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ABSTRACT

Bi-Level Optimization (BLO) has found diverse applications in machine learning
due to its ability to model nested structures. Addressing large-scale BLO problems
for complex learning tasks presents two significant challenges: ensuring compu-
tational efficiency and providing theoretical guarantees. Recent advancements in
scalable BLO algorithms has predominantly relied on lower-level convexity sim-
plification. In this context, our work takes on the challenge of large-scale BLO
problems involving nonconvexity in both the upper and lower levels. We address
both computational and theoretical challenges simultaneously. Specifically, by
utilizing the Moreau envelope-based reformulation, we introduce an innovative
single-loop gradient-based algorithm with non-asymptotic convergence analysis
for general nonconvex BLO problems. Notably, this algorithm relies solely on
first-order gradient information, making it exceedingly practical and efficient, par-
ticularly for large-scale BLO learning tasks. We validate the effectiveness of our
approach on a series of different synthetic problems, two typicial hyper-parameter
learning tasks and the real-world neural architecture search application. These
experiments collectively substantiate the superior performance of our method.

1 INTRODUCTION

Bi-Level Optimization (BLO) addresses the challenges posed by nested optimization structures that
arise in a wide range of machine learning applications, such as hyper-parameter optimization Pe-
dregosa (2016); Franceschi et al. (2018); Mackay et al. (2019), meta learning Zügner & Günnemann
(2018); Rajeswaran et al. (2019); Ji et al. (2020), neural architecture search Liu et al. (2018); Chen
et al. (2019); Elsken et al. (2020), etc. Refer to recent survey papers Liu et al. (2021a); Zhang et al.
(2023) for more applications of BLO in machine learning, computer vision and signal processing.

The inherent nested nature gives rise to several difficulties and hurdles in effectively solving BLO
problems. Over the past decade, a large number of BLO methods have emerged, with a primary
emphasis on addressing BLO problems featuring strongly convex lower-level (LL) objective. The
LL strong convexity assumption ensures the uniqueness of LL minimizer (a.k.a., LL Singleton),
which simplifies both the optimization process and theoretical analysis, see, e.g., Franceschi et al.
(2018); Grazzi et al. (2020); Ghadimi & Wang (2018); Hong et al. (2023); Chen et al. (2021); Ji
et al. (2021; 2022). To mitigate the restrictive LL Singleton condition, another line of research
is dedicated to BLO with convex LL problems, which bring about several challenges such as the
presence of multiple LL optimal solutions (a.k.a., Non-Singleton). This may hinder the adoption of
implicit-based approaches that rely on the implicit function theorem. To address this concern, recent
advances include: aggregation methods Liu et al. (2020); Li et al. (2020); Liu et al. (2022; 2023b);
difference-of-convex algorithm Gao et al. (2022); Ye et al. (2023); primal-dual algorithms Sow et al.
(2022a); first-order penalty methods Lu & Mei (2023).

While the nonconvex-convex BLO has been extensively studied in the literature, efficient methods
for nonconvex-nonconvex BLO remain under-explored. Beyond LL convexity, Liu et al. (2021c)
proposed an iterative differentiation-based BLO method; Arbel & Mairal (2022b) extended the ap-
proximate implicit differentiation approach; Liu et al. (2021b) utilized the value function reformu-
lation of BLO to develop algorithms in machine learning. All of these works, however, tend to
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Table 1: Comparison of our method MEHA with closely related works for addressing nonconvex-
nonconvex BLO ( IAPTT-GM Liu et al. (2021c), BOME! Ye et al. (2022), V-PBGD Shen & Chen
(2023), GALET Xiao et al. (2023) ). Different methods employ distinct stationary measures, so
we do not delve into complexity comparison here. Below, PL Condition represents the Polyak-
Łojasiewicz (PL) condition; L-Smooth means the Lipschitz continuous gradient condition; Bounded
and Gradient-Bounded specify that |F (x, y)| ≤ C and ∥∇yF (x, y)∥ ≤ C for all (x, y), respec-
tively; F and f are UL and LL objectives, respectively.

Method Upper-Level
Objective

Lower-Level
Objective

Hessian
Free

Single
Loop

Non-
Asymptotic

IAPTT-GM Smooth L-Smooth
& Compactness % % %

GALET L-Smooth
& Gradient-Bounded

PL Condition
& L-Smooth % % "

BOME!
L-Smooth

& Bounded
& Gradient-Bounded

PL Condition
& L-Smooth " % "

V-PBGD L-Smooth
& Gradient-Bounded

PL Condition
& L-Smooth " % "

MEHA
(smooth case) L-Smooth L-Smooth " " "

MEHA
(general case) L-Smooth

L-Smooth Part
+ Weakly Convex

Nonsmooth Part
" " "

be complicated and impractical for large-scale BLO problems, and lack a non-asymptotic analysis.
When LL objective satisfies the Polyak-Łojasiewicz (PL) or local PL conditions, Ye et al. (2022) in-
troduced a fully first-order value function-based BLO algorithm with non-asymptotic convergence
analysis. Recently, while still considering the PL condition, Huang (2023) introduced a momentum-
based BLO algorithm; Xiao et al. (2023) proposed a generalized alternating method; Shen & Chen
(2023) proposed a penalty-based fully first-order BLO algorithm. However, the existing methods
still present two significant challenges: ensuring computational efficiency and offering theoretical
guarantees in the absence of the PL condition. A summary of the comparison of the proposed
method with closely related works is provided in Table 1.

1.1 MAIN CONTRIBUTIONS

To the best of our knowledge, this work is the first study to utilize Moreau envelope-based refor-
mulation of BLO, originally presented in Gao et al. (2023), to design a single-loop and Hessian-
free gradient-based algorithm with non-asymptotic convergence analysis for general BLO problems
with potentially nonconvex and nonsmooth LL objective functions. This setting encompasses a
wide range of machine learning applications, see, e.g., the recent surveys Liu et al. (2021a); Zhang
et al. (2023). Conducting non-asymptotic analysis for our algorithm, which addresses nonconvex
LL problem, poses substantial challenges. Existing single-loop gradient-based methods generally
require the LL objective to either be strongly convex or satisfy the PL condition, as a mechanism to
control the approximation errors incurred when utilizing a single gradient descent step to approx-
imate the real LL optimal solution. Our approach mitigates this limitation by employing Moreau
envelope-based reformulation, where the proximal LL problem may exhibit strong convexity even
if the original LL problem is nonconvex. Consequently, this enables effective error control and
facilitates the algorithm’s non-asymptotic convergence analysis for nonconvex LL problem. We
summarize our contributions as follows.

• We propose the Moreau Envelope reformulation based Hessian-free Algorithm (MEHA),
for general BLO problems with nonconvex and probably nonsmooth LL objective func-
tions. MEHA avoids second-order derivative approximations related to the Hessian matrix
and can be implemented efficiently in a single-loop manner, enhancing its practicality and
efficiency for large-scale nonconvex-nonconvex BLO in deep learning.
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• We provide a rigorous analysis of the non-asymptotic convergence of MEHA under milder
conditions, avoiding the need for either the convexity assumption or the PL condition on
LL problem. In the context of the smooth BLO scenario, our assumption simplifies to UL
and LL objective functions being L-smooth.

• We validate the effectiveness and efficiency of MEHA on various synthetic problems, two
typicial hyper-parameter learning tasks and the real-world neural architecture search appli-
cation. These experiments collectively substantiate the superior performance of MEHA.

1.2 RELATED WORK

We give a brief review of some recent works that are directly related to ours. An expanded re-
view of recent studies is provided in Section A.1. Beyond LL convexity, the recent work Huang
(2023) proposes a momentum-based implicit gradient BLO algorithm and establishes a convergence
analysis framework under the PL condition and some nondegenerate condition of LL Hessian. The
study Xiao et al. (2023) introduces a novel stationary metric for nonconvex-PL BLOs and develops
a generalized alternating method under the PL Condition. Due to the use of implicit gradient or
the KKT reformulation, these methods require computationally intensive operations related to the
Hessian matrix. On the other hand, Ye et al. (2022) presents a Hessian-free (also known as fully first-
order) BLO algorithm utilizing the value function reformulation, which comes with non-asymptotic
convergence guarantees under the PL or local PL conditions. However, it involves a double-loop
structure. Recently, Shen & Chen (2023) develops a penalty-based fully first-order algorithm for
both unconstrained and constrained BLOs. They establish its finite-time convergence under the PL
conditions, although it employs a double-loop structure.

2 A SINGLE-LOOP AND HESSIAN-FREE SOLUTION STRATEGY

In this work, we study a bi-level optimization (BLO) problem:

min
x∈X,y∈Y

F (x, y) s.t. y ∈ S(x), (1)

where S(x) denotes the set of optimal solutions for the lower-level (LL) problem given by

min
y∈Y

φ(x, y) := f(x, y) + g(x, y), (2)

where X and Y are closed convex sets in Rn and Rm, respectively. The function f(x, y) : Rn ×
Rm → R is smooth, and generally nonconvex, while g(x, y) : Rn × Rm → R is potentially
nonsmooth with respect to (w.r.t.) the LL variable y. For specific conditions governing F , f and g,
we refer the reader to Assumptions 3.1- 3.2.

2.1 MOREAU ENVELOPE BASED REFORMULATION

In this study, we do not necessitate convexity assumptions on the LL problem. Drawing inspira-
tion from the Moreau envelope based reformulation introduced in Gao et al. (2023) for convex LL
scenarios, we define the Moreau envelope vγ(x, y) associated with the LL problem as follows:

vγ(x, y) := inf
θ∈Y

{
φ(x, θ) +

1

2γ
∥θ − y∥2

}
, (3)

where γ > 0. By leveraging this Moreau envelope, we investigate a reformulated version of the
original BLO problem,

min
(x,y)∈X×Y

F (x, y) s.t. φ(x, y)− vγ(x, y) ≤ 0. (4)

It should be noted that φ(x, y) ≥ vγ(x, y) holds for all (x, y) ∈ X × Y . For the special case
where φ(x, y) is convex in y ∈ Y for any x ∈ X , the equivalence between the reformulated and the
original BLO problems is established in (Gao et al., 2023, Theorem 2.1). In the absence of convexity
assumptions on φ, but when φ(x, ·) is ρφ2 -weakly convex 1 on Y and γ ∈ (0, 1/ρφ2), we establish

1A function h : Rp → R ∪ {∞} is ρ-weakly convex if h(z) + ρ
2
∥z∥2 is convex. In the context where

z = (x, y), we always say h is (ρ1, ρ2)-weakly convex if h(x, y) + ρ1
2
∥x∥2 + ρ2

2
∥y∥2 is convex.
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in Theorem A.1 that the reformulation (4) is equivalent to a relaxed version of BLO problem (1),

min
x∈X,y∈Y

F (x, y) s.t. y ∈ S̃(x) := {y | 0 ∈ ∇yf(x, y) + ∂yg(x, y) +NY (y)} , (5)

where ∂yg(x, y) denotes the partial Fréchet (regular) subdifferential of g w.r.t. the LL variable at
(x, y), and NY (y) signifies the normal cone to Y at y. The stationary condition characterizing S̃(x)
is the optimality conditions of the lower-level problem within the setting of this work, specifically,
Assumption 3.2. This can be validated through the application of subdifferential sum rules, see, e.g.,
(Mordukhovich, 2018, Proposition 1.30, Theorem 2.19).

Specifically, the reformulated problem (4) becomes equivalent to the original BLO problem when
the set S̃(x) coincides with S(x). This equivalence holds, for instances, when φ(x, ·) is convex or
φ(x, y) ≡ f(x, y) and it satisfies the PL condition, that is, there exists µ > 0 such that for any
x ∈ X , the inequality ∥∇yf(x, y)∥2 ≥ 2µ

(
f(x, y)− infθ∈Rm f(x, θ)

)
holds for all y ∈ Rm.

