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Abstract

We propose a lightweight foundation model for wearable signals that leverages con-
volutional inductive biases within a masked autoencoder and U-Net CNN backbone.
By explicitly encoding temporal locality and multi-scale structure, our approach
aligns more naturally with the nonstationary dynamics of physiological waveforms
than attention-based transformers. Pretrained on 80k hours of photoplethysmogram
(PPG), the model matches or surpasses larger state-of-the-art baselines across ten
clinical classification tasks. At the same time, it achieves two to three orders of
magnitude reductions in parameters (0.31M vs. 110M), memory footprint (3.6MB
vs. 441.3MB), and compute, while delivering substantial speedups (~4x CPU,
~20x GPU) with resolution flexibility. Together, these results establish compact
convolutional self-supervised models as both scientifically aligned and practically

scalable for potential real-time on-device healthcare monitoring.

1 Introduction

Continuous physiological monitoring through wearable sen-
sors has the potential to transform healthcare by enabling
scalable, real-time assessment of cardiovascular, metabolic,
and systemic states. Recent advances in wearable technology
(from smartwatches to medical-grade devices) now gener-
ate vast streams of multimodal physiological data that are
typically unlabeled, noisy, and high-frequency [Lee and Aka{
matsul, [2025]]. Extracting structure from these signals in a
computationally feasible way remains a core challenge.

Foundation models [Zhou et al., 2024, |[Khan et al.l |2025]]
provide a promising paradigm, learning general-purpose rep-
resentations from large volumes of unlabeled data via self-
supervised pretraining [|[Abbaspourazad et al.,[2023] |Narayan-
swamy et al., |[Lee and Akamatsu, 2025]]. However, when
applied to wearables, their deployment is hindered by enor-
mous parameter counts and high memory requirements that
make inference impractical on resource-constrained edge de-
vices.

Transformer-based architectures [Vaswani et al., 2017,
Narayanswamy et al., [2024]] dominate current foundation
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Figure 1: Model Scaling: The U-
NET CNN exhibits a graceful scal-
ing behavior despite smaller capacity,
outperforming the Transformer and
standard CNN models, due to its use
of hierarchical feature learning.



model design, yet their use for physiological signals reveals limitations. Photoplethysmography
(PPG), for instance, is highly nonstationary, with a morphology that can change by participant. Its
waveforms combine quasi-periodic rhythms with subtle aperiodic variations from arrhythmias, vascu-
lar tone, and motion artifacts [Nitzan and Ovadia-Blechman) 2022} |Almarshad et al.,[2022]. Capturing
such dynamics requires sensitivity to both local temporal structure and longer-range dependencies.
Transformers, lacking explicit inductive biases for locality, often force a trade-off: smaller models
tend to underfit, while larger ones rely on brute-force capacity.

Convolutional networks [LeCun et al., 1989, |0’ Shea and Nash|, [2015]] offer a more natural alternative.
They are parameter-efficient, inherently local, and scale linearly with sequence length. Moreover,
U-Net-style hierarchies [Ronneberger et al|2015]] enable multi-resolution feature extraction that
aligns with physiological waveforms and scale gracefully (Figure|[T).

In this work, we introduce a lightweight masked autoencoding framework [He et al.,|[2022] built on
a U-Net CNN backbone [Ronneberger et al., 2015]]. When pretrained on 80,000 hours of PPG, the
model matches or surpasses state-of-the-art transformer and contrastive methods across ten clinically
motivated tasks. At the same time, its convolutional hierarchy yields reductions of two to three orders
of magnitude in parameters, FLOPs, and memory relative to representative transformer baselines,
alongside substantial inference speedups. Taken together, these results suggest that inductive bias
is as critical as scale: convolutional masked autoencoders provide efficient, resolution-flexible, and
scientifically aligned foundations for wearable sensing, establishing a practical and principled path
toward on-device foundation models.

2 Methods

2.1 Pre-training Data

Our pre-training corpus comprises a collection of approximately 80, 000 hours of wearable photo-
plethysmography (PPG) signals. This data was aggregated from seven independent studies collected
internally across Samsung, encompassing 47, 644 participants and collected across seven distinct
Samsung Galaxy Watch devices. Following preprocessing (Signal Quality Index (SQI) check,
bandpass filters, and z-score normalization rescaling), the continuous signals are segmented into
fixed-length intervals for masked autoencoding. We use 10-second windows sampled at 100 Hz,
resulting in sequences of 1,000 timesteps each. These time intervals were selected in accordance
to clinical practice where clinically collected waveforms are collected in 10 second intervals (e.g.,
Electrocardiograms).

