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ABSTRACT

On-policy reinforcement learning (RL) has become a popular framework for solv-
ing sequential decision problems due to its computational efficiency and theoretical
simplicity. Some on-policy methods guarantee every policy update is constrained
to a trust region relative to the prior policy to ensure training stability. These
methods often require computationally intensive non-linear optimization or require
a particular form of action distribution. In this work, we show that applying KL
penalization alone is nearly sufficient to enforce such trust regions. Then, we show
that introducing a “fixup” phase is sufficient to guarantee a trust region is enforced
on every policy update while adding fewer than 5% additional gradient steps in
practice. The resulting algorithm, which we call FixPO, is able to train a variety of
policy architectures and action spaces, is easy to implement, and produces results
competitive with other trust region methods.

1 INTRODUCTION

On-policy reinforcement learning (RL) methods seek to optimize a stochastic policy, where a neural
network is used to parameterize a distribution π(a|s) over actions conditioned on the current state. In
this framework, most on-policy RL methods seek to limit the scale of updates between successive
policies during optimization. Some on-policy RL methods operate by guaranteeing that each policy
update remains within a “trust region” (Schulman et al., 2015a). These methods are used when
training stability during a long period of training is essential. However, finding a policy update near
the edge of the trust region often comes at significant computational cost. Another branch of on-policy
methods instead perform “proximal” policy updates, that limit the expected scale of policy updates,
but can result in individual policy updates being of arbitrary magnitude (Schulman et al., 2017a).
These methods are much more computationally efficient, but large-scale training can require the use
of multiple training runs or human intervention to recover from training instabilities. In this work we
propose Fixup Policy Optimization (FixPO), which combines both a proximal primary phase with
a precise fixup phase, that operate by sharing a single penalty coefficient β. By performing a more
conservative proximal update before strictly enforcing a trust region, FixPO is able to approximately
match the computational efficiency and rewards of proximal methods while providing the same
stability guarantees as trust region methods.

An important result in the development of trust-region methods is a proof presented with the Trust
Region Policy Optimization algorithm (TRPO) (Schulman et al., 2015a) that for a particular value
of C, iteratively applying the following update provably results in monotonic improvement of the
expected return of πi :

πi+1 = argmaxπ [Lπi
(π)− CDmax

KL (πi, π)] (1)

where Lπi is the importance sampled “policy gradient” loss, Dmax
KL (πi, π) is the maximal value of

the Kullback-Leibler (KL) divergence between the action distributions of πi(s|a) and of π(s|a), and
C is a function of the characteristics of the Markov Decision Process (MDP). In practice, TRPO
uses constrained optimization to perform policy updates subject to a constraint on the average KL
divergence instead of only penalizing the maximal value. Due to constrained optimization preventing
the use of minibatching and increasing the computational cost of optimizing deep neural networks,
Proximal Policy Optimization algorithms (Schulman et al., 2017a) are more frequently used in
practice. These methods do not guarantee that any precise trust region constraint is enforced but
approximately limit the scale of DKL(πi, π) .
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The most well-studied PPO algorithm, often referred to as PPO-clip, or shortened to just PPO,
operates by zeroing the loss contribution from likelihood ratios outside of the range 1 ± ϵCLIP .
Clipping in this way is very computationally efficient and ensures that for each state, at most one
gradient step is taken which could increase the DKL(πi, π) beyond the trust region. However, another
class of PPO algorithms also introduced in Schulman et al. (2017a) instead feature a policy update
inspired by the theory above:

πi+1 = argmaxπ [Lπi
(π)− βDKL(πi, π)] (2)

In the above equation, β is a hyperparameter that is typically tuned dynamically in response to the
scale of recent policy updates as measured in DKL(πi, π). Although this PPO variant is believed
to perform worse than PPO-clip, its simplicity and connection to the above theory have made it a
subject of study in several later works, which have extended it in various ways.

In this work, we demonstrate that by rapidly adapting β, it is possible to nearly enforce a trust region.
Then, by performing a small number of additional gradient steps in a “fixup phase,” we can guarantee
the trust region is precisely enforced for a wide range of policy classes.

This work provides the following contributions:

1. An RL algorithm, FixPO, that efficiently enforces a guaranteed trust region between every
policy update using only KL penalization.

2. Experiments showing the performance of the proposed algorithm on a variety of benchmarks
compared to other trust region methods.

3. Ablation experiments showing the effect of each component of the proposed algorithm and
why those components are necessary.