Before presenting our proposed method, we briefly review some relevant preliminary results related
to vγ(x, y), with a special focus on its gradient properties. Assuming that φ(x, y) is (ρφ1

, ρφ2
)-

weakly convex onX×Y , we demonstrate that for γ ∈ (0, 1
2ρφ2

), the function vγ(x, y)+
ρv1
2 ∥x∥2+

ρv2
2 ∥y∥2 is convex over X × Rm when ρv1 ≥ ρφ1 and ρv2 ≥ 1/γ. This result implies that vγ(x, y)

is weakly convex, as detailed in Lemma A.1. Lastly, we define

Sγ(x, y) := argminθ∈Y

{
φ(x, θ) +

1

2γ
∥θ − y∥2

}
. (6)

For γ ∈ (0, 1
2ρφ2

), the solution set Sγ(x, y) = {θ∗γ(x, y)} is a singleton. Further, when the gradients
∇xf(x, y) and ∇xg(x, y) exist, the gradient of vγ(x, y) can be expressed as follows,

∇vγ(x, y) =
(
∇xf(x, θ

∗
γ(x, y)) +∇xg(x, θ

∗
γ(x, y)),

(
y − θ∗γ(x, y)

)
/γ
)
, (7)

which is established in Lemma A.2.

2.2 SINGLE-LOOP MOREAU ENVELOPE BASED HESSIAN-FREE ALGORITHM (MEHA)

We introduce a single-loop algorithm for the general BLO problem (1), via solving the reformulated
problem (4). At each iteration, using the current iterate (xk, yk, θk), we update the variable θ by
conducting a single proximal gradient iteration on the proximal LL problem (3), as follows,

θk+1 = Proxηkg̃(xk,·)

(
θk − ηk

(
∇yf(x

k, θk) +
1

γ
(θk − yk)

))
, (8)

where ηk is the stepsize, and g̃(x, y) := g(x, y) + δY (y) represents the nonsmooth part of the LL
problem. Here, we define Proxh(y) as the proximal mapping of a function h : Rm → R ∪ {∞},

Proxh(y) := arg min
θ∈Rm

{
h(θ) + ∥θ − y∥2/2

}
.

Subsequently, we update the variables (x, y) using the following scheme,

xk+1 = ProjX
(
xk − αkd

k
x

)
,

yk+1 = Proxβkg̃(xk+1,·)
(
yk − βkd

k
y

)
,

(9)

where ProjX denotes the Euclidean projection operator, and the directions dkx, d
k
y are defined as:

dkx :=
1

ck
∇xF (x

k, yk) +∇xf(x
k, yk) +∇xg(x

k, yk)−∇xf(x
k, θk+1)−∇xg(x

k, θk+1),

dky :=
1

ck
∇yF (x

k+1, yk) +∇yf(x
k+1, yk)− 1

γ
(yk − θk+1).

(10)
Leveraging the formula (7), (∇xf(x

k, θk+1) +∇xg(x
k, θk+1), (yk − θk+1)/γ) can be regarded as

an approximation for the gradient of vγ(x, y), with θk+1 serving as a proxy for θ∗γ(x
k, yk). Hence,
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the update scheme of variables (x, y) in (9) can be construed as an inexact alternating proximal
gradient method, operating on the following nonsmooth problem,

min
(x,y)∈X×Y

1

ck
F (x, y) + f(x, y) + g(x, y)− vγ(x, y).

Here ck > 0 is a penalty parameter. The complete algorithm is outlined in Algorithm 1, whose
specific form for smooth BLOs, i.e., g(x, y) ≡ 0, is provided in Algorithm 2 in Appendix.

Algorithm 1 Single-loop Moreau Envelope based Hessian-free Algorithm (MEHA)
Initialize: x0, y0, θ0, stepsizes αk, βk, ηk, proximal parameter γ, penalty parameter ck;
1: for k = 0, 1, . . . ,K − 1 do
2: update θk+1 = Proxηkg̃(xk,·)

(
θk − ηk

(
∇yf(x

k, θk) + 1
γ (θ

k − yk)
))

;

3: calculate dkx, d
k
y as in equation 10;

4: update
xk+1 = ProjX

(
xk − αkd

k
x

)
,

yk+1 = Proxβkg̃(xk+1,·)
(
yk − βkd

k
y

)
.

5: end for

3 THEORETICAL INVESTIGATIONS

3.1 GENERAL ASSUMPTIONS

Throughout this work, we assume the following standing assumptions on F , f and g hold.

Assumption 3.1 (Upper-Level Objective). The UL objective F is bounded below on X × Y ,
denoted by F := inf(x,y)∈X×Y F (x, y) > −∞. Furthermore, F is LF -smooth2 on X × Y .

Assumption 3.2 (Lower-Level Objective). Assume that the following conditions hold:

(i) The smooth component f(x, y) is Lf -smooth on X × Y .

(ii) The nonsmooth component g(x, y) is (ρg1 , ρg2)-weakly convex on X × Y , i.e., g(x, y) +
ρg1
2 ∥x∥2 +

ρg2
2 ∥y∥2 is convex on X × Y . Additionally, the gradient ∇xg(x, y) exists and

is Lg-Lipschitz continuous on X × Y . Moreover, let g̃(x, y) := g(x, y) + δY (y), there exist
positive constants Lg̃, s̄ such that for any x, x′ ∈ X , θ ∈ Y and s ∈ (0, s̄],∥∥Proxsg̃(x,·)(θ)− Proxsg̃(x′,·)(θ)

∥∥ ≤ Lg̃∥x− x′∥. (11)

These assumptions considerably alleviate the LL problem’s smoothness requirements prevalent in
the BLO literature. Even within the context of smooth BLO, our assumptions only require that the
UL and LL objective functions are both L-smooth, without imposing any conditions on the bound-
edness of ∇yF (x, y), as illustrated in Table 1. Consequently, our problem setting encompasses a
broad range of practical scenarios, see, e.g., the learning models in Grazzi et al. (2020).

It is noteworthy that when the nonsmooth component of the LL objective is decoupled from the
UL variable, that is, g(x, y) = ĝ(y), the condition (11) in Assumption 3.2(ii) is satisfied triv-
ially. Consequently, Assumption 3.2(ii) holds for conventional convex regularizer functions, such
as g(x, y) = λ∥y∥1, and g(x, y) = λ∥y∥2, where λ > 0. The demand for weak convexity is rela-
tively lenient; a broad spectrum of functions meet this requirement. This encompasses conventional
nonconvex regularizers like the Smoothly Clipped Absolute Deviation (SCAD) and the Minimax
Concave Penalty (MCP) (refer to (Böhm & Wright, 2021, Section 2.1)).

Additionally, in Section A.9 of the Appendix, we show that g(x, y) = x∥y∥1 fulfills Assumption
3.2(ii) when X = R+ and Y = Rm.

2A function h is said to be L-smooth on X × Y if h is continuously differentiable and its gradient ∇h is
L-Lipschitz continuous on X × Y .
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Finally, leveraging the descent lemma (Beck, 2017, Lemma 5.7), it can be obtained that any function
featuring a Lipschitz-continuous gradient is inherently weakly convex. Thus, under Assumption
3.2(i), f(x, y) is (ρf1 , ρf2)-weakly convex over X × Y , with ρf1 = ρf2 = Lf . As a result, under
Assumption 3.2, the LL objective function φ(x, y) is (ρφ1

, ρφ2
)-weakly convex on X × Y , where

ρφ1
= ρf1 + ρg1 and ρφ2

= ρf2 + ρg2 .

3.2 CONVERGENCE RESULTS

To establish the convergence results, we first illustrate the decreasing property of the merit function:

Vk := ϕck(x
k, yk) +

[
(Lf + Lg)

2 + 1/γ2
] ∥∥θk − θ∗γ(x

k, yk)
∥∥2 ,

where θ∗γ(x, y) is the unique solution to problem (6) and

ϕck(x, y) :=
1

ck

(
F (x, y)− F

)
+ f(x, y) + g(x, y)− vγ(x, y). (12)

Lemma 3.1. Under Assumptions 3.1 and 3.2, suppose γ ∈ (0, 1
2ρf2+2ρg2

), ck+1 ≥ ck and ηk ∈
[η, (1/γ − ρf2)/(Lf + 1/γ)2] ∩ [η, 1/ρg2) with η > 0, then there exists cα, cβ , cθ > 0 such that
when αk ∈ (0, cα] and βk ∈ (0, cβ ], the sequence of (xk, yk, θk) generated by Algorithm 1 satisfies

Vk+1 − Vk ≤ − 1

4αk
∥xk+1 − xk∥2 − 1

4βk
∥yk+1 − yk∥2 − cθ

∥∥θk − θ∗γ(x
k, yk)

∥∥2 . (13)

It is worth noting that Vk is nonnegative for all k. Utilizing Lemma 3.1, we derive
∞∑
k=0

1

4αk
∥xk+1 − xk∥2 + 1

4βk
∥yk+1 − yk∥2 + cθ

∥∥θk − θ∗γ(x
k, yk)

∥∥2 <∞. (14)

This characteristic plays a crucial role in the convergence analysis. The proof of Lemma 3.1 is
presented in Appendix A.7, accompanied by supplementary lemmas in Appendix A.6.

Given the decreasing property of the merit function Vk, we can establish the non-asymptotic conver-
gence rate for the sequence {(xk, yk, θk)} generated by Algorithm 1. Due to the Moreau envelope
function constraint, conventional constraint qualifications do not hold at any feasible point of the
constrained problem (4), see, e.g., (Ye & Zhu, 1995, Proposition 3.2) and (Gao et al., 2023, Section
2.3). This renders the classical Karush–Kuhn–Tucker (KKT) condition unsuitable as an appropri-
ate necessary optimality condition for problem (4). To circumvent this limitation, inspired by the
approximate KKT condition proposed in Helou et al. (2020), which is independent of constraint
qualifications, we consider using the residual function as follows,

Rk(x, y) := dist
(
0,∇F (x, y) + ck

(
∇f(x, y) + ∂g(x, y)−∇vγ(x, y)

)
+NX×Y (x, y)

)
. (15)

This residual function can also be regarded as a stationarity measure for the following penalized
version of the constrained problem (4), with ck serving as the penalty parameter:

min
(x,y)∈X×Y

ψck(x, y) := F (x, y) + ck

(
f(x, y) + g(x, y)− vγ(x, y)

)
. (16)

It is evident that Rk(x, y) = 0 if and only if 0 ∈ ∂ψck(x, y) +NX×Y (x, y), i.e., the point (x, y) is
a stationary point to the unconstrained problem (16).
Theorem 3.1. Under Assumptions 3.1 and 3.2, suppose γ ∈ (0, 1

2ρf2+2ρg2
), ck = c(k + 1)p with

p ∈ (0, 1/2), c > 0 and ηk ∈ [η, (1/γ − ρf2)/(Lf + 1/γ)2] ∩ [η, 1/ρg2) with η > 0, then there
exists cα, cβ > 0 such that when αk ∈ (α, cα) and βk ∈ (β, cβ) with α, β > 0, the sequence of
(xk, yk, θk) generated by Algorithm 1 satisfies

min
0≤k≤K

∥∥θk − θ∗γ(x
k, yk)

∥∥ = O

(
1

K1/2

)
,

and

min
0≤k≤K

Rk(x
k+1, yk+1) = O

(
1

K(1−2p)/2

)
.

Furthermore, if the sequence ψck(x
k, yk) is upper-bounded, the sequence of (xk, yk) satisfies

φ(xK , yK)− vγ(x
K , yK) = O

(
1

Kp

)
.
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Table 2: Comparison of total iterative time with representative BLO methods in LL non-convex case
with different dimensions.