2.2 Masked Autoencoding with a U-Net CNN

We extend the masked autoencoding paradigm [He et al., |2022] to single-channel 1-D physiological
time series by pairing a patch-masking self-supervised objective with a U-Net—style convolutional
encoder—decoder [Ronneberger et al., 2015]. The model takes an input sequence = € R¥, partitions
itinto N = L/P non-overlapping patches of length P, and applies a binary mask m € {0, 1}
sampled i.i.d. from a Bernoulli distribution with parameter r, the masking ratio. We adopt random
masking, identical to the strategy used in the Large Signal Model (LSM) [Narayanswamy et al.|
2024, where masked patch indices are drawn uniformly without replacement from the [V available
positions. The mask is expanded to match the temporal resolution, yielding m’ € {0,1}*. The
observed signal is =  ® (1 — m/), where ® denotes element-wise multiplication. This process
removes large contiguous regions of the input, forcing the model to infer missing dynamics from
incomplete temporal context.

The encoder fy is a hierarchical convolutional network composed of residual blocks and strided con-
volutions, halving the temporal resolution at each stage. This progressive downsampling expands the
receptive field exponentially; in our configuration, the bottleneck spans approximately (=~ 1000/2°)
input timesteps, while earlier layers capture fine-scale fluctuations. Skip connections link encoder
and decoder stages, preserving high-frequency detail alongside coarse abstractions.

The decoder g4 mirrors the encoder, employing transposed convolutions to upsample back to the
original resolution. When skip connections are enabled, upsampled features are concatenated with
encoder activations and refined via convolution, injecting localized detail without discarding global



Model Params () FLOPs ({) Memory (|)

U-NET CNN 1.2M 0.0647 gFLOPS 4.8 MB
Efficient-Net 7.8M 0.70 gFLOPS 31.1 MB
Swin-Transformer 110.6M 11.89 gFLOPS 423.8 MB
LSM-Base 110.6M 15.94 gFLOPS 441.3 MB
Model GPULat. () GPUThr. (1) CPULat.(]) CPUThr (1)
U-NET CNN 0.039 ms 25.8k/s 0.99 ms 1.2k/s
Efficient-Net 0.082 ms 12.2k/s 1.42 ms 0.704k/s
Swin-Transformer 0.704 ms 1.42k/s 2.95 ms 0.456k/s
LSM-Base 0.80 ms 1.24k/s 3.36 ms 0.298k/s

Table 1: Model efficiency and on-device inference: Sample on-device detections on Samsung
Watch 8 device. Size, compute cost, memory footprint, and CPU latency (ms per sample, batch
size 2048) measured over a 10s sequence at I00Hz. Latency (ms per sample, batch size 2048) and
throughput (samples/sec) measured over 10 s windows.

temporal context. A final transposed convolution with bounded nonlinearity outputs & € RY,
matching the amplitude range of the input signal.

_ =)

12
Training minimizes a masked reconstruction loss Lysg (6, @) = Q:J, I2 which computes mean
t=1 t

squared error only over masked positions. This formulation forces the ‘model to estimate p(zam | 20),
where M and O denote masked and observed indices, discouraging trivial copying of visible segments
and encouraging temporally coherent, multi-scale representations.

We optimize with AdamW [Loshchilov and Hutter, 2019] and a warmup—cosine learning rate
schedule. Masking patterns are resampled independently for every sequence and iteration, improv-
ing diversity and reducing overfitting to specific occlusions. All benchmarks use subject-disjoint
train/validation/test splits to prevent identity leakage, and no subjects overlap between pretraining
and evaluation, ensuring that benchmark performance reflects generalization. All hyperparameters
are reported in our Appendix Section [C.2]

2.3 Experimental Design
Inference Efficiency Protocol

To assess the feasibility of real-time digital health monitoring on resource-constrained devices, we
evaluated the U-Net CNN’s inference performance against the transformer baseline (LSM-Base &
Swin Transformer) as well as Efficient-Net. Efficiency was measured across three dimensions: (i)
model footprint and gFLOPs per 10-second window at 100 Hz (Table[I); (ii) latency, defined as mean
per-sample forward-pass time (ms) at batch size 1; and (iii) throughput, the maximum number of
samples processed per second (Table|[T).