2 RELATED WORK
Trust Region Methods The algorithm presented in this work follows in large part from the theory
of trust region reinforcement learning methods, namely Schulman et al. (2015a) and Schulman et al.
(2017a), combined with more recent insights from Andrychowicz et al. (2020). Work on FixPO
was also guided by publications on PPO variants, such as Cobbe et al. (2020), from which the term
“phase” was borrowed, and Hilton et al. (2021), which analyzes the effect of β in relation to batch
size. Works that analyze various aspects of PPO were also extremely useful, including Engstrom
et al. (2020), which provides a detailed analysis of the relationship between PPO and TRPO, and
Hsu et al. (2020), which examines several aspects of PPO in detail, such as the action distribution
parameterization and effect of different KL penalties. More recently, Huang et al. (2022) provides an
analysis of the effect of many proposed changes to PPO which was invaluable in this research.

Besides Schulman et al. (2015a), other methods for guaranteeing constrained updates have been
proposed specifically for Gaussian policies (Akrour et al., 2019; Otto et al., 2021).
Lagrangian Methods Although we are not aware of any comprehensive survey on the topic, loss
functions structured similarly to Augmented Lagrangian methods (Hestenes, 1969) are frequently used
in various Deep RL methods, including Song et al. (2019); Andrychowicz et al. (2020). Our proposed
Lβ is similar to the losses proposed in those works, with two additions we describe in Section 3.1.
Lagrangian methods used in some off-policy Deep RL work, such as for automatic entropy tuning in
Haarnoja et al. (2018) and constraining offline Q estimates in Kumar et al. (2020). There are several
applications of Lagrangian methods in Safe Deep RL works (Chow et al., 2015; Achiam et al., 2017),
Imitation Learning and Inverse RL (Peng et al., 2018), Differentiable Economics (Dütting et al., 2017;
Ivanov et al., 2022), and Multi-Agent RL (Ivanov et al., 2023).
KL Regularized RL Outsides of trust region methods, using the KL divergence to regularize RL
has been a long-standing method (Rawlik et al., 2012), and continues to be used in recent methods
such as Kozuno et al. (2022), Vieillard et al. (2020), and Galashov et al. (2019). KL regularization is
also a critical component of several recent offline RL methods, such as Wu et al. (2019), Nair et al.
(2020), and Jaques et al. (2019).
Benchmarks and Libraries The primary benchmarks used in this work were the Mujoco (Todorov
et al., 2012) benchmarks from OpenAI Gym (Brockman et al., 2016), and the Meta-World (Yu et al.,
2019) benchmarks. In most of our experiments, we make use of code from Tianshou (Weng
et al., 2022), although we used stable-baselines3 (Raffin et al., 2021) in earlier experiments.
We also used sample-factory (Petrenko et al., 2020) to run experiments on tasks from the
DMLab-30 (Beattie et al., 2016) benchmark.
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3 METHOD

3.1 LOSS FUNCTIONS

Our method begins with the well-known loss function that results in policy updates that approximate
Equation 2, also known as the KL regularized importance sampled policy gradient.

L(s, a, Â) = − πθ(a|s)
πθ′(a|s)

Â︸ ︷︷ ︸
Lπ

+β

LKL︷ ︸︸ ︷
DKL [πθ(a|s), πθ′(a|s)] (3)

Where πθ is the policy undergoing the update, πθ′ is the policy from the previous step, and Â are
advantages estimated using GAE (Schulman et al., 2015b). In order to define modified forms of this
loss function, we also define the individual components, Lπ and LKL, both of which will be used to
optimize the policy parameters θ.

We depart from Schulman et al. (2017a) in how we acquire β. Instead of using a fixed value or
dynamically tuning β on an epoch-by-epoch manner, we instead tune β as a Lagrange multiplier using
a loss similar to those described in Song et al. (2019); Andrychowicz et al. (2020). However, we make
two modifications that differ from the losses described in those works. First, we enforce a target on
Dmax

KL [πθ, πθ′ ], which is theoretically justified by Equation 2. Although typically dismissed as fragile
to outliers, we find that the maximal KL value is less sensitive to hyperparameter choices, which
we discuss in Section 4.1. Secondly, we add a term Cβ , which mirrors the C value in Equation 2.
This results in moving the optima of the Lagrangian optimization away from the constraint surface,
which we discuss in more detail in Paragraph 15. This results in the following loss, which tunes β to
approximately enforce the trust region constraint.

