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Abstract

Dense passage retrieval (DPR) is the first step
in the retrieval augmented generation (RAG)
paradigm for improving the performance of
large language models (LLM). DPR fine-tunes
pre-trained networks to enhance the alignment
of the embeddings between queries and rele-
vant textual data. A deeper understanding of
DPR fine-tuning will be required to fundamen-
tally unlock the full potential of this approach.
In this work, we explore DPR-trained mod-
els mechanistically by using a combination of
probing, layer activation analysis, and model
editing. Our experiments show that DPR train-
ing decentralizes how knowledge is stored in
the network, creating multiple access pathways
to the same information. We also uncover a lim-
itation in this training style: the internal knowl-
edge of the pre-trained model bounds what the
retrieval model can retrieve. These findings
suggest a few possible directions for dense re-
trieval: (1) expose the DPR training process to
more knowledge so more can be decentralized,
(2) inject facts as decentralized representations,
(3) model and incorporate knowledge uncer-
tainty in the retrieval process, and (4) directly
map internal model knowledge to a knowledge
base.

1 Introduction

In just a few years, Large Language Models
(LLMs) have emerged from the research labs to
become a tool utilized daily by hundreds of mil-
lions of people and integrated into a wide variety of
businesses. Despite their popularity, these models
have been critiqued for frequently hallucinating,
confidently outputting incorrect information (Bang
et al., 2023). Such inaccuracies not only mislead
people but also erode trust in LLMs. Trust in these
systems is crucial to their success and rate of adop-
tion.

The retrieval augmented generation (RAG)
paradigm is an approach to address hallucina-
tions (Lewis et al., 2020). Unlike traditional LLM

interactions where a query directly prompts an out-
put from the model, RAG introduces an interme-
diary step. Initially, a "retrieval" model processes
the query to gather additional information from a
knowledge base, such as Wikipedia or the broader
internet. This additional information alongside the
original query is fed to the LLM, increasing the
accuracy of the answers that the LLM generates.
For RAG to be effective, the underlying retrieval
model has to excel at finding accurate and rele-
vant information. Typically, model performance is
evaluated based on metrics that consider the top-
5, top-20, top-50, and top-100 retrieved passages.
However, recent studies indicate that LLMs pre-
dominantly use information from the top-1 to top-5
passages, underscoring the importance in RAG of
not only high recall in retrieval but also precision
in ranking (Liu et al., 2023a; Xu et al., 2024). One
approach to achieve both high recall and precision
involves integrating a "reranking" model, which
adjusts the order of retrieved passages to improve
the relevance of the top-ranked passages (Nogueira
et al., 2019, 2020). However, this approach adds
the computational and maintenance cost of an addi-
tional model to the pipeline and can also introduce
errors. The alternative option is to improve retrieval
models to directly retrieve and rank passages well.
Retrieval methods can be broadly categorized
into two types: sparse and dense (Zhao et al.,
2024). Sparse methods encode queries and pas-
sages into sparse vectors, usually based on terms
that appear in the queries and passages (Robertson
and Zaragoza, 2009; Sparck Jones, 1972). Dense
methods employ language models to encode the
semantic information in queries and passages into
dense vectors (Karpukhin et al., 2020; Huang et al.,
2013). Dense methods often share two common
properties: (a) the joint training of two or more
encoding models — one for embedding a query and
the other for embedding a knowledge base, and
(b) contrastive training. These commonalities were
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Figure 1: Per layer accuracy of the baseline DPR model
and percentage of incorrectly matched output that was
correctly matched at layer N.

introduced in the dense passage retrieval method,
inspiring many subsequent methods in the litera-
ture.

In this paper, we analyze the original DPR
method using the BERT-base backbone. We be-
gin by analyzing the effects of training and using
different layers for retrieval (Section 2). Then we
continue by probing the model to determine if the
features of pre-trained BERT are as discriminative
as DPR-BERT in matching a query to the correct
hard-negative passage (Section 3). Next, using
techniques from the pruning literature, we compare
the relative strength and number of activations of
the feedforward layers throughout the original pre-
trained and DPR-trained models (Section 4). Fi-
nally, we add and remove knowledge from the net-
work to investigate how knowledge interacts with
DPR training (Section 5). Through these experi-
ments, we analyze DPR from multiple perspectives
to understand what is changing in the backbone
model during the training process.

