Under review as a conference paper at ICLR 2024

GUARANTEED TRUST REGION OPTIMIZATION VIA
TwO-PHASE KL PENALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

On-policy reinforcement learning (RL) has become a popular framework for solv-
ing sequential decision problems due to its computational efficiency and theoretical
simplicity. Some on-policy methods guarantee every policy update is constrained
to a trust region relative to the prior policy to ensure training stability. These
methods often require computationally intensive non-linear optimization or require
a particular form of action distribution. In this work, we show that applying KL
penalization alone is nearly sufficient to enforce such trust regions. Then, we show
that introducing a “fixup” phase is sufficient to guarantee a trust region is enforced
on every policy update while adding fewer than 5% additional gradient steps in
practice. The resulting algorithm, which we call FixPO, is able to train a variety of
policy architectures and action spaces, is easy to implement, and produces results
competitive with other trust region methods.

1 INTRODUCTION

On-policy reinforcement learning (RL) methods seek to optimize a stochastic policy, where a neural
network is used to parameterize a distribution 7 (a|s) over actions conditioned on the current state. In
this framework, most on-policy RL methods seek to limit the scale of updates between successive
policies during optimization. Some on-policy RL methods operate by guaranteeing that each policy
update remains within a “trust region” (Schulman et al.,[2015a). These methods are used when
training stability during a long period of training is essential. However, finding a policy update near
the edge of the trust region often comes at significant computational cost. Another branch of on-policy
methods instead perform “proximal” policy updates, that limit the expected scale of policy updates,
but can result in individual policy updates being of arbitrary magnitude (Schulman et al., 2017al).
These methods are much more computationally efficient, but large-scale training can require the use
of multiple training runs or human intervention to recover from training instabilities. In this work we
propose Fixup Policy Optimization (FixPO), which combines both a proximal primary phase with
a precise fixup phase, that operate by sharing a single penalty coefficient 3. By performing a more
conservative proximal update before strictly enforcing a trust region, FixPO is able to approximately
match the computational efficiency and rewards of proximal methods while providing the same
stability guarantees as trust region methods.

An important result in the development of trust-region methods is a proof presented with the Trust
Region Policy Optimization algorithm (TRPO) (Schulman et al., 2015a)) that for a particular value
of C, iteratively applying the following update provably results in monotonic improvement of the
expected return of m; :

Tip1 = argmax, [Ln, () — CDREe (m;,)] (1)

where L, is the importance sampled “policy gradient” loss, D7{* (mr;,) is the maximal value of
the Kullback-Leibler (KL) divergence between the action distributions of 7;(s|a) and of 7(s|a), and
C'is a function of the characteristics of the Markov Decision Process (MDP). In practice, TRPO
uses constrained optimization to perform policy updates subject to a constraint on the average KL
divergence instead of only penalizing the maximal value. Due to constrained optimization preventing
the use of minibatching and increasing the computational cost of optimizing deep neural networks,
Proximal Policy Optimization algorithms (Schulman et al., [2017a)) are more frequently used in
practice. These methods do not guarantee that any precise trust region constraint is enforced but
approximately limit the scale of Dy, (m;, 7) .

Under review as a conference paper at ICLR 2024

The most well-studied PPO algorithm, often referred to as PPO-clip, or shortened to just PPO,
operates by zeroing the loss contribution from likelihood ratios outside of the range 1 & ecpyp.
Clipping in this way is very computationally efficient and ensures that for each state, at most one
gradient step is taken which could increase the D, (7;, 7) beyond the trust region. However, another
class of PPO algorithms also introduced in |Schulman et al.|(2017a) instead feature a policy update
inspired by the theory above:

Tip1 = argmax, [Ln, (m) — BD gy (7,)])

In the above equation, (3 is a hyperparameter that is typically tuned dynamically in response to the
scale of recent policy updates as measured in D gy, (7;, 7). Although this PPO variant is believed
to perform worse than PPO-clip, its simplicity and connection to the above theory have made it a
subject of study in several later works, which have extended it in various ways.

In this work, we demonstrate that by rapidly adapting £, it is possible to nearly enforce a trust region.
Then, by performing a small number of additional gradient steps in a “fixup phase,” we can guarantee
the trust region is precisely enforced for a wide range of policy classes.

This work provides the following contributions:

1. An RL algorithm, FixPO, that efficiently enforces a guaranteed trust region between every
policy update using only KL penalization.

2. Experiments showing the performance of the proposed algorithm on a variety of benchmarks
compared to other trust region methods.

3. Ablation experiments showing the effect of each component of the proposed algorithm and
why those components are necessary.