Category Dimension =1 Dimension =10
Methods BVFIM BOME IAPTT MEHA BVFIM BOME IAPTT MEHA
Time (S) 101.9 3.163 32.327 0.388 33.987 7.634 233.7 5.086
Category Dimension =50 Dimension =100
Methods BVFIM BOME IAPTT MEHA BVFIM BOME IAPTT MEHA
Time (S) 383.0 20.25 210.6 9.447 33.987 803.5 707.9 14.31

4 EXPERIMENTAL RESULTS

We validate the effectiveness and efficiency of MEHA on various synthetic problems, two typicial
hyper-parameter learning tasks and the real-world neural architecture search application. We com-
pare MEHA against Explicit Gradient Based Methods (EGBMs, including RHG Franceschi et al.
(2017), BDA Liu et al. (2020) and IAPTT Liu et al. (2021c)), Implicit Gradient Based Methods
(IGBMs, CG Pedregosa (2016) and NS Rajeswaran et al. (2019)) and currently methods (BV-
FIM Liu et al. (2021b), BOME Ye et al. (2022), F2SA Kwon et al. (2023), BAMM Liu et al.
(2023b)). These experiments collectively substantiate the superior performance of MEHA.

4.1 SYNTHETIC NUMERICAL VERIFICATION

Figure 1: Illustrating the convergence curves of advanced BLO schemes and MEHA by the criterion
of ∥x− x∗∥/∥x∗∥ and ∥y − y∗∥/∥y∗∥ in LL merely convex case.

Figure 2: Visualizing the convergence behavior of BOME, BVFIM, IAPTT, and MEHA in LL non-
convex case with one dimension. We use metrics such as the descent direction ∥dx∥, UL objective
F , and the reconstruction error with x for comparison.

LL Merely Convex Case. We demonstrate the high efficiency of MEHA in LL merely convex case
using the following toy example:

min
x,y1,y2∈Rn

1

2
∥x− y2∥2 +

1

2
∥y1 − e∥2 s.t. y = (y1, y2) ∈ argminy∈R2n

1

2
∥y1∥2 − x⊤y1. (17)

In concrete, the unique solution of the above objective is (e, e, e) ∈ R3n. We plot the conver-
gence behavior in Figure 1. Specifically, MEHA reduces the number of iterative steps by 66% and
inference time by 87.4% compared to the latest BAMM scheme.
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Table 3: Comparison of LL non-smooth case utilizing lasso regression under diverse dimensions.

Dimension=2 Dimension=100 Dimension=1000
Grid Random TPE MEHA Random TPE MEHA Random TPE MEHA

Time (S) 14.87 17.11 3.32 1.91 86.27 232.61 2.67 700.74 2244.44 26.22
Promotion ×37.0 ×8.96 ×1.74 - ×32.3 ×87.1 - ×26.7 ×85.6 -

LL Non-Convex Case. To demonstrate the wide applicability and superiority of MEHA, we also
showcase its effectiveness in LL non-convex case, using the following example:

min
x∈R,y∈Rn

∥x− a∥2 + ∥y − ae− c∥2 s.t. yi ∈ argmin
yi∈R

sin (x+ yi − ci) ∀i, (18)

where c ∈ Rn and a ∈ R. Following the literature Liu et al. (2021b), we can ob-
tain the optimal solution as x∗ = (1−n)a+nC

1+n and y∗i = C + ci − x∗ ∀i. Here C =

argminCk

{
∥Ck − 2a∥ : Ck = −π

2 + 2kπ, k ∈ Z
}

. The optimal UL objective is F ∗ = n(C−2a)2

1+n .
When n = 1, given a = 2 and c = 2, the concrete solution is x∗ = 3π/4 and y∗ = 3π/4 + 2.
Given the initialization point (x0, y0) = (−6, 0), we compare the performance with a few capable
BLO schemes (e.g., BVFIM, BOME, and IAPTT) with different dimensions. In terms of numer-
ical comparison, we provide the iterative times along with advanced competitors in Table 2. In
Figure 2, we present convergence curves in the non-convex scenario, using different metrics. Ad-
ditionally, in Figure 3, we examine their performance across various dimensions. Firstly, MEHA
and BOME exhibit the fastest convergence speed, leveraging Hessian-free computation. Secondly,
MEHA outperforms BOME in approximating the optimal UL objective, as demonstrated in the sec-
ond subFigure Furthermore, we highlight the computational efficiency of MEHA on a large scale in
Figure 6 in Appendix A.2.

Dimension = 10 Dimension = 50 Dimension = 100 Dimension = 200

Figure 3: Illustrating the convergence curves of advanced BLO and MEHA by the criterion of
∥x− x∗∥/∥x∗∥ in LL non-convex case with different dimensions.

LL Non-Smooth Case. We employ conventional lasso regression on synthetic data to verify the
superiority of MEHA, formulated as follows:

min
x∈Rn,0≤x≤1,y∈Rn

n∑
i=1

yi s.t. y ∈ argmin
y∈Rn

1

2
∥y − a∥2 +

n∑
i=1

xi∥yi∥1, (19)

where a :=
(
1
n ,

1
n , · · · ,

1
n , −

1
n ,−

1
n , · · · −

1
n

)
∈ Rn. The number of positive and negative values

is n
2 . The optimal solution can be calculated as xi ∈ [ 1n , 1], yi = 0 when i = 1, · · · n2 and xi = 0,

yi = − 1
n when i = n

2 + 1, · · ·n. The solving time of different methods with various dimensions
is reported in Table 3. Compared to grid search, random search, and Bayesian optimization-based
TPE Bergstra et al. (2013), MEHA consistently requires the least amount of time to find the optimal
solutions across various dimensions, particularly in large-scale scenarios (e.g., 1000 dimension).
You can examine the convergence curves of MEHA in Figure 7 in Appendix A.2.

4.2 REAL-WORLD APPLICATIONS

Few-Shot Learning. The objective of N-way M-shot classification is to enhance the adaptabil-
ity of the hyper model, enabling it to quickly adapt to new tasks. In our experimental anal-
ysis, we conducted experiments on the Omniglot dataset Finn et al. (2017), specifically in 10-
way 1-shot and 20-way 1-shot scenarios. Table 4 presents a comparison of the run-time re-
quired to achieve the same accuracy levels (90% for both 10-way and 20-way scenarios). No-
tably, MEHA achieves similar accuracy levels while significantly reducing computational time.
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Table 4: Comparison of the results for few-shot learning (90% for 10-way and 20-way) and data
hyper-cleaning tasks (FashionMINIST and MNIST datasets).

Method 10-Way 20-Way FashionMNIST MNIST
Acc. (%) Time (S) Acc. (%) Time (S) Acc. (%) Time (S) Steps Acc. (%) Time (S) Steps

RHG 89.77 557.71 90.17 550.51 81.07 50.245 460 87.04 30.743 270
BDA 89.61 869.98 89.78 1187.63 81.06 55.656 140 87.06 75.321 380
CG 89.56 363.76 89.39 602.24 81.00 9.705 150 87.06 26.947 410

BAMM 90.57 180.48 90.13 255.99 81.02 6.193 630 87.02 3.797 380
MEHA 90.45 150.39 90.87 246.72 81.07 3.297 630 87.03 3.063 530

Figure 4: Comparison of the validation loss F and
accuracy for hyper-cleaning on FashionMNIST
dataset.

Data Hyper-Cleaning. In the right part of Ta-
ble 4, we present the accuracy and time required
for various methods to achieve similar levels of
accuracy (81% for FashionMNIST and 87% for
MNIST) in data hyper-cleaning tasks. Notably,
MEHA substantially reduces the time needed
to reach the desired solution. Additionally, in
Figure 4, we visualize the validation loss and
test accuracy for different methods. It is ev-
ident that MEHA exhibits the fastest conver-
gence rate and maintains its superior speed even
as it rapidly achieves an accuracy rate of 81%.

Neural Architecture Search. The primary objective is to discover high-performance neural net-
work structures through an automated process. We specifically focus on gradient-based differen-
tiable NAS methods (e.g., DARTS Liu et al. (2018)), which represent a typical LL non-convex case.
To illustrate the consistency of the discovered architecture’s performance, we provide accuracy re-
sults at various stages in Table 5. It becomes evident that MEHA consistently exhibits superior
performance at different stages compared to specialized designs for architecture search. It is worth
noting that these advanced NAS methods utilize specialized techniques (e.g., progressive search and
channel splitting) to accelerate the searching procedure. By leveraging these effective techniques,
we can further reduce the search cost, such as time. Furthermore, we provide a comparison with
existing BLO methods, demonstrating our superiority in addressing real-world large-scale LL non-
convex applications.

Table 5: Comparing Top-1 accuracy in searching, inference, and final test stages for DARTS Liu
et al. (2018), P-DARTS Chen et al. (2019), PC-DARTS Xu et al. (2019), and BLO schemes.

Methods Searching Inference Test Params (M)
Train Valid Train Valid

DARTS 98.320 88.940 99.481 95.639 95.569 1.277
P-DARTS 96.168 90.488 99.802 95.701 95.710 1.359

PC-DARTS 84.821 83.516 98.163 95.630 95.540 1.570
RHG 98.448 89.556 99.688 95.340 95.340 1.359
CG 99.126 89.298 98.909 95.499 95.370 1.268

IAPTT 98.904 99.512 99.776 95.840 95.809 1.963
MEHA 98.936 99.716 99.601 96.101 95.860 1.406

5 CONCLUSIONS

By rethinking the Moreau envelope-based reformulation for general nonconvex BLOs, we propose
a provably single-loop and Hessian-free gradient-based algorithm, named MEHA. We validate the
effectiveness and efficiency of MEHA for large-scale nonconvex-nonconvex BLO in deep learning.
By leveraging the simplicity of our approach and integrating techniques such as variance reduction
and momentum, we would be interested in studying stochastic algorithms in the future.
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A APPENDIX

The appendix is organized as follows:

• Expanded related work is provided in Section A.1.

• Additional experimental results are provided in Section A.2.

• Experimental details are provided in Section A.3.

• The equivalent result of the reformulated problem 4 is provided in Section A.4.

• We prove the weakly convexity and derive the gradient formula of Moreau Envelope in
Section A.5.

• Some useful auxiliary lemmas are provided in Section A.6.

• The proof of Lemma 3.1 is given in Section A.7.

• The proof of Proposition 3.1 is provided in Section A.8.

A.1 EXPANDED RELATED WORK

In this section, we provide an extensive review of recent studies closely related to ours.

Nonconvex-Convex BLO. The LL strong convexity significantly contributes to the development of
efficient BLO algorithms, see, e.g., Ghadimi & Wang (2018); Hong et al. (2023); Chen et al. (2021);
Ji et al. (2021); Chen et al. (2022a); Ji et al. (2021; 2022); Kwon et al. (2023). It guarantees the
uniqueness of the LL minimizer (Lower-Level Singleton), which facilitates the demonstration of
asymptotic convergence for the iterative differentiation-based approach Franceschi et al. (2018). If
further the LL objective is twice differentiable, the gradient of the UL objective (hyper-gradient) can
be expressed using the implicit function theorem. Then the uniformly LL strong convexity implies
both the smoothness and the Lipschitz continuity properties of the LL solution mapping. These es-
sential properties facilitates the demonstration of non-asymptotic convergence for both the iterative
differentiation and the approximate implicit differentiation approaches with rapid convergence rates,
see e.g., Ghadimi & Wang (2018); Hong et al. (2023); Chen et al. (2021); Yang et al. (2021); Ji &
Liang (2022); Ji et al. (2021); Khanduri et al. (2021); Sow et al. (2022b); Ji et al. (2022); Sow et al.
(2022b); Arbel & Mairal (2022a); Li et al. (2022); Dagréou et al. (2022); Yang et al. (2023). Due
to the implicit gradient, the methods mentioned above necessitate costly manipulation involving the
Hessian matrix, making them all second-order methods. Recently, Kwon et al. (2023) developed
stochastic and deterministic fully first-order BLO algorithms based on the value function approach
Ye & Zhu (1995), and established their non-asymptotic convergence guarantees, while an improved
convergence analysis is provided in the recent work Chen et al. (2023).

