
Analysis of Stochastic Gradient Descent for
Learning Linear Neural Networks

Abstract—In this work we analyze stochastic gradient descent
(SGD) for learning deep linear neural networks. We use an
analytical approach that combines SGD iterates and gradient
flow trajectories base on stochastic approximation theory. Then
establish the almost sure boundedness of SGD iterates and its
convergence guarantee for learning deep linear neural networks.
Most studies on the analysis of SGD for nonconvex problem have
entirely focused on convergence property which only indicate that
the second moment of the loss function gradient tend to zero
[11]–[14]. Our study demonstrates the convergence of SGD to a
critical point of the square loss almost surely for learning deep
linear neural networks.

EXTENDED ABSTRACT

The remarkable performance of deep learning (DL) models
strongly relies on its capacity to best tune its parameters
during the learning process. In general, this learning process
essentially consists of optimizing an associated cost function
composed of the training data over the model parameters, via
(stochastic) gradient descent or any of its variants. This then
result in an optimization problem of a highly non-convex cost
function which is challenging to analyze.

Nevertheless, practitioners obtain impressive results by
training and deploy DL models in a vast amount of applica-
tions. Besides, these impressive results of DL models, there is
still lack of theoretical explanation that completely describe
the process that enable its models to achieve spectacular
results. This gap between the theory behind DL models
and practical DL has made its models to be observed, so
far, as a black box. Consequently, a lot of effort is being
devoted to shed light in this regard. Two main directions of
contributions were developed to address the issue of describing
the training process of DL models namely; works analyzing
gradient flow (GF) (which is GD with infinitesimal step-
sizes) for learning deep linear neural networks and works
analyzing (S)GD with practical step-sizes for learning deep
linear neural networks. Linear neural networks here refer to
neural networks with linear activation function (in our work
we used identity). Even with a linear activation function, the
corresponding cost function still remains highly non-convex
due to the overparameterized matrix of the network.

The analysis of GF for learning deep linear neural networks
has provided intuitive properties on its optimization process
[2], [3], [6]. For instance, the work in [2] suggests that
overparameterization caused by depth leads gradient descent
for training a deep linear neural networks to behave as if
it were training a shallow network using a specific precon-
ditioning scheme at the same time. Authors of [6] proved
that if the number of instances in the training set is greater

than the dimensions of the input data and the dimensions
of the input data is in turn greater than the dimension of
the output layer, GF converges to a global minimum for
almost every initial condition. In addition, their results require
the minimum dimension of the hidden layers to be greater
or equal to the dimension of the output layer. The study
in [3] significantly extends previous convergence results and
provides a more general dimension setting. However, these
works on GF are still far from practice, given that they are
all base on infinitesimal step sizes and do not provide any
concrete informations on realistic step sizes.

The preliminary work that addresses GD with realistic step
sizes for learning a linear neural networks is provided in [4].
This work precisely studies GD initialized with identity for
learning a deep linear residual network (a particular subclass
of neural networks where layers dimensions are all equal)
over whitened data. It shows that, if the initial value of the
cost function is sufficiently close to a global minimum, or a
global minimum is attained when the product of all layers is
positive definite then GD converges to a global minimum at a
linear rate. Furthermore, authors of [1] introduced approximate
balanced initialization then extended the results in [4] into a
setting that enables the input, output and hidden dimensions
to take any other values that could even allows the minimum
intermediate layer dimension to be greater or equal to the
minimum between the first and last hidden layer dimension.
Besides, they proved the convergence of GD with a constant
step-size using a deficiency margin condition which indicates
that the target matrix should be closed to the parameterized
matrix of the network at initialization. GD run with constant
step-sizes also converges to a global optimum for learning
linear neural networks with a near-zero initialization [8].
Authors of [8] precisely devised their convergence guarantee
on a single variable regression problem. Moreover, the work
in [17] complements and generalizes previous results of GD
for learning linear neural networks. It carefully analyzes GD
dynamic for almost all initialization and takes into account
both constant step-sizes with decreasing step-sizes. This work
establishes the global convergence of GD to a minimizer of
the square loss without the deficient margin condition and
not necessarily over whitened data. Our study focus on the
extension of [17] from GD to SGD.

In practice, computing the full gradient is time demanding
for very large-scale problems. Hence, practitioners use SGD
(or any of its variants) which only involve a small number
of randomly selected data points in the computation of the
gradient and is, therefore, less costly. Our work makes further



steps ahead in closing the gap between theoritical DL and
practical DL by directly analyzing SGD for learning linear
neural networks. In contrast to GF trajectory for learning
neural networks whose bound has been established and conver-
gence properties are clearly proved in the literature, tangibly
established SGD (GF stochastic approximation) iterates bound
and convergence for learning neural networks are still open
questions. Indeed, some results in literature of online learning
algorithms such as SGD assume that its iterates are bounded
[7], [15]. Preliminaries results on stochastic approximation
provides the convergence of SGD under the assumption that
its supremum over iteration is bounded [15]. Other results in
the state of the art circumvent the boundedness assumption on
SGD iterates by using a condition that requires the gradient
of the cost function to be Lipschitz [10], [11], [13], [16].
However, SGD sequence can escape to infinity and would,
therefore, need a careful analysis. In addition, the Lipschitz
condition on cost function gradient is not a fair condition in the
sense that parameterization makes it impossible to be satisfied
with linear neural networks cost function (such as square loss
for instance).