2 RELATED WORK

Trust Region Methods The algorithm presented in this work follows in large part from the theory
of trust region reinforcement learning methods, namely |Schulman et al.[(2015a) and |Schulman et al.
(2017a), combined with more recent insights from |Andrychowicz et al.| (2020). Work on FixPO
was also guided by publications on PPO variants, such as|Cobbe et al.| (2020), from which the term
“phase” was borrowed, and Hilton et al.| (2021)), which analyzes the effect of /5 in relation to batch
size. Works that analyze various aspects of PPO were also extremely useful, including [Engstrom
et al. (2020), which provides a detailed analysis of the relationship between PPO and TRPO, and
Hsu et al.[(2020), which examines several aspects of PPO in detail, such as the action distribution
parameterization and effect of different KL penalties. More recently, Huang et al.|(2022)) provides an
analysis of the effect of many proposed changes to PPO which was invaluable in this research.

Besides |Schulman et al.| (2015a)), other methods for guaranteeing constrained updates have been
proposed specifically for Gaussian policies (Akrour et al., 2019; Otto et al., [2021)).

Lagrangian Methods Although we are not aware of any comprehensive survey on the topic, loss
functions structured similarly to Augmented Lagrangian methods (Hestenes},|1969) are frequently used
in various Deep RL methods, including Song et al.|(2019);|Andrychowicz et al.[(2020). Our proposed
Ly is similar to the losses proposed in those works, with two additions we describe in Section[3.1]
Lagrangian methods used in some off-policy Deep RL work, such as for automatic entropy tuning in
Haarnoja et al.| (2018) and constraining offline Q estimates in [Kumar et al.|(2020). There are several
applications of Lagrangian methods in Safe Deep RL works (Chow et al.,[2015}; |Achiam et al., 2017)),
Imitation Learning and Inverse RL (Peng et al.||2018)), Differentiable Economics (Diitting et al.|[2017}
Ivanov et al., [2022)), and Multi-Agent RL (Ivanov et al., [2023).

KL Regularized RL Outsides of trust region methods, using the KL divergence to regularize RL
has been a long-standing method (Rawlik et al., [2012), and continues to be used in recent methods
such as [Kozuno et al.| (2022), |Vieillard et al.| (2020), and |Galashov et al.|(2019). KL regularization is
also a critical component of several recent offline RL methods, such asWu et al.[(2019), Nair et al.
(2020), and Jaques et al.[(2019).

Benchmarks and Libraries The primary benchmarks used in this work were the Mujoco (Todorov
et al.| [2012) benchmarks from OpenAl Gym (Brockman et al., 2016)), and the Meta-World (Yu et al.|
2019) benchmarks. In most of our experiments, we make use of code from Tianshou (Weng
et al.| 2022), although we used stable-baselines3 (Raffin et al.;,[2021)) in earlier experiments.
We also used sample-factory (Petrenko et al., [2020) to run experiments on tasks from the
DMLab-30 (Beattie et al., [2016) benchmark.

Under review as a conference paper at ICLR 2024

3 METHOD

3.1 Loss FUNCTIONS

Our method begins with the well-known loss function that results in policy updates that approximate
Equation 2] also known as the KL regularized importance sampled policy gradient.

Lk
L(s,a, A) =— Z:/((Zé)) A+BDgp [To(als), mer (als)] (€)
L

Where 7y is the policy undergoing the update, my: is the policy from the previous step, and A are
advantages estimated using GAE (Schulman et al., 2015b)). In order to define modified forms of this
loss function, we also define the individual components, L, and Ly, both of which will be used to
optimize the policy parameters 6.

We depart from |Schulman et al.| (2017a) in how we acquire 3. Instead of using a fixed value or
dynamically tuning 3 on an epoch-by-epoch manner, we instead tune S as a Lagrange multiplier using
a loss similar to those described in|{Song et al.|(2019); /Andrychowicz et al.[(2020). However, we make
two modifications that differ from the losses described in those works. First, we enforce a target on
DR%* [mg, mer], which is theoretically justified by Equation Although typically dismissed as fragile
to outliers, we find that the maximal KL value is less sensitive to hyperparameter choices, which
we discuss in Section @ Secondly, we add a term Cg, which mirrors the C value in Equation
This results in moving the optima of the Lagrangian optimization away from the constraint surface,
which we discuss in more detail in Paragraph[15] This results in the following loss, which tunes 5 to
approximately enforce the trust region constraint.

Lp = B sglexr — CsDRT" o, mo]] O]
Where sg is the “stop-gradient” operator, which we include as a reminder that this loss function
should only be tuning 3, and should not modify the policy parameters 6. eky, is a hyperparameter
that controls the size of the trust region, which performs a similar role as ecrp in PPO-clip. Cj
moves the target of the primary phase away from the edge of the trust region and compensates for
bias introduced by computing D74 on minibatches. When Cg = 1, this loss function tunes /3 such
that D" =~ ekr,, by increasing 3 when C3 DZf" > €, and decreasing 3 when Cy D" < ek,
When Cg > 1, optimizing Lg results in D7/'* = egr, / Cp < exr. This difference between the
expected convergence in the primary phase (exz,/Cg) and the exit condition of the fixup phase (exr,)
is effective at limiting the number of iterations of the fixup phase, as we show below.

