set into BERT. 406

81%− 100% of the facts that are overwritten were 407

also incorrectly matched in DPR-BERT, as shown 408

in Table 3. This outcome suggests that once a fact 409

and its interconnected network are overwritten, the 410

ability to train a model to retrieve context that re- 411

quires that fact becomes significantly compromised. 412

It is unlikely that post-removal the fact remains in 413

the network in a form that can be decentralized in 414

a way that makes it retrievable. 415

Both the knowledge addition and knowledge re- 416

moval experiments demonstrate that DPR train- 417

ing primarily refines how pre-existing knowledge 418

within BERT is rendered more "retrievable". Newly 419

added facts to BERT became retrievable, while 420

those that were removed ceased to be retrievable. 421

Thus, it appears that DPR training does not alter 422

the model’s inherent knowledge base; instead, it 423

modifies the representation and accessibility of this 424

knowledge. 425

6 Related Works 426

Dense passage retrieval (DPR) addresses the chal- 427

lenge of matching a query with the most rele- 428

vant passages from a knowledge base (Karpukhin 429

et al., 2020). This approach employs dual en- 430

coders—one encoder for the passages and another 431

for the query—and utilizes a distance metric, such 432

as the inner product, to identify the passages clos- 433

est to the query. Inspired by Siamese networks 434

(Bromley et al., 1993), DPR represents the first 435

fully neural architecture to outperform the BM25 436

algorithm (Robertson and Zaragoza, 2009). Since 437

then, there have been quite a few improvements 438

in how to train DPR-style models. Methods like 439
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RocketQA improve DPR by employing cross-batch440