In the absence of strong convexity, additional challenges may arise, including the presence of mul-
tiple LL solutions (Non-Singleton), which can hinder the application of implicit-based approaches
involved in the study of nonconvex- strongly-convex BLOs. To tackle Non-Singleton, sequential
averaging methods (also referred to as aggregation methods) were proposed in Liu et al. (2020); Li
et al. (2020); Liu et al. (2022; 2023b). Recent advances include value function based difference-
of-convex algorithm Ye et al. (2023); Gao et al. (2022); primal-dual algorithms Sow et al. (2022a);
first-order penalty methods using a novel minimax optimization reformulation Lu & Mei (2023).

Nonconvex-Nonconvex BLO. While the nonconvex-convex BLO has been extensively studied in
the literature, the efficient methods for nonconvex-nonconvex BLO remain under-explored. Beyond
the LL convexity, the authors in Liu et al. (2021c) develop a method with initialization auxiliary and
pessimistic trajectory truncation; the study Arbel & Mairal (2022b) extends implicit differentiation
to a class of nonconvex LL functions with possibly degenerate critical points and then develops un-
rolled optimization algorithms. However, these works requires second-order gradient information
and do not provide finite-time convergence guarantees. Still with the second-order gradient informa-
tion but providing non-asymptotic analysis, the recent works Huang (2023) and Xiao et al. (2023)
propose a momentum-based BLO algorithm and a generalized alternating method for BLO with a
nonconvex LL objective that satisfies the Polyak-Łojasiewicz (PL) condition, respectively. In con-
trast to these methods discussed above, the value function reformulation of BLO was firstly utilized
in Liu et al. (2021b) to develop BLO algorithms in machine learning, using an interior-point method
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combined with a smoothed approximation. But it lacks a complete non-asymptotic analysis. Sub-
sequently, Ye et al. (2022) introduced a fully first-order value function based BLO algorithm. They
also established the non-asymptotic convergence results when the LL objective satisfies the PL or
local PL conditions. Recently, Shen & Chen (2023) proposed a penalty-based fully first-order BLO
algorithm and established its finite-time convergence under the PL conditions. Notably, this work
relaxed the relatively restrictive assumption on the boundedness of both the UL and LL objectives
that was present in Ye et al. (2022).

Nonsmooth BLO. Despite plenty of research focusing on smooth BLOs, there are relatively fewer
studies addressing nonsmooth BLOs, see, e.g., Mairal et al. (2011); Okuno et al. (2018); Bertrand
et al. (2020; 2022). However, these works typically deal with special nonsmooth LL problems, e.g.,
task-driven dictionary learning with elastic-net (involving the ℓ1-norm) in Mairal et al. (2011); the
Lasso-type models (including the ℓ1-norm as well) for hyper-parameter optimization in Bertrand
et al. (2020); ℓp-hyperparameter learning with 0 < p < 1 in Okuno et al. (2018); non-smooth
convex learning with separable non-smooth terms in Bertrand et al. (2022). Recently, there is a
number of works studying BLOs with general nonsmooth LL problems. By decoupling hyperpa-
rameters from the regularization, based on the value function approach, Gao et al. (2022) develop
a sequentially convergent Value Function-based Difference-of-Convex Algorithm with inexactness
for a specific class of bi-level hyper-parameter selection problems. Gao et al. (2023) introduces
a Moreau envelope-based reformulation of BLOs and develops an inexact proximal Difference-
of-weakly-Convex algorithm with sequential convergence, to substantially weaken the underlying
assumption in Ye et al. (2023) from lower level full convexity to weak convexity. There is also a line
of works devoted to tackle the nonsmooth UL setting, including: Bregman distance-based method
in Huang et al. (2022); proximal gradient-type algorithm in Chen et al. (2022b).

A.2 ADDITIONAL EXPERIMENTAL RESULTS

LL Strong Convex Case. We first illustrate the convergence results leveraging the toy numerical
problem in BDA Liu et al. (2020) with a lower-level convex objective, which can be written as:

min
x∈Rn

1

2
∥x− z0∥2 +

1

2
y∗(x)⊤Ay∗(x) s.t. y∗(x) = arg min

y∈Rn
f(x, y) =

1

2
y⊤Ay − x⊤y, (20)

where x ∈ Rn and y ∈ Rn. We define A has the positive-definite symmetric property and A ∈
Sn×n, z0 ̸= 0 and z0 ∈ Rn. Concretely, we set A = I and z0 = e. Thus, the optimal solution
is x∗ = y∗ = e/2, where e represents the vector containing all elements equal to one. Obviously,
this case satisfies the most convergence assumptions including Explicit Gradient Based Methods
(EGBMs, including RHG Franceschi et al. (2017), BDA and IAPTT Liu et al. (2021c)), Implicit
Gradient Based Methods (IGBMs, CG Pedregosa (2016) and NS Rajeswaran et al. (2019)) and
current proposed methods (BRC Liu et al. (2023a), BOME Ye et al. (2022), F2SA Kwon et al.
(2023), BAMM Liu et al. (2023b)). In details, the numerical comparisons are reported in Table 6.
We also compare these methods in Figure 5. From the behaviors in Figure 5, our method achieves
the fastest convergences compared with EGBMs, IGBMs, and single-loop methods in Table 6, it
can be clearly observed that MEHA has two significant promotions. Compared with the effective
BAMM, MEHA achieves 85.8% improvement of inference time. Furthermore, the proposed scheme
has the lowest computational cost, which only exploits 10.35% memory of BAMM.

Figure 5: Illustrating the convergence curves of advanced BLO methods and MEHA by the criterion
of ∥x− x∗∥/∥x∗∥ and ∥y − y∗∥/∥y∗∥ in LL strong convex case.
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Table 6: Basic properties of time and memory in LL strong convex case.

Category EGBMs IGBMs Others
Methods RHG BDA IAPTT CG NS BRC BOME F2SA BAMM MEHA
Time (S) 14.01 50.13 31.98 15.66 21.10 19.48 11.18 16.21 2.650 0.375
Memory 160768 212480 160768 111104 110592 12800 14848 12288 14848 1536

Table 7: Computational efficiency comparison of BLO schemes in LL strong-convex case.

Convergence Time (Dimension=10000) Convergence Time (Dimension=30000)
RHG CG NS BAMM MEHA RHG CG NS BAMM MEHA

Time (S) 70.59 36.97 40.53 5.890 2.352 Time (S) 110.26 64.21 65.73 5.949 3.538
Promotion ×30.0 ×15.7 ×17.2 ×2.5 - Promotion ×31.2 ×18.2 ×18.6 ×1.68 -

Computational Efficiency Under Large Scale. We provide the convergence time compared with
advanced BLO method in LL non-convex case, as shown in Figure 6. We can obviously observe
that, our method realize the fast convergence among different dimensions, especially for large-scale
computation. We evaluate the computational efficiency to by increasing the dimension of x and y

Figure 6: Computational efficiency comparison of advanced BLO schemes in LL non-convex case.

as 104 and 3 × 104 in LL strong convex case. Table 7 illustrates the superiority of our method to
handle BLO problems with large dimension.

LL Non-Smooth Case. We provide the convergence curves of our method MEHA on different
dimensions in Figure 7. We can conclude that our method can find the optimal hyper-parameter x∗
effectively and the optimal solution {x∗, y∗} under diverse high dimensions.

A.3 EXPERIMENTAL DETAILS

We conducted the experiments on a PC with Intel i7-8700 CPU (3.2 GHz), 32GB RAM and NVIDIA
RTX 1070 GPU. We utilized the PyTorch framework on the 64-bit Windows system.

Synthetic Numerical Examples. The hyper-parameter settings for diverse numerical experiments
are summarized in Table 8. Specifically, as for the compared methods in LL non-smooth case, we
follow the effective practice Gao et al. (2022). We utilize the SGD optimizer to update UL variable
x. We uniformly utilize the ∥x − x∗∥/∥x∗∥ ≤ 10−2 criterion in LL merely convex case and loss
∥F k − F k−1∥/∥F k∥ ≤ 2 × 10−4 in LL non-convex case. The learning steps α, β and η are fixed.
p is setted as 0.49 for the update of ck.

Few-shot Learning. As for this task, the upper-level variables x represent the shared weights for
feature extraction. y denotes the task-specific parameters. Leveraging the cross-entropy loss as the
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n= 100 n= 500

n= 1000 n=2000

Figure 7: Illustrating the convergence curves by the criterion of ∥x− x∗∥/∥x∗∥ and ∥y− y∗∥/∥y∗∥
in LL non-smooth case with different dimensions.

Table 8: Values for hyper-parameters of synthetic numerical experiments.

Category α0 β0 η0 γ c

LL strong-convex 1.5 0.8 0.8 10 33.3
LL merely-convex 0.012 0.1 0.009 5 0.167

LL non-convex 5e−4 5e−4 0.001 200 0.02
LL non-smooth 0.1 1e−5 0.1 10 2

objective L, we provide the bi-level formulation as:

min
x

∑
j

L(x, yj ;Dj
val) s.t. y = argmin

y
L(x, yj ;Dj

train). (21)

Following with the practice Liu et al. (2023c), we utilize four layers of convolution blocks (ConvNet-
4) to construct the backbone (i.e., x), which is widely utilized for few-shot learning tasks. The
task-specific classifier y is composited by fully-connection layers with softmax operation. Adam
and SGD optimizers are utilized to update x and y for all algorithms fairly. The concrete hyper-
parameters of Alg.1 and other shared hyper-parameters are summarized in Table 9. We utilize the
inverse power learning rate annealing strategy to dynamically adjust the learning rate (α and β). η
and γ are fixed.

Table 9: Values for hyper-parameters of few-shot learning.

Parameter Meta batch size Hidden size α0 β0 η0 γ c

Value 16 32 0.008 0.1 0.001 100 0.5

Data Hyper-Cleaning. The mathematical formulation can be written as:

min
x

∑
ui,vi∈Dval

L(y(x);ui,vi) s.t. y = argmin
y

∑
ui,vi∈Dtrain

[σ(x)]iL(y;ui,vi), (22)

where the upper-level variable x is a vector with the same dimension of the number of corrupted
examples. y denotes the target classification model. σ(x) is a sigmoid function. {u,v} are the
data pairs. In detail, we only utilize one-layer of fully-connection to define y. Two datasets Fash-
ionMNIST and MNIST are utilized to conduct the experiments. We randomly split these datasets
to composite the training, validation and testing subsets with 5000, 5000, 10000 examples, respec-
tively. Half of data in the training dataset is tampered. The concrete hyper-parameters of Alg.1 are
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summarized in Table 10. Adam optimizer is utilized to update the UL variable x fairly. We utilize
the inverse power learning rate annealing strategy to dynamically adjust the learning rate (α and β).
η and γ are fixed.

Table 10: Values for hyper-parameters of data hyper-cleaning.

Parameter α0 β0 η0 γ c

Value 0.01 0.1 0.0004 10 40

Neural Architecture Search. The bi-level formulation of neural architecture search is

min
x

Lval(y
∗(x), x;Dval) s.t. y∗(x) = argmin

y
Ltrain(y, x;Dtrain), (23)

where the architecture parameters are denoted as the upper-level variable x and the lower-level
variable y represents the network weights. Lval and Ltrain are the losses on validation and train-
ing datasets. The definition of search space, cells, and experimental hyper-parameters settings are
following with the literature Liu et al. (2018). We leveraged the Cifar-10 dataset to perform the
experiments of image classification. As for the super-network, we conducted the search procedure
with three layers of cells for 50 epochs. The network for training is increased with 8 layers and
trained from scratch with 600 epochs. The concrete hyper-parameters of Alg.1 are summarized in
Table 11. We utilized the cosine decreasing learning rate annealing strategy to dynamically adjust
the learning rate (α, β and η).