In practice, 7y and the value function may share some of the parameters 6, so the loss function on
0 includes a loss Ly on the value function. Typically, Ly will be the mean squared error of the
predicted returns, although value clipping may also be used (Andrychowicz et al.,2020), which most
PPO implementations use by default. Combining the policy gradient loss with the value function
loss and KL penalty results in a comprehensive loss on the neural network parameters that we use in
Algorithm

Ly=1L,+ Lyr + BLki (5)
3.2 Fixup PHASE

The most significant unique component of FixPO is the fixup phase, which runs after the primary
phase. In the primary phase (lines 5 - 7 in Algorithm|I), we repeatedly optimize 79 Lg + v Lg. By
choosing yg such that g >> 74 (and Lg and Lg have similar scales), minimizing the weighted
combination of the losses results in approximate convergence to an optimum of Lg ~ 0. However, it
is still possible that D72¢* [mg, mgr] > €xr,, and thus that the trust region constraint is not satisfied.
To guarantee that the trust region is enforced, the fixup phase iterates through all minibatches, and
checks to see if the constraint is satisfied at every state. If the constraint is not satisfied at any state,
then the fixup phase performs an update using v L k7, 4+ v3Lg and resumes checking all minibatches,
as described in lines 8 - 15 in Algorithm I

1 foreach ¢ < 1 to n_policy_improvement _steps do

2
3
4

n

12
13
14

15

Under review as a conference paper at ICLR 2024

Algorithm 1: FIXPO

Data: Policy 7y (als)
Data: Value Function Vy(s)
Result: Optimized parameters 6*

D + rollout (mp)

T <— T
foreach j < 1 to n_epochs do

repeat
fized < True

fized <+ False

| until fized

foreach (s,a, A) « minibatch (D) do
0+ 6 —~v9VLp(s,a,A) using Equation
| B+ B—sVLg(s,a) using Equation

foreach (s,a) + minibatch (D) do
if any D (m9(s), e/ (s)) > €gz, then
// Unset fixed so we re-check every state

0 < 0 — 49V BLkL (s, a) using Equation 3]
B+ B — 75V Lg(s,a) using Equation 4]

Fixup Phase Termination Because the fixup
phase does not terminate until the trust region
constraint is satisfied, it is evident that the trust
region constraint is enforced between every pol-
icy update. Although we cannot guarantee the
fixup phase terminates in general, there are
strong reasons to expect it to terminate in prac-
tical cases. Because Ly, = 0 when 0 = @',
we know that a global optima of Ly, = 0 ex-
ists. Therefore, assuming the central result of
Kawaguchi (2016)) can be extended to this case,
all local optima of Lg;, equal O for these pol-
icy classes. Consequently, we can expect the
fixup phase to terminate as long as it is able to
optimize Ly, to a local optimum. In theory,
convergence to such a local optima may take an
arbitrary number of gradient steps, and require
an arbitrarily low learning rate. By applying an
upper bound to 5 and decreasing g when L g,
reaches a plateau, 6 such that Dy, < exp, can
be guaranteed to eventually be found, although
without any upper bound on the runtime. In
practice, using Cz > 1 requires Lgz, to only
be optimized to near a local optimum for the
trust region constraint to be satisfied, and con-
sequently for sufficiently large Cz values the
fixup phase only requires a very small number

w0 —

1014 T e T ———

Fixup Phase Gradient Steps

1004 &
! :’ e e /"“"‘-\;"“”"M\"‘v./""\ P 1
oo .// g \‘\,.V 2
‘-‘ /'l """"" 3
RN
10 N, e 5
——- 10
00 0.2 04 06 08 1.0
Total Environment Steps le7

Figure 1: Number of gradient steps performed in
the fixup phase throughout training on Walkder2d
using different values of Cz. Larger C3 values
result in fewer gradient steps but may decrease
performance. We found C'3 = 3 to perform well
and requires only 5 — 10 additional gradient steps
per policy improvement step, a small increase to
the 160 gradient steps performed in the primary
phase. The shaded region is the standard error over
10 seeds. See the Cjg = 1 ablation in Figure [5]for
details of how reward is negatively affected by a
low Cg.

of gradient steps to terminate, as shown in Figure[l}

Subroutines Algorithmmakes use of two subroutines, rollout and minibatch. rollout
runs full episodes of the policy my in the MDP, collects the resulting tuples, and computes advantages
A using a value function (also parameterized by ¢) and GAE (Schulman et al.|[2015b). minibatch
splits the collected data into minibatches on which we compute loss terms. Except when noted, we
use the implementation of these routines typically used in Tianshou (Weng et al., 2022).