All experiments were run on a Samsung Watch Series 8. Benchmarks were run on-device, using
Exynos W1000 CPUs. We also tested on a T4 GPU for potential mobile device deployment;
although the T4 is a datacenter GPU, modern mobile processors like the Qualcomm Adreno 750
found on commercial phones are optimized for high-performance ML and can deliver comparable
efficiency [Buber and Banu, 2018|,[Wesolowski et al.,[2021]], underscoring the practicality of on-device
deployment.

Classification Performance

We additionally evaluate binary classification across ten clinically motivated tasks: premature ven-
tricular contractions (PVC) detection, hypertension status, and eight laboratory abnormality screens
(Potassium, Sodium, Platelets, A1C, Creatinine, Hemoglobin, LDL, CO5). These tasks span acute
events (PVC), chronic conditions (hypertension), and systemic dysregulation (biochemical markers),
thereby probing both transient and long-term predictive capacity from PPG signals.

PVC labels were derived from expert annotations on our internal Samsung datasets. Hypertension
was defined under specialist guidance as systolic blood pressure > 130,mmHg, with labels aggregated
from two independent cohorts in a free world and lab setting. For the remaining eight tasks, we
used Tulane University institution data linking continuous wearable signals with temporally aligned



Model PVC  Hypertension Potassium  Sodium Platelets AIC  Creatinine Hemoglobin LDL  CO.

UNET-CNN  0.802 0.663 0.837 0.614 0.685 0.695 0.552 0.547 0.579  0.457
LSM 0.722 0.646 0.698 0.485 0.541 0.793 0.447 0.586 0.572  0.489
SimCLR 0.715 0.609 0.664 0.492 0.587 0.623 0.531 0.583 0.497  0.401
PaPaGei 0.802 0.646 0.811 0.607 0.770 0.754 0.530 0.585 0.648 0.461

Table 2: Downstream Classification Performance: AUROC on ten classification tasks. Best
performing column are bold.

laboratory results. Each laboratory task was cast as an out-of-range screen: positives correspond to
values exceeding institution-defined clinical thresholds, negatives otherwise.

We compare our proposed U-Net CNN model against three strong baselines: (i) a SimCLR variant,
(i1) PaPaGei [Pillai et al.l 2024]], an open-source PPG foundation model, and (iii) the Large Sensor
Model (LSM) [Narayanswamy et al., [2024], a transformer-based masked autoencoder. Together,
these cover contrastive, transformer and PPG-specific FM paradigms for representation learning.
Performance is all measured via linear probing reported using AUROC as the primary metric, which
is robust to class imbalance across tasks [McDermott et al., 2024].

3 Results

3.1 Classification Results

Table 2| reports AUROC across ten binary tasks. Our U-NET consistently secures the majority of
wins, frequently outperforming or matching models in this benchmark. While PaPaGei and LSM
achieve isolated wins, both rely on substantially larger or more specialized architectures. In contrast,
our model achieves comparable or superior performance with a model footprint two to three orders
of magnitude smaller. Taken together, these results demonstrate that convolutional inductive biases,
when paired with masked autoencoding, can rival or surpass transformer-based approaches in both
efficiency and predictive accuracy.

3.2 Few Shot Learning

A central challenge in the wear-
able domain is that labels are
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3.3 On-Device Benchmarking

A central novelty of U-NET CNN
is that it is, to our knowledge, the
first SSL method compact enough
to run entirely on-watch, rather
than on phone-class hardware. We
evaluate on-device PVC detection
on smartwatch-class CPUs sampled
at 100 Hz (Figure [3). U-NET
CNN is exceptionally lightweight
(1.2M parameters, 0.0647 gFLOPs,
4.8 MB) and achieves 0.99 ms la-
tency per sample, equivalent to pro-
cessing ~1,010 samples/s or ~2.8

hours of signal per minute of wall . L
time. By contrast it shows massive Figure 3: Model efficiency and on-device inference: Sample

performance gains against trans- On-device detections on Samsung Watch 8 device. Size, com-
former baselines, Swin-Transformer Pute cost, memory footprint, and CPU latency (ms per sample,
(110M parameters, 11.9 gFLOPs, Dbatch size 2048) measured over a 10s sequence at 100Hz.
423 MB) and LSM-Base (110M,

15.9 gFLOPs, 441 MB). U-NET CNN also outperforms optimized models like Efficient-Net B1 [Tan
and Le| 2020] providing context to the latency and compactness of our model. U-NET CNN is thus
~3—4x more efficient compared to transformers while fitting fully on-watch (without quantization
[Jacob et al., 2017]]), enabling continuous, private inference at the point of signal collection. This
prototype is strictly for research and is not deployed commercially.