Table 11: Values for hyper-parameters of neural architecture search.

Parameter α0 β0 η0 γ c

Value 8e-5 0.025 0.025 200 2

A.4 EQUIVALENCE OF MOREAU ENVELOPE BASED REFORMULATION

The following theorem establishes the equivalence between the Moreau Envelope based reformula-
tion problem (4) and the relaxed bilevel optimization problem (5). The proof is inspired by the one
of Theorem 2.1 in Gao et al. (2023). For the convenience of the reader, we restate problems (4) and
(5) as follows:

min
(x,y)∈X×Y

F (x, y) s.t. φ(x, y)− vγ(x, y) ≤ 0, (4)

where vγ(x, y) := infθ∈Y

{
φ(x, θ) + 1

2γ ∥θ − y∥2
}

, φ(x, y) = f(x, y) + g(x, y), and

min
x∈X,y∈Y

F (x, y) s.t. 0 ∈ ∇yf(x, y) + ∂yg(x, y) +NY (y). (5)

Theorem A.1. Suppose that φ(x, ·) is ρφ2 -weakly convex on Y for all x, i.e., φ(x, ·) + ρφ2

2 ∥ · ∥2 is
convex on Y for all x. Then for γ ∈ (0, 1/ρφ2), the Moreau Envelope based reformulation problem
(4) is equivalent to the relaxed BLO problem (5).

Proof. First, given any feasible point (x, y) of problem (4), it necessarily belongs to X × Y and
satisfies

φ(x, y) ≤ vγ(x, y) := inf
θ∈Y

{
φ(x, θ) +

1

2γ
∥θ − y∥2

}
≤ φ(x, y).

From which, it follows that φ(x, y) = vγ(x, y) and thus y ∈ argminθ∈Y

{
φ(x, θ) + 1

2γ ∥θ − y∥2
}

.
This leads to

0 ∈ ∇yf(x, y) + ∂yg(x, y) +NY (y),

implying that (x, y) is feasible for problem (5).

Conversely, consider that (x, y) is an feasible point of problem (5). This implies that (x, y) ∈ X×Y ,
0 ∈ ∇yf(x, y) + ∂yg(x, y) + NY (y). Given that φ(x, ·) : Rm → R is ρφ2

-weakly convex on Y ,
then when γ ∈ (0, 1/ρφ2), the function φ(x, ·)+ 1

2γ ∥·−y∥
2 is convex on Y , making it lower regular.
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Clearly, δY (·) is lower regular since Y is a closed convex set. By leveraging the subdifferential sum
rules for two lower regular l.s.c. functions (Mordukhovich, 2018, Theorem 2.19), we arrive at

∂

(
φ(x, ·) + 1

2γ
∥ · −y∥2 + δY (·)

)
= ∇yf(x, ·) + ∂yg(x, ·) + (· − y)/γ +NY (·).

With the right-hand set-valued mapping at y containing 0, we can deduce that

0 ∈ ∂θ

(
φ(x, θ) +

1

2γ
∥θ − y∥2 + δY (θ)

)∣∣∣∣
θ=y

.

Thus, invoking the first-order optimally condition for convex functions, we infer

y ∈ argminθ∈Y

{
φ(x, θ) +

1

2γ
∥θ − y∥2

}
.

This implies φ(x, y) = vγ(x, y), confirming (x, y) as an feasible point to problem (4).

A.5 PROPERTIES OF MOREAU ENVELOPE

By invoking (Rockafellar, 1974, Theorem 1), we have that when the LL problem is fully convex,
the Moreau Envelope vγ(x, y) is also convex. We further generalize this finding in the subsequent
lemma, showing that vγ(x, y) retains weak convexity when the LL problem exhibits weak convexity.
The foundation for this proof draws inspiration from Theorem 2.2 as presented in Gao et al. (2023).
Lemma A.1. Suppose that φ(x, y) is (ρφ1

, ρφ2
)-weakly convex on X × Y . Then for γ ∈ (0, 1

2ρφ2
),

ρv1 ≥ ρφ1
and ρv2 ≥ 1

γ , the function

vγ(x, y) +
ρv1
2

∥x∥2 + ρv2
2

∥y∥2

is convex on X × Rm.

Proof. We first extend the definition of the Moreau envelope vγ(x, y) from x ∈ X to x ∈ Rn by

vγ(x, y) := inf
θ∈Rm

{
φ(x, θ) +

1

2γ
∥θ − y∥2 + δX×Y (x, θ)

}
∀x ∈ Rn, y ∈ Rm.

It follows that vγ(x, y) = +∞ for x ̸∈ X . For any ρv1 , ρv2 > 0, the function vγ(x, y)+
ρv1
2 ∥x∥2 +

ρv2
2 ∥y∥2 can be rewritten as

vγ(x, y) +
ρv1
2

∥x∥2 + ρv2
2

∥y∥2

= inf
θ∈Rm

{
ϕγ,ρv (x, y, θ) := φ(x, θ) +

ρv1
2

∥x∥2 + ρv2
2

∥y∥2 + 1

2γ
∥θ − y∥2 + δX×Y (x, θ)

}
.

By direct computations, we obtain the following equation,

ϕγ,ρv (x, y, θ)

=φ(x, θ) +
ρv1
2

∥x∥2 + ρφ2

2
∥θ∥2 + δX×Y (x, θ) +

(
1

2γ
− ρφ2

2

)
∥θ∥2 + 1 + γρv2

2γ
∥y∥2 − 1

γ
⟨θ, y⟩.

Given that ρv1 ≥ ρφ1 , the convexity of φ(x, θ) + ρv1
2 ∥x∥2 + ρφ2

2 ∥θ∥2 + δX×Y (x, θ) can be imme-
diately inferred, given that φ(x, y) is (ρφ1 , ρφ2)-weakly convex on X × Y .

Further, when γ ∈ (0, 1
2ρφ2

) and ρv2 ≥ 1
γ , it can be shown that both conditions, 1

4γ − ρφ2

2 > 0 and
1+γρv2

2 ≥ 1, hold. This implies that the function(
1

2γ
− ρφ2

2

)
∥θ∥2 + 1 + γρv2

2γ
∥y∥2 − 1

γ
⟨θ, y⟩

=

(
1

4γ
− ρφ2

2

)
∥θ∥2 + 1

γ

(
1

4
∥θ∥2 + 1 + γρv2

2
∥y∥2 − ⟨θ, y⟩

)
,
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is convex with respect to (y, θ). Therefore, under the conditions γ ∈ (0, 1
2ρφ2

), ρv1 ≥ ρφ1
and ρv2 ≥

1
γ , the extended-valued function ϕγ,ρv (x, y, θ) is convex with respect to (x, y, θ) over Rn×Rm×Rm.
This, in turn , establishes the convexity of

vγ(x, y) +
ρv1
2

∥x∥2 + ρv2
2

∥y∥2 = inf
θ∈Rm

ϕγ,ρv (x, y, θ)

over X × Rm by leveraging (Rockafellar, 1974, Theorem 1).

Next we develop a calculus for the Moreau Envelope vγ(x, y), providing formulas for its gradient.
These results immediately give insights into the proposed algorithm. The proof closely follows that
of Theorem 2.2 in Gao et al. (2023).
Lemma A.2. Under Assumption of Lemma A.1, suppose that the gradient ∇xg(x, y) exists and is
continuous on X × Y . The for γ ∈ (0, 1

2ρφ2
), Sγ(x, y) = {θ∗γ(x, y)} is a singleton. Furthermore,

∇vγ(x, y) =
(
∇xf(x, θ

∗
γ(x, y)) +∇xg(x, θ

∗
γ(x, y)),

(
y − θ∗γ(x, y)

)
/γ
)
. (24)

Proof. Considering γ ∈ (0, 1
2ρφ2

) and the weakly convexity of φ(x, y), the function φ(x, θ) +
1
2γ ∥θ − y∥2 + δY (θ) is shown to be ( 1γ − 1

ρφ2
)-strongly convex with respect to θ. Consequently,

Sγ(x, y) = {θ∗γ(x, y)} is a singleton.

Further, for γ ∈ (0, 1
2ρφ2

), we have ρv1 ≥ ρφ1
and ρv2 ≥ 1

γ . Leveraging Lemma A.1 and its

subsequent proof, the function vγ(x, y) +
ρv1
2 ∥x∥2 + ρv2

2 ∥y∥2 is established as convex, and for any
(x, y) ∈ X × Y , the following holds

vγ(x, y) +
ρv1
2

∥x∥2 + ρv2
2

∥y∥2 = inf
θ∈Y

{
φ(x, θ) +

ρv1
2

∥x∥2 + ρv2
2

∥y∥2 + 1

2γ
∥θ − y∥2

}
,

where φ(x, θ) + ρv1
2 ∥x∥2 + ρv2

2 ∥y∥2 + 1
2γ ∥θ− y∥2 is convex with respect to (x, y, θ). By applying

(Ye et al., 2023, Theorem 3) and exploiting the continuously differentiable property of g(x, y) with
respect to x, the desired formulas are derived.

A.6 AUXILIARY LEMMAS

In this section, we present auxiliary lemmas crucial for the non-asymptotic convergence analysis.
Lemma A.3. Let γ ∈ (0, 1

2ρφ2
), (x̄, ȳ) ∈ X × Rm. Then for any ρv1 ≥ ρφ1 , ρv2 ≥ 1

γ and (x, y)

on X × Rm, the following inequality holds:

−vγ(x, y) ≤ −vγ(x̄, ȳ)− ⟨∇vγ(x̄, ȳ), (x, y)− (x̄, ȳ)⟩+ ρv1
2

∥x− x̄∥2 + ρv2
2

∥y − ȳ∥2. (25)

Proof. According to Lemma A.1, vγ(x, y)+
ρv1
2 ∥x∥2+ ρv2

2 ∥y∥2 is convex onX×Rm. As a result,
for any (x, y) on X × Rm,

vγ(x, y) +
ρv1
2

∥x∥2 + ρv2
2

∥y∥2

≥ vγ(x̄, ȳ) +
ρv1
2

∥x̄∥2 + ρv2
2

∥ȳ∥2 + ⟨∇vγ(x̄, ȳ) + (ρv1 x̄, ρv2 ȳ), (x, y)− (x̄, ȳ)⟩.

Consequently, the conclusion follows directly.

Lemma A.4. For any 0 < s < 1/ρg2 , and θ, θ′ ∈ Rm, the following inequality is satisfied:

∥Proxsg̃(x,·)(θ)− Proxsg̃(x,·)(θ
′)∥ ≤ 1/(1− sρg2)∥θ − θ′∥. (26)

Proof. Let us denote Proxsg̃(x,·)(θ) and Proxsg̃(x,·)(θ
′) by θ+ and θ′

+, respectively. From the
definitions, we have

0 ∈ ∂y g̃(x, θ
+) +

1

s
(θ+ − θ),
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and

0 ∈ ∂y g̃(x, θ
′+) +

1

s
(θ′

+ − θ′).

Given the ρg2 -weakly convexity of g̃(x, ·), it implies〈
−1

s
(θ+ − θ) +

1

s
(θ′

+ − θ′), θ+ − θ′
+
〉

≥ −ρg2∥θ+ − θ′
+∥2.

From the above, the desired conclusion follows directly.

Lemma A.5. Let γ ∈ (0, 1
ρf2+2ρg2

). Then, there exists Lθ > 0 such that for any (x, y), (x′, y′) ∈
X × Rm, the following inequality holds:

∥θ∗γ(x, y)− θ∗γ(x
′, y′)∥ ≤ Lθ∥(x, y)− (x′, y′)∥. (27)

Proof. Given that θ∗γ(x, y) is optimal for the convex optimization problem minθ∈Y φ(x, θ)+ 1
2γ ∥θ−

y∥2, we have

0 ∈ ∇yf(x, θ
∗
γ(x, y)) + ∂yg(x, θ

∗
γ(x, y)) + (θ∗γ(x, y)− y)/γ +NY (θ

∗
γ(x, y)),

0 ∈ ∇yf(x
′, θ∗γ(x

′, y′)) + ∂yg(x
′, θ∗γ(x

′, y′)) + (θ∗γ(x
′, y′)− y′)/γ +NY (θ

∗
γ(x

′, y′)).