Lβ = β sg [ϵKL − CβD
max
KL [πθ, πθ′ ]] (4)

Where sg is the “stop-gradient” operator, which we include as a reminder that this loss function
should only be tuning β, and should not modify the policy parameters θ. ϵKL is a hyperparameter
that controls the size of the trust region, which performs a similar role as ϵCLIP in PPO-clip. Cβ

moves the target of the primary phase away from the edge of the trust region and compensates for
bias introduced by computing Dmax

KL on minibatches. When Cβ = 1, this loss function tunes β such
that Dmax

KL ≈ ϵKL, by increasing β when CβD
max
KL > ϵKL and decreasing β when CβD

max
KL < ϵKL.

When Cβ > 1, optimizing Lβ results in Dmax
KL ≈ ϵKL/Cβ < ϵKL. This difference between the

expected convergence in the primary phase (ϵKL/Cβ) and the exit condition of the fixup phase (ϵKL)
is effective at limiting the number of iterations of the fixup phase, as we show below.

In practice, πθ and the value function may share some of the parameters θ, so the loss function on
θ includes a loss LVF on the value function. Typically, LVF will be the mean squared error of the
predicted returns, although value clipping may also be used (Andrychowicz et al., 2020), which most
PPO implementations use by default. Combining the policy gradient loss with the value function
loss and KL penalty results in a comprehensive loss on the neural network parameters that we use in
Algorithm 1:

Lθ = Lπ + LVF + βLKL (5)

3.2 FIXUP PHASE

The most significant unique component of FixPO is the fixup phase, which runs after the primary
phase. In the primary phase (lines 5 - 7 in Algorithm 1), we repeatedly optimize γθLθ + γβLβ . By
choosing γβ such that γβ >> γθ (and Lθ and Lβ have similar scales), minimizing the weighted
combination of the losses results in approximate convergence to an optimum of Lβ ≈ 0. However, it
is still possible that Dmax

KL [πθ, πθ′ ] > ϵKL, and thus that the trust region constraint is not satisfied.
To guarantee that the trust region is enforced, the fixup phase iterates through all minibatches, and
checks to see if the constraint is satisfied at every state. If the constraint is not satisfied at any state,
then the fixup phase performs an update using γθLKL + γβLβ and resumes checking all minibatches,
as described in lines 8 - 15 in Algorithm 1.
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Algorithm 1: FIXPO
Data: Policy πθ(a|s)
Data: Value Function Vθ(s)
Result: Optimized parameters θ∗

1 foreach i← 1 to n policy improvement steps do
2 D ← rollout(πθ)
3 πθ′ ← πθ

4 foreach j ← 1 to n epochs do
5 foreach (s, a, Â)← minibatch(D) do
6 θ ← θ − γθ∇Lθ(s, a, Â) using Equation 5
7 β ← β − γβ∇Lβ(s, a) using Equation 4
8 repeat
9 fixed← True

10 foreach (s, a)← minibatch(D) do
11 if any DKL(πθ(s), πθ′(s)) > ϵKL then

// Unset fixed so we re-check every state
12 fixed← False
13 θ ← θ − γθ∇βLKL(s, a) using Equation 3
14 β ← β − γβ∇Lβ(s, a) using Equation 4

15 until fixed
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Figure 1: Number of gradient steps performed in
the fixup phase throughout training on Walkder2d
using different values of Cβ . Larger Cβ values
result in fewer gradient steps but may decrease
performance. We found Cβ = 3 to perform well
and requires only 5− 10 additional gradient steps
per policy improvement step, a small increase to
the 160 gradient steps performed in the primary
phase. The shaded region is the standard error over
10 seeds. See the Cβ = 1 ablation in Figure 5 for
details of how reward is negatively affected by a
low Cβ .

Fixup Phase Termination Because the fixup
phase does not terminate until the trust region
constraint is satisfied, it is evident that the trust
region constraint is enforced between every pol-
icy update. Although we cannot guarantee the
fixup phase terminates in general, there are
strong reasons to expect it to terminate in prac-
tical cases. Because LKL = 0 when θ = θ′,
we know that a global optima of LKL = 0 ex-
ists. Therefore, assuming the central result of
Kawaguchi (2016) can be extended to this case,
all local optima of LKL equal 0 for these pol-
icy classes. Consequently, we can expect the
fixup phase to terminate as long as it is able to
optimize LKL to a local optimum. In theory,
convergence to such a local optima may take an
arbitrary number of gradient steps, and require
an arbitrarily low learning rate. By applying an
upper bound to β and decreasing γθ when LKL