2 Early Passage Match Capability

Multilayer transformers are typically used for DPR.
These models perform layer-to-layer updates to re-
fine and promote concepts within the embedding
space (Geva et al., 2022). Such iterative refinement
can reach a point of saturation, beyond which addi-
tional updates in later layers contribute marginally
to model performance. This saturation suggests
that there may be enough information early in the
model to accurately match a query to a passage.
In this section, we analyze model update satura-
tion to identify: (a) which layers contribute most
significantly to performance improvements, and
(b) aside from the final layer, which layers are cru-
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Figure 2: Accuracy of DPR model when only layer N
and layer 12 are trained with the full NQ dataset and
only 30% of the NQ dataset
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Figure 3: Percent of incorrect matches that intermediary
network layers got correct.

cial for training. Our analysis employs the train-
ing methodology outlined in the earlier DPR paper
(Karpukhin et al., 2020). The BERT model was
fine-tuned in this style on the Natural Questions
(NQ) dataset (Kwiatkowski et al., 2019). To assess
the DPR model’s accuracy at layer N, we conducted
a maximum inner product search using the hidden
state of layer N.

Due to the number of different training config-
urations and layers that were tested, it was not
possible to re-index the 21M passage Wikipedia
knowledge base that is commonly used with NQ.
Therefore, we focused on assessing in-batch match
accuracy. Each batch comprised 64 queries and 832
passages. The performance metrics reported in this
section reflect the accuracy rate, namely the pro-
portion of queries that were successfully matched
to a corresponding passage within the batch.

Figure 1 illustrates that peak performance is
achieved at the network’s final layer. Notably, the
most substantial performance increases occur be-
tween layers 3 and 4, 9 and 10, and 10 and 11.
Moreover, Figure 1 suggests that in some cases, lay-



Layer Layer Layer Layer Layer Layer Layer Layer Layer Layer Layer Layer Layer

Task | Model 0 1 2 3 4 5 6 7 8 9 10 11 12
Prg‘“a‘.“ed BERT 50 050 051 048 050 052 051 051 050 049 050 054 0.50
— Untrained Probe
2-Passage| Pre-trained BERT 051 0.69 074 074 077 079 081 081 081 082 083 084 0.84
Probing | DPR-BERT 051 068 074 077 079 080 081 083 082 083 083 082 0.82
Query Model
DPR-BERT Con- 51 n63 074 077 079 080 081 083 082 083 083 082 082
text Model
3-Passage| Pre-tramed BERT 034 053 059 059 065 064 067 067 068 060 060 073 0.3
Probing | DPR-BERT 034 054 060 063 066 066 066 070 071 069 073 072 071
-Passage| Pre-traincd BERT 026 043 047 049 053 057 061 060 056 062 064 066 066
Probing | DPR-BERT 026 046 051 054 057 058 060 063 0.64 063 065 063 0.63
5-Passage| Pre-trained BERT 0.21 0.35 042 043 043 050 0.53 053 054 0.56 057 0.60 0.61
Probing | DPR-BERT 021 036 042 048 049 051 054 056 058 058 060 0.56 056

Table 1: This table presents the outcomes of linear probing, where probes classify 2 to 5 passages to determine
the best match for a given query. Due to identical performance metrics, DPR-BERT Query and Context model
results are consolidated and displayed only for the 2-Passage Probe. Given that probes without training achieved
performance at random chance levels across all passage counts, their results are reported solely for the 2-Passage

Probe for comparison.

ers 4, 10, and 11 had the highest occurrence where
the intermediary hidden layers correctly identified
the relevant passage but a later layer subsequently
revised the prediction to an incorrect match.