Due to the ρg2 -weakly convexity of g̃(x, y) := g(x, y) + δY (y) with respect to y, we obtain

θ∗γ(x, y) = Proxsg̃(x,·)
(
θ∗γ(x, y)− s

(
∇yf(x, θ

∗
γ(x, y)) + (θ∗γ(x, y)− y)/γ

))
,

θ∗γ(x
′, y′) = Proxsg̃(x′,·)

(
θ∗γ(x

′, y′)− s
(
∇yf(x

′, θ∗γ(x
′, y′)) + (θ∗γ(x

′, y′)− y′)/γ
))
,

(28)

when 0 < s < 1/ρg2 . Consequently, we deduce that

∥θ∗γ(x, y)− θ∗γ(x
′, y′)∥

=
∥∥Proxsg̃(x,·) (θ∗γ(x, y)− s

(
∇yf(x, θ

∗
γ(x, y)) + (θ∗γ(x, y)− y)/γ

))
− Proxsg̃(x′,·)

(
θ∗γ(x

′, y′)− s
(
∇yf(x

′, θ∗γ(x
′, y′)) + (θ∗γ(x

′, y′)− y′)/γ
)) ∥∥

≤
∥∥Proxsg̃(x,·) (θ∗γ(x, y)− s

(
∇yf(x, θ

∗
γ(x, y)) + (θ∗γ(x, y)− y)/γ

))
− Proxsg̃(x,·)

(
θ∗γ(x

′, y′)− s
(
∇yf(x

′, θ∗γ(x
′, y′)) + (θ∗γ(x

′, y′)− y′)/γ
)) ∥∥

+
∥∥Proxsg̃(x,·) (θ∗γ(x′, y′)− s

(
∇yf(x

′, θ∗γ(x
′, y′)) + (θ∗γ(x

′, y′)− y′)/γ
))

− Proxsg̃(x′,·)
(
θ∗γ(x

′, y′)− s
(
∇yf(x

′, θ∗γ(x
′, y′)) + (θ∗γ(x

′, y′)− y′)/γ
)) ∥∥

≤
∥∥Proxsg̃(x,·) (θ∗γ(x, y)− s

(
∇yf(x, θ

∗
γ(x, y)) + (θ∗γ(x, y)− y)/γ

))
− Proxsg̃(x,·)

(
θ∗γ(x

′, y′)− s
(
∇yf(x, θ

∗
γ(x

′, y′)) + (θ∗γ(x
′, y′)− y)/γ

)) ∥∥
+
∥∥Proxsg̃(x,·) (θ∗γ(x′, y′)− s

(
∇yf(x, θ

∗
γ(x

′, y′)) + (θ∗γ(x
′, y′)− y)/γ

))
− Proxsg̃(x,·)

(
θ∗γ(x

′, y′)− s
(
∇yf(x

′, θ∗γ(x
′, y′)) + (θ∗γ(x

′, y′)− y′)/γ
)) ∥∥

+ Lg̃∥x− x′∥,

(29)

where the second inequality is a consequence of Assumption 3.2(ii), which states that
∥Proxsg̃(x,·)(θ) − Proxsg̃(x′,·)(θ)∥ ≤ Lg̃∥x − x′∥ for any θ ∈ Y and s ∈ (0, s̄]. Invoking Lemma
A.4, for 0 < s < 1/ρg2 , we derive

∥Proxsg̃(x,·)(θ)− Proxsg̃(x,·)(θ
′)∥ ≤ 1/(1− sρg2)∥θ − θ′∥ ∀θ, θ′ ∈ Rm. (30)

Given that f(x, θ) + 1
2γ ∥θ − y∥2 is ( 1γ − ρf2)-strongly convex with respect to θ on Y , we have〈

∇yf(x, θ
∗
γ(x, y)) + (θ∗γ(x, y)− y)/γ −∇yf(x, θ

∗
γ(x

′, y′))− (θ∗γ(x
′, y′)− y)/γ, θ∗γ(x, y)− θ∗γ(x

′, y′)
〉

≥
(
1

γ
− ρf2

)
∥θ∗γ(x, y)− θ∗γ(x

′, y′)∥2,
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which implies that when 0 < s ≤ (1/γ − ρf2)/(Lf + 1/γ)2,∥∥θ∗γ(x, y)− s
(
∇yf(x, θ

∗
γ(x, y)) + (θ∗γ(x, y)− y)/γ

)
− θ∗γ(x

′, y′)

+ s
(
∇yf(x, θ

∗
γ(x

′, y′)) + (θ∗γ(x
′, y′)− y)/γ

) ∥∥2
≤
[
1− 2s (1/γ − ρf2) + s2(Lf + 1/γ)2

]
∥θ∗γ(x, y)− θ∗γ(x

′, y′)∥2

≤ [1− s (1/γ − ρf2)] ∥θ∗γ(x, y)− θ∗γ(x
′, y′)∥2.

Combining this with (30), we infer that∥∥Proxsg̃(x,·) (θ∗γ(x, y)− s
(
∇yf(x, θ

∗
γ(x, y)) + (θ∗γ(x, y)− y)/γ

))
− Proxsg̃(x,·)

(
θ∗γ(x

′, y′)− s
(
∇yf(x, θ

∗
γ(x

′, y′)) + (θ∗γ(x
′, y′)− y)/γ

)) ∥∥
≤ 1/(1− sρg2)

∥∥θ∗γ(x, y)− s
(
∇yf(x, θ

∗
γ(x, y)) + (θ∗γ(x, y)− y)/γ

)
− θ∗γ(x

′, y′) + s
(
∇yf(x, θ

∗
γ(x

′, y′)) + (θ∗γ(x
′, y′)− y)/γ

) ∥∥
≤
√
1− s (1/γ − ρf2)/(1− sρg2)∥θ∗γ(x, y)− θ∗γ(x

′, y′)∥.

(31)

Next, utilizing Lemma A.4, for 0 < s < 1/ρg2 , it follows that∥∥Proxsg̃(x,·) (θ∗γ(x′, y′)− s
(
∇yf(x, θ

∗
γ(x

′, y′)) + (θ∗γ(x
′, y′)− y)/γ

))
− Proxsg̃(x,·)

(
θ∗γ(x

′, y′)− s
(
∇yf(x

′, θ∗γ(x
′, y′)) + (θ∗γ(x

′, y′)− y′)/γ
)) ∥∥

≤ 1/(1− sρg2)
∥∥θ∗γ(x′, y′)− s

(
∇yf(x, θ

∗
γ(x

′, y′)) + (θ∗γ(x
′, y′)− y)/γ

)
− θ∗γ(x

′, y′) + s
(
∇yf(x

′, θ∗γ(x
′, y′)) + (θ∗γ(x

′, y′)− y′)/γ
) ∥∥

≤ s/(1− sρg2)
(
∥∇yf(x, θ

∗
γ(x

′, y′))−∇yf(x
′, θ∗γ(x

′, y′))∥+ ∥y − y′∥/γ
)

≤ s/(1− sρg2)

(
Lf∥x− x′∥+ 1

γ
∥y − y′∥

)
.

(32)

From estimates (29), (31) and (32), we deduce that, for any s > 0 satisfying s ≤ (1/γ−ρf2)/(Lf +
1/γ)2, s ≤ s̄ and s < 1/ρg2 , the following condition holds

∥θ∗γ(x, y)− θ∗γ(x
′, y′)∥ ≤

√
1− s (1/γ − ρf2)/(1− sρg2)∥θ∗γ(x, y)− θ∗γ(x

′, y′)∥

+ s/(1− sρg2)

(
Lf∥x− x′∥+ 1

γ
∥y − y′∥

)
+ Lg̃∥x− x′∥.

(33)

Given that γ < 1
ρf2+2ρg2

, it can be inferred that 1/γ − ρf2 > 2ρg2 . This implies 1 − 2sρg2 >

1 − s(1/γ − ρf2), leading to 1 − s(1/γ − ρf2) < (1 − sρg2)
2. Consequently, we deduce√

1− s (1/γ − ρf2)/(1−sρg2) < 1. From these derivations, the desired conclusion is evident.

Lemma A.6. Suppose γ ∈ (0, 1
ρf2+2ρg2

) and ηk ∈ (0, (1/γ − ρf2)/(Lf + 1/γ)2] ∩ (0, 1/ρg2), the

sequence of (xk, yk, θk) generated by Algorithm 1 satisfies

∥θk+1 − θ∗γ(x
k, yk)∥ ≤ σk∥θk − θ∗γ(x

k, yk)∥, (34)

where σk :=
√
1− ηk (1/γ − ρf2)/(1− ηkρg2) < 1.

Proof. Recalling (28) from Lemma A.5 that when ηk < 1/ρg2 ,

θ∗γ(x
k, yk) = Proxηkg̃(xk,·)

(
θ∗γ(x

k, yk)− ηk
(
∇yf(x

k, θ∗γ(x, y)) + (θ∗γ(x
k, yk)− yk)/γ

))
.

Considering the update rule for θk+1 as defined in (8) and using arguments analogous to those in the
derivation of (31) from Lemma A.5, when ηk ≤ (1/γ − ρf2)/(Lf + 1/γ)2, it follows

∥θk+1 − θ∗γ(x
k, yk)∥ ≤ σk∥θk − θ∗γ(x

k, yk)∥,

where σk :=
√
1− ηk (1/γ − ρf2)/(1 − ηkρg2). Notably, σk < 1 is a consequence of γ <

1
ρf2+2ρg2

.
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As previously highlighted, the update of variables (x, y) in (9) can be interpreted as inexact alter-
nating proximal gradient from (xk, yk) on min(x,y)∈X×Y ϕck(x, y), in which ϕck is defined in (12)
as

ϕck(x, y) :=
1

ck

(
F (x, y)− F

)
+ f(x, y) + g(x, y)− vγ(x, y).

The subsequent lemma illustrates that the function ϕck(x, y) exhibits a monotonic decreasing be-
havior with errors at each iteration.
Lemma A.7. Under Assumptions 3.1 and 3.2, suppose γ ∈ (0, 1

2ρf2+2ρg2
) and βk < 1/ρg2 , the

sequence of (xk, yk, θk) generated by Algorithm 1 satisfies

ϕck(x
k+1, yk+1) ≤ϕck(x

k, yk)−
(

1

2αk
− Lϕk

2
− βkL

2
θ

γ2

)
∥xk+1 − xk∥2

−
(

1

2βk
− ρg2

2
− Lϕk

2

)
∥yk+1 − yk∥2

+

(
αk
2
(Lf + Lg)

2 +
βk
γ2

)∥∥θk+1 − θ∗γ(x
k, yk)

∥∥2 ,
(35)

where Lϕk
:= LF /ck + Lf + Lg +max{ρφ1

, 1/γ}.

Proof. Under the conditions of Assumptions 3.1 and 3.2(i), the functions F and f exhibit LF - and
Lf -smooth on X × Y , respectively. Further, according to Assumption 3.2(ii), the function g(·, yk)
is Lg-smooth on X . Leveraging these assumptions and invoking Lemma A.3, we deduce

ϕck(x
k+1, yk) ≤ϕck(x

k, yk) + ⟨∇xϕck(x
k, yk), xk+1 − xk⟩+ Lϕk

2
∥xk+1 − xk∥2, (36)

with Lϕk
:= LF /ck + Lf + Lg + max{ρφ1 , 1/γ}. Considering the update rule for the variable x

as defined in (9) and leveraging the property of the projection operator ProjX , it follows that

⟨xk − αkd
k
x − xk+1, xk − xk+1⟩ ≤ 0,

leading to

⟨dkx, xk+1 − xk⟩ ≤ − 1

αk
∥xk+1 − xk∥2.