Model footprint. Our U-Net CNN is two to three orders of magnitude lighter than the transformer
baseline while maintaining accuracy (Table[I)). Parameters drop from 110M to 0.31M (~ 355x%
fewer), FLOPs per 10s window at 100Hz fall from 15.94G to 0.0647G (~ 246 x fewer), and memory
shrinks from 441.3MB to 3.6MB (~ 123 x smaller). This compactness enables storage within mobile
or embedded caches and allows multiple task heads to co-reside on a single device, while also
supporting dense multiplexing in server deployments.

Latency. On GPU, mean per-sample latency improves from 0.80,ms to 0.039,ms (~ 20x faster),
and on CPU from 3.93,ms to 0.99,ms (~ 4 x faster) (Table . At 100 Hz, these latencies leave ample
headroom for real-time streaming. Although our benchmarks used NVIDIA Tesla T4 GPUs, modern
smartphone chipsets—such as those equipped with the Qualcomm Adreno 750 GPU—are optimized
for high-performance ML, and thus are likely to deliver comparable efficiency in practice.

Throughput. The model also sustains markedly higher throughput. On GPU, throughput rises from
1.24k to 25.8k samples/s (~ 21 x higher), equivalent to compressing ~ 71 hours of continuous 100
Hz data per real-time second versus ~ 3.4 hours/s for LSM. On CPU, throughput improves from
0.255k to 1.2k samples/s (~ 5x higher), corresponding to ~ 3.3 hours of signal per second. Put
differently, a single GPU could process an entire week of PPG data in under two minutes, while CPU
inference remains feasible for continuous, always-on monitoring.

Taken together, these results highlight that our model delivers substantial speedups over transformer
baselines at a fraction of the cost, combining a 3.6 MB footprint with sub-millisecond latency and
orders-of-magnitude higher throughput. This efficiency enables future research on-deployment for
mobile and wearable devices while reducing energy consumption and thermal load during inference.

4 Discussion

Summary. We introduce a single—channel U-Net CNN masked autoencoder for wearable PPG that,
when pretrained on 80k hours of data, achieves competitive or superior AUROC across ten clinically
relevant tasks. Crucially, our model is two to three orders of magnitude smaller and faster than
transformer baselines, translating into sub-millisecond latency and high throughput on both GPU and
CPU. This efficiency makes real-time, on-device inference practical without sacrificing accuracy.
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Appendix

A Related Work

A.1 Self-Supervised Pretraining Objectives for Wearable Signals

Wearable Devices equipped with photoplethysmography (PPG), electrocardiography (ECG), and
accelerometry generate long, multi-channel time series that encode diverse physiological and behav-
ioral phenomena, including cardiovascular dynamics [Castaneda et al.,|2018]], activity patterns [ Yuan
et al., 2024} [Xu et al., |2025]], sleep cycles [Li et al.| 2021, [Thapa et al.l 2024, [Logacjov et al.,[2025],
and other latent processes. These data streams are abundant, passively collected, and predominantly
unlabeled, making them ideal candidates for large-scale self-supervised learning (SSL) [Kaplan et al.|
2020, Bommasani et al., 2021, |Zhou et al., [2024, [Liang et al.l 2024].

Self-supervised learning (SSL) has become the dominant paradigm for wearable time-series rep-
resentation learning, reflecting both the scarcity of labeled data and the abundance of unlabeled
sequences collected in free-living settings. Among SSL strategies, masked autoencoding has risen
to prominence, inspired by its success in vision [He et al., 2022} [Vaid et al., [2023]] and language
modeling [Devlin et al.|[2019]. In this framework, random patches of the signal are occluded, and
the model is tasked with reconstructing the missing regions. This simple but powerful objective
forces the network to capture latent physiological structure and temporal regularities [Zhang et al.|
2022, |[Kong et al., 2023]]. Recent large-scale efforts, including Google’s LSM series [Narayanswamy
et al., 2024} Xu et al.l|2025]], rely heavily on masked autoencoding, establishing it as a foundation for
pretraining on multi-modal wearable datasets. Despite its effectiveness for local pattern recovery,
masked autoencoding by itself often struggles to capture long-range temporal dependencies unless
explicitly paired with architectures designed for hierarchical structure.