To further investigate the relationship between
individual model layers and DPR performance, a
series of experiments were conducted where the
DPR model was trained two layers at a time. In
these experiments, all layers were frozen except for
two: layer N, which progressed from the first to the
last layer across subsequent experiments, and the fi-
nal layer, included due to its superior performance.
Training followed the protocol established in the
DPR paper, with layers N and 12 being trained
independently—resulting in two separate loss cal-
culations per batch, one for the interaction between
the hidden states at layer N in the query and passage
models and one loss for the embeddings outputted
at layer 12 in the query and passage models.

Trained over the Natural Questions (NQ) dataset
(Kwiatkowski et al., 2019), the experiment demon-
strated optimal performance when layers 5, 7, or 8
were concurrently trained with layer 12, as shown
in Figure 2. However, since the performance gain
was only slight, the experiment was repeated under
a data-restricted regime, utilizing only 30% of the
NQ dataset. In this constrained data scenario, the
disparity in accuracy when training various layers
became more pronounced. Notably, training layer
7 provided the greatest accuracy boost. Moreover,
training any layer within the middle segment of the
network (layers 5-8) surpassed the performance of
layers closer to the beginning or end of the network.

Figures 2 and 3 demonstrate that training just
one middle layer in conjunction with layer 12 not
only yields the highest performance but also leads
to a middling frequency of instances where a pre-
viously correct match is incorrectly altered later in
the model. According to prior research, it is in these
middle layers that the processing of syntactic and
semantic features co-occur (Geva et al., 2021). The
syntactic features are more akin to sparse retrieval
methods whereas the semantic features represent
the theme of DPR-style retrieval methods. This
suggests that learning the interplay between syntac-
tic and semantic features is likely an important part
of what DPR-style training teaches the model.

3 Knowledge Consistency between
untrained and trained model

Language models are known to store a vast amount
of knowledge with the feedforward layers of the
transformer architecture acting as a key-value mem-
ory store of knowledge (Geva et al., 2021). This
section details experiments conducted to under-
stand the impact of DPR-style training from a
model-knowledge perspective.

Linear probing, a method to characterize model
features, involves training a linear classifier on the
internal activations of a frozen network to execute
a simple task (Alain and Bengio, 2017). This re-
veals the mutual information shared between the
model’s primary training task and the probing task
(Belinkov, 2022). A high degree of probe accuracy
indicates that the model’s features possess suffi-
cient information to accomplish the probing task.



To evaluate whether DPR training improved
BERT’s discriminative features, linear probing was
employed on both pre-trained and DPR-trained
BERT. A classification probe

9N (figs fueps finn1s finn2, - - -)

was trained for each index of the passage deemed
most relevant where [ signifies the probed layer, fi,
the features at layer [ for the query, f, the features
for the true positive paragraph at layer [, and fin,n
the features for the Nth hard negative passage at the
same layer. A distinct probe g;y was trained for
each layer of BERT to examine how performance
fluctuates across layers and with different numbers
of hard-negative passages, thereby assessing how
performance is impacted as the task’s difficulty
increases.

Table 1 shows the result of this experiment.
The performance disparity between probes for pre-
trained BERT and DPR-trained BERT is relatively
minor in the two-passage scenario (1.8%) and in-
terestingly, it is the pre-trained BERT that exhibits
a slight advantage. As the number of passages
increases, the performance gap widens to approx-
imately 6%, and overall probe efficacy declines.
These findings suggest that the inherent capabil-
ities to discern relevant from irrelevant passages
are already present in pre-trained BERT, and DPR-
style training does not substantially enhance these
discriminative features. Moreover, echoing the pre-
vious section’s findings, the hidden features in the
network’s middle layers perform nearly as well as
those from the final layers.

4 Knowledge Decentralization in
DPR-Trained Models

The next perspective examined neuron activation
patterns for the pre-trained and DPR-trained mod-
els. The knowledge attribution method from (Dai
et al., 2022) was employed which was inspired
by the pruning literature (Hao et al., 2021; Sun-
dararajan et al., 2017). Our analysis targeted linear
layers, as this is where the model stores knowledge
according to prior research (Geva et al., 2021).