negatives and training the network on more diffi-441

cult hard negatives (Qu et al., 2021). Dragon fo-442

cuses on novel data augmentation and supervision443

strategies (Lin et al., 2023). Contriever also em-444

ploys a greater number of hard-negatives and data-445

augmentation methods in addition to pre-training446

the model on the inverse cloze task (Izacard et al.,447

2022). MVR generates multiple views for each doc-448

ument to allow for multiple diverse representations449

of each of them (Zhang et al., 2022). ColBERT450

employs token embeddings for more fine-grained451

matching (Khattab and Zaharia, 2020). REALM452

leverages feedback from the reader component to453

jointly train the retriever with the reader (Guu et al.,454

2020). Other methods distill knowledge from the455

reader to the retriever (Izacard and Grave, 2020;456

Reichman and Heck, 2023). Additionally, efforts457

in query augmentation or generation aim to better458

synchronize the query with the document encoder459

(Ma et al., 2023; Wang et al., 2023; Shao et al.,460

2023; Gao et al., 2023). Despite these different461

enhancements, each method builds upon the DPR462

framework discussed in this paper.463

Distinctly, RetroMAE and CoT-MAE pre-train a464

model using a masked auto-encoder strategy, which465

they show enhances downstream retrieval perfor-466

mance (Xiao et al., 2022; Wu et al., 2023a; Liu467

et al., 2023b; Wu et al., 2023b). Following this pre-468

training phase, both methods subsequently adopt469

DPR fine-tuning to further refine their models for470

improved task performance.471

Only a few studies have delved into analyzing472

DPR models. One such study took a holistic look473

at RAG to see where the pipeline made errors474

(BehnamGhader et al., 2023). The study found that475

a similarity-based search during retrieval biased476

the result in favor of passages similar to the query,477

even when more relevant but dissimilar passages478

were available. Another study employed probing479

techniques to analyze ranking models (MacAvaney480

et al., 2022). The authors adopted a probing method481

akin to ours, categorizing passages by specific prop-482

erties for analysis, in contrast to our approach of483

random selection among hard negatives. This study484

explored how query and document characteristics485

affect ranking outcomes. Another study analyzed486

the embeddings produced by retrieval models in487

the vocabulary space (Ram et al., 2023). To do488

this, they used pre-trained BERT’s MLM head on489

the DPR-trained embeddings’ [CLS] token. It was490

found that DPR implicitly learns the importance491

of lexical overlap between the query and passage. 492

DPR training causes BERT to retrieve passages 493

that share more tokens with the query as compared 494

to pre-trained BERT. This ties in with our finding 495

where the number of output layer activations in 496

the early part of the model post-DPR training de- 497

creased. This may function as a sort of syntactic 498

filter, where many keys can access fewer, but more 499

pertinent, lexical features. However, this filtering 500

can also induce what the authors term “token amne- 501

sia”. This condition occurs when an encoder fails 502

to correctly retrieve relevant passages because it 503

does not properly encode the relevant token, usu- 504

ally related to a named entity. Unlike previous 505

research, our study adopts a holistic approach, ex- 506

amining model knowledge, activation patterns, and 507

capabilities across different model stages. This 508

analysis approach integrates and makes sense of 509

the different insights from prior works. 510

7 Conclusion 511

To reveal possible avenues for improving retrieval 512

augmented generation (RAG) systems, this paper 513

set out to study the purpose served by DPR-style 514

fine-tuning and how DPR-trained BERT operates. 515

We found in Section 2 that middle layers of the 516

LLM impact the performance the most. These lay- 517

ers are where the model is processing a mix of 518

syntactic and semantic features according to (Geva 519

et al., 2021). Through linear probing in Section 520

3, alongside experiments where we added and re- 521

moved knowledge from pre-trained BERT in Sec- 522

tion 5, we determined that BERT does not appear to 523

acquire new information through DPR fine-tuning. 524

Instead, we observed that the efficacy of retrieval 525

hinges on the activation of shared facts/memories 526

between the BERT models used to encode the query 527

and the context passages. This mechanism implies 528

that incorrect retrieval could occur if a query or con- 529

text passage inadvertently activates irrelevant or in- 530

correct memories in BERT. Moreover, the absence 531

of necessary facts or webs of knowledge within the 532

model hampers its ability to retrieve information. 533

However, the crucial insight came in Section 4 534

from analyzing the changes in BERT’s activations 535

before and after DPR-style training. We found 536

that DPR-style training alters the model’s internal 537

representation of facts, transitioning from a central- 538

ized to a decentralized representation. Pre-trained 539

BERT’s representations are very centralized with a 540

select few neurons being activated across a wide ar- 541
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ray of facts and only a few neurons being strongly542