Combining this inequality with (36), if can be deduced that

ϕck(x
k+1, yk) ≤ϕck(x

k, yk)−
(

1

αk
− Lϕk

2

)
∥xk+1 − xk∥2

+
〈
∇xϕck(x

k, yk)− dkx, x
k+1 − xk

〉
.

(37)

Given the expression for ∇vγ(x, y) as derived in Lemma A.2 and the definition of dkx provided in
(10), we obtain∥∥∇xϕck(x

k, yk)− dkx
∥∥2

=
∥∥∇xf(x

k, θ∗γ(x
k, yk)) +∇xg(x

k, θ∗γ(x
k, yk))−∇xf(x

k, θk+1)−∇xg(x
k, θk+1)

∥∥2
≤ (Lf + Lg)

2
∥∥θk+1 − θ∗γ(x

k, yk)
∥∥2 .

(38)

This yields 〈
∇xϕck(x

k, yk)− dkx, x
k+1 − xk

〉
≤ αk

2
(Lf + Lg)

2
∥∥θk+1 − θ∗γ(x

k, yk)
∥∥2 + 1

2αk
∥xk+1 − xk∥2,

which combining with (37) leads to

ϕck(x
k+1, yk) ≤ϕck(x

k, yk)−
(

1

2αk
− Lϕk

2

)
∥xk+1 − xk∥2

+
αk
2
(Lf + Lg)

2
∥∥θk+1 − θ∗γ(x

k, yk)
∥∥2 . (39)
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Considering the update rule for variable y given by (9), and the ρg2 -weakly convex property of
g(xk+1, ·) over Y , it follows that for βk < 1/ρg2 ,

⟨dky , yk+1 − yk⟩+ g(xk+1, yk+1) +

(
1

βk
− ρg2

2

)
∥yk+1 − yk∥2 ≤ g(xk+1, yk). (40)

Under Assumptions 3.1 and 3.2(i), where F and f are LF - and lf -smooth on X × Y , respectively,
and invoking Lemma A.3, we deduce

ϕck(x
k+1, yk+1)− g(xk+1, yk+1)

≤ϕck(x
k+1, yk)− g(xk+1, yk) + ⟨∇y (ϕck − g) (xk+1, yk), yk+1 − yk⟩+ Lϕk

2
∥yk+1 − yk∥2.

(41)
Combining this inequality with (40), we obtain

ϕck(x
k+1, yk+1)

≤ϕck(x
k+1, yk)−

(
1

βk
− ρg2

2
− Lϕk

2

)
∥yk+1 − yk∥2

+
〈
∇y (ϕck − g) (xk+1, yk)− dky , y

k+1 − yk
〉
.

(42)

Given the expression for ∇vγ(x, y) as derived in Lemma A.2 and the definition of dky from (10), we
deduce∥∥∇y (ϕck − g) (xk+1, yk)− dky

∥∥2 =
∥∥(yk − θ∗γ(x

k+1, yk))/γ − (yk − θk+1)/γ
∥∥2

=
1

γ2
∥∥θk+1 − θ∗γ(x

k+1, yk)
∥∥2 , (43)

and thus〈
∇y (ϕck − g) (xk+1, yk)− dky , y

k+1 − yk
〉
≤ βk
2γ2

∥∥θk+1 − θ∗γ(x
k+1, yk)

∥∥2 + 1

2βk
∥yk+1 − yk∥2.

Consequently, we have from (42) that

ϕck(x
k+1, yk+1)

≤ϕck(x
k+1, yk)−

(
1

2βk
− ρg2

2
− Lϕk

2

)
∥yk+1 − yk∥2 + βk

2γ2
∥∥θk+1 − θ∗γ(x

k+1, yk)
∥∥2

≤ϕck(x
k+1, yk)−

(
1

2βk
− ρg2

2
− Lϕk

2

)
∥yk+1 − yk∥2 + βk

γ2
∥∥θk+1 − θ∗γ(x

k, yk)
∥∥2

+
βkL

2
θ

γ2
∥∥xk+1 − xk

∥∥2 ,
(44)

where the last inequality follows from Lemma A.5. The conclusion follows by combining this with
(39).

A.7 PROOF OF LEMMA 3.1

Leveraging the auxiliary lemmas from the preceding section, we demonstrate the decreasing prop-
erty of the merit function Vk.

Lemma A.8. Under Assumptions 3.1 and 3.2, suppose γ ∈ (0, 1
2ρf2+2ρg2

), ck+1 ≥ ck and ηk ∈
[η, (1/γ−ρf2)/(Lf+1/γ)2]∩ [η, 1/ρg2) with η > 0, then there exists cα, cβ , cθ > 0 such that when
0 < αk ≤ cα and 0 < βk ≤ cβ , the sequence of (xk, yk, θk) generated by Algorithm 1 satisfies

Vk+1 − Vk ≤ − 1

4αk
∥xk+1 − xk∥2 − 1

4βk
∥yk+1 − yk∥2 − cθ

∥∥θk − θ∗γ(x
k, yk)

∥∥2 , (45)

where cθ = 1
2

(
ηρg2

1−ηρg2

)2 (
(Lf + Lg)

2 + 1/γ2
)
.
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Proof. Let us first recall (35) from Lemma A.7, which states that

ϕck(x
k+1, yk+1) ≤ϕck(x

k, yk)−
(

1

2αk
− Lϕk

2
− βkL

2
θ

γ2

)
∥xk+1 − xk∥2

−
(

1

2βk
− ρg2

2
− Lϕk

2

)
∥yk+1 − yk∥2

+

(
αk
2
(Lf + Lg)

2 +
βk
γ2

)∥∥θk+1 − θ∗γ(x
k, yk)

∥∥2 ,
(46)

when βk < 1/ρg2 . Since ck+1 ≥ ck, we can infer that (F (xk+1, yk+1) − F )/ck+1 ≤
(F (xk+1, yk+1)− F )/ck. Combining this with (46) leads to

Vk+1 − Vk =ϕck+1
(xk+1, yk+1)− ϕck(x

k, yk)

+
(
(Lf + Lg)

2 + 1/γ2
) ∥∥θk+1 − θ∗γ(x

k+1, yk+1)
∥∥2

−
(
(Lf + Lg)

2 + 1/γ2
) ∥∥θk − θ∗γ(x

k, yk)
∥∥2

≤ϕck(x
k+1, yk+1)− ϕck(x

k, yk)

+
(
(Lf + Lg)

2 + 1/γ2
) ∥∥θk+1 − θ∗γ(x

k+1, yk+1)
∥∥2

−
(
(Lf + Lg)

2 + 1/γ2
) ∥∥θk − θ∗γ(x

k, yk)
∥∥2

≤ −
(

1

2αk
− Lϕk

2
− βkL

2
θ

γ2

)
∥xk+1 − xk∥2

−
(

1

2βk
− ρg2

2
− Lϕk

2

)
∥yk+1 − yk∥2

+
(
(Lf + Lg)

2 + 1/γ2
) ∥∥θk+1 − θ∗γ(x

k+1, yk+1)
∥∥2

−
(
(Lf + Lg)

2 + 1/γ2
) ∥∥θk − θ∗γ(x

k, yk)
∥∥2

+

(
αk
2
(Lf + Lg)

2 +
βk
γ2

)∥∥θk+1 − θ∗γ(x
k, yk)

∥∥2 .

(47)

We can demonstrate that∥∥θk+1 − θ∗γ(x
k+1, yk+1)

∥∥2 − ∥∥θk − θ∗γ(x
k, yk)

∥∥2 + αk
2

∥∥θk+1 − θ∗γ(x
k, yk)

∥∥2
≤ (1 + ϵk +

αk
2
)
∥∥θk+1 − θ∗γ(x

k, yk)
∥∥2 − ∥∥θk − θ∗γ(x

k, yk)
∥∥2

+ (1 +
1

ϵk
)∥θ∗γ(xk+1, yk+1)− θ∗γ(x

k, yk)∥2

≤ (1 + ϵk +
αk
2
)σ2
k∥θk − θ∗γ(x

k, yk)∥2 −
∥∥θk − θ∗γ(x

k, yk)
∥∥2

+ (1 +
1

ϵk
)L2

θ

∥∥(xk+1, yk+1)− (xk, yk)
∥∥2 ,

for any ϵk > 0, where the second inequality is a consequence of Lemmas A.5 and A.6. Since
γ < 1

ρf2+2ρg2
, we have 1−2ηkρg2 > 1−ηk(1/γ−ρf2), and thus σ2

k = (1−ηk (1/γ − ρf2))/(1−

ηkρg2)
2 ≤ 1−

(
ηkρg2

1−ηkρg2

)2
. By setting ϵk = 1

4

(
ηkρg2

1−ηkρg2

)2
in the above inequality, we deduce that

when αk ≤ 1
2

(
ηkρg2

1−ηkρg2

)2
, it follows that∥∥θk+1 − θ∗γ(x

k+1, yk+1)
∥∥2 − ∥∥θk − θ∗γ(x

k, yk)
∥∥2 + αk

2

∥∥θk+1 − θ∗γ(x
k, yk)

∥∥2
≤ − 1

2

(
ηkρg2

1− ηkρg2

)2 ∥∥θk − θ∗γ(x
k, yk)

∥∥2
+

(
1 + 4

(
1− ηkρg2
ηkρg2

)2
)
L2
θ

∥∥(xk+1, yk+1)− (xk, yk)
∥∥2 .

(48)
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Similarly, we can show that, when βk ≤ 1
4

(
ηkρg2

1−ηkρg2

)2
, it holds that

∥∥θk+1 − θ∗γ(x
k+1, yk+1)

∥∥2 − ∥∥θk − θ∗γ(x
k, yk)

∥∥2 + βk
∥∥θk+1 − θ∗γ(x

k, yk)
∥∥2

≤ − 1

2

(
ηkρg2

1− ηkρg2

)2 ∥∥θk − θ∗γ(x
k, yk)

∥∥2
+

(
1 + 4

(
1− ηkρg2
ηkρg2

)2
)
L2
θ

∥∥(xk+1, yk+1)− (xk, yk)
∥∥2 .

(49)

Combining (47), (48) and (49), we have

Vk+1 − Vk

≤ −

[
1

2αk
− Lϕk

2
− βkL

2
θ

γ2
−

(
1 + 4

(
1− ηkρg2
ηkρg2

)2
)
L2
θ

(
(Lf + Lg)

2 + 1/γ2
)]

∥xk+1 − xk∥2

−

[
1

2βk
− ρg2

2
− Lϕk

2
−

(
1 + 4

(
1− ηkρg2
ηkρg2

)2
)
L2
θ

(
(Lf + Lg)

2 + 1/γ2
)]

∥yk+1 − yk∥2

− 1

2

(
ηkρg2

1− ηkρg2

)2 (
(Lf + Lg)

2 + 1/γ2
) ∥∥θk − θ∗γ(x

k, yk)
∥∥2 .