To calculate an individual neuron’s contribution
to the output, we varied its weight wlgl) from 0 to
its original value. This can be calculated by:

1 8Px(aw§l))
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The Riemann approximation was used due to
the intractability of calculating a continuous inte-
gral. Following (Dai et al., 2022), a threshold of
0.1 % max(Attr) was applied to identify a coarse
set of knowledge neurons. Appendix A.2 demon-
strates that our observations are consistent across
a spectrum of thresholds. In contrast to (Dai et al.,
2022), the coarse set of knowledge neurons was not
refined to a fine set of knowledge neurons, as our
interest is on the broader activation patterns. When
the model operates, it activates both "true-positive"
and "false-positive" knowledge neurons indiscrim-
inately according to their attribution scores. The
primary interest lies in how DPR training influ-
ences these activation patterns, rather than the role
of specific neurons.

Figure 4 illustrates the impact of DPR training on
BERT’s neuron activations, charting the attribution
score of every neuron across both the intermediate
and output linear layers within each transformer
block for the query model. Appendix A.1 shows
that the observations made in this section also hold
for the context model. DPR-trained BERT has
more activated neurons in the intermediate layer of
each block. The output layer, on the other hand,
maintains a consistent number of activations at each
transformer block compared to pre-trained BERT,
and in the earlier layers DPR-trained BERT acti-
vates fewer neurons in the output layers. Previous
studies have conceptualized intermediate layers as
"keys" and the output layer as the "value" (Geva
et al., 2021). This suggests that DPR training ex-
pands the set of "keys" available to access a given
volume of semantic knowledge while decreasing
the accessible volume of syntactic knowledge, em-
bodying a decentralization strategy for semantic
knowledge. Rather than relying on a single, highly
precise key to unlock some knowledge, DPR al-
lows for the use of multiple, somewhat less precise
keys. This underscores DPR training’s primary
goal: to modify the model’s method of knowledge
access without altering the stored knowledge itself.
These multiple pathways enable morphologically
distinct but semantically related text to trigger the
same knowledge or collections of facts, thus mak-
ing retrieval possible.

5 Adding and Removing Knowledge to
Model

If DPR is rearranging knowledge found in pre-
trained BERT, would we be able to see facts that
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Figure 4: Layerwise activations for pre-trained and DPR-trained BERT. The parenthetical numbers indicate the
number of neurons in the layer that are above the attribution threshold for any number of examples.

pre-trained BERT knows reappear in DPR-BERT?
To investigate this, we employed model editing
techniques to add and remove facts from pre-
trained BERT. Owing to the emerging state of this
subfield and the variability in results, we employed
various model editing techniques. In selecting tech-
niques, we prioritized those that directly manipu-
lated the model’s weights or minimally altered the
model architecturally. This approach was chosen to
facilitate clearer attributions of our findings to DPR
training rather than to potential architectural modi-
fications. TransformerPatch, MalMen, and Mend
were used to perform the model editing (Huang
et al., 2023; Tan et al., 2024; Mitchell et al., 2022).
TransformerPatch introduces a single parameter to
the last layer for each fact added, whereas MalMen
and Mend utilize hypernetworks to add facts by
predicting how the model weights would need to
be changed.

5.1 Knowledge Addition

The first branch of experiments focused on adding
facts to BERT. To select the facts for addition, we
identified the questions from the NQ dataset that
both DPR-BERT and the probed pre-trained BERT
incorrectly answered. For each of the 284 identified
questions, we added one fact to BERT, synthesized
by transforming each query-answer pair from the
NQ dataset into a cohesive sentence with GPT-
4. Furthermore, when necessitated by the editing
methodology, GPT-4 was employed to generate
10-12 rephrasings of each sentence.