activated for each fact, suggesting a limited num-543

ber of pathways for fact or memory activation. The544

representations in DPR-trained BERT, on the other545

hand, are a lot less centralized. DPR-trained BERT546

engages more neurons, more robustly for each fact,547

and diminishes the uniform reliance on specific neu-548

rons across different facts. This decentralization549

makes it so that each fact/memory has a lot more550

pathways to get triggered, which in turn allows551

for more potential inputs to trigger the same set of552

memories. Such a shift not only underscores the553

primary objective of DPR training—to diversify the554

model’s retrieval capabilities across an expanded555

set of queries and passages—but also delineates a556

crucial mechanism by which these models improve557

their retrieval performance.558

In the most fundamental sense, Dense Passage559

Retrieval achieves its namesake function—it re-560

trieves, locating and returning relevant context to561

the user given a query. Yet, as our evidence sug-562

gests, DPR models appear constrained to retriev-563

ing information based on the knowledge that pre-564

exists within their parameters, either innately or565

through augmentation. This operational boundary566

delineates a significant caveat: facts must already567

be encoded within the model for useful context568

to be accessible by retrieval. Absent these facts569

or their associative networks, retrieval seems to570

falter. Thus, if retrieval is understood as the ca-571

pacity to recall or recognize knowledge already572

familiar to the model, then indeed, DPR models573

fulfill this criterion. However, if we extend our574

definition of retrieval to also encompass the abil-575

ity to navigate and elucidate concepts previously576

unknown or unencountered by the model—a ca-577

pacity akin to how humans research and retrieve578

information—our findings imply that DPR models579

fall short of this mark.580

Our findings suggest several areas of focus for581

future work including (1) accelerate knowledge rep-582

resentation decentralization with new unsupervised583

training methods (2) develop new methods to di-584

rectly inject facts in a decentralized manner into the585

network (3) optimize retrieval methods that operate586

with uncertainty, and (4) map the model’s internal587

knowledge directly to the set of best documents to588

retrieve.589

Current work in optimizing the inverse cloze590

pre-training task and various data augmentation591

methods such as (Lin et al., 2023) begin to address592

(1) by increasing the amount of knowledge that the593

model is exposed to during fine-tuning and thus 594

the amount of knowledge that can be decentralized. 595

With the knowledge of the purpose of DPR-training 596

more targeted methods can be developed. (3) re- 597

quires more detailed model analysis to determine 598

how the model processes a query when it is miss- 599

ing key knowledge needed for retrieval. Being 600

aware of when a model is uncertain in its retrieval 601

is crucial. The analysis should reveal methods to 602

more robustly and gracefully handle increased lev- 603

els of uncertainty. One direction to better leverage 604

a model’s knowledge as suggested in (4) is shown 605

in (Tay et al., 2022; Pradeep et al., 2023; Wang 606

et al., 2022; Bevilacqua et al., 2022; Ziems et al., 607

2023). 608

8 Limitations 609

This paper presents a detailed analysis of the DPR 610

formula, specifically focusing on the original DPR 611

training formula utilizing a BERT backbone. We 612

anticipate that our findings will exhibit a degree of 613

generalizability across various DPR implementa- 614

tions, given the underlying commonalities of the 615

core training approach. It is important to recog- 616

nize that modifications—such as improving hard 617

negatives, different data augmentation techniques, 618

different transformer-based backbones, or leverag- 619

ing multiple views/vectors from models—while 620

serving to refine and enhance the DPR framework, 621

build upon and amplify the mechanisms of the DPR 622

method. These enhancements, though significant 623

in optimizing performance, are expected not to fun- 624

damentally change this analysis. However, it is still 625

a limitation of this paper that we did not repeat our 626

analysis on more DPR-based methods and datasets. 627

9 Ethics Statements 628

This work presents an analysis of DPR-style train- 629

ing. Improving DPR-style training would improve 630

RAG pipelines, increasing the factuality of LLMs 631

and decreasing the rate which they hallucinate. 632
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A Appendix905

A.1 Context Model Activations906

Figure 5 depicts the activation patterns observed in907

the context model, mirroring the trends outlined in908

Section 4. The only exception occurs in the first909

intermediate layer of the pre-trained BERT model,910

where a larger number of neurons are activated as911

compared to DPR-trained BERT.912

A.2 Model Activations at different thresholds913

Figures 6, 7, 8, 9, and 10 illustrate neuron activa-914

tion patterns across varying activation thresholds915

set at 0.005∗max(Attr), 0.01∗max(Attr), 0.05∗916

max(Attr), 0.2∗max(Attr), and 0.3∗max(Attr),917

respectively. As the threshold increases from 0.005918

to 0.3, the visualization narrows down to neurons 919

with stronger activations. This observation rein- 920

forces the findings discussed in Section 4: pre- 921

trained BERT shows a trend of fewer but more 922

consistently activated neurons, in contrast to DPR- 923

trained BERT, which exhibits a broader array of 924

neurons activated less frequently. 925
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Figure 5: Layerwise activations for pre-trained and DPR-trained BERT - context model. The parenthetical numbers
indicate the number of neurons in the layer that are above the attribution threshold for any number of examples.

Figure 6: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.005. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.
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Figure 7: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.01. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.

Figure 8: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.05. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.
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Figure 9: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.2. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.

Figure 10: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.3. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.
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