reaches a plateau, θ such that DKL < ϵKL can
be guaranteed to eventually be found, although
without any upper bound on the runtime. In
practice, using Cβ > 1 requires LKL to only
be optimized to near a local optimum for the
trust region constraint to be satisfied, and con-
sequently for sufficiently large Cβ values the
fixup phase only requires a very small number
of gradient steps to terminate, as shown in Figure 1.
Subroutines Algorithm 1 makes use of two subroutines, rollout and minibatch. rollout
runs full episodes of the policy πθ in the MDP, collects the resulting tuples, and computes advantages
Â using a value function (also parameterized by θ) and GAE (Schulman et al., 2015b). minibatch
splits the collected data into minibatches on which we compute loss terms. Except when noted, we
use the implementation of these routines typically used in Tianshou (Weng et al., 2022).
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Figure 2: These figures show an example of the interaction between Dmax
KL (πθ, πθ′) (in red) and β (in

blue) during two consecutive policy improvement steps when Cβ = 3 (left), and during one policy
improvement step when Cβ = 1 (right). Lβ increases β when the trust region constraint is violated
(the red line is above the dashed line). Solid green regions correspond to gradient steps performed in
the fixup phase at the end of each epoch. Vertical green lines show when the fixup phase performed
zero gradient steps. Optimizing Lβ when Cβ = 3 (left) results in Dmax

KL (πθ, πθ′) < ϵKL, requiring a
few gradient steps in the fixup phase (shown in green), to enforce the trust region. Optimizing Lβ

when Cβ = 1 (right) results in Dmax
KL (πθ, πθ′) ≈ ϵKL, requiring a large number of gradient steps in

the fixup phase to enforce the trust region.

Using Momentum Optimizers As is standard practice (Andrychowicz et al., 2020), we use Adam
(Kingma & Ba, 2014) (instead of SGD) to optimize both θ and β. Therefore, in the initial gradient
steps of the fixup phase, optimizing LKL also optimizes Lθ, and optimizing Lθ in the next few
iterations of the primary phase additionally optimizes LKL. We have not found this to be a problem
in practice using the default hyperparameters for Adam, as long as Cβ ≥ 2.

4 EXPERIMENTS

4.1 GYM MUJOCO CONTROL TASKS

Our first experiments demonstrate that FixPO performs competitively to other trust region methods on
the Mujoco control tasks from the OpenAI Gym (Brockman et al., 2016), a finite horizon, continuous
action space RL benchmark. We compare our implementation using the Tianshou RL framework
(Weng et al., 2022) to the PPO-clip implementation in that framework, as well as to the KL projection
layer described in Otto et al. (2021). The results in Figure 3 show that FixPO is generally able to
match or exceed other trust region methods on these tasks, and exhibits consistent training stability.

Hyper-Parameter Robustness FixPO appears to be highly robust to choices of hyperparameter
values. As we will show in Section 4.2, FixPO can perform moderately well with many of its
components removed in isolation. We performed hyperparameter sweeps for all of the major
hyperparameters, notably Cβ , ϵKL, γβ , the minibatch size, and the batch size. Changing these
parameters within a wide range of values had minimal effect on the algorithm’s wall-clock time and
rewards. In particular, performance was approximately equal while 0.1 ≤ ϵKL ≤ 0.5, 2 ≤ Cβ ≤ 10,
0.001 ≤ γβ ≤ 0.1, and the minibatch size was not more than 512. This allows FixPO to use larger
batch and minibatch sizes than the baseline algorithms, allowing for faster wall-clock times in the
following experiments. Other experiments we have performed indicate that FixPO does not require
the corrections to β described in Hilton et al. (2021), which we speculate is due to the constraint
on DKL [πθ, πθ′ ] more closely following the trust region theory. This includes the Meta-World
benchmark, where PPO typically requires batch sizes of at least 50,000 timesteps to stabilize training.
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Figure 3: This figure shows the average total reward on the HalfCheetah, Hopper, Walker2d, Swimmer,
InvertedDoublePendulum, and Reacher environments as a function of the number of environment
steps for FixPO, TRPO, PPO-clip, and the KL projection proposed in Otto et al. (2021). Higher is
better. The shaded region is a 95% confidence interval over 10 seeds. FixPO is able to outperform
the performance of the other methods on Walker2d, Swimmer, and InvertedDoublePendulum, and
consistently avoids large decreases in performance during training. For further analysis on rewards
decreasing during training, see Hsu et al. (2020).
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Figure 4: The standard deviation of the action dis-
tribution of PPO-clip and FixPO during training on
the Walker2d environment. Higher standard devia-
tion corresponds to higher policy entropy, which is
known to result in more robust policies (Eysenbach
& Levine, 2021), but can produce more variance in
performance in the training task, as shown in the
HalfCheetah plot in Figure 3. The shaded region
is a 95% confidence interval over ≥ 10 seeds.