The next step was determining whether the facts

had been successfully added to the network. Prob-
ing results served as an indicator for this verifica-
tion. If the probe accurately matched the query
associated with a fact, it suggested that the fact was
successfully added to the model. Table 2 shows
that approximately 54%-57% of the attempted facts
were successfully added to the model. The con-
sistency observed across various recently devel-
oped methods suggests that this level of perfor-
mance is representative of current model editing
capabilities. We also observed a number of off-
target edits; however, this issue was deemed mi-
nor, given the primary goal of adding specific facts
was achieved. Following the edits, this modified
"pre-trained BERT" underwent DPR-style training.
Table 2 reveals that DPR-trained BERT accurately
recognized 37%-44% of these newly added facts.

The lower-than-expected performance observed
does not detract from the results of these experi-
ments. In evaluating these experiments, it is im-
portant to note that the facts that were edited are
in the test set, while the model is trained with
a distinct training set. This discrepancy raises
the possibility that the overlap between the facts
necessary for training and testing queries might
not be sufficiently high. Consequently, the added
facts may not have developed a decentralized rep-
resentation within the model through DPR training.
This is consistent with other research that indicates
DPR’s potential limitations in terms of general-
ization (Thakur et al., 2021; Gangi Reddy et al.,
2022). Additionally, certain queries might require
the addition of multiple facts to enable accurate



Off- Off- Probin Off- DPR Off-
284 Facts Probing Target DPR Target 284 Facts Re- g Target Re- Target
Added Added Flips - Added Edits - Removed moved Flips - moved Edits -
Probing DPR Probing DPR
Transformer- Transformer-
Patch 0.54 581 0.44 222 Patch 0.16 689 0.87 183
MalMen 0.57 592 0.37 236 MalMen 0.11 721 0.81 261
Mend 0.57 592 0.38 229 Mend 0.11 722 1.00 252

Table 2: This table presents the outcomes of the knowl-
edge addition experiments. The "Probing Added" col-
umn is the percentage of the total facts that were suc-
cessfully added to BERT. The "DPR Added" column
is the percentage of those facts that were detected after
DPR training.

matching, but our experiments introduced only one
fact per query. Given the interconnected and co-
dependent nature of facts and knowledge—contrary
to being discrete entities—this one fact per query
approach might not suffice. Lastly, it is possible
that these results simply reflect how new this sub-
field is. Nevertheless, the reappearance of inserted
facts in DPR-BERT underscores the way in which
the DPR training process leverages the knowledge
of pre-trained BERT to create a model capable of
retrieving information.

5.2 Knowledge Removal

The next experiment was the inverse of the previ-
ous one: facts were removed from BERT. A total of
284 queries, which both DPR-BERT and the linear
probes had accurately matched with their corre-
sponding passages, were randomly selected. Given
that the chosen model editing techniques did not
provide a direct method to explicitly remove facts
from BERT, we employed previously described
techniques to "overwrite" BERT’s knowledge. To
generate factually incorrect statements, the factu-
ally correct query-answer pairs were provided to
GPT-4, which was prompted to generate new factu-
ally incorrect sentences. These new sentences were
used by the model editing techniques to overwrite
existing knowledge.

Table 3 indicates that merely 11% — 16% of facts
were successfully overwritten. This limited success
could stem from the complexity of fully erasing a
fact, given that facts are interdependent, exist in
multiple logical forms, and are supported by neigh-
boring facts that might compensate for any inaccu-
racies introduced. This complexity, along with the
fact that existing facts are being overwritten rather
than new ones being introduced, may contribute

Table 3: This table presents the outcomes of the knowl-
edge removal experiments. The "Probing Removed"
column is the percentage of the total facts that were suc-
cessfully added to BERT. The "DPR Removed" column
is the percentage of those facts that were detected after
DPR training.

to the higher incidence of off-target edits when
performing fact removal. Notably, the overwritten
facts appear to be more strongly set into BERT.
81% — 100% of the facts that are overwritten were
also incorrectly matched in DPR-BERT, as shown
in Table 3. This outcome suggests that once a fact
and its interconnected network are overwritten, the
ability to train a model to retrieve context that re-
quires that fact becomes significantly compromised.
It is unlikely that post-removal the fact remains in
the network in a form that can be decentralized in
a way that makes it retrievable.