Under review as a conference paper at ICLR 2024

0.61 L 1.2
>8 0.30
05 [s:6 1.01 0.25
(V] ()
] r5.4 u]
S04 bl 0.8 0.20
o o
5] F5.2 5
= >
= o DA AL ros=
J r5.0 - -t-- xS
x 0.2 x 0.4 \/ 0.10
8 F4.8 =
0.1 La6 0.2 r0.05
0.01 r4.4 0.0 r0.00
0 100 200 300 0 50 100 150 200 250
Gradient Steps Gradient Steps

Figure 2: These figures show an example of the interaction between D72 (mg, g/) (in red) and 5 (in
blue) during two consecutive policy improvement steps when C3 = 3 (left), and during one policy
improvement step when C's = 1 (right). Lg increases 3 when the trust region constraint is violated
(the red line is above the dashed line). Solid green regions correspond to gradient steps performed in
the fixup phase at the end of each epoch. Vertical green lines show when the fixup phase performed
zero gradient steps. Optimizing Lz when Cg = 3 (left) results in D{* (7, /) < €xp,, requiring a
few gradient steps in the fixup phase (shown in green), to enforce the trust region. Optimizing Lg
when Cjz = 1 (right) results in D% (7, mg:) & €., requiring a large number of gradient steps in
the fixup phase to enforce the trust region.

Using Momentum Optimizers As is standard practice (Andrychowicz et al.l 2020), we use Adam
(Kingma & Bal 2014)) (instead of SGD) to optimize both ¢ and . Therefore, in the initial gradient
steps of the fixup phase, optimizing L7, also optimizes Ly, and optimizing Ly in the next few
iterations of the primary phase additionally optimizes Lx;,. We have not found this to be a problem
in practice using the default hyperparameters for Adam, as long as Cg > 2.

4 EXPERIMENTS

4.1 GYM MuJoco CONTROL TASKS

Our first experiments demonstrate that FixPO performs competitively to other trust region methods on
the Mujoco control tasks from the OpenAl Gym (Brockman et al., 2016)), a finite horizon, continuous
action space RL benchmark. We compare our implementation using the Tianshou RL framework
(Weng et al.,2022) to the PPO-clip implementation in that framework, as well as to the KL projection
layer described in |Otto et al.|(2021). The results in Figure 3| show that FixPO is generally able to
match or exceed other trust region methods on these tasks, and exhibits consistent training stability.

Hyper-Parameter Robustness FixPO appears to be highly robust to choices of hyperparameter
values. As we will show in Section .2] FixPO can perform moderately well with many of its
components removed in isolation. We performed hyperparameter sweeps for all of the major
hyperparameters, notably Cjg, €xz,, 73, the minibatch size, and the batch size. Changing these
parameters within a wide range of values had minimal effect on the algorithm’s wall-clock time and
rewards. In particular, performance was approximately equal while 0.1 < ex7, < 0.5,2 < O3 < 10,
0.001 < y5 < 0.1, and the minibatch size was not more than 512. This allows FixPO to use larger
batch and minibatch sizes than the baseline algorithms, allowing for faster wall-clock times in the
following experiments. Other experiments we have performed indicate that FixPO does not require
the corrections to 8 described in [Hilton et al.| (2021)), which we speculate is due to the constraint
on Dgr, [mg, mg:] more closely following the trust region theory. This includes the Meta-World
benchmark, where PPO typically requires batch sizes of at least 50,000 timesteps to stabilize training.

Under review as a conference paper at ICLR 2024

HalfCheetah

° °
© ©

8000 "
H gt | 3000
-4 i r,'whgﬁy iy o4
© 6000 g s Ty |
3 S g 2000
24000 0 §
& ; & i
© 20001 |/ o 10007
© i — FixPO KL Proj. o Y — FixPO KL Proj.
] 01/ ---- PPO-clip TRPO o ---- PPO-clip TRPO
z 2 O

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Total Environment Steps 1e7

Swimmer

Total Environment Steps 1e7

InvertedDoublePendulum

Average Episode Reward

Walker2d
6000
4000
20001 |4
— FixPO KL Proj.
ol -~ PPO-clip TRPO
0.00 0.25 0.50 0.75 1.00

Total Environment Steps 1e7

o o o Reacher

2100 & 7500 &-10 N
[} [(]

° Y T Ve ol 1 °

g 501 ‘!W’EM’ . %5000 %‘20

iy I w w

3 [® 25001 | o —30

= ol f —— FixPO KLProj. | @ | — FixPO KLProj. | — FixPO KL Proj.
a;J ¥ ---- PPO-clip TRPO § ol ! ---- PPO-clip TRPO §_40 ---- PPO-clip TRPO

< 0.00 0.25 0.50 0.75 1.00 < 0.00 0.25 0.50 0.75 1.00 < 0.00 0.25 0.50 0.75 1.00

Total Environment Steps le7

Total Environment Steps 1e7

Total Environment Steps le7

Figure 3: This figure shows the average total reward on the HalfCheetah, Hopper, Walker2d, Swimmer,
InvertedDoublePendulum, and Reacher environments as a function of the number of environment
steps for FixPO, TRPO, PPO-clip, and the KL projection proposed in |Otto et al.[|(2021). Higher is
better. The shaded region is a 95% confidence interval over 10 seeds. FixPO is able to outperform
the performance of the other methods on Walker2d, Swimmer, and InvertedDoublePendulum, and
consistently avoids large decreases in performance during training. For further analysis on rewards
decreasing during training, see Hsu et al.| (2020).