Work in [9] presents a general structure of online learning
algorithms and indicates that addressing these algorithms
with stochastic approximations theory produces desired con-
vergence result. It used stochastic approximations theory to
devise the convergence of SGD for minimizing a convex loss
function. In our work, we use an approach that combines SGD
iterates and GF trajectories base on stochastic approximation
theory. Then develop the almost sure boundedness of SGD
iterates and its convergence guarantee for training deep linear
neural networks. Giving that works of GF have provided
comprehensive analysis, involving GF in the analysis of SGD
is very helpful in the sense that some of GF’s properties would
complement the analysis of SGD and, therefore, contribute in
overcoming the major difficulties that arise when addressing
SGD alone. This analytical approach was introduced in [5].
More precisely, this work defined a continuous time process
via an interpolation of a discrete time stochastic process.
Then involved it in the study to determine the almost sure
dynamics of the discrete stochastic process (as a stochastic
approximation process of a semi-flow) with decreasing step-
sizes. In our work, we define such continuous time process by
interpolating SGD iterates for learning linear neural networks
then use it to address the long term behavior of SGD through
stochastic approximation theory.

The great benefit in training DL models with SGD algorithm
in practice has resulted its convergence properties to become
a central topic of research [10]–[14], [16]. Study done in [16]
examined the almost sure convergence of SGD for non-convex
cost function partly based on a similar analytical approach
to our work. This study assumes that the sublevels of the
objective function are bounded. It also uses the smoothness as-
sumption for cost function which is generally used in the SGD
literature [12]–[14], [18] and basically means the gradient of
the objective function is Lipschitz. The potential consequence
of this condition is that it provides a relation which ensure

a decrease of loss function iterates and, therefore, constitute
a plausible argument for convergence. Unfortunately, loss
functions such as square loss of linear neural networks does
not satisfy these two conditions through SGD algorithm due
to the factorized matrix of the network. In contrast, we use
approximate balanced initialization of the weight matrices
and elaborate a decrease relation of loss function iterates in
expectation by extending previous results of [17]. Most studies
on the analysis of SGD for nonconvex problem have entirely
focused on convergence property which only indicate that the
second moment of the loss function gradient tend to zero
[11]–[14]. Besides, we are not aware of a single work that
concretely provides the convergence properties of SGD for
learning deep linear neural networks. Our study demonstrates
the convergence of SGD to critical a point of the square loss
for learning deep linear neural networks.

REFERENCES

[1] S. Arora, N. Cohen, N. Golowich, and W. Hu. A convergence analysis
of gradient descent for deep linear neural networks, 2018.

[2] S. Arora, N. Cohen, and E. Hazan. On the optimization of deep
networks: Implicit acceleration by overparameterization. Preprint.
https://arxiv.org/abs/1802.06509, 2018.

[3] B. Bah, H. Rauhut, U. Terstiege, and M. Westdickenberg. Learning deep
linear neural networks: Riemannian gradient flows and convergence to
global minimizers. arXiv preprint arXiv:1910.05505, 2019.

[4] P. Bartlett, D. Helmbold, and P. Long. Gradient descent with identity
initialization efficiently learns positive definite linear transformations
by deep residual networks. In International conference on machine
learning, pages 521–530. PMLR, 2018.

[5] M. Benaı̈m and M. W. Hirsch. Asymptotic pseudotrajectories and chain
recurrent flows, with applications. Journal of Dynamics and Differential
Equations, 8(1):141–176, 1996.

[6] Y. Chitour, Z. Liao, and R. Couillet. A geometric approach of gradient
descent algorithms in neural networks. arXiv preprint arXiv:1811.03568,
2018.

[7] D. Davis, D. Drusvyatskiy, S. Kakade, and J. D. Lee. Stochastic
subgradient method converges on tame functions. Foundations of
computational mathematics, 20(1):119–154, 2020.

[8] O. Elkabetz and N. Cohen. Continuous vs. discrete optimization of
deep neural networks. In Thirty-Fifth Conference on Neural Information
Processing Systems, 2021.

[9] L. eon Bottou. Online learning and stochastic approximations. On-
linelearning in neural networks, 17(9):142, 1998.

[10] R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle
points—online stochastic gradient for tensor decomposition. In Con-
ference on learning theory, pages 797–842. PMLR, 2015.

[11] S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for
nonconvex stochastic programming. SIAM Journal on Optimization,
23(4):2341–2368, 2013.

[12] S. Ghadimi and G. Lan. Accelerated gradient methods for nonconvex
nonlinear and stochastic programming. Mathematical Programming,
156(1-2):59–99, 2016.
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