Both the knowledge addition and knowledge re-
moval experiments demonstrate that DPR train-
ing primarily refines how pre-existing knowledge
within BERT is rendered more "retrievable”. Newly
added facts to BERT became retrievable, while
those that were removed ceased to be retrievable.
Thus, it appears that DPR training does not alter
the model’s inherent knowledge base; instead, it
modifies the representation and accessibility of this
knowledge.

6 Related Works

Dense passage retrieval (DPR) addresses the chal-
lenge of matching a query with the most rele-
vant passages from a knowledge base (Karpukhin
et al., 2020). This approach employs dual en-
coders—one encoder for the passages and another
for the query—and utilizes a distance metric, such
as the inner product, to identify the passages clos-
est to the query. Inspired by Siamese networks
(Bromley et al., 1993), DPR represents the first
fully neural architecture to outperform the BM25
algorithm (Robertson and Zaragoza, 2009). Since
then, there have been quite a few improvements
in how to train DPR-style models. Methods like



RocketQA improve DPR by employing cross-batch
negatives and training the network on more diffi-
cult hard negatives (Qu et al., 2021). Dragon fo-
cuses on novel data augmentation and supervision
strategies (Lin et al., 2023). Contriever also em-
ploys a greater number of hard-negatives and data-
augmentation methods in addition to pre-training
the model on the inverse cloze task (Izacard et al.,
2022). MVR generates multiple views for each doc-
ument to allow for multiple diverse representations
of each of them (Zhang et al., 2022). ColBERT
employs token embeddings for more fine-grained
matching (Khattab and Zaharia, 2020). REALM
leverages feedback from the reader component to
jointly train the retriever with the reader (Guu et al.,
2020). Other methods distill knowledge from the
reader to the retriever (Izacard and Grave, 2020;
Reichman and Heck, 2023). Additionally, efforts
in query augmentation or generation aim to better
synchronize the query with the document encoder
(Ma et al., 2023; Wang et al., 2023; Shao et al.,
2023; Gao et al., 2023). Despite these different
enhancements, each method builds upon the DPR
framework discussed in this paper.

Distinctly, RetroMAE and CoT-MAE pre-train a
model using a masked auto-encoder strategy, which
they show enhances downstream retrieval perfor-
mance (Xiao et al., 2022; Wu et al., 2023a; Liu
et al., 2023b; Wu et al., 2023b). Following this pre-
training phase, both methods subsequently adopt
DPR fine-tuning to further refine their models for
improved task performance.

Only a few studies have delved into analyzing
DPR models. One such study took a holistic look
at RAG to see where the pipeline made errors
(BehnamGhader et al., 2023). The study found that
a similarity-based search during retrieval biased
the result in favor of passages similar to the query,
even when more relevant but dissimilar passages
were available. Another study employed probing
techniques to analyze ranking models (MacAvaney
etal., 2022). The authors adopted a probing method
akin to ours, categorizing passages by specific prop-
erties for analysis, in contrast to our approach of
random selection among hard negatives. This study
explored how query and document characteristics
affect ranking outcomes. Another study analyzed
the embeddings produced by retrieval models in
the vocabulary space (Ram et al., 2023). To do
this, they used pre-trained BERT’s MLM head on
the DPR-trained embeddings’ [CLS] token. It was
found that DPR implicitly learns the importance

of lexical overlap between the query and passage.
DPR training causes BERT to retrieve passages
that share more tokens with the query as compared
to pre-trained BERT. This ties in with our finding
where the number of output layer activations in
the early part of the model post-DPR training de-
creased. This may function as a sort of syntactic
filter, where many keys can access fewer, but more
pertinent, lexical features. However, this filtering
can also induce what the authors term “token amne-
sia”. This condition occurs when an encoder fails
to correctly retrieve relevant passages because it
does not properly encode the relevant token, usu-
ally related to a named entity. Unlike previous
research, our study adopts a holistic approach, ex-
amining model knowledge, activation patterns, and
capabilities across different model stages. This
analysis approach integrates and makes sense of
the different insights from prior works.