Higher Entropy Policies On these environ-
ments, FixPO naturally learns a higher entropy
policy than PPO-clip, without using entropy reg-
ularization. This confirms a pattern described in
Otto et al.| (2021). Figure E| shows the relative
standard deviation of FixPO and PPO-clip on
Walker2d.

4.2 GYM
MUJOCO ABLATION EXPERIMENTS

We performed a series of ablation experiments
using the Mujoco environments described above.
Each ablation experiment removes a unique
component of FixPO.

Remove Fixup Phase This ablation (labeled
No Fixup Phase in Figure[5) removes the
fixup phase entirely, relying on only tuning /3
in the primary phase to enforce the trust region.
This results in an algorithm similar to those de-
scribed in|Andrychowicz et al.|(2020). Although

Action Distribution Standard Deviation

=
o

0.81

0.6

0.4

0.2

—— FixPO
PPO-clip

0.0

0.2

Total Environment Steps

0.4 0.6

Figure 4: The standard deviation of the action dis-
tribution of PPO-clip and FixPO during training on
the Walker2d environment. Higher standard devia-
tion corresponds to higher policy entropy, which is
known to result in more robust policies (Eysenbach
& Levine, [2021)), but can produce more variance in
performance in the training task, as shown in the
HalfCheetah plot in Figure[3] The shaded region
is a 95% confidence interval over > 10 seeds.

this ablation is able to perform well in most runs, we observe poor performance in a portion of runs
due to the trust region not being reliably enforced. This matches the theoretical and experimental
predictions made of KL regularized PPO in|Hsu et al.|(2020). Although this ablation achieves higher
reward on most tasks than FixPO, it does not guarantee that the trust region is enforced, which is the

primary objective of FixPO.

Under review as a conference paper at ICLR 2024

HalfCheetah Hopper Walker2d

7000
- 6000
6000 T 2500
5000

u
=
5]
S

2000
4000

w s
s 3
8 3
8 3

1500
3000

1000

2000

Average Episode Reward
5 38

8

8
Average Episode Reward
Average Episode Reward

S
5]
S

j 4 —— FixPO -~ Cg=1
No Fixup Phase —— Fixup Last Epoch No Fixup Phase —— Fixup Last Epoch F No Fixup Phase ——- Fixup Last Epoch
Limit MeanKL .- =10 Limit MeanKL - =10 Limit MeanKL - B=10

—— FixPO e Cp=1

w
=
8

— FixPO s Cp=1

1000

o

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 00 02 0.4 0.6 0.8 1.0
Total Environment Steps 1le7 Total Environment Steps le7 Total Environment Steps le7

Figure 5: This figure shows the average total reward on the HalfCheetah-v3, Hopper-v3, and
Walker2d-v3 environments as a function of the number of environment steps for each of the ablations
described in Section Higher is better. The shaded region represents one standard error over 10
seeds. Plots have been smoothed with an exponential weighted moving average for legibility.

Limit the Mean KL Value This ablation (labeled Limit Mean KL in Figure[5) tunes /3 to limit
the mean value of the KL divergence, instead of limiting the maximal value using the following loss
function:

Lp = B sglexs, — Cpmean, Dy, [mg, o] ©

This is similar to losses described in[Song et al.| (2019); [Andrychowicz et al|(2020) but using C'3 to
adjust the optima. In this ablation, we still run the fixup phase introduced in this work, but exit it

once the mean KL divergence is less than the target (i.e. Dxp(s) < exr). We performed a hyper
parameter sweep over €y, for each environment for the ablation, and found this ablation to perform
similarly to our proposed Lg given an optimal egy,. Although this ablation is able to reach similar
rewards as FixPO, we believe the increased sensitivity to the value of € x7, makes it worse.

Lagrangian Optima on Constraint Boundary (Cg = 1) In this ablation, we remove C'z by setting
it to 1. This results in the optima of Lg + Lg being a 6 such that D2¢* [mg, me']| = €xr. Due to
the optima not being reached exactly, and bias introduced by minibatching the losses, it is often the
case that D2" [mg, me/| is significantly greater than ey, requiring over 100 gradient steps in the
fixup phase to correct and significant wall-clock time. A large number of gradient steps in the fixup
phase also appears to result in poor reward, which we attribute to catastrophic forgetting in the value
function network. See Figure|l|for the effect of this ablation on the number of gradient steps in the

fixup phase.