Higher Entropy Policies On these environ-
ments, FixPO naturally learns a higher entropy
policy than PPO-clip, without using entropy reg-
ularization. This confirms a pattern described in
Otto et al. (2021). Figure 4 shows the relative
standard deviation of FixPO and PPO-clip on
Walker2d.

4.2 GYM
MUJOCO ABLATION EXPERIMENTS

We performed a series of ablation experiments
using the Mujoco environments described above.
Each ablation experiment removes a unique
component of FixPO.

Remove Fixup Phase This ablation (labeled
No Fixup Phase in Figure 5) removes the
fixup phase entirely, relying on only tuning β
in the primary phase to enforce the trust region.
This results in an algorithm similar to those de-
scribed in Andrychowicz et al. (2020). Although
this ablation is able to perform well in most runs, we observe poor performance in a portion of runs
due to the trust region not being reliably enforced. This matches the theoretical and experimental
predictions made of KL regularized PPO in Hsu et al. (2020). Although this ablation achieves higher
reward on most tasks than FixPO, it does not guarantee that the trust region is enforced, which is the
primary objective of FixPO.
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Figure 5: This figure shows the average total reward on the HalfCheetah-v3, Hopper-v3, and
Walker2d-v3 environments as a function of the number of environment steps for each of the ablations
described in Section 4.2. Higher is better. The shaded region represents one standard error over 10
seeds. Plots have been smoothed with an exponential weighted moving average for legibility.

Limit the Mean KL Value This ablation (labeled Limit Mean KL in Figure 5) tunes β to limit
the mean value of the KL divergence, instead of limiting the maximal value using the following loss
function:

Lβ = β sg [ϵKL − Cβ means DKL [πθ, πθ′ ]] (6)

This is similar to losses described in Song et al. (2019); Andrychowicz et al. (2020) but using Cβ to
adjust the optima. In this ablation, we still run the fixup phase introduced in this work, but exit it
once the mean KL divergence is less than the target (i.e. DKL(s) ≤ ϵKL). We performed a hyper
parameter sweep over ϵKL for each environment for the ablation, and found this ablation to perform
similarly to our proposed Lβ given an optimal ϵKL. Although this ablation is able to reach similar
rewards as FixPO, we believe the increased sensitivity to the value of ϵKL makes it worse.

Lagrangian Optima on Constraint Boundary (Cβ = 1) In this ablation, we remove Cβ by setting
it to 1. This results in the optima of Lβ + Lθ being a θ such that Dmax

KL [πθ, πθ′ ] ≈ ϵKL. Due to
the optima not being reached exactly, and bias introduced by minibatching the losses, it is often the
case that Dmax

KL [πθ, πθ′ ] is significantly greater than ϵKL, requiring over 100 gradient steps in the
fixup phase to correct and significant wall-clock time. A large number of gradient steps in the fixup
phase also appears to result in poor reward, which we attribute to catastrophic forgetting in the value
function network. See Figure 1 for the effect of this ablation on the number of gradient steps in the
fixup phase.

Only Run Fixup Phase in Last Epoch In this ablation, we move the fixup phase out of the
epoch loop and run it only between policy improvement steps after all epochs have been completed.
Equivalently, we run the fixup phase only on the last epoch of each policy improvement step. Due
to only needing to enforce the trust region between each policy update step (and not each epoch),
this ablation still enforces the trust region guarantee. This results in performing a smaller number of
fixup phase gradient steps. However, we found that this ablation slightly decreased the rewards on
most environments, including all shown here. Decreasing the overall number of gradient steps by
< 5% also did not measurably improve wall clock time. If decreasing fixup phase gradient steps is
absolutely necessary, increasing Cβ is more effective than this ablation.