7 Conclusion

To reveal possible avenues for improving retrieval
augmented generation (RAG) systems, this paper
set out to study the purpose served by DPR-style
fine-tuning and how DPR-trained BERT operates.
We found in Section 2 that middle layers of the
LLM impact the performance the most. These lay-
ers are where the model is processing a mix of
syntactic and semantic features according to (Geva
et al., 2021). Through linear probing in Section
3, alongside experiments where we added and re-
moved knowledge from pre-trained BERT in Sec-
tion 5, we determined that BERT does not appear to
acquire new information through DPR fine-tuning.
Instead, we observed that the efficacy of retrieval
hinges on the activation of shared facts/memories
between the BERT models used to encode the query
and the context passages. This mechanism implies
that incorrect retrieval could occur if a query or con-
text passage inadvertently activates irrelevant or in-
correct memories in BERT. Moreover, the absence
of necessary facts or webs of knowledge within the
model hampers its ability to retrieve information.
However, the crucial insight came in Section 4
from analyzing the changes in BERT’s activations
before and after DPR-style training. We found
that DPR-style training alters the model’s internal
representation of facts, transitioning from a central-
ized to a decentralized representation. Pre-trained
BERT’s representations are very centralized with a
select few neurons being activated across a wide ar-



ray of facts and only a few neurons being strongly
activated for each fact, suggesting a limited num-
ber of pathways for fact or memory activation. The
representations in DPR-trained BERT, on the other
hand, are a lot less centralized. DPR-trained BERT
engages more neurons, more robustly for each fact,
and diminishes the uniform reliance on specific neu-
rons across different facts. This decentralization
makes it so that each fact/memory has a lot more
pathways to get triggered, which in turn allows
for more potential inputs to trigger the same set of
memories. Such a shift not only underscores the
primary objective of DPR training—to diversify the
model’s retrieval capabilities across an expanded
set of queries and passages—but also delineates a
crucial mechanism by which these models improve
their retrieval performance.

In the most fundamental sense, Dense Passage
Retrieval achieves its namesake function—it re-
trieves, locating and returning relevant context to
the user given a query. Yet, as our evidence sug-
gests, DPR models appear constrained to retriev-
ing information based on the knowledge that pre-
exists within their parameters, either innately or
through augmentation. This operational boundary
delineates a significant caveat: facts must already
be encoded within the model for useful context
to be accessible by retrieval. Absent these facts
or their associative networks, retrieval seems to
falter. Thus, if retrieval is understood as the ca-
pacity to recall or recognize knowledge already
familiar to the model, then indeed, DPR models
fulfill this criterion. However, if we extend our
definition of retrieval to also encompass the abil-
ity to navigate and elucidate concepts previously
unknown or unencountered by the model—a ca-
pacity akin to how humans research and retrieve
information—our findings imply that DPR models
fall short of this mark.

Our findings suggest several areas of focus for
future work including (1) accelerate knowledge rep-
resentation decentralization with new unsupervised
training methods (2) develop new methods to di-
rectly inject facts in a decentralized manner into the
network (3) optimize retrieval methods that operate
with uncertainty, and (4) map the model’s internal
knowledge directly to the set of best documents to
retrieve.

Current work in optimizing the inverse cloze
pre-training task and various data augmentation
methods such as (Lin et al., 2023) begin to address
(1) by increasing the amount of knowledge that the

model is exposed to during fine-tuning and thus
the amount of knowledge that can be decentralized.
With the knowledge of the purpose of DPR-training
more targeted methods can be developed. (3) re-
quires more detailed model analysis to determine
how the model processes a query when it is miss-
ing key knowledge needed for retrieval. Being
aware of when a model is uncertain in its retrieval
is crucial. The analysis should reveal methods to
more robustly and gracefully handle increased lev-
els of uncertainty. One direction to better leverage
a model’s knowledge as suggested in (4) is shown
in (Tay et al., 2022; Pradeep et al., 2023; Wang
et al., 2022; Bevilacqua et al., 2022; Ziems et al.,
2023).