Only Run Fixup Phase in Last Epoch In this ablation, we move the fixup phase out of the
epoch loop and run it only between policy improvement steps after all epochs have been completed.
Equivalently, we run the fixup phase only on the last epoch of each policy improvement step. Due
to only needing to enforce the trust region between each policy update step (and not each epoch),
this ablation still enforces the trust region guarantee. This results in performing a smaller number of
fixup phase gradient steps. However, we found that this ablation slightly decreased the rewards on
most environments, including all shown here. Decreasing the overall number of gradient steps by
< 5% also did not measurably improve wall clock time. If decreasing fixup phase gradient steps is
absolutely necessary, increasing C'z is more effective than this ablation.

Use a Constant 5 = 10 In these experiments, we do not use Lg, and use a constant value of
B = 10. The fixup phase is still performed. Equivalently, in these experiments g = 0. This
ablation performs very well on HalfCheetah, and moderately well on other environments. However,
in some individual runs a large number of gradient steps are necessary in the fixup loop, and rewards
sometimes decrease significantly. Notably, we were only able to perform this ablation because we
observed that Lg often tuned 3 to a value between 5 and 20. We believe that the decrease in stability
and the need to potentially tune 8 make this ablation worse than the proposed method.

Under review as a conference paper at ICLR 2024

MT50 Sample Efficiency MT50 Wall Time
0.81 bl eSS 0.81 B s oo e
2 ot
0.6/ 0.6
A b
v 0.4 0 0.4
(9} |9
5 5
n 0.2 — FixPO " 0.2 —— FixPO
--- PPO --- PPO
0.01 : ‘ ‘ ‘ KL PI’O{. 0.01 ! ‘ ‘ KL PI’OJ‘.
0.00 0.25 0.50 0.75 1.00 0 2 4 6
Total Environment Steps 1e7 Runtime (hours)

Figure 6: In these experiments we ran 3 separate seeds for each of the 50 v2 tasks in MT50 (with
randomized per-episode goals), for each of three algorithms: FixPO, the KL projection from Otto
et al.| (2021), and PPO(Schulman et al.[|(2017b). All three plots show the average success rates of the
150 runs per algorithm as an aggregate. On the left we show the average success rate during training
vs. the number of environment steps per run, with the uncertainty as standard error. All algorithms
perform similarly, although |Otto et al.[(2021)) is slightly more sample efficient early in training. In
the right plot we show the average success rate as a function during training vs. the number of hours
spent training. Here we can see the computational overhead of the optimization used in |Otto et al.
(2021)), although performance between algorithms is similar after six hours.

4.3 META-WORLD EXPERIMENTS

In this section, we use the Meta-World |Yu et al.[(2019), a continuous action space infinite horizon
RL benchmark, to run a very large number of experiments comparing FixPO to other trust region
methods. Due to these tasks containing randomized goals and starting states, PPO-clip requires a
very large batch size (50000), to solve these tasks, or suffers from high instability when trainig. In
Figure[6] we use 450 experiment runs to demonstrate that FixPO is able to match the performance of
other trust region methods, without requiring a change in hyper parameters. In Figure[7] we perform
some simple Transfer RL experiments that show how FixPO is able to finetune without any special
handling of the value function, such as described in|Zentner et al.| (2022).

Transfer from pick-place Transfer Back to pick-place
0.9
0.8 0.6
0.7
0.5
2o.6 2
© ©
o o
@ 0.5 2 0.4
(] (]
5 0.4 o
3 3
0.3 9 0.3
0.2
0.2 Lacemri —— FixPO
0.1 --- PPO
0 1 2 3 4 5 0 1 2 3 4 5
Total Environment Steps le6 Total Environment Steps le6

Figure 7: In these figures we show the results of some basic transfer learning experiments using
the Meta-World MT10 benchmark. For each algorithm, we pre-train a policy on the pick-place
task, with randomized goal locations. Then, on the left, we show the success rate of fine-tuning
that pre-trained policy aggregated across all 10 tasks in MT10. Following this first finetuning, we
then finetune the policy back to the original pick-place task. In both cases, FixPO is able to
achieve a higher success rate than PPO-clip, and is able to effectively transfer without any additional
modifications. Shaded area is standard error over > 10 runs.

Under review as a conference paper at ICLR 2024

*
'-‘E'l'"*

Collect Good Objects Select Nonmatching Object Exploit Deferred Effects
Figure 8: Screenshots of three DMLab-30 used (Rooms Collect Good Objects Train, Rooms Select
Nonmatching Object, and Rooms Exploit Deferred Effects Train).

10 20 25
T = T
© ©
z g H z
2 g1s & 20
< g]
e
86 310 3
& & &1
L 4 o [}
g g s g
O>J FixPO E FixPO ﬂ>) 10 FixPO
— 2 — —
<2 -~ APPO < 0 ~-- APPO < -~ APPO
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Total Environment Steps le8 Total Environment Steps 1le8 Total Environment Steps le8

Figure 9: Average episode rewards of FixPO and APPO on the tasks shown above. The performance
of FixPO and APPO is approximately equal in these tasks, and we are able to run FixPO for > 100M
timesteps. The shaded region is the 95% confidence bounds across 4 seeds.