A complementary line of work is contrastive learning, which encourages invariance by drawing
semantically similar samples closer in latent space while pushing dissimilar samples apart [Schmitt
and Kuljanin, [2008| Jaiswal et al.| [2020]]. For wearable signals, the main challenge lies in defining
positive and negative pairs without explicit labels. A proposed solution is participant-level contrastive
training, where segments from the same individual are positives and those from different individuals
are negatives—an approach adopted in Apple’s ECG and PPG foundation models [[Abbaspourazad
et al.,|2023]], echoing the SimCLR framework [[Chen et al.,[2020b]. More domain-specific innovations
attempt to design physiologically meaningful augmentations: PaPaGei leverages PPG morphol-
ogy to construct contrastive pairs [[Pillai et al., 2024, while SleepFM extends the paradigm across
multiple modalities (EEG, ECG, EMG) to enforce cross-modal consistency [Thapa et al., [2024].
Additional embedding-level regularizers, such as differential entropy constraints [Jing et al.| 2021} |Ab{
baspourazad et al.| 2023|], further enrich representation quality. Nevertheless, contrastive methods are
often sensitive to augmentation heuristics, computationally intensive, and limited in interpretability,
providing little insight into which temporal structures are preserved.
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B Reproducibility Statement

Table 3: U-NET CNN architecture components.

Encoder—Decoder

Layer Output Shape EncoderConvBlock

Input (B, L, T DecoderSkipBlock
EncoderConvBlock(1—16) [B, 16, T/2] Layer

EncoderConvBlock(16—32) [B, 32, T/4] Convid (k = 5,522, p=2) Layer
EncoderConvBlock(32—64) [B, 64, T/8] Bgtnc\ilNormi » 8=, p= ConvTransposeld (k = 5, 5=2, p=2. op=1)
EncoderConvBlock(64—128)  [B, 128, T/16] GELU Come g somection
EncoderConvBlock(128—256) [B, 256, T/32] BaichNorm

Convld (k = 5, s=1, p=2) GELU
BatchNorm Convld (k = 5, s=1, p=2)
BatchNorm

Convld (k =1, s=2) + BN GELU

DecoderSkipBlock(256—128)  [B, 128, 77/16]
DecoderSkipBlock(128—64) [B, 64, T/8]

DecoderSkipBlock(64—32) [B, 32, T/4] GELU
DecoderSkipBlock(32—16) [B, 16, T/2]

Final Deconv (16—1) B, 1,T]

Tanh [B, 1,T]

Due to restrictions around data licensing and industry policies, we are unable to release the full
source code associated with U-NET CNN. To mitigate this limitation, we provide complete details
of the model architecture, layer configurations, and hyperparameters in Table 3] This includes all
encoder, decoder, and skip connection blocks, along with kernel sizes, strides, padding, activation
functions, and normalization layers. Together, these descriptions are sufficient to re-implement the
model faithfully in any modern deep learning framework [Paszke et al.,[2019] |Abadi et al.| 2016,
Bradbury et al.| [2018| [Hannun et al.| |2023]]. In addition, we report all training settings (e.g., optimizer,
learning rate schedule, and batch size) in the Appendix Section [C|to further support reproducibility.
Our goal is to ensure that, while the exact implementation cannot be shared, independent researchers
can replicate the methodology and validate the findings presented in this work given the state of Al in
Health Research [McDermott et al.,[2025] |Arnrich et al., 2024].

C Baselines and Model Configuration

Self Supervised methods have become a dominant paradigm for health to study a variety of applica-
tions [Wornow et al., 2023} [Lee et al., 2024}, 2025, |Ono and Lee, 2024, |An et al., [2025| [Lin et al.|
2025, Lee and Lindseyl, 2024, [Thukral et al.]. Foundation models for one-dimensional signals are
predominantly repurposed from architectures designed for vision, with adaptations that reinterpret
temporal structure as a flattened analogue of spatial correlation. In this section we describe our
baseline models and configurations

C.1 Baselines

LSM [Narayanswamy et al., |2024]] introduces a large-scale foundation model trained on multimodal
wearable sensor data. The approach adopts a vision transformer architecture trained via masked
autoencoding with random masking. The model is designed as a general-purpose foundation,
transferring effectively across a range of downstream tasks in physiological sensing and human
activity recognition. In our work, we do not replicate the full multimodal design; instead, we adapt
and constrain the model to a unimodal setting.