8 Limitations

This paper presents a detailed analysis of the DPR
formula, specifically focusing on the original DPR
training formula utilizing a BERT backbone. We
anticipate that our findings will exhibit a degree of
generalizability across various DPR implementa-
tions, given the underlying commonalities of the
core training approach. It is important to recog-
nize that modifications—such as improving hard
negatives, different data augmentation techniques,
different transformer-based backbones, or leverag-
ing multiple views/vectors from models—while
serving to refine and enhance the DPR framework,
build upon and amplify the mechanisms of the DPR
method. These enhancements, though significant
in optimizing performance, are expected not to fun-
damentally change this analysis. However, it is still
a limitation of this paper that we did not repeat our
analysis on more DPR-based methods and datasets.

9 [Ethics Statements

This work presents an analysis of DPR-style train-
ing. Improving DPR-style training would improve
RAG pipelines, increasing the factuality of LLMs
and decreasing the rate which they hallucinate.
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A Appendix
A.1 Context Model Activations

Figure 5 depicts the activation patterns observed in
the context model, mirroring the trends outlined in
Section 4. The only exception occurs in the first
intermediate layer of the pre-trained BERT model,
where a larger number of neurons are activated as
compared to DPR-trained BERT.

A.2 Model Activations at different thresholds

Figures 6, 7, 8, 9, and 10 illustrate neuron activa-
tion patterns across varying activation thresholds
set at 0.005xmax(Attr), 0.01xmax(Attr), 0.05x%
max(Attr), 0.2«xmax(Attr), and 0.3xmax(Attr),
respectively. As the threshold increases from 0.005
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to 0.3, the visualization narrows down to neurons
with stronger activations. This observation rein-
forces the findings discussed in Section 4: pre-
trained BERT shows a trend of fewer but more
consistently activated neurons, in contrast to DPR-
trained BERT, which exhibits a broader array of
neurons activated less frequently.
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BERT Layer-wise Activations
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Figure 5: Layerwise activations for pre-trained and DPR-trained BERT - context model. The parenthetical numbers
indicate the number of neurons in the layer that are above the attribution threshold for any number of examples.
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Figure 6: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.005. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.
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Figure 7: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.01. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of

examples.
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Figure 8: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.05. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of

examples.

13



8

10

Intermediate Layer (168) -
Output Layer (310) -
Intermediate Layer (24) -
Qutput Layer (165) -
Intermediate Layer (26) -
Output Layer (98) - ‘
Intermediate Layer (33) -
Qutput Layer (281) - ‘
Intermediate Layer (73) -
Output Layer (359) - ‘
Intermediate Layer (37) -
Output Layer (429) - ‘
Intermediate Layer (51) -
Qutput Layer (625) - ‘
Intermediate Layer (51) -
Output Layer (663) - ‘
Intermediate Layer (76) -
Qutput Layer (743) -
Intermediate Layer (106) - |
Output Layer (744) - ‘ | ‘
Intermediate Layer (64) -
Qutput Layer (760) - ‘ | ‘

Intermediate Layer (1434) -

Output Layer (768) - ‘ |

BERT Layer-wise Activations

Pre-Trained BERT DPR-Trained BERT
284) -
(310) -
(14) -
(165) -
14) -
(98) -
(1643) - |
| - || |
(583) -
| @59 - | \
(59) -
@29) - |
(191) -
625 - | | |
(242) -
1663) -
(1109) -
(743) - |
(2379) -
| | (744) - |

| (3068) -
| | (760) -

| ] (3072) -
(768) -

5000

4000

3000

2000

- 1000

Figure 9: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.2. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.
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Figure 10: Layerwise activations for pre-trained and DPR-trained BERT with a threshold of 0.3. The parenthetical
numbers indicate the number of neurons in the layer that are above the attribution threshold for any number of
examples.
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