4.4 DMLAB-30 EXPERIMENTS

To demonstrate that FixPO is able to scale where constrained optimization (specifically [Schulman|
(2015a)) cannot, we implement FixPO in the popular sample-factory RL framework.
This implementation of FixPO was based on the highly performant implementation of APPO in
sample-factory. We chose the DMLab-30 Beattie et al| (2016)) environment because of its
high dimensional visual observation space and partial observability, both properties that make
training policies with constrained optimization challenging due to the large number of neural network
parameters required.

We compared the reward of FixPO and APPO on three DMLab-30 tasks: rooms collect good objects
train, rooms select nonmatching object, and rooms exploit deferred effects train. To make the
comparison fair, FixPO uses the same hyperparameters as APPO, except for hyperparameters specific
to FixPO, which we set ex;, = 1.0 and Cg = 2. Figure [9|shows that FixPO is able to match the
performance of APPO on those tasks.

5 LIMITATIONS

Multi-Task R We experimented with running FixPO as a multi-task RL method on the DMLab-30
benchmark. However, we found that strictly applying the trust region constraint across all tasks
simultaneously prevented progress from being made on multiple tasks at once. In the future, we
would like to experiment with using one 3 value per task, which may alleviate this limitation.

More Policy Architectures One of the advantages of FixPO relative to prior trust region methods
is the ability to combine minibatching with trust-region optimization of policies besides Gaussian
policies (which works such as|Otto et al.|(2021) are limited to). Our DMLab-30 experiments show
these capabilities in a discrete action space, and we were also able to run our implementation using
the Tianshou framework on the Arcade Learning Environment Bellemare et al.| (2013). However,
further experiments with different action distributions would be a useful direction for future work.

6 CONCLUSION

In this work we have shown how FixPO is able to combine the guarantees of trust region methods
with the computational efficiency and rewards of proximal methods. FixPO enforces its trust region
via KL penalization, which is flexible and well understood in the machine learning community. In
future work, we would like to extend our work to a multi-task setting.

Under review as a conference paper at ICLR 2024

REFERENCES
Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization, 2017.

Riad Akrour, Joni Pajarinen, Jan Peters, and Gerhard Neumann. Projections for approximate
policy iteration algorithms. In International Conference on Machine Learning, 2019. URL
https://api.semanticscholar.org/CorpusID:133597677.

Marcin Andrychowicz, Anton Raichuk, Piotr Stanczyk, Manu Orsini, Sertan Girgin, Raphael Marinier,
Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier
Bachem. What matters in on-policy reinforcement learning? a large-scale empirical study, 2020.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Kiittler,
Andrew Lefrancq, Simon Green, Victor Valdés, Amir Sadik, Julian Schrittwieser, Keith Anderson,
Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis Hassabis,
Shane Legg, and Stig Petersen. Deepmind lab, 2016.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279,
jun 2013. doi: 10.1613/jair.3912. URL https://doi.org/10.1613%2Fjair.3912,

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Yinlam Chow, Mohammad Ghavamzadeh, Lucas Janson, and Marco Pavone. Risk-constrained
reinforcement learning with percentile risk criteria, 2015.

Karl Cobbe, Jacob Hilton, Oleg Klimov, and John Schulman. Phasic policy gradient, 2020.

Paul Diitting, Zhe Feng, Harikrishna Narasimhan, David C. Parkes, and Sai Srivatsa Ravindranath.
Optimal auctions through deep learning: Advances in differentiable economics, 2017.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
and Aleksander Madry. Implementation matters in deep {rl}: A case study on {ppo} and {trpo}.
In International Conference on Learning Representations, 2020. URL https://openreview,
net/forum?id=rletN1rtPB.

Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl
problems, 2021.

Alexandre Galashov, Siddhant M. Jayakumar, Leonard Hasenclever, Dhruva Tirumala, Jonathan
Schwarz, Guillaume Desjardins, Wojciech M. Czarnecki, Yee Whye Teh, Razvan Pascanu, and
Nicolas Manfred Otto Heess. Information asymmetry in kl-regularized rl. ArXiv, abs/1905.01240,
2019.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Magnus R. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and
Applications, 4(5):303-320, November 1969. ISSN 1573-2878. doi: 10.1007/BF00927673. URL
https://doi.org/10.1007/BF00927673.

Jacob Hilton, Karl Cobbe, and John Schulman. Batch size-invariance for policy optimization, 2021.

Chloe Ching-Yun Hsu, Celestine Mendler-Diinner, and Moritz Hardt. Revisiting design choices in
proximal policy optimization, 2020.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and
Weixun Wang. The 37 implementation details of proximal policy optimization. In
ICLR Blog Track, 2022. URL |https://iclr-blog-track.github.i0/2022/03/
25/ppo-implementation-details/L https://iclr-blog-track.github.io/2022/03/25/ppo-
implementation-details/.