Use a Constant β = 10 In these experiments, we do not use Lβ , and use a constant value of
β = 10. The fixup phase is still performed. Equivalently, in these experiments γβ = 0. This
ablation performs very well on HalfCheetah, and moderately well on other environments. However,
in some individual runs a large number of gradient steps are necessary in the fixup loop, and rewards
sometimes decrease significantly. Notably, we were only able to perform this ablation because we
observed that Lβ often tuned β to a value between 5 and 20. We believe that the decrease in stability
and the need to potentially tune β make this ablation worse than the proposed method.
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Figure 6: In these experiments we ran 3 separate seeds for each of the 50 v2 tasks in MT50 (with
randomized per-episode goals), for each of three algorithms: FixPO, the KL projection from Otto
et al. (2021), and PPO Schulman et al. (2017b). All three plots show the average success rates of the
150 runs per algorithm as an aggregate. On the left we show the average success rate during training
vs. the number of environment steps per run, with the uncertainty as standard error. All algorithms
perform similarly, although Otto et al. (2021) is slightly more sample efficient early in training. In
the right plot we show the average success rate as a function during training vs. the number of hours
spent training. Here we can see the computational overhead of the optimization used in Otto et al.
(2021), although performance between algorithms is similar after six hours.

4.3 META-WORLD EXPERIMENTS

In this section, we use the Meta-World Yu et al. (2019), a continuous action space infinite horizon
RL benchmark, to run a very large number of experiments comparing FixPO to other trust region
methods. Due to these tasks containing randomized goals and starting states, PPO-clip requires a
very large batch size (50000), to solve these tasks, or suffers from high instability when trainig. In
Figure 6, we use 450 experiment runs to demonstrate that FixPO is able to match the performance of
other trust region methods, without requiring a change in hyper parameters. In Figure 7, we perform
some simple Transfer RL experiments that show how FixPO is able to finetune without any special
handling of the value function, such as described in Zentner et al. (2022).
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Figure 7: In these figures we show the results of some basic transfer learning experiments using
the Meta-World MT10 benchmark. For each algorithm, we pre-train a policy on the pick-place
task, with randomized goal locations. Then, on the left, we show the success rate of fine-tuning
that pre-trained policy aggregated across all 10 tasks in MT10. Following this first finetuning, we
then finetune the policy back to the original pick-place task. In both cases, FixPO is able to
achieve a higher success rate than PPO-clip, and is able to effectively transfer without any additional
modifications. Shaded area is standard error over ≥ 10 runs.
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Collect Good Objects Select Nonmatching Object Exploit Deferred Effects
Figure 8: Screenshots of three DMLab-30 used (Rooms Collect Good Objects Train, Rooms Select
Nonmatching Object, and Rooms Exploit Deferred Effects Train).
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Figure 9: Average episode rewards of FixPO and APPO on the tasks shown above. The performance
of FixPO and APPO is approximately equal in these tasks, and we are able to run FixPO for > 100M
timesteps. The shaded region is the 95% confidence bounds across 4 seeds.

4.4 DMLAB-30 EXPERIMENTS

To demonstrate that FixPO is able to scale where constrained optimization (specifically Schulman
et al. (2015a)) cannot, we implement FixPO in the popular sample-factory RL framework.
This implementation of FixPO was based on the highly performant implementation of APPO in
sample-factory. We chose the DMLab-30 Beattie et al. (2016) environment because of its
high dimensional visual observation space and partial observability, both properties that make
training policies with constrained optimization challenging due to the large number of neural network
parameters required.

We compared the reward of FixPO and APPO on three DMLab-30 tasks: rooms collect good objects
train, rooms select nonmatching object, and rooms exploit deferred effects train. To make the
comparison fair, FixPO uses the same hyperparameters as APPO, except for hyperparameters specific
to FixPO, which we set ϵKL = 1.0 and Cβ = 2. Figure 9 shows that FixPO is able to match the
performance of APPO on those tasks.

5 LIMITATIONS

Multi-Task RL We experimented with running FixPO as a multi-task RL method on the DMLab-30
benchmark. However, we found that strictly applying the trust region constraint across all tasks
simultaneously prevented progress from being made on multiple tasks at once. In the future, we
would like to experiment with using one β value per task, which may alleviate this limitation.

More Policy Architectures One of the advantages of FixPO relative to prior trust region methods
is the ability to combine minibatching with trust-region optimization of policies besides Gaussian
policies (which works such as Otto et al. (2021) are limited to). Our DMLab-30 experiments show
these capabilities in a discrete action space, and we were also able to run our implementation using
the Tianshou framework on the Arcade Learning Environment Bellemare et al. (2013). However,
further experiments with different action distributions would be a useful direction for future work.

6 CONCLUSION

In this work we have shown how FixPO is able to combine the guarantees of trust region methods
with the computational efficiency and rewards of proximal methods. FixPO enforces its trust region
via KL penalization, which is flexible and well understood in the machine learning community. In
future work, we would like to extend our work to a multi-task setting.
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