SimCLR [Chen et al., |2020b] establishes contrastive learning as a competitive self-supervised
paradigm. The core idea is to maximize agreement between augmented views of the same signal in a
latent space while pushing apart representations of different images. This is implemented using a
ResNET encoder [He et al.,[2015]], a projection head, and a contrastive loss (NT-Xent [Chen et al.,
2020a]).

PaPaGei [Pillai et al.|, 2024] is a domain-specific foundation model designed for optical physiological
sensing, particularly photoplethysmography (PPG). It adapts ResNET-style CNN architectures to learn
robust, generalizable representations from large-scale optical physiological datasets. PaPaGei releases
both model weights and datasets to support reproducibility and broader adoption in physiological
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Figure 4: Performance on generative benchmarks. Mean squared error for random imputation,
temporal interpolation, and temporal extrapolation at varying missingness levels. Bold outline
indicates best performing model.

signal analysis. In our work, we used their source code to benchmark their method by pre-training on
our volume of data to ensure fair comparison.

C.2 Model Hyperparameters

Table 4: Hyperparameter Configurations for Different Models

Configuration \ U-Net CNN LSM SimCLR PaPaGei
Training Steps 50000 15000
Warmup Steps 2500 —
Optimizer AdamW (Loshchilov and Hutter| [2017]))

Opt. momentum [, 52] [0.9, 0.95] .9,0. .9,0.99] —
Base learning rate le-3 5e-3 le-3 le-4
Batch size 2048 256
Weight decay le-4 —
Gradient clipping 1.0 1.0 3.0 —
Dropout 0.0 —
Learning rate schedule Linear Warmup & Cosine Decay —
Loss Function Mean Squared Error Contrastive Loss
Data resolution 1 (signal) - 100 Hz (Sampling rate) x 10 (seconds)
Augmentation Flip, Time Warping, Noise

D Additional Results

D.1 Generative Performance

We conduct a generative benchmarks, where our U-NET CNN consistently outperforms all baselines
across random imputation, temporal interpolation, and temporal extrapolation tasks (Figure[d). In
terms of mean squared error, U-NET CNN achieves the lowest reconstruction error in every setting,
including cases with heavy missingness. By achieving the lowest reconstruction error even in
challenging extrapolation scenarios, U-NET CNN demonstrates reconstruction ability beyond naive
heuristics (e.g., mean fill, nearest neighbor, or linear interpolation). Together, these results establish
U-NET CNN as a strong generative model for missing data problems, with advantages that persist
across scaling regimes and input corruption patterns.
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D.2 Model Configurations Ablations

We conducted a comprehensive ablation study of U-NET CNN on a 100 Hz dataset comprising
ten million segments (roughly 30k hours). The experiments systematically varied architecture and
hyperparameters to understand their effect on reconstruction quality (Extrapolation task from our
generative benchmark in tables where it is not explicitly stated as previously done in [Narayanswamy
et al.}2024])), with multiple independent training runs averaged to reduce variance from stochastic
initialization and data sampling. Unless otherwise noted, all training employed AdamW with a
learning rate of 3 x 104, cosine decay scheduling, and a batch size of 512.

Architecture.

We evaluated U-NET CNN alongside CNN baselines across increasing network depths, defined by
the sequence of hidden channel dimensions [16, 32, 64], [16, 32, 64, 128], and [16, 32, 64, 128, 256].
Table [3]lists the parameter counts, showing a modest growth for U-NET CNN compared to CNN
baselines, with the skip-connected U-NET CNN exhibiting slightly higher capacity than its no-skip
variant.

Table 5: Model Parameters (in K or M)

Model U-NET CNN-tiny U-NET CNN-small U-NET CNN-Base
Depth [16,32,64] [16,32,64,128] [16,32,64,128,256]
CNN 262K 108 K 437K
U-NET CNN-no skip 66.1 K 271 K 1.1I0M
U-NET CNN 753K 309K 1.25M

The impact of network depth on mean absolute error (MAE) and mean squared error (MSE) is
summarized in Table[6] Increasing depth consistently reduced both MAE and MSE for U-NET CNN,
with the deepest configuration yielding the lowest reconstruction error. Skip connections were critical,
as U-NET CNN consistently outperformed its no-skip variant across all depths.