(50)

When ck+1 ≥ ck, ηk ≥ η > 0, αk ≤ 1
2

(
ηρg2

1−ηρg2

)2
and βk ≤ 1

4

(
ηρg2

1−ηρg2

)2
and , it holds that, for

any k, αk ≤ 1
2

(
ηkρg2

1−ηkρg2

)2
, βk ≤ 1

4

(
ηkρg2

1−ηkρg2

)2
,

Lϕk

2
+
βkL

2
θ

γ2
+

(
1 + 4

(
1− ηkρg2
ηkρg2

)2
)
L2
θ

(
(Lf + Lg)

2 + 1/γ2
)

≤ Lϕ0

2
+

L2
θ

4γ2

(
ηρg2

1− ηρg2

)2

+

(
1 + 4

(
1− ηρg2
ηρg2

)2
)
L2
θ

(
(Lf + Lg)

2 + 1/γ2
)
=: Cα,

(51)

and
ρg2
2

+
Lϕk

2
+

(
1 + 4

(
1− ηkρg2
ηkρg2

)2
)
L2
θ

(
(Lf + Lg)

2 + 1/γ2
)

≤ ρg2
2

+
Lϕ0

2
+

(
1 + 4

(
1− ηρg2
ηρg2

)2
)
L2
θ

(
(Lf + Lg)

2 + 1/γ2
)
=: Cβ ,

(52)

Consequently, since 1
4Cβ

< 1
2ρg2

, if cα, cβ > 0 satisfies

cα ≤ min

{
1

2

(
ηρg2

1− ηρg2

)2

,
1

4Cα

}
, cβ ≤ min

{
1

4

(
ηρg2

1− ηρg2

)2

,
1

4Cβ

}
, (53)

then, when 0 < αk ≤ cα and 0 < βk ≤ cβ , it holds that

1

2αk
− Lϕk

2
− βkLθ

γ2
−

(
1 + 4

(
1− ηkρg2
ηkρg2

)2
)
L2
θ

(
(Lf + Lg)

2 + 1/γ2
)
≥ 1

4αk
,

and

1

2βk
− ρg2

2
− Lϕk

2
−

(
1 + 4

(
1− ηkρg2
ηkρg2

)2
)
L2
θ

(
(Lf + Lg)

2 + 1/γ2
)
≥ 1

4βk
.

Consequently, the conclusion follows from (50).

25



Under review as a conference paper at ICLR 2024

A.8 PROOF OF THEOREM 3.1

By leveraging the monotonically decreasing property of the merit function Vk, we can establish the
non-asymptotic convergence for the sequence (xk, yk, θk) generated by the proposed MEHA.
Theorem A.2. Under Assumptions 3.1 and 3.2, suppose γ ∈ (0, 1

2ρf2+2ρg2
), ck = c(k + 1)p with

p ∈ [0, 1/2), c > 0 and ηk ∈ [η, (1/γ − ρf2)/(Lf + 1/γ)2] ∩ [η, 1/ρg2) with η > 0, then there
exists cα, cβ > 0 such that when αk ∈ (α, cα) and βk ∈ (β, cβ) with α, β > 0, the sequence of
(xk, yk, θk) generated by Algorithm 1 satisfies

min
0≤k≤K

∥∥θk − θ∗γ(x
k, yk)

∥∥ = O

(
1

K1/2

)
,

and

min
0≤k≤K

Rk(x
k+1, yk+1) = O

(
1

K(1−2p)/2

)
.

Furthermore, if there exists M > 0 such that ψck(x
k, yk) ≤ M for any k, the sequence of (xk, yk)

satisfies

φ(xK , yK)− vγ(x
K , yK) = O

(
1

Kp

)
.

Proof. First, Lemma 3.1 ensures the existence of cα, cβ > 0 for which (13) is valid under the
conditions αk ≤ cα, βk ≤ cβ . Upon telescoping (13) over the range k = 0, 1, . . . ,K − 1, we derive

K−1∑
k=0

( 1

4αk
∥xk+1 − xk∥2 + 1

4βk
∥yk+1 − yk∥2

+
1

2

(
ηρg2

1− ηρg2

)2 (
(Lf + Lg)

2 + 1/γ2
) ∥∥θk − θ∗γ(x

k, yk)
∥∥2 )

≤V0 − VK ≤ V0,

(54)

where the last inequality is valid because VK is nonnegative. Thus, we have
∞∑
k=0

∥∥θk − θ∗γ(x
k, yk)

∥∥2 <∞,

and then

min
0≤k≤K

∥∥θk − θ∗γ(x
k, yk)

∥∥ = O

(
1

K1/2

)
.

According to the update rule of variables (x, y) as defined in (9), we have that

0 ∈ ckd
k
x +NX(xk+1) +

ck
αk

(
xk+1 − xk

)
,

0 ∈ ckd
k
y + ck∂yg(x

k+1, yk+1) +NY (y
k+1) +

ck
βk

(
yk+1 − yk

)
.

(55)

From the definitions of dkx and dky provided in (10), and given ∇xg(x
k+1, yk+1) ×

∂yg(x
k+1, yk+1) ⊆ ∂g(xk+1, yk+1), a result stemming from the weakly convexity of g and its

continuously differentiable property with respect to x as outlined in Assumption 3.2(ii) and corrob-
orated by (Gao et al., 2023, Proposition 2.1)), we deduce

(ekx, e
k
y) ∈∇F (xk+1, yk+1) + ck

(
∇f(xk+1, yk+1) + ∂g(xk+1, yk+1)−∇vγ(xk+1, yk+1)

)
+NX×Y (x

k+1, yk+1),

with
ekx := ∇xψck(x

k+1, yk+1)− ckd
k
x −

ck
αk

(
xk+1 − xk

)
,

eky := ∇y (ψck − g) (xk+1, yk+1)− ckd
k
y −

ck
βk

(
yk+1 − yk

)
.

(56)
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Next, we estimate ∥ekx∥. We have

∥ekx∥ ≤ ∥∇xψck(x
k+1, yk+1)−∇xψck(x

k, yk)∥+ ∥∇xψck(x
k, yk)− ckd

k
x∥+

ck
αk

∥∥xk+1 − xk
∥∥ .

Considering the first term on the right hand side of the preceding inequality, and invoking Assump-
tions 3.1 and 3.2 alongside Lemma A.2, A.3, A.5, we establish the existence of Lψ1

> 0 such
that

∥∇xψck(x
k+1, yk+1)−∇xψck(x

k, yk)∥ ≤ ckLψ1
∥(xk+1, yk+1)− (xk, yk)∥.

Using (38) and Lemma A.6, we deduce

∥∇xψck(x
k, yk)− ckd

k
x∥ = ck

∥∥∇xϕck(x
k, yk)− dkx

∥∥ ≤ ck(Lf + Lg)
∥∥θk − θ∗γ(x

k, yk)
∥∥ .

(57)
Hence, we have

∥ekx∥ ≤ ckLψ1
∥(xk+1, yk+1)− (xk, yk)∥+ ck

αk

∥∥xk+1 − xk
∥∥+ ck(Lf + Lg)

∥∥θk − θ∗γ(x
k, yk)

∥∥ .
For ∥eky∥, it follows that

∥eky∥ ≤∥∇y (ψck − g) (xk+1, yk+1)−∇y (ψck − g) (xk+1, yk)∥+ ck
βk

∥∥yk+1 − yk
∥∥

+ ∥∇y (ψck − g) (xk+1, yk)− ckd
k
y∥.

Analogously, invoking Assumptions 3.1 and 3.2 together with Lemmas A.2, A.3, and A.5, we have
the existence of Lψ2

> 0 such that

∥∇y (ψck − g) (xk+1, yk+1)−∇y (ψck − g) (xk+1, yk)∥ ≤ ckLψ2
∥yk+1 − yk∥.

Using (43), Lemma A.5 and Lemma A.6, we obtain

∥∇y (ψck − g) (xk+1, yk)− ckd
k
y∥ =ck

∥∥∇y (ϕck − g) (xk+1, yk)− dky
∥∥

≤ck
γ

(∥∥θk − θ∗γ(x
k, yk)

∥∥+ Lθ∥xk+1 − xk∥
)
.

Therefore, we have

∥eky∥ ≤ ckLψ2
∥yk+1 − yk∥+ ck

βk

∥∥yk+1 − yk
∥∥+ ck

γ

(∥∥θk − θ∗γ(x
k, yk)

∥∥+ Lθ∥xk+1 − xk∥
)
.

With the estimations of ∥ekx∥ and ∥eky∥, we obtain the existence of Lψ > 0 such that

Rk(x
k+1, yk+1) ≤ ckLψ∥(xk+1, yk+1)− (xk, yk)∥+

(
ck
αk

+
ckLθ
γ

)∥∥xk+1 − xk
∥∥

+
ck
βk

∥∥yk+1 − yk
∥∥+ ck(Lf + Lg +

1

γ
)
∥∥θk − θ∗γ(x

k, yk)
∥∥ .

Employing the aforementioned inequality and given that αk ≥ α and βk ≥ β for some positive
constants α, β, we demonstrate the existence of CR > 0 such that

1

c2k
Rk(x

k+1, yk+1)2

≤CR

( 1

4αk
∥xk+1 − xk∥2 + 1

4βk
∥yk+1 − yk∥2

+
1

2

(
ηρg2

1− ηρg2

)2 (
(Lf + Lg)

2 + 1/γ2
) ∥∥θk − θ∗γ(x

k, yk)
∥∥2 ).

(58)

Combining this with (54) implies that
∞∑
k=0

1

c2k
Rk(x

k+1, yk+1)2 <∞. (59)
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Because 2p < 1, it holds that
K∑
k=0

1

c2k
=

1

c2

K∑
k=0

(
1

k + 1

)2p

≥ 1

c2

∫ K+2

1

1

t2p
dt ≥ (K + 2)1−2p − 1

(1− 2p)c2
,

and we can conclude from (59) that

min
0≤k≤K

Rk(x
k+1, yk+1) = O

(
1

K(1−2p)/2

)
.

Finally, since ψck(x
k, yk) ≤M and F (xk, yk) ≥ F for any k, we have

ck

(
φ(xk, yk)− vγ(x

k, yk)
)
≤M − F , ∀k,

and we can obtain from ck = c(k + 1)p that

φ(xK , yK)− vγ(x
K , yK) = O

(
1

Kp

)
.

A.9 VERIFYING ASSUMPTION 3.2 FOR g(x, y) = x∥y∥1

In this section, we prove that g(x, y) = x∥y∥1 satisfies Assumption 3.2 when X = R+ and Y =
Rm.

Initially, as depicted in (Gao et al., 2023, Section 4.1), for x ∈ R+ and y ∈ Rm,

x∥y∥1 +
√
p

2
x2 +

√
p

2
∥y∥2 =

m∑
i=1

1

2
√
p
(x+

√
p|yi|)2 , (60)

which is convex with respect to (x, y) ∈ R+ × Rm. Consequently, g(x, y) is
√
p-weakly convex.

Further, for any given s ∈ (0, s̄], we have

Proxsg̃(x,·)(θ) = Proxsx∥·∥1
(θ) = Tsx(θ) = (Tsx(θi))mi=1 = ([|θi| − sx]+ · sgn(θi))mi=1 . (61)

This results in ∥∥Proxsg̃(x,·)(θ)− Proxsg̃(x′,·)(θ)
∥∥ ≤ s∥x− x′∥ ≤ s̄∥x− x′∥. (62)

In summary, Assumption 3.2 is satisfied by g(x, y) = x∥y∥1 when X = R+ and Y = Rm.

A.10 MOREAU ENVELOPE BASED EFFICIENT FIRST-ORDER BILEVEL ALGORITHM
(SMOOTH CASE)

Algorithm 2 Moreau Envelope Based Efficient First-Order Bilevel Algorithm (Smooth Case)
Initialize: x0, y0, θ0, learning rates αk, βk, ηk, proximal parameter γ, penalty parameter ck;
1: for k = 0, 1, . . . ,K − 1 do
2: update

θk+1 = ProjY

(
θk − ηk

(
∇yf(x

k, θk) +
1

γ
(θk − yk)

))
,

xk+1 = ProjX

(
xk − αk

(
1

ck
∇xF (x

k, yk) +∇xf(x
k, yk)−∇xf(x

k, θk+1)

))
,

yk+1 = ProjY

(
yk − βk

(
1

ck
∇yF (x

k+1, yk) +∇yf(x
k+1, yk)− 1

γ
(yk − θk+1)

))
.

3: end for

For smooth BLO problems, specifically when g(x, y) ≡ 0 in (1), Algorithm 1 is specialized to
Algorithm 2.
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