10

https://api.semanticscholar.org/CorpusID:133597677
https://doi.org/10.1613%2Fjair.3912
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB
https://doi.org/10.1007/BF00927673
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

Under review as a conference paper at ICLR 2024

Dmitry Ivanov, Iskander Safiulin, Igor Filippov, and Ksenia Balabaeva. Optimal-er auctions through
attention, 2022.

Dmitry Ivanov, Ilya Zisman, and Kirill Chernyshev. Mediated multi-agent reinforcement learning.
ArXiv, abs/2306.08419, 2023. URL https://api.semanticscholar.org/CorpusID:
2588452206l

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen Shen, Craig Ferguson, Agata Lapedriza, Noah J.
Jones, Shixiang Shane Gu, and Rosalind W. Picard. Way off-policy batch deep reinforcement
learning of implicit human preferences in dialog. ArXiv, abs/1907.00456, 2019.

Kenji Kawaguchi. Deep learning without poor local minima, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

Tadashi Kozuno, Wenhao Yang, Nino Vieillard, Toshinori Kitamura, Yunhao Tang, Jincheng Mei,
Pierre M’enard, Mohammad Gheshlaghi Azar, M. Vafko, Rémi Munos, Olivier Pietquin, Matthieu
Geist, and Csaba Szepesvari. Kl-entropy-regularized 1l with a generative model is minimax optimal.
ArXiv, abs/2205.14211, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning, 2020.

Ashvin Nair, Murtaza Dalal, Abhishek Gupta, and Sergey Levine. Accelerating online reinforcement
learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Fabian Otto, Philipp Becker, Ngo Anh Vien, Hanna Carolin Ziesche, and Gerhard Neumann. Differ-
entiable trust region layers for deep reinforcement learning. CoRR, abs/2101.09207, 2021. URL
https://arxiv.org/abs/2101.09207.

Xue Bin Peng, Angjoo Kanazawa, Sam Toyer, Pieter Abbeel, and Sergey Levine. Variational
discriminator bottleneck: Improving imitation learning, inverse rl, and gans by constraining
information flow, 2018.

Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav S. Sukhatme, and Vladlen Koltun. Sample
factory: Egocentric 3d control from pixels at 100000 FPS with asynchronous reinforcement learn-
ing. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 7652—
7662. PMLR, 2020. URL http://proceedings.mlr.press/v119/petrenko20al
htmll

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 22(268):1-8, 2021. URL http://Jjmlr.org/papers/v22/
20-1364.htmll

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
forcement learning by approximate inference. In Robotics: Science and Systems, 2012.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization. CoRR, abs/1502.05477,2015a. URL http://arxiv.org/abs/1502,
05477.

John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. CoRR, abs/1506.02438,
2015b.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. CoRR, abs/1707.06347, 2017a. URL http://arxiv.org/abs/
1707.06347.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017b.

11

https://api.semanticscholar.org/CorpusID:258845226
https://api.semanticscholar.org/CorpusID:258845226
https://arxiv.org/abs/2101.09207
http://proceedings.mlr.press/v119/petrenko20a.html
http://proceedings.mlr.press/v119/petrenko20a.html
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

Under review as a conference paper at ICLR 2024

H. Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer, Jack W.
Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, Nicolas Heess, Dan Belov, Martin Ried-
miller, and Matthew M. Botvinick. V-mpo: On-policy maximum a posteriori policy optimization
for discrete and continuous control, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In International Conference on Intelligent Robots and Systems, pp. 5026-5033. IEEE, 2012. ISBN
9781467317375. doi: 10.1109/IROS.2012.6386109.

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and Matthieu Geist.
Leverage the average: an analysis of regularization in rl. ArXiv, abs/2003.14089, 2020.

Jiayi Weng, Huayu Chen, Dong Yan, Kaichao You, Alexis Duburcq, Minghao Zhang, Yi Su, Hang
Su, and Jun Zhu. Tianshou: A highly modularized deep reinforcement learning library. Journal of
Machine Learning Research, 23(267):1-6, 2022. URL http://jmlr.org/papers/v23/
21-1127.htmll

Yifan Wu, G. Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. ArXiv,
abs/1911.11361, 2019.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.
10897.

K.R. Zentner, Ujjwal Puri, Yulun Zhang, Ryan Julian, and Gaurav S. Sukhatme. Efficient multi-task
learning via iterated single-task transfer. In 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 10141-10146, 2022. doi: 10.1109/IROS47612.2022.9981244.

12

http://jmlr.org/papers/v23/21-1127.html
http://jmlr.org/papers/v23/21-1127.html
https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897

	Introduction
	Related Work
	Method
	Loss Functions
	Fixup Phase

	Experiments
	Gym Mujoco Control Tasks
	Gym Mujoco Ablation Experiments
	Meta-World Experiments
	DMLab-30 Experiments

	Limitations
	Conclusion