Table 6: MAE and MSE for Different Network Depths

Model U-NET CNN-tiny U-NET CNN-small U-NET CNN-Base

Depth [16,32,64] [16,32,64,128] [16,32,64,128,256]

MAE|, MSE| MAE| MSE| MAE| MSE|

CNN 0.4052 0.2345  0.4177 0.2491 0.4008 0.2315

U-NET CNN-noskip  0.4031  0.2365  0.4006 0.2465 0.3975 0.2339

U-NET CNN 0.4008 0.2309  0.3892 0.2232 0.3827 0.2210
Patch Size.

We varied the spatial-temporal patch sizes over 1, 5, 10, and 20. The results in Tableindicate that 5
provided the best trade-off between local resolution and generative performance. Smaller patches
increased flexibility but slightly degraded performance due to reduced receptive field per token, while
overly large patches caused loss of fine-grained structure.

Table 7: Model Performance for Different Patch Sizes

Model 1 5 10 20
MAE| MSE| MAE| MSE| MAE| MSE| MAE| MSE|
CNN 0.4140  0.2391 0.4008 0.2315 0.4122 0.2449 0.4274  0.2613
U-NET CNN-noskip  0.4069  0.2398 0.3976 0.2339 0.4037 0.2462 0.4195  0.2629
U-NET CNN 0.3809 0.2268 0.3827 02210 0.3861 0.2312 0.4039  0.2479

Convolution Kernel Size.
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Kernel size was varied over {1, 5,10, 20}. Table shows that 5 yielded the lowest errors across all
models, suggesting moderate receptive fields match the temporal and spatial scales of our data. Very
small kernels restricted context aggregation, while very large kernels oversmoothed latent features.

Table 8: Model Performance Across Convolution Kernel Sizes

Model 1 5 10 20

MAE, MSE| MAE| MSE| MAE| MSE| MAE| MSE|
CNN 0.4162 0.2413 0.4010 0.2309 0.4103 0.2418 0.4241 0.2576
U-NET CNN-noskip  0.4090 0.2427 0.3959 0.2331 0.4032 0.2440 0.4208 0.2591
U-NET CNN 0.3921 0.2283 0.3821 0.2206 0.3885 0.2316  0.4047 0.2485
Stride.

We evaluated stride values of 2, 4, and 8 (Table E]) Smaller strides yielded the best performance, par-
ticularly for U-NET CNN, by preserving high temporal resolution in early feature maps. Performance
degraded monotonically with stride increases.

Table 9: Model Performance Across Stride Values

2 4 8
Model
MAE| MSE| MAE| MSE| MAE| MSE|
CNN 0.4016 0.2312 0.4139 0.2445 0.4318  0.2678
U-NET CNN-noskip  0.3976 0.2334 0.4098 0.2471 0.4272  0.2702
U-NET CNN 0.3829  0.2209 0.3928 0.2325 0.4103  0.2504
Masking Ratio.

Finally, we explored the effect of varying the latent masking ratio in the masked autoencoding
objective for generative tasks, with ratios from 0.5 to 0.9. As shown in Table [I0] interpolation and
extrapolation both improved when increasing the ratio up to 0.8, after which performance degraded
for interpolation and collapsed for extrapolation.

Table 10: MAE and MSE for U-NET CNN Across Different Masking Ratios Evaluated on Generative
Tasks

Temporal Interpolation Temporal Extrapolation
MAE | MSE | MAE | MSE |

U-NET CNN Masking Ratio

0.5 0.3972 0.2292 0.4077 0.2519
0.6 0.3889 0.2223 0.3975 0.2294
0.7 0.3848 0.2207 0.3963 0.2278
0.8 0.3796 0.2183 0.3879 0.2217
0.9 0.3818 0.2219 0.2881 0.2216

Final Selection.

These controlled experiments informed the final U-NET CNN configuration: the deepest architecture
[16, 32,64, 128, 256] with skip connections, patch size 5, kernel size 5, stride 2, and a masking
ratio of 0.8, which jointly achieved the best trade-off between reconstruction fidelity and parameter
efficiency.
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